JP4140868B2 - Silica glass crucible for pulling silicon single crystal and method for producing the same - Google Patents

Silica glass crucible for pulling silicon single crystal and method for producing the same Download PDF

Info

Publication number
JP4140868B2
JP4140868B2 JP24593098A JP24593098A JP4140868B2 JP 4140868 B2 JP4140868 B2 JP 4140868B2 JP 24593098 A JP24593098 A JP 24593098A JP 24593098 A JP24593098 A JP 24593098A JP 4140868 B2 JP4140868 B2 JP 4140868B2
Authority
JP
Japan
Prior art keywords
quartz glass
crucible
single crystal
powder
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24593098A
Other languages
Japanese (ja)
Other versions
JP2000072589A (en
Inventor
龍弘 佐藤
博行 渡辺
富士雄 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP24593098A priority Critical patent/JP4140868B2/en
Publication of JP2000072589A publication Critical patent/JP2000072589A/en
Application granted granted Critical
Publication of JP4140868B2 publication Critical patent/JP4140868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶の引き上げに好適に使用される石英ガラスるつぼ及びその製造方法に関する。
【0002】
【関連技術】
従来、単結晶半導体材料のような単結晶物質の製造には、いわゆるチョクラルスキー法と呼ばれる方法が広く採用されている。この方法は多結晶シリコンを容器内で溶融させ、この溶融浴内に種結晶の端部を浸けて回転させながら引き上げるもので、種結晶上に同一の結晶方位を持つ単結晶が成長する。この単結晶引き上げ容器には石英ガラスるつぼが一般的に使用されている。
【0003】
シリコン単結晶の高純度化に伴い、それを引き上げるための石英ガラスるつぼも高純度化が望まれ、原料にゾルゲル法による高純度な合成石英ガラス粉や合成クリストバライト粉、あるいは高純度化された天然石英粉が使用されるようになった。
【0004】
そして、この原料を回転型に供給し、型内面に沿って粉体層を成形し内側からアークで加熱溶融して粉体層を石英ガラスるつぼにした後、アークを停止して型の回転は継続しつつ室温まで冷却する、いわゆるアーク回転溶融法が一般的に用いられている。その際、シリコン単結晶の単結晶化率を向上させるために、石英ガラスるつぼの内表面層を、出来るだけ泡の少ない層にすることが必要とされる。
【0005】
【発明が解決しようとする課題】
しかし、このように作られた石英ガラスるつぼも、シリコン単結晶の引き上げに使用される場合、シリコン単結晶を引き上げた後、引き上げに使用した石英ガラスるつぼの内面を観察すると、ブラウンリングと面荒れ面と失透斑点が確認され、その場合、単結晶化率が低くなっていた。これは、石英ガラスるつぼの内表面のガラス層は剥がれ易くなり、石英ガラス破片が浮遊し、単結晶に到達することが原因と推測された。
【0006】
そこで、本発明者等は、石英ガラスるつぼの内表面の劣化進行を抑制するため、以下の検討を行った。▲1▼特にアルカリ金属を含有しない高純度石英原料粉を使用すること及び▲2▼金属不純物の局在のない高純度石英ガラス粉を使用することの2条件を設定してアーク回転溶融法によって石英ガラスるつぼを製造し、その石英ガラスるつぼを用いて、シリコン単結晶を引き上げ、使用後の当該石英ガラスるつぼの内表面を調べたところ、従来に比べて、失透斑点の発生がほとんどなくなり、ブラウンリングの面積の減少が見られかつ面荒れ面積が大幅に減少するという知見を得た。
【0007】
さらに、▲3▼アークパワー(溶融加熱電力)を増大することによって原料石英ガラス粉中の金属不純物の局在を効果的に解消することができ、さらに▲4▼被爆熱量比を増大させるために粒径の小さい原料石英ガラス粉を用いるのが効果的であるという知見も得た。
【0008】
上記した条件▲1▼▲2▼及びさらに▲3▼▲4▼を組み合わせることによって製造された石英ガラスるつぼを用いてシリコン単結晶を引き上げた際に、100時間シリコンメルトに接触した該石英ガラスるつぼの内表面の面荒れの面積が15%以下及び/又は失透斑点が2個/cm2 以下となり、したがって、単結晶化率が向上し、シリコン単結晶の引き上げ安定性が大幅に改善されることを見出し本発明を完成したものである。
