JP4141084B2 - Regenerative air conditioning system and operation method thereof - Google Patents

Regenerative air conditioning system and operation method thereof Download PDF

Info

Publication number
JP4141084B2
JP4141084B2 JP2000132378A JP2000132378A JP4141084B2 JP 4141084 B2 JP4141084 B2 JP 4141084B2 JP 2000132378 A JP2000132378 A JP 2000132378A JP 2000132378 A JP2000132378 A JP 2000132378A JP 4141084 B2 JP4141084 B2 JP 4141084B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
air conditioning
cold
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000132378A
Other languages
Japanese (ja)
Other versions
JP2001317794A (en
Inventor
浩則 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000132378A priority Critical patent/JP4141084B2/en
Publication of JP2001317794A publication Critical patent/JP2001317794A/en
Application granted granted Critical
Publication of JP4141084B2 publication Critical patent/JP4141084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、夜間に蓄熱された蓄熱を利用して、翌日の昼間に空気調和を実施する蓄熱式空気調和システム及びその運転方法に関する。
【0002】
【従来の技術】
夜間に、翌日の昼間の空調負荷を予測して蓄熱槽に蓄熱を行い、この蓄熱を利用して昼間の空調負荷の大部分を賄い、暖房または冷房運転を実施する蓄熱式空気調和システムが知られている。
【0003】
このような蓄熱式空気調和システムでは、蓄熱槽に水温センサや水位センサを設置して、蓄熱槽内で氷が過剰に製氷されないよう、また、蓄熱槽から冷温水が漏洩しないよう考慮されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の蓄熱式空気調和システムでは、蓄熱運転時に、蓄熱槽内での蓄熱の状況については検出されず、蓄熱槽内で冷温水が目標の温度、水位になるまで蓄熱運転が継続される。従って、蓄熱運転時に、何らかの理由によって蓄熱槽内に充分な蓄熱がなされなかった場合には、蓄熱を利用する空気調和を実施した時点でなければ蓄熱が充分になされなかった事実を判断できない。
【0005】
このため、空調負荷がピークとなる時に充分な空気調和を実施できない不具合が生ずる。また、この時点で空気調和システムを修理すると、少なくとも、この修理時間及び蓄熱所要時間分だけ空気調和を実施できない。
【0006】
本発明の目的は、上述の事情を考慮してなされたものであり、昼間に蓄熱を利用して実施される空気調和の不具合を、前日の夜間から実施される蓄熱運転時間帯に予測して、上記不具合に迅速に対応できる蓄熱式空気調和システム及びその運転方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系と、昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる制御装置と、を有する蓄熱式空気調和システムにおいて、上記制御装置は、当該制御装置から熱源機への運転指令信号、上記制御装置から一次系の循環ポンプへの運転指令信号、上記熱源機から上記制御装置への熱源機インターロック信号、上記循環ポンプから上記制御装置へのポンプインターロック信号の少なくとも一つが検出されたことにより、熱源機の運転条件が満たされていると判定し、上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とするものである。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、上記制御装置は、昼間に蓄熱を利用して実施される暖房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T1経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度α以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とするものである。
【0009】
請求項3に記載の発明は、請求項1に記載の発明において、上記制御装置は、昼間に蓄熱を利用して実施される冷房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T2経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度β以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とするものである。
【0010】
請求項4に記載の発明は、請求項3に記載の発明において、上記制御装置は、蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、蓄熱槽内の冷温水の温度が約0℃となってから所定時間T3経過後又は経過毎における冷温水の水位が規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とするものである。
【0012】
請求項に記載の発明は、熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系とを有し、昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる蓄熱式空気調和システムの運転方法において、上記制御装置から熱源機への運転指令信号、上記制御装置から一次系の循環ポンプへの運転指令信号、上記熱源機から上記制御装置への熱源機インターロック信号、上記循環ポンプから上記制御装置へのポンプインターロック信号の少なくとも一つが検出されたことにより、熱源機の運転条件が満たされていると判定し、上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力することを特徴とするものである。
【0013】
請求項に記載の発明は、請求項に記載の発明において、昼間に蓄熱を利用して実施される暖房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T1経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度α以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とするものである。
【0014】
請求項に記載の発明は、請求項に記載の発明において、昼間に蓄熱を利用して実施される冷房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T2経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度β以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とするものである。
【0015】
請求項に記載の発明は、請求項に記載の発明において、蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、蓄熱槽内の冷温水の温度が約0℃となってから所定時間T3経過後又は経過毎における冷温水の水位が規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とするものである。
【0017】
請求項1乃至に記載の発明には、次の作用がある。
【0018】
一次系の蓄熱運転の開始から所定時間経過後又は経過毎における蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、蓄熱運転時間帯に故障予測警報を出力するよう構成されたことから、昼間に実施する蓄熱を利用した空気調和の不具合を、前日の夜間からの蓄熱時間帯に蓄熱槽への蓄熱状況を検討することにより予測できるので、上記空気調和の不具合に迅速に対応でき、この蓄熱時間帯に空気調和システムを修理することによって、昼間に実施する蓄熱を利用した空気調和の不具合の発生を未然に回避できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0020】
図1は、本発明に係る空気調和システムの一実施の形態における冷媒回路等を示す回路図である。
【0021】
この図1に示すように、蓄熱式空気調和システム20は、一次系21と、二次系22と、これら一次系21及び二次系22を制御する制御装置23とを有して構成され、一次系21の蓄熱槽24に夜間蓄熱された蓄熱を利用して、二次系22の空調負荷25に対し空気調和(暖房または冷房)を実施するものである。