【0009】
本発明は、単結晶化率の高いシリコン単結晶を引き上げることができ、シリコン単結晶の引き上げ安定性を大幅に改善することのできるシリコン単結晶引き上げ用石英ガラスるつぼ及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明のシリコン単結晶引き上げ用石英ガラスるつぼの第1の態様は、半透明石英ガラス層のるつぼ基体と、該るつぼ基体の内壁面に形成された透明石英ガラス層からなるるつぼ径558.8mm〜711.2mm(22″〜28″)のシリコン単結晶引き上げ用石英ガラスるつぼであって、アーク回転溶融法において二酸化珪素粉末によって前記基体を形成しかつ該基体の内面に石英ガラス粉によって前記内層を形成し、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ400〜1000kwの溶融加熱電力を使用することによって、該石英ガラスるつぼを用いてシリコン単結晶を引き上げた際に、100時間シリコンメルトに接触した該石英ガラスるつぼの内表面の面荒れの面積が15%以下及び失透斑点が2個/cm以下であるようにしたことを特徴とする。
本発明のシリコン単結晶引き上げ用石英ガラスるつぼの第2の態様は、半透明石英ガラス層のるつぼ基体と、該るつぼ基体の内壁面に形成された透明石英ガラス層からなるるつぼ径762.0mm〜1219.2mm(30″〜48″)のシリコン単結晶引き上げ用石英ガラスるつぼであって、アーク回転溶融法において二酸化珪素粉末によって前記基体を形成しかつ該基体の内面に石英ガラス粉によって前記内層を形成し、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ600〜2000kwの溶融加熱電力を使用することによって、該石英ガラスるつぼを用いてシリコン単結晶を引き上げた際に、100時間シリコンメルトに接触した該石英ガラスるつぼの内表面の面荒れの面積が15%以下及び失透斑点が2個/cm以下であるようにしたことを特徴とする。
【0011】
前記石英ガラスるつぼの内表面から1mmまでの深さの石英ガラス層としては、天然石英ガラス層又は合成石英ガラス層のいずれをも適用することができる。
【0012】
本発明の石英ガラスるつぼの製造方法の第1の態様は、アーク回転溶融法において二酸化珪素粉末によって基体を形成しかつ該基体の内面に石英ガラス粉によって内層を形成して本発明のるつぼ径558.8mm〜711.2mm(22″〜28″)のシリコン単結晶引き上げ用石英ガラスるつぼを製造する方法であって、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ溶融加熱電力が400〜1000kwであることを特徴とする。
【0013】
本発明の石英ガラスるつぼの製造方法の第2の態様は、アーク回転溶融法において二酸化珪素粉末によって基体を形成しかつ該基体の内面に石英ガラス粉によって内層を形成して本発明のるつぼ径762.0mm〜1219.2mm(30″〜48″)のシリコン単結晶引き上げ用石英ガラスるつぼを製造する方法であって、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ溶融加熱電力が600〜2000kwであることを特徴とする。
【0014】
なお、石英ガラス粉における不純物金属の局在の有無は当該石英ガラス粉を1800℃、2時間でガラス体とし、1600℃10時間で加熱処理した時に0.1mm以上の結晶斑点が1個/cm2以上発生するかしないかによって判定する。
【0015】
【発明の実施の形態】
以下、本発明の一つの実施の形態を添付図面に基づいて説明するが、これらの説明は例示的に示されるもので限定的に解釈すべきものでないことはいうまでもない。図1は本発明方法の実施に使用される装置と該装置を使用する石英ガラスるつぼの製造方法を示す概略断面説明図である。図2は本発明の方法により得られるシリコン単結晶引き上げ用石英ガラスるつぼの一例を示す一部断面図である。
【0016】
図1において、回転型1は回転軸2を備える。型1にはキャビティ1aが形成され、この型キャビティ1a内に二酸化珪素粉末、例えば天然石英粉末から形成される半透明石英ガラス、すなわち外層を構成する石英ガラスるつぼの基体3が配置されている。
【0017】
該基体3は、二酸化珪素粉末を回転する型1の中に投入し、該型1の内壁に沿って形成して所要のるつぼ形状の前成型体とし、この前成型体を内面から加熱して二酸化珪素粉末を溶融させたのち、冷却することにより製造される。
【0018】
内面からの加熱のために、図1に示すように電源10に接続されたカーボン電極51、52を備えるアーク放電装置5を使用することができる。アーク放電装置5の代わりにプラズマ放電を用いてもよい。この基体3の製造については、特公平4−22861号公報に詳細な記載がある。
【0019】
図1に示す装置は、内層4を形成するために、型1の上方に合成石英粉末6を収容する石英粉末供給槽9を備える。この供給槽9には計量フィーダ92が設けられた吐出パイプ93に接続されている。供給槽9内には攪拌羽根91が配置される。型1の上部は、スリット開口75を残して蓋71により覆われる。
【0020】