【0022】
一次系21は、循環ポンプとしてのブラインポンプ26、熱源機としてのヒートポンプチラー27、第1ブライン電動弁28及び蓄熱槽24が順次接続され、更に、第1ブライン電動弁28及び蓄熱槽24に並列に、第2ブライン電動弁29及びブライン・水熱交換器30が配設されて構成される。
【0023】
ブラインポンプ26の動作により、熱媒体としてのブラインが一次系21内を循環して流れ、この循環するブラインをヒートポンプチラー27が加熱または冷却する。
【0024】
第1ブライン電動弁28の開操作時に、ヒートポンプチラー27にて加熱または冷却されたブラインが蓄熱槽24へ導かれ、この蓄熱槽24内に充填された二次系22の冷温水(後述)と上記ブラインとがこの蓄熱槽24内で熱交換される。また、第2ブライン電動弁29の開操作時に、ヒートポンプチラー27にて加熱または冷却されたブラインがブライン・水熱交換器30へ導かれ、このブライン・水熱交換器30内で、ブラインと二次系22の冷温水とが熱交換される。
【0025】
上記二次系22は、冷温水ポンプ31、空調負荷25、上記ブライン・水熱交換器30、上記蓄熱槽24及び三方電動弁32が順次接続されて構成される。冷温水ポンプ31の動作により、冷温水が二次系22内を循環して流れる。
【0026】
三方電動弁32の開動作により、冷温水は蓄熱槽24内を流れ、この蓄熱槽24内でブラインと熱交換され、この熱交換された冷温水が空調負荷25へ導かれる。この蓄熱槽24内でのブラインと冷温水との熱交換は、冷房運転における解氷冷房運転時と暖房運転時に実施される。
【0027】
また、三方電動弁32の閉動作により、冷温水は蓄熱槽24を迂回して空調負荷25へ導かれ、この空調負荷25へは、ブライン・水熱交換器30にてブラインと熱交換された冷温水が導かれる。このブライン・水熱交換器30内でのブラインと冷温水との熱交換は、冷房運転における追掛チラー冷房運転時に実施される。
【0028】
蓄熱槽24には、下部に水温センサ33が、上部に水位センサ34及び給水弁35がそれぞれ設置される。水温センサ33は、蓄熱槽24内に充填された冷温水の温度を検出する。また、水位センサ34は、蓄熱槽24の水位を検出することによって、蓄熱槽24内で冷温水から製氷された氷の量を検出する。給水弁35は、蓄熱槽24内への給水を制御する弁である。更に、蓄熱式空気調和システム20には、外気温を検出する外気温センサ36が設置されている。
【0029】
水温センサ33、水位センサ34及び外気温センサ36は前記制御装置23に接続されて、それぞれの検出値を制御装置23へ出力する。この制御装置23は、一次系21のブラインポンプ26、ヒートポンプチラー27、第1ブライン電動弁28及び第2ブライン電動弁29、並びに二次系22の冷温水ポンプ31、三方電動弁32及び給水弁35を制御して、蓄熱式空気調和システム20に蓄熱運転、暖房運転、冷房運転をそれぞれ実行させる。
【0030】
蓄熱運転は、蓄熱を利用して昼間に実施される空気調和(暖房または冷房)に必要な蓄熱量を一次系21の蓄熱槽24に蓄熱すべく、前日の夜間(晩を含む)から一次系21を運転させることによって実行されるものであり、暖房運転のための蓄熱運転と、冷房運転のための蓄熱運転とがある。
【0031】
暖房運転のための蓄熱運転は、例えば前日の16:00〜当日の3:45までの暖房運転と共に実行される予備蓄熱と、例えば当日の4:00〜7:00まで実行される本蓄熱とがある。また、例えば当日の3:45〜4:00までは蓄熱準備が実行される。
【0032】
これらの予備蓄熱及び本蓄熱では、制御装置23は、ブラインポンプ26及びヒートポンプチラー27を起動させ、冷温水ポンプ31を停止させ、第1ブライン電動弁28を開操作し、第2ブライン電動弁29を閉操作して、蓄熱槽24内の冷温水を加熱する。
【0033】
蓄熱槽24内の冷温水は、予備蓄熱において約40℃に加熱され、本蓄熱において約50℃に加熱される。この蓄熱槽24内の冷温水の温度は、水温センサ33によって検出される。
【0034】
また、蓄熱準備では、制御装置23は、給水弁35を制御して、蓄熱槽24内の冷温水が基準水位になるまで蓄熱槽24内に給水する。この基準水位まで貯溜された給水が、上記本蓄熱時に加熱される。
【0035】
暖房運転は、例えば当日の8:00〜16:00に実行される。この暖房運転時に制御装置23は、第2ブライン電動弁29を操作し、第1ブライン電動弁28を操作し、三方電動弁32を開動作し、ブラインポンプ26及び冷温水ポンプ31を起動させ、ヒートポンプチラー27を起動させる。これによって、蓄熱槽24内の冷温水温度を、この蓄熱槽24によるブレインとの熱交換によって約40〜50℃に維持させつつ、空調負荷25へ冷温水を導いて、この空調負荷25を暖房する。
【0036】
一方、冷房運転のための蓄熱運転は、例えば前日の16:00〜21:45まで冷房運転と共に実行される予備蓄熱と、例えば前日の22:00〜当日の8:00まで実行される本蓄熱とがある。また、例えば前日の21:45〜22:00までは蓄熱準備が実行される。
【0037】
これらの予備蓄熱及び本蓄熱では、制御装置23は、ブラインポンプ26及びヒートポンプチラー27を起動させ、冷温水ポンプ31を停止させ、第1ブライン電動弁28を開操作し、この冷温水を凝固して製氷する。
【0038】
蓄熱槽24内の冷温水は、予備蓄熱において約10℃以下まで冷却される。蓄熱槽24内の冷温水は、本蓄熱において凝固されて氷となり、この結果、蓄熱槽24内の水位が目標水位G1(図3)まで上昇される。蓄熱槽24内の冷温水の温度及び水位は、それぞれ水温センサ33、水位センサ34により検出される。上記目標水位G1は、冷温水の基準水位G0(後述)から例えば約30mm上昇した水位である。
【0039】
また、蓄熱準備では、制御装置23は給水弁35を制御して、蓄熱槽24内の水位が基準水位G0(図3)になるまで蓄熱槽24内に給水する。更に、制御装置23は、外気温センサ36にて検出された外気温と空調負荷25との関係から製氷量(すなわち蓄熱量)を決定する。この製氷量の氷が、上記本蓄熱時に製氷される。
【0040】
冷房運転は、例えば当日の8:00〜16:00に実行される。この冷房運転時には、制御装置23は、蓄熱槽24内の氷の融解熱を冷温水を介して空調負荷25へ導き、この空調負荷25を冷房する解氷冷房運転と、ヒートポンプチラー27にて冷却されたブラインと冷温水とをブライン・水熱交換器30を用いて熱交換し、この冷温水により空調負荷25を冷房する追掛チラー冷房運転とを交互に実行する。
【0041】
上記解氷冷房運転は、ブラインポンプ26及びヒートポンプチラー27が停止され、第2ブライン電動弁29が閉操作され、第1ブライン電動弁28が開操作され、三方電動弁32が開動作され、冷温水ポンプ31が起動されることにより実行される。また、上記追掛チラー冷房運転は、ブラインポンプ26及びヒートポンプチラー27が起動され、第2ブライン電動弁29が開操作され、第1ブライン電動弁28が閉操作され、冷温水ポンプ31が起動され、三方電動弁32が閉動作されることにより実行される。
【0042】
これらの解氷冷房運転及び追掛チラー冷房運転が交互に実行されることにより、蓄熱槽24内の氷は、図4の解氷曲線Aに沿って、冷房運転終了直前(例えば約1時間前)に全て解氷されるよう制御される。この制御により、空調負荷25が冷房される。
【0043】
さて、制御装置23は、前日の一次系21における暖房または冷房運転のための蓄熱運転時に、この蓄熱運転開始から所定時間経過後における蓄熱槽24内の冷温水の温度が、所定温度に到達しているか否かにより当該蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、ヒートポンプチラー27の運転条件が満たされているにも係わらず、この蓄熱運転時間帯に故障予測警報を出力する。
【0044】
つまり、制御装置23は、暖房運転のための蓄熱運転時には、この蓄熱運転時間帯にヒートポンプチラー27の運転条件が満たされているにも係わらず、この蓄熱運転の開始時(例えば16:00)から所定時間T1(図2)経過後における蓄熱槽24内の冷温水の温度が、図2の破線に示すように、所定温度α(例えば約43℃)以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力する。ここで、上記所定温度αは、所定時間T1に応じて変化する。
【0045】
また、制御装置23は、冷房運転のための蓄熱運転時には、この蓄熱運転時間帯にヒートポンプチラー27の運転条件が満たされているにも係わらず、この蓄熱運転の開始時(例えば16:00)から所定時間T2(図3)経過後における蓄熱槽24内の冷温水の温度が、図3の破線aに示すように、所定温度β(例えば約7℃)以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力する。ここで、所定温度βは、所定時間T2に応じて変化する。
【0046】
ここで、上述の冷温水の温度は、水温センサ33により検出される。この温度は、蓄熱運転の開始から所定時間T1、T2経過時を含む前後で、水温センサ33により複数回検出された検出値の平均値であり、または、上記所定時間T1、T2経過時点において水温センサ33により1回検出された検出値である。
【0047】
また、上記ヒートポンプチラー27の運転条件が満たされているとの判断は、次のようにしてなされる。つまり、制御装置23からヒートポンプチラー27へ出力された運転指令信号、制御装置23からブラインポンプ26へ出力された運転指令信号、ヒートポンプチラー27から制御装置23へ返信された熱源機インターロック信号としてのヒートポンプチラーインターロック信号、または、ブラインポンプ26から制御装置23へ返信されたポンプインターロック信号の少なくとも1つを制御装置23が検出したときに、この制御装置23はヒートポンプチラー27の運転条件が満たされていると判断する。