基体3が形成された後、又は基体3の形成の途中において、アーク放電装置5のカーボン電極51、52からの放電による加熱を継続しながら、二酸化珪素粉末、例えば、合成石英粉末6供給のための計量フィーダ92を調整した開度に開いて、吐出パイプ93から合成石英粉末を基体3の内部に供給する。アーク放電装置5の作動により、基体3内には高温ガス雰囲気8が形成されている。したがって、合成石英粉末は、この高温ガス雰囲気8中に供給されることとなる。
【0021】
なお、高温ガス雰囲気とは、カーボン電極51、52を用いたアーク放電によりその周囲に形成された雰囲気を指し、石英ガラスを溶かすに十分な温度、つまり2千数百度の高温になっている。
【0022】
高温ガス雰囲気8中に供給された合成石英粉末は、高温ガス雰囲気8内の熱により少なくとも一部が溶融され、同時に基体3の内壁面に向けて飛散させられて、該基体3の内壁面に付着し、基体3と一体融合的に基体3の内面に実質的に無気泡の石英ガラス層すなわち内層4を形成する。この内層4の形成方法については、上述した特公平4−22861号公報に詳細な記載がある。
【0023】
図2に、この方法により得られる石英ガラスるつぼの断面を示す。本発明による石英ガラスるつぼは、二酸化珪素粉末、例えば、天然石英粉末を内面から加熱溶融して形成された外層すなわち基体3と、二酸化珪素粉末、例えば、合成石英粉末を高温ガス雰囲気中に放出して、溶融飛散させ、基体3の内壁面に付着させて形成した内層4とを有しているものである。
【0024】
【実施例】
以下に、本発明を実施例を用いて説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術思想から逸脱しない限り種々の変形が可能であることは勿論である。
【0025】
(実施例1)
天然石英ガラス粉を、100rpmで回転する内径730mmの成形型中に30mmの均一な厚さで堆積させ、アーク放電により内部から加熱溶融させると同時に、Na、K、Li、Ba、Ca、Mg、Tiの濃度の総和が3ppm以下、粒径が50ミクロンから500ミクロンでOH濃度が100ppmの金属不純物が局在しない合成石英ガラス粉を、100g/minの割合で上方向から供給し、泡のない透明ガラス層を全内面領域にわたり、1〜3mmの厚さで形成する。
【0026】
このるつぼにポリシリコンを充填し溶融し、100時間シリコン単結晶の引き上げを行った。シリコン単結晶は、安定して引き上がった。使用後のシリコンメルトと接触したるつぼ内面を観察したところ、ブラウンスポットの面積が30%、面荒れ面積が10%、0.1mm以上の失透斑点が1個/cm2 以下であった。
【0027】
(実施例2)
粒径が50ミクロンから300ミクロンであり、金属不純物が局在しない天然石英ガラス粉を内層を形成する石英粉原料とした以外は、実施例1と同様にして石英ガラスるつぼを製造し、このるつぼを用いて実施例1と同様にシリコン単結晶の引き上げを行った。シリコン単結晶は、安定して引き上がった。使用後のるつぼ内面を観察したところ、ブラウンスポットの面積が30%、荒れ面積が10%、0.1mm以上の失透斑点が1個/cm2 以下であった。
【0028】
(実施例3)
連続供給しながら内面透明層を形成して行く際、金属不純物の拡散に十分な加熱量を石英原料粉に与えながら、透明層を形成した以外は、実施例1と同様にして石英ガラスるつぼを製造し、このるつぼを用いて実施例1と同様にシリコン単結晶の引き上げを行った。シリコン単結晶は、安定して引き上がった。使用後のるつぼ内面を観察したところ、ブラウンスポットの面積が30%、荒れ面積が10%、失透斑点が1個/cm2 以下であった。
【0029】
(比較例1)
金属不純物が局在した天然石英ガラス粉を原料とした以外は実施例1と同様にして石英ガラスるつぼを製造し、このるつぼを用いて実施例1と同様にシリコン単結晶の引き上げを行った。使用後のるつぼ内面を観察したところ、ブラウンスポットの面積が50〜100%、面荒れ面積が30〜70%、失透斑点が10個/cm2 以上であった。
【0030】
なお、上記した各実施例及び比較例において石英ガラス原料粉に金属不純物の局在があるか否かについては、当該石英ガラス粉を1800℃、2時間でガラス体とし、1600℃10時間で加熱処理した時に結晶斑点が発生するかしないかによって判定した。
【0031】
【発明の効果】
以上述べたごとく、本発明のシリコン単結晶引き上げ用石英ガラスるつぼによれば、単結晶化率の高いシリコン単結晶を引き上げることができるという効果を奏することができる。また、本発明方法は、本発明の石英ガラスるつぼを効率よく製造できるという利点を有している。
【図面の簡単な説明】
【図1】 本発明方法の実施に使用される装置と該装置を使用する石英ガラスるつぼの製造方法を示す概略断面説明図である。
【図2】 本発明のシリコン単結晶引き上げ用石英ガラスるつぼの一例を示す一部断面図である。
【符号の説明】
1:回転型、1a:キャビティ、2:回転軸、3:基体、4:内層、5:アーク放電装置、6:合成石英粉末、8:高温ガス雰囲気、9:石英粉末供給槽、10:電源、51、52:カーボン電極、71:蓋、75:スリット開口、91:攪拌羽根、92:計量フィーダ、93:吐出パイプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quartz glass crucible suitably used for pulling a silicon single crystal and a method for manufacturing the same.