【0048】
制御装置23は、上述の冷房運転のための蓄熱運転時には、更に、水位センサ34により検出される蓄熱槽24内の水位によっても故障予測警報を出力する。つまり、制御装置23は、冷房運転のための蓄熱時間帯にヒートポンプチラー27の運転条件が満たされているにも係わらず、蓄熱槽24内の冷温水の温度が約0℃となってから所定時間T3(図3)経過後における冷温水の水位が、図3の破線bに示すように、規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力する。
【0049】
上記規定水位Gは、蓄熱槽24内で氷が製氷されていないときの基準水位G0よりも高く、前記目標水位G1よりも低いレベルの水位であり、所定時間T3に応じて変化する。また、蓄熱槽24内の冷温水の水位は、この冷温水が約0℃になってから所定時間T3経過時を含む前後で、水位センサ34により複数回検出された検出値の平均値であり、または、上記所定時間T3経過時点において水位センサ34により1回検出された検出値である。
【0050】
従って、上記実施の形態によれば、次の効果を奏する。
【0051】
暖房運転または冷房運転のための一次系21の蓄熱運転の開始から所定時間T1またはT2における蓄熱槽24内の冷温水の温度が、それぞれ所定温度αまたは所定温度βに達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、蓄熱運転時間帯に故障予測警報を出力するよう構成されている。更に、冷房運転のための蓄熱運転にあっては、蓄熱槽24内の冷温水が約0℃になってから所定時間T3経過後の蓄熱槽24内の冷温水の水位が規定水位G以下であって、この蓄熱運転が適切でないと判断したときにも、蓄熱運転時間帯に故障予測警報を出力するよう構成されている。これらのことから、昼間に実施する蓄熱を利用した空気調和(暖房または冷房)の不具合、つまり昼間のピーク負荷に対応した空気調和が実施できないことを、前日の夜間からの蓄熱時間帯に、蓄熱槽24への蓄熱状況を検討することにより予測できる。このため、空気調和の上記不具合に迅速に対応でき、この蓄熱時間帯に蓄熱式空気調和システム20を修理することによって、昼間に実施する蓄熱を利用した空気調和の上記不具合の発生を未然に回避できる。
【0052】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0053】
例えば、制御装置23は、暖房運転のための蓄熱運転時には、この蓄熱運転時間帯にヒートポンプチラー27の運転条件が満たされているにも係わらず、この蓄熱運転の開始時(例えば16:00)から所定時間T1(図2)経過毎における蓄熱槽24内の冷温水の温度が所定温度α(例えば約43℃)以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力してもよい。
【0054】
また、制御装置23は、冷房運転のための蓄熱運転時には、この蓄熱運転時間帯にヒートポンプチラー27の運転条件が満たされているにも係わらず、この蓄熱運転の開始時(例えば16:00)から所定時間T2(図3)経過毎における蓄熱槽24内の冷温水の温度が所定温度β(例えば約7℃)以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力してもよい。
【0055】
更に、制御装置23は、冷房運転のための蓄熱時間帯にヒートポンプチラー27の運手条件が満たされているにも係わらず、蓄熱槽24内の冷温水の温度が約0℃となってから所定時間T3(図3)経過毎における冷温水の水位が規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力してもよい。
【0056】
このように、所定時間T1、T2、T3の経過毎に蓄熱槽24内の冷温水の水温、水位を検討して、蓄熱運転の適否を判断することにより、この判断を高精度に実行できる。
【0057】
【発明の効果】
本発明によれば、熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系と、昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる制御装置と、を有する蓄熱式空気調和システムにおいて、上記制御装置は、上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力するよう構成されたことから、昼間に蓄熱を利用して実施される空気調和の不具合を、前日の夜間から実施される蓄熱時間帯に予測して上記不具合に迅速に対応できる。
【0058】
本発明によれば、熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系とを有し、昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる蓄熱式空気調和システムの運転方法において、上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力することから、昼間に蓄熱を利用して実施される空気調和の不具合を、前日の夜間から実施される蓄熱時間帯に予測して上記不具合に迅速に対応できる。
【図面の簡単な説明】
【図1】本発明に係る空気調和システムの一実施の形態における冷媒回路等を示す回路図である。
【図2】図1の制御装置が実施する暖房運転のための蓄熱運転の制御を示すグラフである。
【図3】図1の制御装置が実施する冷房運転のための蓄熱運転の制御を示すグラフである。
【図4】図1の制御装置が実施する冷房運転時の制御を示すグラフである。
【符号の説明】
20 蓄熱式空気調和システム
21 一次系
22 二次系
23 制御装置
24 蓄熱槽
25 空調負荷
26 ブラインポンプ(循環ポンプ)
27 ヒートポンプチラー(熱源機)
30 ブライン・水熱交換器(熱交換器)
31 冷温水ポンプ
32 三方電動弁
33 水温センサ
34 水位センサ
G 規定水位
T1、T2、T3 所定時間
α、β 所定温度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative air conditioning system that performs air conditioning during the daytime of the next day using heat storage stored at night and a method for operating the same.
[0002]
[Prior art]
A heat storage air conditioning system is known that predicts the daytime air conditioning load on the next day at night, stores heat in the heat storage tank, covers most of the daytime air conditioning load using this heat storage, and performs heating or cooling operations. It has been.
[0003]
In such a heat storage type air conditioning system, a water temperature sensor and a water level sensor are installed in the heat storage tank so that ice is not made excessively in the heat storage tank, and cold / hot water is not leaked from the heat storage tank. .
[0004]
[Problems to be solved by the invention]
However, in the above-described heat storage type air conditioning system, the state of heat storage in the heat storage tank is not detected during the heat storage operation, and the heat storage operation is continued until the cold / hot water reaches the target temperature and water level in the heat storage tank. . Therefore, when sufficient heat storage is not performed in the heat storage tank for some reason during the heat storage operation, the fact that the heat storage has not been sufficiently performed cannot be determined unless air conditioning using heat storage is performed.