[0002]
[Related technologies]
Conventionally, a so-called Czochralski method has been widely used for manufacturing a single crystal material such as a single crystal semiconductor material. In this method, polycrystalline silicon is melted in a container, and the end portion of the seed crystal is immersed in the molten bath and pulled up while rotating, so that a single crystal having the same crystal orientation grows on the seed crystal. A quartz glass crucible is generally used for the single crystal pulling container.
[0003]
As the silicon single crystal is highly purified, the silica glass crucible for pulling it up is also required to be highly purified. The raw material is a high-purity synthetic quartz glass powder or synthetic cristobalite powder by the sol-gel method, or a highly purified natural stone. English powder has been used.
[0004]
Then, this raw material is supplied to a rotary mold, a powder layer is formed along the inner surface of the mold, heated and melted by an arc from the inside to form a powder layer into a quartz glass crucible, and then the arc is stopped to rotate the mold. A so-called arc rotation melting method that cools to room temperature while continuing is generally used. At that time, in order to improve the single crystallization rate of the silicon single crystal, it is necessary to make the inner surface layer of the quartz glass crucible as a layer having as few bubbles as possible.
[0005]
[Problems to be solved by the invention]
However, when the quartz glass crucible made in this way is also used for pulling up a silicon single crystal, after pulling up the silicon single crystal, observing the inner surface of the quartz glass crucible used for pulling up, the brown ring and rough surface Surfaces and devitrification spots were confirmed, in which case the single crystallization rate was low. This was presumed to be because the glass layer on the inner surface of the quartz glass crucible was easily peeled off, and the quartz glass fragments floated and reached the single crystal.
[0006]
Therefore, the present inventors have conducted the following studies in order to suppress the progress of deterioration of the inner surface of the quartz glass crucible. (1) Set the two conditions of using high-purity quartz raw material powder that does not contain alkali metal and (2) using high-purity quartz glass powder without localization of metal impurities. A quartz glass crucible was manufactured, and using the quartz glass crucible, the silicon single crystal was pulled up, and when the inner surface of the quartz glass crucible after use was examined, the occurrence of devitrification spots almost disappeared, It was found that the area of the brown ring was reduced and the rough surface area was greatly reduced.
[0007]
Furthermore, (3) by increasing the arc power (melting heating power), it is possible to effectively eliminate the localization of metal impurities in the raw quartz glass powder, and (4) to increase the ratio of the heat of explosion. It was also found that it is effective to use raw quartz glass powder having a small particle size.
[0008]
When a silicon single crystal is pulled using a quartz glass crucible manufactured by combining the above conditions (1), (2) and (3), (4), the quartz glass crucible that has been in contact with the silicon melt for 100 hours. The surface roughness area of the inner surface is 15% or less and / or the number of devitrification spots is 2 / cm 2 or less. Therefore, the single crystallization rate is improved and the pulling stability of the silicon single crystal is greatly improved As a result, the present invention has been completed.
[0009]
The present invention provides a quartz glass crucible for pulling a silicon single crystal capable of pulling a silicon single crystal having a high single crystallization rate and greatly improving the pulling stability of the silicon single crystal, and a method for producing the same. With the goal.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a first aspect of the silica glass crucible for pulling a silicon single crystal according to the present invention includes a crucible base of a semi-transparent quartz glass layer and a transparent quartz glass layer formed on the inner wall surface of the crucible base. A quartz glass crucible for pulling a silicon single crystal having a diameter of 558.8 mm to 711.2 mm (22 ″ to 28 ″), the substrate being formed by silicon dioxide powder in an arc rotation melting method, and the inner surface of the substrate The inner layer is formed of quartz glass powder, and a synthetic or natural quartz glass powder having a total amount of metal impurities of 3 ppm or less, no localization of metal impurities, and a particle size of 50 μm to 500 μm is used as the quartz glass powder, and 400 When a silicon single crystal is pulled up using the quartz glass crucible by using a melting heating power of ˜1000 kw, 1 The area of the surface of the inner surface roughness of the quartz glass crucible that is in contact with the 0 hr silicon melt, characterized in that as more than 15% and devitrification spots is 2 / cm 2 or less.