[0005]
For this reason, when air conditioning load becomes a peak, the malfunction which cannot implement sufficient air conditioning arises. Further, if the air conditioning system is repaired at this time, the air conditioning cannot be performed at least for the repair time and the heat storage time.
[0006]
The object of the present invention has been made in consideration of the above-mentioned circumstances, and predicts a malfunction of air conditioning performed using heat storage during the daytime in a heat storage operation time zone performed from the night before the previous day. An object of the present invention is to provide a regenerative air conditioning system that can quickly cope with the above-mentioned problems and an operation method thereof.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is provided in a primary system capable of circulating and supplying a heat medium heated or cooled by a heat source device to a heat storage tank or a heat exchanger, the heat storage tank, and the heat exchanger. In order to secure the amount of heat storage necessary for air conditioning performed using heat storage in the daytime, and a secondary system that can circulate chilled / warm water heated or cooled and supply it to the air conditioning load A heat storage type air conditioning system having a heat storage operation of the primary system from the control device, the control device is an operation command signal from the control device to the heat source unit, the operation from the control device to the primary circulation pump The operation condition of the heat source unit is satisfied by detecting at least one of a command signal, a heat source unit interlock signal from the heat source unit to the control unit, and a pump interlock signal from the circulation pump to the control unit. It was determined to be the temperature of the cold water in the storage tank at a predetermined time has elapsed after or after the start of the heat storage operation of the primary system, the appropriateness of thermal storage operation by whether reached a predetermined temperature When the heat storage operation is determined to be inappropriate, the failure prediction alarm is output during the heat storage operation time period even though the operation condition of the heat source unit is satisfied. .
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the control device is implemented from the night before the previous day in order to secure a heat storage amount necessary for a heating operation performed using the heat storage in the daytime. The temperature of the cold / hot water in the heat storage tank is equal to or less than the predetermined temperature α after the predetermined time T1 has elapsed or every time since the start of the heat storage operation, even though the operation conditions of the heat source unit are satisfied during the time period of the heat storage operation. In this case, it is determined that the heat storage operation is not appropriate, and a failure prediction alarm is output during the heat storage operation time zone.
[0009]
According to a third aspect of the present invention, in the first aspect of the present invention, the control device is implemented from the night before the previous day in order to secure a heat storage amount necessary for cooling operation performed using heat storage in the daytime. The temperature of the cold / hot water in the heat storage tank is equal to or higher than the predetermined temperature β after the predetermined time T2 has elapsed or every time since the start of the heat storage operation, even though the operation conditions of the heat source apparatus are satisfied during the time period of the heat storage operation. In this case, it is determined that the heat storage operation is not appropriate, and a failure prediction alarm is output during the heat storage operation time zone.
[0010]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the control device includes a cooling / heating temperature in the heat storage tank in spite of the operating condition of the heat source unit being satisfied during the time period of the heat storage operation. If the water level of the cold / warm water is less than the specified water level G after the predetermined time T3 has elapsed after the temperature of the water reaches about 0 ° C., it is determined that this heat storage operation is not appropriate, and this heat storage operation time zone is reached. The apparatus is configured to output a failure prediction alarm.
[0012]
The invention according to claim 5 is provided in the primary system provided so as to be able to circulate and supply the heat medium heated or cooled by the heat source device to the heat storage tank or the heat exchanger, the heat storage tank, and the heat exchanger. To ensure the heat storage required for air conditioning that uses heat storage in the daytime, and has a secondary system that can be supplied to the air conditioning load by circulating cold / hot water heated or cooled In the operation method of the regenerative air conditioning system in which the primary system is regeneratively operated from the night before the previous day , the operation command signal from the control device to the heat source unit, the operation command signal from the control device to the primary circulation pump, the heat source heat source equipment interlock signal from the machine to the control device, by at least one pump interlock signal from said circulation pump to said control device is detected, it determines that the operating conditions of the heat source apparatus is satisfied, The suitability of the heat storage operation is determined based on whether the temperature of the cold / hot water in the heat storage tank has reached a predetermined temperature after the predetermined time has elapsed or every time since the start of the primary heat storage operation. If not appropriate, a failure prediction alarm is output during the heat storage operation time period even though the operation condition of the heat source device is satisfied.
[0013]
The invention according to claim 6 is the invention according to claim 5 , wherein the heat storage operation time zone is implemented from the night before the previous day in order to secure the amount of heat storage required for the heating operation performed using the heat storage in the daytime. If the temperature of the cold / warm water in the heat storage tank is equal to or lower than the predetermined temperature α after the predetermined time T1 has elapsed from the start of the heat storage operation or every time since the operation conditions of the heat source device are satisfied, It is characterized by determining that the heat storage operation is not appropriate and outputting a failure prediction alarm during this heat storage operation time zone.
[0014]
The invention of claim 7 is the invention of claim 5, the time zone of the thermal storage operation performed from the previous evening to secure the heat storage amount required for the cooling operation performed by using the heat storage in the daytime When the temperature of the cold / hot water in the heat storage tank is equal to or higher than the predetermined temperature β after the predetermined time T2 has elapsed since the start of the heat storage operation or every time since the operation conditions of the heat source device are satisfied. It is characterized by determining that the heat storage operation is not appropriate and outputting a failure prediction alarm during this heat storage operation time zone.
[0015]
The invention according to claim 8 is the invention according to claim 7 , wherein the temperature of the cold / hot water in the heat storage tank is approximately equal to the time of the heat storage operation, even though the operation condition of the heat source unit is satisfied. If the water level of the cold / warm water is below the specified water level G after the lapse of the predetermined time T3 from 0 ° C., it is determined that this heat storage operation is not appropriate, and a failure prediction alarm is output during this heat storage operation time zone It is characterized by doing.
[0017]
The inventions according to claims 1 to 8 have the following effects.
[0018]
Appropriateness of the heat storage operation is determined by whether or not the temperature of the cold / hot water in the heat storage tank has reached the predetermined temperature after the elapse of a predetermined time from the start of the primary system heat storage operation or every time, and this heat storage operation is not appropriate. In this case, because it is configured to output a failure prediction alarm during the heat storage operation time zone, the heat storage situation in the heat storage tank during the heat storage time zone from the night of the previous day can be determined. Since it can be predicted by studying it, it is possible to respond quickly to the above air conditioning problems, and by repairing the air conditioning system during this heat storage time period, the occurrence of air conditioning problems using heat storage performed in the daytime can occur in advance. Can be avoided.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a circuit diagram showing a refrigerant circuit and the like in an embodiment of an air conditioning system according to the present invention.
[0021]
As shown in FIG. 1, the regenerative air conditioning system 20 includes a primary system 21, a secondary system 22, and a control device 23 that controls the primary system 21 and the secondary system 22. Air conditioning (heating or cooling) is performed on the air conditioning load 25 of the secondary system 22 using the heat stored in the heat storage tank 24 of the primary system 21 at night.
[0022]
In the primary system 21, a brine pump 26 as a circulation pump, a heat pump chiller 27 as a heat source machine, a first brine electric valve 28 and a heat storage tank 24 are sequentially connected, and further in parallel with the first brine electric valve 28 and the heat storage tank 24. The second brine motor-operated valve 29 and the brine / water heat exchanger 30 are arranged.