A second aspect of the quartz glass crucible for pulling up a silicon single crystal of the present invention is a crucible having a diameter of 762.0 mm to a crucible base composed of a crucible base of a translucent quartz glass layer and a transparent quartz glass layer formed on the inner wall surface of the crucible base. A silica glass crucible for pulling a silicon single crystal of 1219.2 mm (30 ″ to 48 ″), wherein the substrate is formed by silicon dioxide powder in an arc rotation melting method, and the inner layer is formed on the inner surface of the substrate by quartz glass powder. As the quartz glass powder, a synthetic or natural quartz glass powder having a total amount of metal impurities of 3 ppm or less, no localization of metal impurities and having a particle size of 50 μm to 500 μm is used, and a melting heating power of 600 to 2000 kw is used. When the silicon single crystal is pulled up using the quartz glass crucible, the silicon melt is melted for 100 hours. Touch and the area of the surface roughness of the inner surface of the quartz glass crucible was is characterized in that as more than 15% and devitrification spots is 2 / cm 2 or less.
[0011]
As the quartz glass layer having a depth of 1 mm from the inner surface of the quartz glass crucible, either a natural quartz glass layer or a synthetic quartz glass layer can be applied.
[0012]
The first aspect of the method for manufacturing a silica glass crucible of the present invention, the crucible diameter 558 of the arc rotation melting method to form a substrate by silicon dioxide powder and said substrate inner surface to form an inner layer of quartz glass powder present invention in A method for producing a silica glass crucible for pulling a silicon single crystal of 8 mm to 71.2 mm (22 ″ to 28 ″), wherein the total amount of metal impurities as the quartz glass powder is 3 ppm or less, and there is no localization of metal impurities In addition, a synthetic or natural quartz glass powder having a particle size of 50 μm to 500 μm is used, and a melting heating power is 400 to 1000 kw.
[0013]
A second aspect of the method for manufacturing a silica glass crucible of the present invention, the crucible diameter 762 of the arc rotation melting method to form a substrate by silicon dioxide powder and said substrate inner surface to form an inner layer of quartz glass powder present invention in A method for producing a quartz glass crucible for pulling a silicon single crystal of 0.01 to 1219.2 mm (30 ″ to 48 ″), wherein the total amount of metal impurities as the quartz glass powder is 3 ppm or less, and there is no localization of metal impurities In addition, a synthetic or natural quartz glass powder having a particle size of 50 μm to 500 μm is used, and a melting heating power is 600 to 2000 kw.
[0014]
Note that the presence or absence of impurity metal localization in the quartz glass powder is such that the quartz glass powder is made into a glass body at 1800 ° C. for 2 hours and heat-treated at 1600 ° C. for 10 hours. Judge by whether or not 2 or more occur.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the following, one embodiment of the present invention will be described with reference to the accompanying drawings. However, it is needless to say that these descriptions are given by way of example and should not be construed as limiting. FIG. 1 is a schematic sectional explanatory view showing an apparatus used for carrying out the method of the present invention and a method for producing a quartz glass crucible using the apparatus. FIG. 2 is a partial cross-sectional view showing an example of a quartz glass crucible for pulling a silicon single crystal obtained by the method of the present invention.
[0016]
In FIG. 1, the rotary mold 1 includes a rotary shaft 2. A cavity 1a is formed in the mold 1, and a base 3 of a translucent quartz glass made of silicon dioxide powder, for example, natural quartz powder, that is, a quartz glass crucible constituting an outer layer is disposed in the mold cavity 1a.
[0017]
The base 3 is charged with silicon dioxide powder into a rotating mold 1 and formed along the inner wall of the mold 1 to form a required crucible-shaped preform, and this preform is heated from the inner surface. It is manufactured by melting silicon dioxide powder and then cooling it.
[0018]
For heating from the inner surface, an arc discharge device 5 having carbon electrodes 51 and 52 connected to a power source 10 as shown in FIG. 1 can be used. Plasma discharge may be used instead of the arc discharge device 5. The production of the substrate 3 is described in detail in Japanese Patent Publication No. 4-22861.
[0019]
The apparatus shown in FIG. 1 includes a quartz powder supply tank 9 for storing synthetic quartz powder 6 above the mold 1 in order to form the inner layer 4. The supply tank 9 is connected to a discharge pipe 93 provided with a weighing feeder 92. A stirring blade 91 is disposed in the supply tank 9. The upper part of the mold 1 is covered with a lid 71 leaving a slit opening 75.
[0020]
For supplying silicon dioxide powder, for example, synthetic quartz powder 6, while heating by discharge from the carbon electrodes 51 and 52 of the arc discharge device 5 is continued after the base body 3 is formed or in the middle of the base body 3 formation. The measuring feeder 92 is opened to the adjusted opening, and synthetic quartz powder is supplied into the base 3 from the discharge pipe 93. By the operation of the arc discharge device 5, a high temperature gas atmosphere 8 is formed in the base 3. Therefore, the synthetic quartz powder is supplied into the high-temperature gas atmosphere 8.
[0021]
The high-temperature gas atmosphere refers to an atmosphere formed around the arc discharge using the carbon electrodes 51 and 52, and has a temperature sufficient to melt the quartz glass, that is, a high temperature of 2000 to several hundred degrees.
[0022]
The synthetic quartz powder supplied in the high temperature gas atmosphere 8 is melted at least partly by the heat in the high temperature gas atmosphere 8 and is simultaneously scattered toward the inner wall surface of the substrate 3, so that the synthetic quartz powder is applied to the inner wall surface of the substrate 3. A substantially bubble-free quartz glass layer, that is, the inner layer 4 is formed on the inner surface of the substrate 3 by being integrally fused with the substrate 3. The method for forming the inner layer 4 is described in detail in the above-mentioned Japanese Patent Publication No. 4-22861.
[0023]
FIG. 2 shows a cross section of a quartz glass crucible obtained by this method. The quartz glass crucible according to the present invention releases an outer layer or base 3 formed by heating and melting silicon dioxide powder, for example, natural quartz powder, and silicon dioxide powder, for example, synthetic quartz powder, into a high-temperature gas atmosphere. And the inner layer 4 formed by being melted and scattered and adhered to the inner wall surface of the substrate 3.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention. is there.
[0025]
(Example 1)
Natural quartz glass powder is deposited at a uniform thickness of 30 mm in a mold having an inner diameter of 730 mm rotating at 100 rpm, heated and melted from the inside by arc discharge, and at the same time, Na, K, Li, Ba, Ca, Mg, Synthetic quartz glass powder having a total Ti concentration of 3 ppm or less, a particle size of 50 to 500 microns, and an OH concentration of 100 ppm, in which metal impurities are not localized, is supplied from the top at a rate of 100 g / min, and has no bubbles A transparent glass layer is formed with a thickness of 1 to 3 mm over the entire inner surface area.
[0026]
The crucible was filled with polysilicon and melted, and the silicon single crystal was pulled up for 100 hours. The silicon single crystal was pulled up stably. When the inner surface of the crucible in contact with the silicon melt after use was observed, the brown spot area was 30%, the rough surface area was 10%, and devitrification spots of 0.1 mm or more were 1 piece / cm 2 or less.
[0027]
(Example 2)
A quartz glass crucible was produced in the same manner as in Example 1 except that natural quartz glass powder having a particle size of 50 to 300 microns and having no localized metal impurities was used as a quartz powder raw material. The silicon single crystal was pulled up in the same manner as in Example 1. The silicon single crystal was pulled up stably. When the inner surface of the crucible after use was observed, the brown spot area was 30%, the rough area was 10%, and devitrification spots of 0.1 mm or more were 1 piece / cm 2 or less.
[0028]
(Example 3)
When forming the inner transparent layer while continuously supplying the quartz glass crucible in the same manner as in Example 1, except that the transparent layer was formed while giving the quartz raw material powder a heating amount sufficient to diffuse the metal impurities. A silicon single crystal was pulled up in the same manner as in Example 1 using this crucible. The silicon single crystal was pulled up stably. When the inner surface of the crucible after use was observed, the brown spot area was 30%, the rough area was 10%, and the devitrification spots were 1 piece / cm 2 or less.
[0029]
(Comparative Example 1)
A quartz glass crucible was produced in the same manner as in Example 1 except that natural quartz glass powder with localized metal impurities was used as a raw material, and the silicon single crystal was pulled up in the same manner as in Example 1 using this crucible. When the inner surface of the crucible after use was observed, the brown spot area was 50 to 100%, the rough surface area was 30 to 70%, and the devitrification spots were 10 pieces / cm 2 or more.
[0030]
In each of the examples and comparative examples described above, whether or not the metal impurities are localized in the quartz glass raw material powder is obtained by making the quartz glass powder into a glass body at 1800 ° C. for 2 hours and heating at 1600 ° C. for 10 hours. Judgment was made based on whether or not crystal spots were generated during the treatment.
[0031]
【The invention's effect】
As described above, according to the quartz glass crucible for pulling a silicon single crystal of the present invention, an effect that a silicon single crystal having a high single crystallization rate can be pulled can be achieved. Further, the method of the present invention has an advantage that the quartz glass crucible of the present invention can be produced efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional explanatory view showing an apparatus used for carrying out the method of the present invention and a method for producing a quartz glass crucible using the apparatus.
FIG. 2 is a partial sectional view showing an example of a quartz glass crucible for pulling a silicon single crystal of the present invention.