[0023]
By the operation of the brine pump 26, the brine as a heat medium circulates in the primary system 21 and the circulating brine is heated or cooled by the heat pump chiller 27.
[0024]
During the opening operation of the first brine motor-operated valve 28, the brine heated or cooled by the heat pump chiller 27 is guided to the heat storage tank 24, and cold / hot water (described later) of the secondary system 22 filled in the heat storage tank 24 Heat is exchanged with the brine in the heat storage tank 24. Further, when the second brine motor operated valve 29 is opened, the brine heated or cooled by the heat pump chiller 27 is guided to the brine / water heat exchanger 30, and the brine / water heat exchanger 30 Heat is exchanged with the cold / hot water of the secondary system 22.
[0025]
The secondary system 22 is configured by sequentially connecting a cold / hot water pump 31, an air conditioning load 25, the brine / water heat exchanger 30, the heat storage tank 24, and a three-way electric valve 32. By the operation of the cold / hot water pump 31, cold / hot water flows through the secondary system 22.
[0026]
By the opening operation of the three-way electric valve 32, the cold / hot water flows in the heat storage tank 24, heat is exchanged with the brine in the heat storage tank 24, and the heat-exchanged cold / hot water is guided to the air conditioning load 25. The heat exchange between the brine and the cold / hot water in the heat storage tank 24 is performed during the ice-free cooling operation and the heating operation in the cooling operation.
[0027]
Further, by the closing operation of the three-way electric valve 32, the cold / hot water bypasses the heat storage tank 24 and is guided to the air conditioning load 25, and the air conditioning load 25 is heat-exchanged with the brine by the brine / water heat exchanger 30. Cold and hot water is led. The heat exchange between the brine and the cold / hot water in the brine / water heat exchanger 30 is performed during the follow-up chiller cooling operation in the cooling operation.
[0028]
In the heat storage tank 24, a water temperature sensor 33 is installed in the lower part, and a water level sensor 34 and a water supply valve 35 are installed in the upper part. The water temperature sensor 33 detects the temperature of cold / hot water filled in the heat storage tank 24. The water level sensor 34 detects the amount of ice made from cold / hot water in the heat storage tank 24 by detecting the water level of the heat storage tank 24. The water supply valve 35 is a valve that controls water supply into the heat storage tank 24. Furthermore, the regenerative air conditioning system 20 is provided with an outside air temperature sensor 36 that detects the outside air temperature.
[0029]
The water temperature sensor 33, the water level sensor 34, and the outside air temperature sensor 36 are connected to the control device 23 and output detected values to the control device 23. The control device 23 includes a brine pump 26, a heat pump chiller 27, a first brine electric valve 28 and a second brine electric valve 29 in the primary system 21, and a cold / hot water pump 31, a three-way electric valve 32 and a water supply valve in the secondary system 22. 35 is controlled to cause the heat storage type air conditioning system 20 to execute a heat storage operation, a heating operation, and a cooling operation.
[0030]
The heat storage operation is performed from the night of the previous day (including the evening) to the primary system in order to store the heat storage amount necessary for air conditioning (heating or cooling) performed in the daytime using the heat storage in the heat storage tank 24 of the primary system 21. 21 is performed, and there are a heat storage operation for heating operation and a heat storage operation for cooling operation.
[0031]
The heat storage operation for the heating operation includes, for example, preliminary heat storage executed together with the heating operation from 16:00 on the previous day to 3:45 on that day, and main heat storage executed for example on the day from 4:00 to 7:00 There is. Further, for example, preparation for heat storage is executed until 3:45 to 4:00 of the day.
[0032]
In these preliminary heat storage and main heat storage, the control device 23 activates the brine pump 26 and the heat pump chiller 27, stops the cold / hot water pump 31, opens the first brine motor-operated valve 28, and opens the second brine motor-operated valve 29. Is closed to heat the cold / hot water in the heat storage tank 24.
[0033]
The cold / hot water in the heat storage tank 24 is heated to about 40 ° C. in the preliminary heat storage, and is heated to about 50 ° C. in the main heat storage. The temperature of the cold / hot water in the heat storage tank 24 is detected by a water temperature sensor 33.
[0034]
Moreover, in heat storage preparation, the control apparatus 23 controls the water supply valve 35, and supplies water in the heat storage tank 24 until the cold / hot water in the heat storage tank 24 becomes a reference | standard water level. The water supply stored up to this reference water level is heated during the main heat storage.
[0035]
The heating operation is executed, for example, from 8:00 to 16:00 on the same day. During the heating operation, the control device 23 opens the second brine motor valve 29, closes the first brine motor valve 28, opens the three-way motor valve 32, and activates the brine pump 26 and the cold / hot water pump 31. The heat pump chiller 27 is activated. Thus, the cold / hot water temperature in the heat storage tank 24 is maintained at about 40 to 50 ° C. by heat exchange with the brain in the heat storage tank 24, and the cold / hot water is guided to the air conditioning load 25 to heat the air conditioning load 25. To do.
[0036]
On the other hand, the heat storage operation for the cooling operation includes, for example, preliminary heat storage executed together with the cooling operation from 16:00 to 21:45 on the previous day and main heat storage executed for example from 22:00 on the previous day to 8:00 on that day. There is. Further, for example, the heat storage preparation is executed until 21:45 to 22:00 on the previous day.
[0037]
In these preliminary heat storage and main heat storage, the control device 23 activates the brine pump 26 and the heat pump chiller 27, stops the cold / hot water pump 31, opens the first brine electric valve 28, and solidifies the cold / hot water. Ice making.
[0038]
The cold / hot water in the heat storage tank 24 is cooled to about 10 ° C. or less in the preliminary heat storage. The cold / hot water in the heat storage tank 24 is solidified in this heat storage to become ice, and as a result, the water level in the heat storage tank 24 is raised to the target water level G1 (FIG. 3). The temperature and water level of the cold / hot water in the heat storage tank 24 are detected by a water temperature sensor 33 and a water level sensor 34, respectively. The target water level G1 is a water level that rises, for example, by about 30 mm from a reference water level G0 (described later) of the cold / hot water.
[0039]
Moreover, in heat storage preparation, the control apparatus 23 controls the water supply valve 35, and supplies water in the heat storage tank 24 until the water level in the heat storage tank 24 becomes the reference | standard water level G0 (FIG. 3). Furthermore, the control device 23 determines the ice making amount (that is, the heat storage amount) from the relationship between the outside air temperature detected by the outside air temperature sensor 36 and the air conditioning load 25. This amount of ice is made during the main heat storage.
[0040]
The cooling operation is executed at, for example, 8:00 to 16:00 on the same day. At the time of this cooling operation, the control device 23 guides the melting heat of the ice in the heat storage tank 24 to the air conditioning load 25 via the cold / hot water, and cools the air conditioning load 25 by the deicing cooling operation and the heat pump chiller 27. The brine and the cold / hot water are subjected to heat exchange using the brine / water heat exchanger 30, and the follow-up chiller cooling operation for cooling the air-conditioning load 25 using the cold / hot water is alternately performed.