[Explanation of symbols]
1: rotating type, 1a: cavity, 2: rotating shaft, 3: substrate, 4: inner layer, 5: arc discharge device, 6: synthetic quartz powder, 8: high-temperature gas atmosphere, 9: quartz powder supply tank, 10: power supply 51, 52: carbon electrode, 71: lid, 75: slit opening, 91: stirring blade, 92: measuring feeder, 93: discharge pipe.

Claims (5)

半透明石英ガラス層のるつぼ基体と、該るつぼ基体の内壁面に形成された透明石英ガラス層からなるるつぼ径558.8mm〜711.2mmのシリコン単結晶引き上げ用石英ガラスるつぼであって、アーク回転溶融法において二酸化珪素粉末によって前記基体を形成しかつ該基体の内面に石英ガラス粉によって前記内層を形成し、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ400〜1000kwの溶融加熱電力を使用することによって、該石英ガラスるつぼを用いてシリコン単結晶を引き上げた際に、100時間シリコンメルトに接触した該石英ガラスるつぼの内表面の面荒れの面積が15%以下及び失透斑点が2個/cm以下であるようにしたことを特徴とするシリコン単結晶引き上げ用石英ガラスるつぼ。A quartz glass crucible for pulling a single crystal of silicon having a crucible diameter of 558.8 mm to 71.2 mm, comprising a crucible base of a semi-transparent quartz glass layer and a transparent quartz glass layer formed on the inner wall surface of the crucible base, the arc rotation In the melting method, the base is formed with silicon dioxide powder, and the inner layer is formed with quartz glass powder on the inner surface of the base. The quartz glass powder has a total amount of metal impurities of 3 ppm or less, no metal impurities localized, and particles When a silicon single crystal is pulled up using the silica glass crucible by using synthetic or natural quartz glass powder having a diameter of 50 μm to 500 μm and using a melting heating power of 400 to 1000 kw, the silicon melt is melted for 100 hours. inner surface roughening area 15% or less and devitrification spots of contact with the quartz glass crucible is 2 pieces / cm For pulling up a silicon single crystal quartz glass crucible is characterized in that as or less. 半透明石英ガラス層のるつぼ基体と、該るつぼ基体の内壁面に形成された透明石英ガラス層からなるるつぼ径762.0mm〜1219.2mmのシリコン単結晶引き上げ用石英ガラスるつぼであって、アーク回転溶融法において二酸化珪素粉末によって前記基体を形成しかつ該基体の内面に石英ガラス粉によって前記内層を形成し、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ600〜2000kwの溶融加熱電力を使用することによって、該石英ガラスるつぼを用いてシリコン単結晶を引き上げた際に、100時間シリコンメルトに接触した該石英ガラスるつぼの内表面の面荒れの面積が15%以下及び失透斑点が2個/cm以下であるようにしたことを特徴とするシリコン単結晶引き上げ用石英ガラスるつぼ。A quartz glass crucible for pulling a silicon single crystal having a crucible diameter of 762.0 mm to 1219.2 mm, comprising a crucible base of a semi-transparent quartz glass layer and a transparent quartz glass layer formed on the inner wall surface of the crucible base, the arc rotation In the melting method, the base is formed with silicon dioxide powder, and the inner layer is formed with quartz glass powder on the inner surface of the base. The quartz glass powder has a total amount of metal impurities of 3 ppm or less, no metal impurities localized, and particles When using a synthetic or natural quartz glass powder having a diameter of 50 μm to 500 μm and using a melting heating power of 600 to 2000 kw, when the silicon single crystal is pulled up using the quartz glass crucible, the silicon melt is melted for 100 hours. The surface roughness of the inner surface of the quartz glass crucible in contact is 15% or less and devitrification spots are 2 / cm. A quartz glass crucible for pulling a silicon single crystal, characterized in that it is 2 or less. 前記石英ガラスるつぼの内表面から1mmまでの深さの石英ガラス層が合成又は天然石英ガラス層であることを特徴とする請求項1又は2記載のシリコン単結晶引き上げ用石英ガラスるつぼ。  The quartz glass crucible for pulling a silicon single crystal according to claim 1 or 2, wherein the quartz glass layer having a depth of 1 mm from the inner surface of the quartz glass crucible is a synthetic or natural quartz glass layer. アーク回転溶融法において二酸化珪素粉末によって基体を形成しかつ該基体の内面に石英ガラス粉によって内層を形成して請求項1又は3記載のるつぼ径558.8mm〜711.2mmのシリコン単結晶引き上げ用石英ガラスるつぼを製造する方法であって、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ溶融加熱電力が400〜1000kwであることを特徴とするシリコン単結晶引き上げ用石英ガラスるつぼの製造方法。4. For pulling a silicon single crystal having a crucible diameter of 558.8 mm to 711.2 mm according to claim 1, wherein a base is formed by silicon dioxide powder in an arc rotation melting method and an inner layer is formed by quartz glass powder on the inner surface of the base. A method for producing a quartz glass crucible, wherein a synthetic or natural quartz glass powder having a total amount of metal impurities of 3 ppm or less, no localization of metal impurities and a particle size of 50 μm to 500 μm is used as the quartz glass powder, and melting A method for producing a quartz glass crucible for pulling a silicon single crystal, wherein the heating power is 400 to 1000 kW. アーク回転溶融法において二酸化珪素粉末によって基体を形成しかつ該基体の内面に石英ガラス粉によって内層を形成して請求項2又は3記載のるつぼ径762.0mm〜1219.2mmのシリコン単結晶引き上げ用石英ガラスるつぼを製造する方法であって、該石英ガラス粉として金属不純物の総量が3ppm以下、金属不純物の局在がなくかつ粒径が50μm〜500μmの合成又は天然石英ガラス粉を用い、かつ溶融加熱電力が600〜2000kwであることを特徴とするシリコン単結晶引き上げ用石英ガラスるつぼの製造方法。