[0041]
In the ice-freezing cooling operation, the brine pump 26 and the heat pump chiller 27 are stopped, the second brine electric valve 29 is closed, the first brine electric valve 28 is opened, the three-way electric valve 32 is opened, This is executed when the water pump 31 is activated. In the follow-up chiller cooling operation, the brine pump 26 and the heat pump chiller 27 are activated, the second brine electric valve 29 is opened, the first brine electric valve 28 is closed, and the cold / hot water pump 31 is activated. This is performed by closing the three-way motor operated valve 32.
[0042]
By alternately executing the ice-freezing cooling operation and the follow-up chiller cooling operation, the ice in the heat storage tank 24 moves along the ice-melting curve A in FIG. ) Is controlled to be thawed. By this control, the air conditioning load 25 is cooled.
[0043]
Now, during the heat storage operation for heating or cooling operation in the primary system 21 on the previous day, the control device 23 reaches the predetermined temperature of the cold / hot water in the heat storage tank 24 after a predetermined time has elapsed since the start of the heat storage operation. Whether or not the heat storage operation is appropriate is determined based on whether or not the heat storage operation is performed. If the heat storage operation is not appropriate, a failure prediction alarm is output during the heat storage operation time period even though the operation condition of the heat pump chiller 27 is satisfied. .
[0044]
That is, at the time of the heat storage operation for the heating operation, the control device 23 starts the heat storage operation (for example, 16:00) although the operation condition of the heat pump chiller 27 is satisfied during the heat storage operation time period. When the temperature of the cold / hot water in the heat storage tank 24 after the elapse of the predetermined time T1 (FIG. 2) is equal to or lower than the predetermined temperature α (for example, about 43 ° C.) as shown by the broken line in FIG. Therefore, a failure prediction alarm is output during this heat storage operation time zone. Here, the predetermined temperature α changes in accordance with the predetermined time T1.
[0045]
Further, the control device 23, during the heat storage operation for the cooling operation, at the start of the heat storage operation (for example, 16:00) although the operation condition of the heat pump chiller 27 is satisfied during the heat storage operation time zone. When the temperature of the cold / hot water in the heat storage tank 24 after the elapse of the predetermined time T2 (FIG. 3) is equal to or higher than the predetermined temperature β (for example, about 7 ° C.) as shown by the broken line a in FIG. It is determined that it is not appropriate, and a failure prediction alarm is output during this heat storage operation time zone. Here, the predetermined temperature β changes according to the predetermined time T2.
[0046]
Here, the temperature of the cold / hot water is detected by the water temperature sensor 33. This temperature is an average value of the detected values detected by the water temperature sensor 33 a plurality of times before and after the elapse of the predetermined times T1 and T2 from the start of the heat storage operation, or the water temperature at the elapse of the predetermined times T1 and T2. This is a detection value detected once by the sensor 33.
[0047]
The determination that the operating condition of the heat pump chiller 27 is satisfied is made as follows. That is, the operation command signal output from the control device 23 to the heat pump chiller 27, the operation command signal output from the control device 23 to the brine pump 26, and the heat source machine interlock signal returned from the heat pump chiller 27 to the control device 23. When the control device 23 detects at least one of the heat pump chiller interlock signal or the pump interlock signal returned from the brine pump 26 to the control device 23, the control device 23 satisfies the operating condition of the heat pump chiller 27. Judge that it has been.
[0048]
At the time of the above-described heat storage operation for the cooling operation, the control device 23 further outputs a failure prediction alarm based on the water level in the heat storage tank 24 detected by the water level sensor 34. That is, the control device 23 is predetermined after the temperature of the cold / hot water in the heat storage tank 24 becomes about 0 ° C., even though the operation condition of the heat pump chiller 27 is satisfied during the heat storage time period for the cooling operation. When the water level of the cold / warm water after the elapse of time T3 (FIG. 3) is equal to or lower than the specified water level G as shown by the broken line b in FIG. 3, it is determined that this heat storage operation is not appropriate, and this heat storage operation time zone is reached. A failure prediction alarm is output.
[0049]
The specified water level G is a water level that is higher than the reference water level G0 when ice is not made in the heat storage tank 24 and lower than the target water level G1, and changes according to the predetermined time T3. Further, the water level of the cold / hot water in the heat storage tank 24 is an average value of the detection values detected by the water level sensor 34 a plurality of times before and after the lapse of a predetermined time T3 after the cold / hot water reaches about 0 ° C. Alternatively, the detected value is detected once by the water level sensor 34 when the predetermined time T3 has elapsed.
[0050]
Therefore, according to the said embodiment, there exists the following effect.
[0051]
Stores heat depending on whether the temperature of the cold / warm water in the heat storage tank 24 at the predetermined time T1 or T2 from the start of the heat storage operation of the primary system 21 for heating operation or cooling operation has reached a predetermined temperature α or a predetermined temperature β, respectively. It is configured to determine whether or not the operation is appropriate and to output a failure prediction alarm during the heat storage operation time zone when the heat storage operation is not appropriate. Furthermore, in the heat storage operation for the cooling operation, the water level of the cold / hot water in the heat storage tank 24 after the lapse of a predetermined time T3 after the cold / hot water in the heat storage tank 24 becomes about 0 ° C. is equal to or less than the specified water level G. Even when it is determined that this heat storage operation is not appropriate, a failure prediction alarm is output during the heat storage operation time zone. From these facts, it was confirmed that the air conditioning (heating or cooling) using the heat storage performed during the daytime, that is, the air conditioning corresponding to the daytime peak load cannot be performed during the heat storage time zone from the night before. This can be predicted by examining the state of heat storage in the tank 24. For this reason, it can respond to the said malfunction of air conditioning rapidly, and avoids generation | occurrence | production of the said malfunction of the air conditioning using the thermal storage implemented by daytime by repairing the thermal storage type air conditioning system 20 in this thermal storage time slot | zone. it can.
[0052]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0053]
For example, at the time of the heat storage operation for the heating operation, the control device 23 starts the heat storage operation (for example, 16:00) although the operation condition of the heat pump chiller 27 is satisfied during the heat storage operation time zone. When the temperature of the cold / hot water in the heat storage tank 24 is less than or equal to a predetermined temperature α (for example, about 43 ° C.) after the elapse of the predetermined time T1 (FIG. 2), the heat storage operation time is determined to be inappropriate. A failure prediction alarm may be output to the belt.
[0054]
Further, the control device 23, during the heat storage operation for the cooling operation, at the start of the heat storage operation (for example, 16:00) although the operation condition of the heat pump chiller 27 is satisfied during the heat storage operation time zone. If the temperature of the cold / hot water in the heat storage tank 24 is greater than or equal to a predetermined temperature β (for example, about 7 ° C.) after elapse of a predetermined time T2 (FIG. 3), the heat storage operation time is determined to be inappropriate. A failure prediction alarm may be output to the belt.
[0055]
Further, the control device 23 is configured so that the temperature of the cool / warm water in the heat storage tank 24 becomes approximately 0 ° C. even though the handling condition of the heat pump chiller 27 is satisfied during the heat storage time period for the cooling operation. When the water level of the cold / warm water at the elapse of the predetermined time T3 (FIG. 3) is equal to or lower than the specified water level G, it may be determined that this heat storage operation is not appropriate, and a failure prediction alarm may be output during this heat storage operation time zone.