4. For pulling a silicon single crystal having a crucible diameter of 762.0 mm to 1219.2 mm according to claim 2, wherein a base is formed of silicon dioxide powder in an arc rotation melting method and an inner layer is formed of quartz glass powder on the inner surface of the base. A method for producing a quartz glass crucible, wherein a synthetic or natural quartz glass powder having a total amount of metal impurities of 3 ppm or less, no localization of metal impurities and a particle size of 50 μm to 500 μm is used as the quartz glass powder, and melting A method for producing a quartz glass crucible for pulling a silicon single crystal, wherein the heating power is 600 to 2000 kW.
JP24593098A 1998-08-31 1998-08-31 Silica glass crucible for pulling silicon single crystal and method for producing the same Expired - Lifetime JP4140868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24593098A JP4140868B2 (en) 1998-08-31 1998-08-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24593098A JP4140868B2 (en) 1998-08-31 1998-08-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000072589A JP2000072589A (en) 2000-03-07
JP4140868B2 true JP4140868B2 (en) 2008-08-27

Family

ID=17140979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24593098A Expired - Lifetime JP4140868B2 (en) 1998-08-31 1998-08-31 Silica glass crucible for pulling silicon single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4140868B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033632C1 (en) * 2000-07-11 2002-01-03 Heraeus Quarzglas Device for producing rotationally symmetrical quartz glass crucibles
JP4166241B2 (en) * 2003-05-01 2008-10-15 信越石英株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
JP5774400B2 (en) 2010-08-12 2015-09-09 株式会社Sumco Method for evaluating silica powder, silica glass crucible, method for producing silica glass crucible
CN106801252B (en) * 2016-12-30 2019-06-18 江西中材太阳能新材料有限公司 A kind of quartz ceramic crucible for polycrystalline silicon ingot casting and preparation method thereof
JP7349779B2 (en) 2018-08-09 2023-09-25 信越石英株式会社 quartz glass crucible
JP7157932B2 (en) * 2019-01-11 2022-10-21 株式会社Sumco Silica glass crucible manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2000072589A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4285788B2 (en) Manufacturing method of large diameter quartz crucible for single crystal pulling
JP2933404B2 (en) Quartz glass crucible for pulling silicon single crystal and its manufacturing method
JP3764776B2 (en) Quartz glass crucible for pulling single crystal and manufacturing method thereof
TWI275669B (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacture thereof
JP4447738B2 (en) Method for producing a quartz glass crucible having a multilayer structure
JP2004059410A (en) Quartz glass crucible for pulling up silicon single crystal and method of manufacturing the same
KR101104673B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot
JP4398527B2 (en) Silica glass crucible for pulling silicon single crystals
JP2811290B2 (en) Quartz glass crucible for pulling silicon single crystal
US20070051297A1 (en) Silica glass crucible with barium-doped inner wall
JPH0422861B2 (en)
JP5397857B2 (en) Method and apparatus for producing quartz glass crucible
JPH0729871B2 (en) Quartz crucible for pulling single crystals
JP2000044386A5 (en)
JP4454059B2 (en) Large diameter quartz glass crucible for pulling silicon single crystal
JP4140868B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP2012116714A (en) Method and apparatus for manufacturing silica glass crucible
JP4651119B2 (en) Large diameter quartz glass crucible for pulling silicon single crystal
TWI417259B (en) Method of manufacturing vitreous silica crucible
JPS59213697A (en) Pulling device for single crystal semiconductor
JP4138959B2 (en) Large diameter quartz glass crucible for pulling silicon single crystal and method for producing the same
JP2001002430A (en) Production of quartz glass crucible for pulling up silicon single crystal
JP4549008B2 (en) Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same
JPH0742193B2 (en) Quartz crucible for pulling single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term