[0056]
In this way, this determination can be performed with high accuracy by examining the temperature and water level of the cold / hot water in the heat storage tank 24 at every elapse of the predetermined times T1, T2, and T3 and determining the suitability of the heat storage operation.
[0057]
【The invention's effect】
According to the present invention , a primary system provided so as to be able to circulate and supply a heat medium heated or cooled by a heat source device to a heat storage tank or a heat exchanger, and heated or heated by the heat storage tank or the heat exchanger. The secondary system provided to circulate cooled cold / hot water and supply it to the air conditioning load, and the above-mentioned primary from the night before the previous day to ensure the amount of heat storage required for air conditioning performed using heat storage in the daytime. In the heat storage type air conditioning system having a control device for performing heat storage operation of the system, the control device has a temperature of the cold / hot water in the heat storage tank after a predetermined time has elapsed or every time since the start of the heat storage operation of the primary system. Whether the heat storage operation is appropriate or not is determined based on whether or not the temperature has reached a predetermined temperature. If the heat storage operation is not appropriate, the failure prediction is performed during the heat storage operation time period even though the operation condition of the heat source unit is satisfied. Configured to output alarm Since the, the failure of the air conditioning to be performed by utilizing the heat storage during the day, to predict the heat storage time zone is carried from the previous evening can respond quickly problem above.
[0058]
According to the present invention , a primary system provided so as to be able to circulate and supply a heat medium heated or cooled by a heat source device to a heat storage tank or a heat exchanger, and heated or heated by the heat storage tank or the heat exchanger. It has a secondary system that circulates cooled cold / hot water and can be supplied to the air conditioning load, and the night before the previous day to ensure the amount of heat storage required for air conditioning performed using heat storage in the daytime. In the operation method of the regenerative air conditioning system in which the primary system is subjected to heat storage operation, the temperature of the cold / hot water in the heat storage tank reaches a predetermined temperature after a predetermined time has elapsed from the start of the primary system heat storage operation or at every elapse. Whether the heat storage operation is appropriate or not is determined, and if this heat storage operation is not appropriate, a failure prediction alarm is output during the heat storage operation time period even though the operation conditions of the heat source unit are satisfied To use heat storage in the daytime The failure of the air conditioning to be performed to predict the heat storage time zone is carried from the previous evening the problem quickly cope with.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a refrigerant circuit and the like in an embodiment of an air conditioning system according to the present invention.
FIG. 2 is a graph showing heat storage operation control for heating operation performed by the control device of FIG. 1;
FIG. 3 is a graph showing heat storage operation control for cooling operation performed by the control device of FIG. 1;
FIG. 4 is a graph showing control during cooling operation performed by the control device of FIG. 1;
[Explanation of symbols]
20 thermal storage air conditioning system 21 primary system 22 secondary system 23 controller 24 thermal storage tank 25 air conditioning load 26 brine pump (circulation pump)
27 Heat pump chiller (heat source machine)
30 brine / water heat exchanger (heat exchanger)
31 Cold / Hot Water Pump 32 Three-way Motorized Valve 33 Water Temperature Sensor 34 Water Level Sensor G Specified Water Levels T1, T2, T3 Predetermined Times α, β Predetermined Temperature

Claims (8)

熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、
上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系と、
昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる制御装置と、を有する蓄熱式空気調和システムにおいて、
上記制御装置は、当該制御装置から熱源機への運転指令信号、上記制御装置から一次系の循環ポンプへの運転指令信号、上記熱源機から上記制御装置への熱源機インターロック信号、上記循環ポンプから上記制御装置へのポンプインターロック信号の少なくとも一つが検出されたことにより、熱源機の運転条件が満たされていると判定し、
上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とする蓄熱式空気調和システム。
A primary system provided to be able to circulate and supply a heat medium heated or cooled by a heat source machine to a heat storage tank or a heat exchanger;
A secondary system provided so as to be able to circulate cold / hot water heated or cooled in the heat storage tank and the heat exchanger and supply it to an air conditioning load;
In a regenerative air conditioning system having a control device that performs a regenerative operation of the primary system from the night before the previous day in order to secure a heat storage amount necessary for air conditioning performed using heat storage in the daytime,
The control device includes an operation command signal from the control device to the heat source unit, an operation command signal from the control unit to the primary circulation pump, a heat source unit interlock signal from the heat source unit to the control unit, and the circulation pump. From the fact that at least one of the pump interlock signals to the control device is detected, it is determined that the operating condition of the heat source machine is satisfied,
Whether or not the temperature of the cold / hot water in the heat storage tank has reached a predetermined temperature after the predetermined time has elapsed from the start of the primary heat storage operation or not has been determined. A heat storage type air conditioning system configured to output a failure prediction alarm during a heat storage operation time period when the operation condition of the heat source unit is satisfied when it is not appropriate.
上記制御装置は、昼間に蓄熱を利用して実施される暖房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T1経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度α以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とする請求項1に記載の蓄熱式空気調和システム。  In the above control device, the operating conditions of the heat source machine are satisfied during the time period of the heat storage operation performed from the night before to secure the amount of heat storage necessary for the heating operation performed using the heat storage in the daytime. Nevertheless, if the temperature of the cold / hot water in the heat storage tank is equal to or lower than the predetermined temperature α after the elapse of the predetermined time T1 from the start of the heat storage operation, the heat storage operation is determined to be inappropriate. The regenerative air conditioning system according to claim 1, which is configured to output a failure prediction alarm in a time zone. 上記制御装置は、昼間に蓄熱を利用して実施される冷房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T2経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度β以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とする請求項1に記載の蓄熱式空気調和システム。  In the above control device, the operating conditions of the heat source machine are satisfied in the time zone of the heat storage operation performed from the night before the previous day in order to secure the heat storage amount necessary for the cooling operation performed using the heat storage in the daytime. Nevertheless, if the temperature of the cold / hot water in the heat storage tank is equal to or higher than the predetermined temperature β after the elapse of the predetermined time T2 from the start of the heat storage operation, the heat storage operation is determined to be inappropriate. The regenerative air conditioning system according to claim 1, which is configured to output a failure prediction alarm in a time zone. 上記制御装置は、蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、蓄熱槽内の冷温水の温度が約0℃となってから所定時間T3経過後又は経過毎における冷温水の水位が規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力するよう構成されたことを特徴とする請求項3に記載の蓄熱式空気調和システム。  The above control device is, after the elapse of the predetermined time T3 or after the temperature of the cold / hot water in the heat storage tank becomes about 0 ° C., even though the operation condition of the heat source unit is satisfied during the time period of the heat storage operation. 4. When the water level of the cold / warm water at each time is equal to or lower than the specified water level G, it is determined that this heat storage operation is not appropriate, and a failure prediction alarm is output during this heat storage operation time zone. The regenerative air conditioning system described in 1. 熱源機にて加熱または冷却された熱媒体を蓄熱槽または熱交換器へ循環して供給可能に設けられた一次系と、A primary system provided to be able to circulate and supply a heat medium heated or cooled by a heat source machine to a heat storage tank or a heat exchanger;
上記蓄熱槽、上記熱交換器にて加熱または冷却された冷温水を循環して空調負荷へ供給可能に設けられた二次系とを有し、  A secondary system provided so as to be able to circulate cold / hot water heated or cooled in the heat exchanger, and to be supplied to an air conditioning load,
昼間に蓄熱を利用して実施される空気調和に必要な蓄熱量を確保すべく前日の夜間から上記一次系を蓄熱運転させる蓄熱式空気調和システムの運転方法において、  In the operation method of the regenerative air conditioning system in which the primary system is regeneratively operated from the night of the previous day in order to ensure the heat storage amount necessary for air conditioning performed using heat storage in the daytime,
上記制御装置から熱源機への運転指令信号、上記制御装置から一次系の循環ポンプへの運転指令信号、上記熱源機から上記制御装置への熱源機インターロック信号、上記循環ポンプから上記制御装置へのポンプインターロック信号の少なくとも一つが検出されたことにより、熱源機の運転条件が満たされていると判定し、  Operation command signal from the control device to the heat source unit, operation command signal from the control unit to the primary circulation pump, heat source unit interlock signal from the heat source unit to the control unit, and from the circulation pump to the control unit When at least one of the pump interlock signals is detected, it is determined that the operating condition of the heat source machine is satisfied,
上記一次系の蓄熱運転の開始から所定時間経過後又は経過毎における上記蓄熱槽内の冷温水の温度が、所定温度に到達しているか否かにより蓄熱運転の適否を判定し、この蓄熱運転が適切でない場合、上記熱源機の運転条件が満たされているにも拘わらず、蓄熱運転時間帯に故障予測警報を出力することを特徴とする蓄熱式空気調和システムの運転方法。  Whether or not the temperature of the cold / hot water in the heat storage tank has reached a predetermined temperature after the predetermined time has elapsed from the start of the primary heat storage operation or not has been determined. When it is not appropriate, the operation method of the heat storage type air conditioning system is characterized in that a failure prediction alarm is output during the heat storage operation time period even though the operation condition of the heat source unit is satisfied.
昼間に蓄熱を利用して実施される暖房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T1経過後又は経過毎における蓄熱槽内の冷Despite the fact that the operating conditions of the heat source machine are satisfied during the time period of the heat storage operation that is performed from the night of the previous day in order to ensure the amount of heat storage necessary for the heating operation performed using the heat storage in the daytime, the above Cooling in the heat storage tank after the elapse of a predetermined time T1 from the start of the heat storage operation or at every progress 温水の温度が所定温度α以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とする請求項5に記載の蓄熱式空気調和システムの運転方法。6. The regenerative air conditioning according to claim 5, wherein when the temperature of the hot water is equal to or lower than a predetermined temperature α, it is determined that the heat storage operation is not appropriate, and a failure prediction alarm is output during the heat storage operation time period. How to operate the system. 昼間に蓄熱を利用して実施される冷房運転に必要な蓄熱量を確保すべく前日の夜間から実施する蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、上記蓄熱運転の開始から所定時間T2経過後又は経過毎における蓄熱槽内の冷温水の温度が所定温度β以上である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とする請求項5に記載の蓄熱式空気調和システムの運転方法。Despite the fact that the operating conditions of the heat source machine are satisfied during the time period of the heat storage operation that is performed from the night of the previous day in order to secure the amount of heat storage necessary for the cooling operation performed using the heat storage in the daytime, the above If the temperature of the cold / hot water in the heat storage tank is equal to or higher than the predetermined temperature β after the elapse of the predetermined time T2 from the start of the heat storage operation, it is determined that the heat storage operation is not appropriate, and the failure is predicted in this heat storage operation time zone. 6. An operation method for a regenerative air conditioning system according to claim 5, wherein an alarm is output. 蓄熱運転の時間帯に、熱源機の運転条件が満たされているにも拘わらず、蓄熱槽内の冷温水の温度が約0℃となってから所定時間T3経過後又は経過毎における冷温水の水位が規定水位G以下である場合、この蓄熱運転が適切でないと判断して、この蓄熱運転時間帯に故障予測警報を出力することを特徴とする請求項7に記載の蓄熱式空気調和システムの運転方法。Although the operating conditions of the heat source unit are satisfied during the time period of the heat storage operation, the temperature of the cold / hot water in the heat storage tank is about 0 ° C. After the predetermined time T3 has passed or every time the cold / hot water has passed. When the water level is equal to or lower than the specified water level G, it is determined that this heat storage operation is not appropriate, and a failure prediction alarm is output during this heat storage operation time zone. how to drive.
JP2000132378A 2000-05-01 2000-05-01 Regenerative air conditioning system and operation method thereof Expired - Fee Related JP4141084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132378A JP4141084B2 (en) 2000-05-01 2000-05-01 Regenerative air conditioning system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000132378A JP4141084B2 (en) 2000-05-01 2000-05-01 Regenerative air conditioning system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2001317794A JP2001317794A (en) 2001-11-16
JP4141084B2 true JP4141084B2 (en) 2008-08-27

Family

ID=18641094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132378A Expired - Fee Related JP4141084B2 (en) 2000-05-01 2000-05-01 Regenerative air conditioning system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4141084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227851A1 (en) * 2018-06-01 2019-12-05 青岛海尔空调电子有限公司 Water-system air conditioner control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515282B2 (en) * 2005-02-17 2010-07-28 日本スピンドルテクノ株式会社 How to adjust the amount of water in the ice storage tank
US10401039B2 (en) * 2017-02-28 2019-09-03 Ademco Inc. Evaluation of heating liquid pressure drops in a hydronic heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227851A1 (en) * 2018-06-01 2019-12-05 青岛海尔空调电子有限公司 Water-system air conditioner control method

Also Published As

Publication number Publication date
JP2001317794A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP6043512B2 (en) Vehicle heat storage device
JP5158215B2 (en) Control device for hybrid vehicle
KR20030085058A (en) Air conditioner
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
JP2013536119A (en) HVAC SYSTEM AND OPERATION METHOD OF HVAC SYSTEM
US10054358B2 (en) Refrigerator and method of operating the same
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
KR101676858B1 (en) Car hot water supply device
JP2004257583A (en) Storage water heater
JP4229555B2 (en) Storage room with temperature control function
JP4141084B2 (en) Regenerative air conditioning system and operation method thereof
JP2011075181A (en) Ice storage type heat source device
JP2010032063A (en) Outdoor unit and heat pump device
JP2006336949A (en) Heat storage type air conditioner
JP4528755B2 (en) refrigerator
JP2009074736A (en) Heat pump type hot water supply device
JP7013854B2 (en) Hot water storage and hot water supply device
JP3583869B2 (en) Thermal storage air conditioning system device and its control method
JP3976773B2 (en) Heat pump water heater
JP4626793B2 (en) Heating method of hot water supply device using external heat source
JP4318277B2 (en) Heat storage device for air conditioning
JP2011210684A (en) Fuel cell cogeneration system
JP2006220359A (en) Cooler defrosting device of bread dough fermenting and thawing chamber
JP6697937B2 (en) Hot water supply system
JP2007303698A (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees