JP4139405B2 - Excavator connection structure and excavator underwater recovery method - Google Patents

Excavator connection structure and excavator underwater recovery method Download PDF

Info

Publication number
JP4139405B2
JP4139405B2 JP2005344079A JP2005344079A JP4139405B2 JP 4139405 B2 JP4139405 B2 JP 4139405B2 JP 2005344079 A JP2005344079 A JP 2005344079A JP 2005344079 A JP2005344079 A JP 2005344079A JP 4139405 B2 JP4139405 B2 JP 4139405B2
Authority
JP
Japan
Prior art keywords
excavator
buried pipe
watertight
fitting
pipe row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005344079A
Other languages
Japanese (ja)
Other versions
JP2007146542A (en
Inventor
大介 荒木
道夫 岡村
Original Assignee
機動建設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 機動建設工業株式会社 filed Critical 機動建設工業株式会社
Priority to JP2005344079A priority Critical patent/JP4139405B2/en
Publication of JP2007146542A publication Critical patent/JP2007146542A/en
Application granted granted Critical
Publication of JP4139405B2 publication Critical patent/JP4139405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、掘進機の連結構造および掘進機の水中回収方法に関し、詳しくは、地中から水中に掘り進んで後方に埋設管列を敷設する掘進機を、水中で回収する方法と、このような方法に使用される掘進機を埋設管列と連結しておく連結構造とを対象にしている。   The present invention relates to an excavator connecting structure and an underwater recovery method for the excavator, and more particularly, a method for recovering an underwater excavator that digs into the water from the ground and lays a buried pipe line in the back. It is intended for a connecting structure in which an excavator used in such a method is connected to a buried pipe line.

掘進機を用いて地下に管路を構築する推進工法は、下水道やガス管などの施工に広く利用されている。
一般的な推進工法では、施工区間の両端に地表から地盤に立坑を構築する。出発立坑の側面から地盤に掘進機を推進させる。掘進機の後方に連結された埋設管列を地盤内に敷設する。到達立坑まで到達した掘進機を到達立坑から地上に回収する。
これとは別に、地中に構築する管路の末端を、海や河川などの水中に開口させることがある。例えば、発電所の取水管路や排水管路を、発電所の地中から海岸を経て海面下の水中に開口させておくことがある。
The propulsion method of constructing pipelines underground using excavators is widely used for construction of sewers and gas pipes.
In a general propulsion method, shafts are constructed from the surface to the ground at both ends of the construction section. The excavator is propelled to the ground from the side of the starting shaft. A buried pipe line connected to the rear of the excavator is laid in the ground. The excavator that has reached the reach shaft is recovered from the reach shaft to the ground.
Apart from this, the end of the pipeline constructed in the ground may be opened in water such as the sea or river. For example, an intake pipe or a drain pipe of a power plant may be opened from the underground of the power plant to the water below the sea level through the coast.

このような地中から水中に構築される管路の施工に、前記した推進工法を適用するには、掘進機の回収を水中で行わなければならない。
特許文献1には、海底下の地盤内を推進されて埋設管列を敷設した掘進機を、海底を掘削してコンクリート壁などで構築され、内部に海水が導入された到達立坑まで推進させたあと、掘進機の後端に配置された切断管を切断して後方の埋設管列と分離し、掘進機を海中から海面上に引き上げて回収する技術が示されている。
特許文献2には、シールド掘進機を水中で回収する方法として、シールドフレームを延出形成し、その内部に前後2重の隔壁を構築し、前後の隔壁の間でシールドフレームを切断したあと、前隔壁で仕切られたシールド掘進機を回収する技術が示されている。シールドフレームをスライド可能に重合された二重筒構造にしておき、前記した前後の隔壁を構築したあと、シールドフレームの前筒体を後筒体から引き出して分離させ、シールドフレームの前筒体を含むシールド掘進機を回収する技術が示されている。
特開2002−180779号公報 特開2005−126991号公報
In order to apply the propulsion method described above to the construction of a pipeline constructed underwater from the ground, the excavator must be collected underwater.
In Patent Document 1, an excavator that has been propelled in the ground below the seabed and laid a buried pipe line was constructed by digging the seabed with a concrete wall or the like, and propelled to a reach shaft where seawater was introduced inside Furthermore, a technique is shown in which a cutting pipe disposed at the rear end of the excavator is cut and separated from the rear buried pipe row, and the excavator is lifted from the sea to the sea level and collected.
In Patent Document 2, as a method for recovering the shield machine in water, the shield frame is extended and formed, a double partition is built inside and behind it, and the shield frame is cut between the front and back partitions, A technique for recovering a shield machine partitioned by a front bulkhead is shown. After the shield frame is slidably superposed on the double cylinder structure, the front and rear partition walls are constructed, the front frame body of the shield frame is pulled out from the rear cylinder body, and the front cylinder body of the shield frame is separated. Techniques for recovering the shield machine including are shown.
JP 2002-180779 A JP 2005-126991 A

前記従来技術における水中からの掘進機の回収技術では、水中での作業が難しく手間がかかるという問題がある。
特許文献1の技術で、海中の到達立坑内において掘進機の後端の切断管を切断する作業は、切断管を構成する鋼板材を、水中溶断装置で溶断したり、円盤カッタで切断したりすることになる。このような海中での切断作業は、潜水装備を着けた熟練作業者でなければ難しい。熟練作業者であっても、かなり面倒で時間のかかる作業になる。特に、深度のある海中での潜水作業には、作業者の健康や安全上の観点から作業時間に制限を受ける。1度の潜水作業で切断作業が完了しないと、時間をあけて潜水作業を繰り返したり、潜水作業者が交替しながら作業を行ったりする必要がある。作業能率が悪く、作業期間が長くかかり、作業コストも高くつく。
In the technique for recovering the excavator from the water in the prior art, there is a problem that the work in the water is difficult and troublesome.
In the technique of Patent Document 1, the work of cutting the cutting pipe at the rear end of the excavator in the underwater shaft is to cut the steel plate material constituting the cutting pipe with an underwater cutting apparatus or with a disk cutter. Will do. Such underwater cutting work is difficult unless it is a skilled worker with diving equipment. Even skilled workers can be quite troublesome and time consuming. In particular, diving work in deep seas is limited in work time from the viewpoint of worker health and safety. If the cutting operation is not completed in one diving operation, it is necessary to repeat the diving operation after a certain period of time or to perform the operation while the diving operator changes. The work efficiency is poor, the work period is long, and the work cost is high.

また、切断された切断管の一部が連結されたままの掘進機は、そのままでは、次の推進工法に使用することはできない。切断された切断管を取り外して、新たな切断管を、掘進機の後部に連結しておかなければならない。
特許文献2の技術で、シールドフレームを切断する場合も、上記同様の問題がある。二重筒構造のシールドフレームを用いる場合は、水中での切断作業は不要であるが、シールドフレームの内部で、前後一対の隔壁を構築する作業や、シールドフレームの前筒体を後筒体から引き出す推進ジャッキの設定作業など、複雑で手間のかかる作業が必要である。前記切断作業を行う場合よりも、却って作業性が悪く、コストも高くつくことになる。掘進機およびシールドフレームを水中から回収したあと、シールドフレームに構築された隔壁を溶断などの手段で切断したりして撤去しなければ、次回のシールド掘進には使用できないので、却って手間がかかることになる。
Moreover, the excavator with a part of the cut cutting pipe connected cannot be used for the next propulsion method as it is. The cut cutting tube must be removed and a new cutting tube connected to the rear of the machine.
Even when the shield frame is cut by the technique of Patent Document 2, there is the same problem as described above. When using a double-cylinder shield frame, it is not necessary to cut underwater, but the construction of a pair of front and rear partitions inside the shield frame, or the front cylinder of the shield frame from the rear cylinder Complicated and time-consuming work such as setting up a pulling out jack is necessary. Compared to the case of performing the cutting operation, the workability is worse and the cost is higher. After the excavator and shield frame are recovered from the water, the bulkhead built in the shield frame must be cut or removed by means such as fusing, so it cannot be used for the next shield excavation, which takes time. become.

本発明の課題は、地中から水中へと推進させた掘進機を、安全かつ能率的に回収することができ、回収された掘進機の再利用も容易かつ迅速に行えるようにすることである。   An object of the present invention is to make it possible to safely and efficiently recover an excavator propelled from the ground into the water, and to easily and quickly reuse the recovered excavator. .

本発明にかかる掘進機の連結構造は、地中から水中へと推進させる掘進機と掘進機の後方に連結される埋設管列との連結構造であって、前記掘進機の後端側と前記埋設管列の前端側とを軸方向に嵌脱自在に連結する嵌脱連結部と、前記嵌脱連結部を水密状態で封止する水密封止部と、前記掘進機の後部および前記埋設管列の前部にそれぞれ配置され、通行可能な開口が水密扉で開閉自在に封鎖される水密隔壁と、前記掘進機の後部または前記埋設管列の前部に配置され、対面する相手側の埋設管列または掘進機を軸方向に押動して前記嵌脱連結部の連結を解除する嵌脱駆動部とを備え、前記嵌脱駆動部が、前記掘進機または前記埋設管列の何れかに対して周方向の複数個所に配置されてなるシリンダ装置と、シリンダ装置に配置され、軸方向に進退自在に作動し相手側の掘進機または埋設管列に先端を当接させて押動する作動軸とを有する、ことを特徴とする
以下、各構成について詳しく説明する。
The connection structure of the excavator according to the present invention is a connection structure of an excavator that is propelled from the ground into the water and a buried pipe line that is connected to the rear of the excavator, and the rear end side of the excavator and the A fitting / disconnecting part for connecting the front end side of the buried pipe row in an axially detachable manner, a watertight sealing part for sealing the fitting / disconnecting part in a watertight state, a rear part of the excavator and the buried pipe A watertight partition wall which is arranged at the front part of each row and whose openable opening is closed by a watertight door; and a burying on the opposite side which is arranged at the rear part of the excavator or at the front part of the buried pipe line A fitting / removal driving unit that pushes the tube row or the excavator in the axial direction to release the connection of the fitting / disconnecting unit, and the fitting / removing driving unit is provided in either the excavator or the buried pipe row. In contrast, a cylinder device arranged at a plurality of locations in the circumferential direction, and an axial direction arranged in the cylinder device Retractably actuated by contact with tip shield machine or buried pipe rows of mating with an actuating shaft to push it, characterized in that.
Hereinafter, each configuration will be described in detail.

〔埋設管〕
通常の管路構築に利用される埋設管が使用できる。構築しようとする管路の目的や要求性能に合わせて、材質や寸法構造が設定される。
具体的には、ヒューム管、コンクリート管、鋼管、FRP管、セラミック管、合成樹脂管などがある。複数の材料層が積層された複合管も使用される。埋設管列のうち水中に露出した状態になる部分には、耐水性や耐海水性のある材料を用いたり、耐水処理、耐蝕処理が施された埋設管を用いたりすることが有効である。
埋設管の寸法は、構築する管路の目的や要求性能に合わせて設定される。通常、埋設管の口径800〜3000mm、長さ1.0〜5.0mの範囲に設定できる。
[Built pipe]
Buried pipes used for normal pipe construction can be used. The material and dimensional structure are set according to the purpose and required performance of the pipeline to be constructed.
Specific examples include a fume pipe, a concrete pipe, a steel pipe, an FRP pipe, a ceramic pipe, and a synthetic resin pipe. A composite tube in which a plurality of material layers are laminated is also used. It is effective to use a water-resistant or seawater-resistant material or a buried pipe that has been subjected to a water-resistant treatment and a corrosion-resistant treatment in a portion of the buried pipe row that is exposed to water.
The dimensions of the buried pipe are set according to the purpose and required performance of the pipeline to be constructed. Usually, the diameter of the buried pipe can be set to a range of 800 to 3000 mm and a length of 1.0 to 5.0 m.

埋設管同士の連結は、通常、前後の埋設管で端部同士を嵌合させて連結する。そのために、埋設管の端部には嵌合用の段差や凹凸構造が設けられる。埋設管同士を、間にスリーブ管を挟んで嵌合連結する場合もある。埋設管同士が一定の範囲で屈曲できるように連結する連結具を介する場合もある。埋設管同士の連結個所が、水中に露出する場合は、連結個所を水密構造にしておく。この場合も、通常の埋設管連結においても採用されている封止材やパッキン材を使用することができる。
掘進機と連結される埋設管については、後述する特定の連結構造を備えておく。埋設管の先端に連結構造を加工したり、連結構造の取付構造を付け加えたりすることができる。埋設管そのものは通常の埋設管と同じものを兼用し、その先端に連結装置を取り付けることもできる。
The connection between the buried pipes is usually performed by fitting the ends between the front and rear buried pipes. Therefore, a step for fitting and a concavo-convex structure are provided at the end of the buried pipe. In some cases, the buried pipes are fitted and connected with a sleeve pipe in between. In some cases, the embedded pipes are connected via a connecting tool that connects the embedded pipes so that they can be bent within a certain range. When the connection location between the buried pipes is exposed in water, the connection location is made watertight. Also in this case, the sealing material and packing material which are employ | adopted also in normal buried pipe connection can be used.
About the underground pipe connected with an excavation machine, the specific connection structure mentioned later is provided. A connecting structure can be processed at the tip of the buried pipe, or an attachment structure for the connecting structure can be added. The buried pipe itself can be the same as a normal buried pipe, and a connecting device can be attached to the tip of the buried pipe.

〔掘進機〕
通常の管路構築に利用される掘進機のうち、水中に推進させて回収したあと再使用が可能な構造を備えるものが使用される。
通常の掘進機は、地盤内における浸出水や地下水圧に耐える水密構造や耐水構造を備えていることが多いので、水中に推進させても特に問題はない。海水に対する耐蝕性や水中深度における耐圧耐水性などに優れていれば、より好ましい。
掘進機は、構築する管路の口径に対応する円筒状をなす。前端には地盤を掘り進む回転掘削盤などの掘削機構を備える。掘削する地盤に泥水を供給する泥水供給機構や、地盤を圧密する圧密機構、掘削した土砂水を回収する排土機構なども備えておくことができる。掘進機の推進方向を変向する変向機構を備えることもある。掘進機の内部には、掘進機の位置を測定する測量装置や、掘削機構などに電力、油空圧などを供給するエネルギー供給用の配線ケーブルや配管チューブなどの線管類も収容される。各作動機構の作動制御を行ったり作動状態を検知したりする制御ケーブルや情報通信線も配置される。
[Digging machine]
Among excavators used for ordinary pipeline construction, those having a structure that can be reused after being propelled into water and collected are used.
Ordinary excavators often have a water-tight structure or a water-resistant structure that can withstand leachate and groundwater pressure in the ground, so there is no particular problem even when propelled in water. It is more preferable if it is excellent in the corrosion resistance to seawater and the pressure-resistant water resistance at a depth in water.
The excavator has a cylindrical shape corresponding to the diameter of the pipeline to be constructed. The front end is equipped with a drilling mechanism such as a rotary excavator that digs the ground. A muddy water supply mechanism that supplies muddy water to the ground to be excavated, a consolidation mechanism that consolidates the ground, a soil discharge mechanism that collects excavated soil water, and the like can also be provided. A turning mechanism that changes the propulsion direction of the excavator may be provided. Inside the excavator, a surveying device for measuring the position of the excavator, and wire pipes such as an energy supply wiring cable and a piping tube for supplying electric power, hydraulic pressure and the like to the excavation mechanism are also accommodated. A control cable and an information communication line for performing operation control of each operation mechanism and detecting an operation state are also arranged.

掘進機の寸法は、敷設する埋設管の口径や推進距離などの施工条件に対応して設定される。通常、埋設管の口径と同じ外径で、長さ2.0〜7.0mの範囲に設定できる。
〔連結構造〕
掘進機とその後方に配置される埋設管列とを連結する。
連結構造は、掘進機および埋設管とは別個の連結装置を用いることもできるし、連結装置の一部に、掘進機あるいは埋設管の構造を利用することもできる。
〔嵌脱連結部〕
掘進機の後端側と埋設管列の前端側とを軸方向に嵌脱自在に連結する。
The dimensions of the excavator are set according to the construction conditions such as the diameter of the buried pipe to be laid and the propulsion distance. Usually, the outer diameter is the same as the diameter of the buried pipe, and the length can be set in the range of 2.0 to 7.0 m.
[Connecting structure]
The excavator is connected to the buried pipe line arranged behind it.
For the connection structure, a connection device that is separate from the excavator and the buried pipe can be used, or the structure of the excavator or the buried pipe can be used as a part of the connection device.
(Fitting / disconnecting part)
The rear end side of the excavator is connected to the front end side of the buried pipe row so as to be freely fitted and removed in the axial direction.

通常の土木構造や機械構造において、軸状あるいは筒状の部材を互いに嵌め合わせて連結したり、連結を解除して部材同士を分離したりできる機能を果たす手段や機構、構造を適用できる。
具体的には、何れの円筒形状をなす掘進機の後端側と埋設管列の前端側とに、外径の差を設けておけば、外径の大きな側すなわち外筒部を外径の小さな側すなわち内筒部の外周に重ねるように嵌め合わせることができる。掘進機および埋設管列の基本的な外径は、同径に設定されるので、内筒部になる側では、端部近くに段差を付けて、所定長さ分だけ外径が小さな内筒部になるようにしておけばよい。外径を小さくした段差部分の長さが、内筒部の長さになり、外筒部と内筒部との嵌合長さにほぼ相当することになる。
In ordinary civil engineering structures and mechanical structures, means, mechanisms, and structures that fulfill the function of fitting and connecting shaft-like or cylindrical members to each other and releasing the connection to separate the members can be applied.
Specifically, if a difference in outer diameter is provided between the rear end side of the excavator having any cylindrical shape and the front end side of the buried pipe row, the outer diameter side, i.e. It can fit together so that it may overlap with the small side, ie, the outer periphery of an inner cylinder part. Since the basic outer diameter of the excavator and the buried pipe row is set to the same diameter, on the side that becomes the inner cylinder part, a step is provided near the end part, and the inner cylinder that has a smaller outer diameter by a predetermined length. You just have to be a part. The length of the stepped portion having the reduced outer diameter becomes the length of the inner cylinder portion, and substantially corresponds to the fitting length between the outer cylinder portion and the inner cylinder portion.

外筒部の内周径と内筒部の外周径との間には、一定の隙間を設けることで、スムーズな嵌合連結動作および連結解除動作が可能になる。嵌脱連結部の長さは、連結状態で十分な連結一体化が果たせ、水密封止部の機能も十分に発揮できるとともに、連結解除も容易にできる程度に設定しておく。具体的には、100〜200cmの長さに設定することができる。
嵌脱連結部は、掘進機の後端側と埋設管列の前端側との何れの側が、外筒部および内筒部になっても構わない。推進時における捲れを防ぐには、埋設管列の前端側を内筒部、掘進機の後端側を外筒部に設定しておくことが有効である。
By providing a certain gap between the inner peripheral diameter of the outer cylindrical portion and the outer peripheral diameter of the inner cylindrical portion, a smooth fitting / connecting operation and connection releasing operation are possible. The length of the fitting / removing connecting portion is set to such a degree that sufficient connection and integration can be achieved in the connected state, the function of the watertight sealing portion can be sufficiently exhibited, and the connection can be easily released. Specifically, it can be set to a length of 100 to 200 cm.
Any side of the rear end side of the excavator and the front end side of the buried pipe row may be an outer cylinder part and an inner cylinder part of the fitting / disconnecting part. In order to prevent dripping at the time of propulsion, it is effective to set the front end side of the buried pipe row to the inner cylinder part and the rear end side of the excavator to the outer cylinder part.

連結装置の一部に掘進機または埋設管列そのものを利用する場合は、外筒部または内筒部の何れか一方を、掘進機または埋設管そのものの端部で構成することができる。
〔水密封止部〕
互いに嵌脱される嵌脱連結部の掘進機側と埋設管列側とを水密状態で封止する。
通常の土木機械や装置、機器などにおける嵌合部分や摺動部分に採用されている水密封止構造が適用できる。
具体的には、摺動パッキンやブラシ状封止部材などが使用できる。通常の推進工法などにおいて埋設管同士の屈曲自在な連結個所に採用されている摺動可能な封止具や封止パッキンが採用できる。埋設管列から掘進機を分離したあとは、水密封止部の構造が水中に露出することになるので、耐水性や耐海水性に優れた材料や構造を採用することが望ましい。
When the excavator or the buried pipe row itself is used as a part of the connecting device, either the outer cylinder part or the inner cylinder part can be constituted by the end of the excavator or the buried pipe itself.
(Watertight seal)
The excavator side and the buried pipe row side of the fitting / removing connecting portions fitted and detached from each other are sealed in a watertight state.
A watertight sealing structure adopted in a fitting part or sliding part in a normal civil engineering machine, apparatus, or device can be applied.
Specifically, a sliding packing, a brush-like sealing member, or the like can be used. A slidable sealing tool or sealing packing which is employed at a joint where the buried pipes can be bent in a normal propulsion method or the like can be used. After the excavator is separated from the buried pipe row, the structure of the watertight sealing portion is exposed in water. Therefore, it is desirable to employ a material and structure excellent in water resistance and seawater resistance.

水密封止部を構成する封止部材は、嵌脱連結部において相手側に対して摺動可能であれば、掘進機側と埋設管側との何れの側に設けられていてもよい。両方の側に封止部材を設けておくこともできる。嵌脱連結部の軸方向において、2重あるいは3重以上で封止部材あるいは水密封止部を設けておけば、水密封止機能はより高くなる。
〔水密隔壁〕
掘進機の後部および埋設管列の前部にそれぞれ配置される。水密隔壁の前後の空間を水密状態で隔離する。
通常の水中設備や水中で使用される装置、機器における水密隔壁と共通する材料や構造が採用できる。例えば、鋼板などの機械的強度や耐圧性に優れた材料が使用される。鋼板に補強リブや補強枠などを組み合わせて耐圧性を向上させることが有効である。FRP樹脂など金属以外の材料を利用することもできる。
If the sealing member which comprises a watertight sealing part is slidable with respect to the other party in a fitting / detaching connection part, you may be provided in any side of the excavator side and the buried pipe side. Sealing members can also be provided on both sides. If the sealing member or the watertight sealing portion is provided in the axial direction of the fitting / disconnecting portion in double or triple layers, the watertight sealing function becomes higher.
(Watertight bulkhead)
Arranged at the rear of the excavator and at the front of the buried pipe row. Isolate the space before and after the watertight bulkhead in a watertight state.
Materials and structures common to watertight partitions in normal underwater equipment, devices and equipment used in water can be adopted. For example, a material excellent in mechanical strength and pressure resistance such as a steel plate is used. It is effective to improve pressure resistance by combining a steel plate with a reinforcing rib or a reinforcing frame. Materials other than metal, such as FRP resin, can also be used.

水密隔壁には、前後に通行可能な開口を設け、この開口を開閉自在に封鎖する水密扉を設けておくことで、前後の空間が確実に水密隔離された状態と、互いに行き来が自由な状態とを、必要に応じて選択的に設定することができる。
水密扉は、水密隔壁と同様に耐水性および耐圧性のある材料や構造が採用される。水密扉と水密隔壁との当接個所には、水密性のある封止パッキンなどを配置しておくことが望ましい。水密扉は、ヒンジ機構などで開閉自在に水密隔壁に取り付けられてあれば、開閉作業が容易である。また、水密隔壁に着脱自在であり、水密隔壁に取り付けた状態と水密隔壁から取り外した状態とを切り替えられるだけでもよい。例えば、水密扉の外周に沿って配置された締結ボルトで水密隔壁にボルト締結する構造であれば、ボルトの操作によって着脱が可能になる。
The watertight bulkhead is provided with an opening that can be passed back and forth, and by providing a watertight door that can be opened and closed freely, the front and rear spaces are securely separated from each other and the state in which they can freely go back and forth. Can be selectively set as necessary.
The watertight door is made of a water-resistant and pressure-resistant material and structure in the same manner as the watertight partition wall. It is desirable to arrange a watertight sealing packing or the like at the contact point between the watertight door and the watertight partition. The watertight door can be easily opened and closed if it is attached to the watertight partition wall by a hinge mechanism or the like so as to be freely opened and closed. Moreover, it is detachable from the watertight partition wall, and it is only necessary to switch between the state attached to the watertight partition wall and the state detached from the watertight partition wall. For example, if it is the structure which bolts to a watertight partition with the fastening bolt arrange | positioned along the outer periphery of a watertight door, attachment or detachment will be attained by operation of a bolt.

水密隔壁には、水密扉を配置する開口に加えて、前後の空間にケーブルやパイプ、配線などの線管類を通す貫通空間を設けることができる。これらの貫通空間は、線管類を挿通配置した状態で、線管類の外形と貫通空間の内形との間を水密構造にしておく。また、貫通空間に線管類を挿通しないときには、貫通空間を閉塞する水密蓋を取り付けられるようにしておくことが望ましい。
水密隔壁は、掘進機あるいは埋設管に直接に設けられてもよいし、掘進機または埋設管に設置された連結装置に設けられていてもよい。水密隔壁は、掘進機、埋設管あるいは連結装置に対して取り付け取り外しが可能な構造にしておくことができる。この場合、水密隔壁そのものが水密扉であると考えることもできる。水密隔壁が必要になる掘進機と埋設管列との分離作業の前に、水密隔壁を取り付け、掘進機を埋設管列から分離し管路の構築が終わった段階で、埋設管列から水密隔壁を取り外すことができる。水密隔壁を取り外せば、構築した後の管路の開口が広くなり、管路の流通抵抗が低減される。水密隔壁を残したままにすることで、管路の先端部における構造強度を高めたり、異物の通過を阻止する柵やフィルターの取り付けに利用したりすることもできる。
In the watertight partition wall, in addition to the opening for arranging the watertight door, a through space through which wire tubes such as cables, pipes and wirings can be provided in the front and rear spaces. These penetrating spaces have a watertight structure between the outer shape of the tube and the inner shape of the penetrating space in a state where the tube is inserted and arranged. In addition, when a line tube is not inserted into the through space, it is desirable that a watertight lid for closing the through space is attached.
The watertight partition may be provided directly on the excavator or the buried pipe, or may be provided on a connecting device installed on the excavator or the buried pipe. The watertight bulkhead can be structured so that it can be attached to and detached from the excavator, the buried pipe or the connecting device. In this case, it can be considered that the watertight partition itself is a watertight door. Before separation of the excavator and the buried pipe row that requires a watertight bulkhead, the watertight bulkhead is attached, and after the excavator is separated from the buried pipe row and the construction of the pipeline is completed, the watertight bulkhead from the buried pipe row is completed. Can be removed. If the watertight partition is removed, the opening of the pipeline after construction becomes wide, and the flow resistance of the pipeline is reduced. By leaving the watertight partition wall, it is possible to increase the structural strength at the distal end portion of the pipe line, or to use it to attach a fence or a filter that prevents passage of foreign matter.

〔嵌脱駆動部〕
嵌脱連結部の連結を解除する機能を果たす。掘進機の後部または埋設管列の前部の何れかに配置される。対面する相手側の埋設管列または掘進機を軸方向に押動して嵌脱連結部の連結を解除する。
嵌脱連結部は、軸方向に嵌合連結し軸方向に連結解除される構造を有するので、嵌脱駆動部には、軸方向に押動力を作用できる機構や装置構造を備えておけばよい。
具体的には、ピストンシリンダ機構やトグル機構、カムラック機構、ボールねじ機構、リンク機構、リニアアクチュエータ機構などが利用できる。これらの機構を作動させる駆動源には、油圧、空圧、水圧、蒸気圧などの圧力、電気モータ、電磁力などが採用される。
(Fitting / removal drive part)
It fulfills the function of releasing the connection of the fitting / removing connecting portion. It is arranged either at the rear of the excavator or at the front of the buried pipe line. The mating pipe line or the excavating machine on the opposite side is pushed in the axial direction to release the connection of the fitting / disconnecting part.
Since the fitting / removing part has a structure that is fitted and connected in the axial direction and is released from the connection in the axial direction, the fitting / removing drive part may be provided with a mechanism or device structure that can act on the axial direction. .
Specifically, a piston cylinder mechanism, a toggle mechanism, a cam rack mechanism, a ball screw mechanism, a link mechanism, a linear actuator mechanism, and the like can be used. As a driving source for operating these mechanisms, pressure such as hydraulic pressure, pneumatic pressure, water pressure, and vapor pressure, an electric motor, electromagnetic force, and the like are employed.

掘進機あるいは埋設管列の周方向に沿って存在する嵌脱連結部に対して、嵌脱駆動部は、少なくとも直径の両端になる周方向の2個所に設けておいてもよいが、通常は、周方向で3個所以上の複数個所に嵌脱駆動部を配置することで、嵌脱連結部の嵌脱動作を確実にすることができる。嵌脱駆動部の配置は、周方向で等間隔であってもよいし、掘進機や埋設管列に配置される部材や機器との干渉を避けるなどのために非等間隔に配置される場合もある。嵌脱駆動部の設置数は、掘進機および埋設管列の径や、嵌脱連結部の駆動に必要な駆動力と一つの嵌脱駆動部で発生できる駆動力との関係、周方向で駆動力を均等化することなどを勘案して設定できる。通常、周方向の4〜10個所に嵌脱駆動部を配置しておけばよい。   The fitting / disengaging drive part may be provided in at least two places in the circumferential direction at both ends of the diameter with respect to the fitting / disengaging connection part existing along the circumferential direction of the excavator or the buried pipe row. By disposing the engagement / disengagement drive portions at three or more locations in the circumferential direction, the engagement / disengagement operation of the engagement / disengagement connecting portion can be ensured. The arrangement of the engagement / disengagement drive unit may be equally spaced in the circumferential direction, or when arranged at non-equal intervals in order to avoid interference with members or equipment disposed in the excavator or the buried pipe row There is also. The number of installation / removal drive units depends on the diameter of the excavator and the buried pipe row, the relationship between the drive force required to drive the connection / disconnection unit and the drive force that can be generated by one engagement / disengagement drive unit, and drive in the circumferential direction. It can be set considering the equalization of power. Usually, the engagement / disengagement drive part should just be arrange | positioned at 4-10 places of the circumferential direction.

嵌脱駆動部の具体例として、掘進機または埋設管列の何れかに対して周方向の複数個所に配置されてなるシリンダ装置と、シリンダ装置に配置され、軸方向に進退自在に作動し相手側の掘進機または埋設管列に先端を当接させて押動する作動軸とを有するものが採用できる。また、掘進機または前記埋設管列の何れかに支持された雌ねじ部と、雌ねじ部にねじ込まれ回動させることで軸方向に進退自在に作動し、相手側の埋設管列または掘進機に先端が当接する雄ねじ軸とを有する、ジャッキねじ装置を、周方向の複数個所に配置してなるものも採用できる。
〔連結装置〕
連結装置は、嵌脱連結部と水密封止部と水密隔壁と嵌脱駆動部とを備えることができる。掘進機の後端と埋設管列の先端との間に装着される。
As a specific example of the fitting / removal drive unit, a cylinder device arranged at a plurality of locations in the circumferential direction with respect to either the excavator or the buried pipe row, and a counterpart that is arranged in the cylinder device and can move forward and backward in the axial direction. It is possible to employ one having an actuating shaft that pushes with the tip being brought into contact with the side excavator or the buried pipe row. Also, the internal thread portion supported by either the excavator or the buried pipe row and the axial movement by being screwed into the female thread portion and rotating, and the tip end of the opposite buried pipe row or the excavator It is also possible to employ a jack screw device having a male screw shaft with which the abutment is disposed and arranged at a plurality of locations in the circumferential direction.
[Coupling device]
The connecting device may include a fitting / removing connecting portion, a watertight sealing portion, a watertight partition, and a fitting / removing driving portion. It is mounted between the rear end of the excavator and the front end of the buried pipe line.

嵌脱連結部、水密封止部、水密隔壁および嵌脱駆動部のうち、一部の構造に、掘進機あるいは埋設管列の構造を利用する場合は、掘進機あるいは埋設管列を利用する構造については、連結装置に備えていなくてもよい。
連結装置として、互いに分離自在で、掘進機に装着される前部装置と、埋設管列に装着される後部装置とからなるものが採用できる。前部装置と後部装置とにおける各構造部分の振り分けあるいは分割配置は、それぞれの構造部分の機能が良好に発揮できるように設定すればよい。例えば、嵌脱連結部は、前部装置と後部装置との両方に分割して配置できる。水密封止部は、前部装置と後部装置との何れかに配置することができる。水密隔壁は、通常、前部装置と後部装置の両方に設置する。嵌脱駆動部は、通常、前部装置と後部装置との何れか一方に配置しておけばよい。管路の構築完了後、掘進機とともに水中から回収して再利用できる構造については、掘進機側の前部装置に配置しておくことが有効である。
When using the structure of the excavator or the buried pipe row for a part of the structure among the fitting / disconnecting part, the watertight sealing part, the watertight partition and the fitting / removing drive part, the structure using the excavator or the buried pipe row About, it does not need to be provided in the connecting device.
As the connecting device, one that is separable from each other and includes a front device that is mounted on the excavator and a rear device that is mounted on the buried pipe row can be employed. What is necessary is just to set the distribution or division | segmentation arrangement | positioning of each structure part in a front part apparatus and a rear part so that the function of each structure part can be exhibited favorably. For example, the fitting / removal connecting portion can be divided and arranged in both the front device and the rear device. The watertight seal can be placed on either the front device or the rear device. Watertight bulkheads are usually installed in both the front and rear devices. Usually, the fitting / removing drive unit may be arranged in one of the front device and the rear device. For structures that can be recovered from the water and reused together with the excavator after the construction of the pipeline is completed, it is effective to place it in the front device on the excavator side.

連結装置を、掘進機あるいは埋設管列に取り付け固定するための構造を、連結装置または掘進機、埋設管列の何れかまたは両方に設けておくことができる。掘進機、埋設管列に対して、連結装置は固定設置されてあってもよいし、必要に応じて取り付けおよび取り外しが可能になっていてもよい。例えば、埋設管列に配置される後部装置を、管路の構築完了後に埋設管列から取り外して回収すれば、後部装置を繰り返し使用することが可能になる。
〔管路の構築〕
掘進機あるいは掘進機の水中回収方法は、前記した連結構造を備えておく以外は、掘進機および埋設管の材質、構造などに特別な制約はないので、掘進機を用いて埋設管を敷設する、各種の管路構築技術に適用することができる。
A structure for attaching and fixing the connecting device to the excavator or the buried pipe row can be provided in either or both of the connecting device, the excavator and the buried pipe row. The connecting device may be fixedly installed with respect to the excavator and the buried pipe row, or may be attached and detached as necessary. For example, if the rear device arranged in the buried tube row is removed from the buried tube row after the completion of the construction of the conduit and collected, the rear device can be used repeatedly.
[Construction of pipelines]
The excavator or the underwater recovery method of the excavator has no special restrictions on the material and structure of the excavator and the buried pipe except that the above-described connection structure is provided, so the buried pipe is laid using the excavator. It can be applied to various pipeline construction techniques.

具体的には、例えば、海岸や湖、河川などの水域近くに設置される発電所の取水管路や排水管路を、発電所から水域まで管路を構築して、水域の水中に管路の末端を開口させておく場合に適用できる。海水淡水化施設において海水を取り込む海水採集管路に適用できる。水害防止用の遊水池や地下遊水空間から海中へ放水するための放水管路に適用できる。工場などにおける熱排水を海中に廃棄する排水管路に適用できる。下水処理場の処理水を海中に放出する管路にも適用できる。
管路の構築工事のうち、掘進機を水中に推進させるまでの段階については、通常の管路構築工事と同じように実施できる。掘進機の推進を始める出発立坑や掘進機に推力を加える元押しジャッキ、埋設管を出発立坑から搬入して掘進機と連結する作業、掘進機を推進させながら推進方向を制御する作業、その他についても、特別な規制はない。なお、掘進機および埋設管列に設けられた水密隔壁は開口を解放して自由に通行できる状態にしておけば、作業者が掘進機の内部で作業を行うことにも何ら支障はない。
Specifically, for example, a water intake pipe or drainage pipe installed near a water area such as a coast, a lake, or a river is constructed from the power station to the water area, and the pipe is inserted into the water of the water area. This method can be applied to the case where the end of is open. It can be applied to seawater collection pipelines that take in seawater at seawater desalination facilities. It can be applied to a water basin for preventing flood damage and a water discharge pipe for discharging water from an underground water basin. It can be applied to drainage pipes that dispose of thermal wastewater in factories and the like. It can also be applied to pipelines that discharge treated water from sewage treatment plants into the sea.
Of the pipeline construction work, the stage until the excavator is pushed into the water can be carried out in the same way as normal pipe construction work. Starting shafts that start propulsion of the excavator, jacking jacks that apply thrust to the excavator, work to carry buried pipes from the start shaft and connect to the excavator, work to control the propulsion direction while propelling the excavator, etc. But there are no special regulations. In addition, if the watertight partition walls provided in the excavator and the buried pipe row are opened so that they can pass freely, there is no problem for the operator to perform work inside the excavator.

管路の構築工法として、一般的に推進埋設工法や推進工法、シールド推進工法、シールド工法などと呼ばれる工法が適用される。管路を構成する埋設管列は、予め製造された所定長さの埋設管を、埋設管列の最後尾に順次連結していく方法のほか、掘進機と埋設管列の間、あるいは、埋設管列の途中に、新たな埋設管を構成する管壁材を挿入し継ぎ足して管構造を作製していく方法でも構築できる。
管路構築の最終段階で、掘進機が地中から水中へと進出しても、水密封止部によって水密状態で連結された嵌脱連結部は、外部からの水の浸入を確実に遮断できる。掘進機の内部における作業も可能である。
As the pipe construction method, a construction method generally called a propulsion embedding method, a propulsion method, a shield propulsion method, a shield method or the like is applied. The buried pipe row that constitutes the pipeline is not only a method in which buried pipes of a predetermined length manufactured in advance are sequentially connected to the tail of the buried pipe row, but also between the excavator and the buried pipe row, or buried It can also be constructed by inserting a pipe wall material constituting a new buried pipe in the middle of the pipe row and adding it to produce a pipe structure.
Even if the excavator advances from the ground to the water at the final stage of the pipeline construction, the fitting / disconnecting part connected in a watertight state by the watertight sealing part can reliably block the entry of water from the outside. . Work inside the excavator is also possible.

地中から水中に推進されるのは、掘進機とその後方の埋設管列の一部である。埋設管列を構成する1本の埋設管の一部だけを水中に進出させておけば、掘進機の回収作業ができる。複数本分の埋設管を水中に進出させておくこともできる。例えば、海岸の傾斜面から沖の方まで管路を水中に延ばして設置することができる。
〔水中回収方法〕
前記した連結構造で埋設管列と連結された掘進機を、地中から水中へと推進させたあと水中で回収する。
掘進機を回収する水深は、構築する管路の用途や立地条件などによって異なるが、通常、水深0〜30mからの掘進機の回収が可能である。水深が深くなるほど、水密封止部や水密隔壁などの水密構造に耐圧性の高い構造を採用すればよい。比較的に水深が浅い場合は、特別な水密手段を講じず、通常の地中推進用の掘進機や埋設管列の構造がそのまま採用できる場合もある。
It is the excavator and part of the buried pipe line behind it that is propelled from the ground into the water. If only a part of one buried pipe constituting the buried pipe row is advanced into the water, the excavator can be recovered. Multiple buried pipes can be advanced into the water. For example, it is possible to install a pipeline extending underwater from an inclined surface of the coast to the offshore direction.
[Underwater recovery method]
The excavator connected to the buried pipe row with the above-described connection structure is propelled from the ground to the water and then recovered in the water.
The water depth at which the excavator is recovered varies depending on the use of the pipeline to be constructed, the location conditions, and the like, but usually the excavator can be recovered from a depth of 0 to 30 m. As the water depth increases, a structure having higher pressure resistance may be adopted as a watertight structure such as a watertight sealing portion or a watertight partition wall. When the water depth is relatively shallow, there is a case where a special underground seal excavator or a buried pipe line structure can be used as it is without taking any special watertight means.

掘進機および埋設管列を推進させる工程は、通常の推進工法などにおける作業手順や作業条件が採用される。この段階では、掘進機および埋設管列のそれぞれに設けられた水密隔壁の水密扉を開けた状態にしておくことができる。作業者が埋設管列の内部から掘進機へと自由に出入りして作業が行える。通常は水密扉を閉じておき、通行時のみに開閉することもできる。
掘進機の推進が、地中から水中に至り、掘進機と埋設管列の一部とが水中に露出している状態になる。埋設管列の残りの部分は地中に埋設された状態である。掘進機の推進が終われば、掘進機および埋設管列の内部に設置された電力ケーブルや制御通信線、油圧配管、各種測定機器、送排泥管などは、埋設管列の後方から撤去しておくことができる。但し、嵌脱駆動部の駆動に必要な動力源など最低限必要な機材は残しておく。
In the process of propelling the excavator and the buried pipe line, the work procedure and work conditions in the normal propulsion method and the like are adopted. At this stage, the watertight doors of the watertight partition walls provided in each of the excavator and the buried pipe row can be opened. Workers can freely enter and leave the excavator from inside the buried pipe line. Normally, the watertight door can be closed and opened and closed only when passing.
The excavator is propelled from the ground into the water, and the excavator and a part of the buried pipe line are exposed in the water. The remaining part of the buried pipe row is buried in the ground. After the excavator has been propelled, the power cables, control communication lines, hydraulic piping, various measuring equipment, and exhaust mud pipes installed inside the excavator and the buried pipe row should be removed from the rear of the buried pipe row. I can leave. However, the minimum necessary equipment such as a power source necessary for driving the insertion / removal drive unit is left.

掘進機の回収作業を行う前に、掘進機および埋設管列のそれぞれに設けられた水密隔壁の水密扉を閉じる。掘進機および埋設管列の内部空間を水中と隔離できる状態にしておく。水密扉を閉じる作業などは、埋設管列から掘進機の内部へと作業者が入り込んで行うこともできる。
水密扉が閉じられた状態で、嵌脱駆動部を作動させ、掘進機を埋設管列の前方に移動させて埋設管列との連結を解除する。嵌脱連結部から掘進機および埋設管列の内部へと水が浸入しようとするが、水密隔壁で隔離された掘進機および埋設管列の内部空間に水が浸入することはない。
Before the excavator is collected, the watertight doors of the watertight partition walls provided in each of the excavator and the buried pipe row are closed. The internal space of the excavator and the buried pipe line should be isolated from the water. An operation such as closing the watertight door can also be performed by an operator entering the excavator from the buried pipe line.
In a state where the watertight door is closed, the fitting / removing drive unit is operated, and the excavator is moved forward of the buried pipe row to release the connection with the buried pipe row. Although water tries to enter the inside of the excavator and the buried pipe row from the fitting / removing connection portion, water does not enter the internal space of the excavator and the buried pipe row isolated by the watertight partition wall.

掘進機が埋設管列から分離されれば、埋設管列は残して、掘進機を水中から水面上へと回収する。掘進機とともに連結装置の一部も回収することができる。
掘進機の回収作業は、水際の地上や水上の船舶、作業台などからクレーンやウィンチなどを用いて、掘進機を吊り上げればよい。潜水作業者が水中に入って掘進機に吊り上げロープを巻いたりフックを金具に引っ掛けたりする作業を行うことができる。この程度の作業であれば、比較的に短時間で済み、水中溶断作業のような特殊な技術も必要とはされない。
水中から回収された掘進機は、次の管路構築作業に使用できる。連結装置の一部が掘進機に配置されたままであれば、そのままで再使用することができる。水密封止部の封止パッキンなど、損傷したり性能が低下したりする可能性がある一部の部材を取り換えてから再使用してもよい。
If the excavator is separated from the buried pipe row, the buried pipe row remains, and the excavator is recovered from the water to the surface of the water. A part of the connecting device can be recovered together with the excavator.
The excavator can be collected by lifting the excavator using a crane, a winch, or the like from the surface of the shore, a ship on the water, a work table, or the like. A submersible worker can enter the water and perform a work of lifting the rope around the excavator and winding the rope or hooking the hook on the metal fitting. With this level of work, a relatively short time is required, and special techniques such as underwater fusing work are not required.
The excavator recovered from the water can be used for the next pipeline construction work. If a part of the connecting device remains in the excavator, it can be reused as it is. You may reuse, after replacing | exchanging some members which may be damaged, such as sealing packing of a watertight sealing part, or performance may fall.

水中に残された埋設管列は、そのままで前記した各種用途の管路に使用できる。埋設管列の先端に、埋設管列を水底に安定して支持する支持台や埋設管列を固定する固定構造を設置したり、先端部分を保護する保護構造を設置したりすることができる。異物の侵入を防ぐ防護柵やフィルター装置を設置することもできる。開閉自在な扉を設置することもできる。これらの構造を設置するときに、埋設管列の先端近くに残った水密隔壁の構造を利用することもできる。
埋設管列の先端に、連結装置の一部が残っている場合、残った部材や構造を埋設管列から取り外して回収してもよいし、埋設管列に残したままにしておくこともできる。例えば、嵌脱駆動部の機器類が再利用可能であれば、埋設管列から取り外して回収することが有効である。水密隔壁あるいは水密扉を取り外して回収することもできる。これら取り外し回収を行う構造については、埋設管列あるいは連結装置に対して、ボルト締結などの着脱自在な取り付け手段で取り付けておくことが望ましい。
The buried pipe line left in the water can be used as it is for the pipes for various uses described above. A support base that stably supports the buried pipe row on the water bottom, a fixing structure that fixes the buried pipe row, or a protective structure that protects the tip portion can be installed at the tip of the buried pipe row. It is also possible to install protective fences and filter devices that prevent foreign objects from entering. An openable / closable door can also be installed. When installing these structures, it is possible to use the structure of the watertight partition remaining near the tip of the buried pipe row.
If a part of the coupling device remains at the tip of the buried tube row, the remaining members and structures may be removed from the buried tube row and recovered, or left in the buried tube row. . For example, if the equipment of the fitting / removing drive unit is reusable, it is effective to remove it from the buried pipe row and collect it. The watertight bulkhead or the watertight door can be removed and recovered. About the structure which performs these removal collection | recovery, it is desirable to attach with the detachable attachment means, such as bolt fastening, with respect to an embedded pipe line or a connection apparatus.

本発明にかかる掘進機の連結構造は、掘進機と埋設管列とを連結し、水密封止部で水密封止された嵌脱連結部を、嵌脱駆動部を駆動させて連結解除することで、埋設管列から掘進機を分離する。掘進機が水中に存在していても、嵌脱駆動部の駆動による嵌脱連結部の連結解除は容易かつ迅速に行える。技術的に難しい潜水作業を長時間にわたって行わなくてもよい。水密隔壁によって掘進機および埋設管列の内部には水が浸入しない。水中で嵌脱連結部の連結解除を行っても何ら問題はない。嵌脱連結部で埋設管列との連結が解除された掘進機は、切断されたり破壊されたりした個所はないので、そのまま次の管路構築工事に使用できる。   The connecting structure of the excavator according to the present invention connects the excavator and the buried pipe line, and drives the fitting / removing drive unit to release the coupling / decoupling unit that is watertightly sealed by the watertight sealing unit. Then, the excavator is separated from the buried pipe line. Even when the excavator is present in the water, the connection / disengagement of the connection / disconnection part by driving the connection / disconnection drive part can be performed easily and quickly. It is not necessary to perform technically difficult diving work for a long time. The watertight bulkhead prevents water from entering the excavator and the buried pipe line. There is no problem even if the connection / disconnection of the fitting / disconnecting part is performed underwater. The excavator, which has been disconnected from the buried pipe row at the fitting / removing portion, has no part that has been cut or destroyed, and can be used as it is for the next pipeline construction work.

なお、掘進機を地中で推進しているあいだは、水密隔壁の水密扉を通行して、埋設管列から掘進機へと自由に行き来できる。掘進機および埋設管列の一部が水中に推進された状態でも、水密封止部で水密封止された嵌脱連結部は、外部から水が浸入することはない。内部における作業は、通常の地中における管路構築作業と変わらない。   While the excavator is propelled in the ground, it is possible to move freely from the buried pipe line to the excavator through the watertight door of the watertight bulkhead. Even in the state where the excavator and a part of the buried pipe row are propelled into the water, the fitting / disconnecting portion that is watertightly sealed by the watertight sealing portion does not allow water to enter from the outside. The work inside is not different from normal pipe construction work in the ground.

〔掘進機による管路の構築〕
図1〜4は、掘進機10を用いた推進工法による管路の構築作業を段階的に示している。
<地中の推進>
図1は、地中における推進工法の施工段階を示している。地盤Eが海や河川の水域Sに落ち込む傾斜面に向かって、地中を水平方向に、掘進機10と埋設管20の列が推進させられてくる。
図示を省略したが、出発立坑は、通常の推進工法と同様に、地表から地盤Eに垂直に掘削されており、掘進機10や埋設管20の搬入を行い、出発立坑に設置された元押しジャッキなどから埋設管20列に推進力を加える。掘進機10に供給される電力線や油空圧配管、通信線なども、出発立坑から埋設管20列を通じて掘進機10まで接続されている。
[Construction of pipelines using excavators]
1 to 4 show the pipeline construction work by the propulsion method using the excavator 10 in stages.
<Promotion in the ground>
FIG. 1 shows the construction stage of the propulsion method in the ground. The row of the excavating machine 10 and the buried pipe 20 is propelled horizontally in the ground toward the inclined surface where the ground E falls into the water area S of the sea or river.
Although the illustration is omitted, the starting shaft is excavated perpendicularly from the surface to the ground E in the same manner as the normal propulsion method, and the excavator 10 and the buried pipe 20 are carried in, and the main shaft installed in the starting shaft is installed. Propulsion force is applied to 20 rows of buried pipes from jacks. Power lines, hydraulic / pneumatic pipes, communication lines, and the like supplied to the excavator 10 are also connected from the starting vertical shaft to the excavator 10 through 20 rows of buried pipes.

この段階では、通常の推進工法と全く同じ作業が行われる。掘進機10は、先端に備えた掘削盤12を回転させることで地盤Eを掘削しながら推進される。掘削された土砂は、埋設管20列の内部を通って出発立坑から地表に排出される。
なお、掘進機10と埋設管20とは、連結装置30、40を介して連結されている。連結装置30、40には水密隔壁31、41が設置されているが、何れの水密隔壁31、41も封鎖されておらず、作業者は、埋設管20の内部を通って掘進機10まで行き来することができる。掘進機10の内部機器の点検や調整などを行うことができる。
<水中への推進>
図2に示すように、掘進機10が地盤Eの傾斜面を貫通して水域Sに突き出される。
At this stage, exactly the same work as a normal propulsion method is performed. The excavator 10 is propelled while excavating the ground E by rotating the excavator 12 provided at the tip. The excavated earth and sand are discharged from the starting shaft to the surface through the 20 rows of buried pipes.
The excavator 10 and the buried pipe 20 are connected via connecting devices 30 and 40. Although the watertight bulkheads 31 and 41 are installed in the coupling devices 30 and 40, none of the watertight bulkheads 31 and 41 are sealed off, and the operator goes to the excavator 10 through the inside of the buried pipe 20. can do. Inspection and adjustment of the internal equipment of the excavator 10 can be performed.
<Promotion to underwater>
As shown in FIG. 2, the excavating machine 10 penetrates the inclined surface of the ground E and protrudes into the water area S.

掘進機10の掘削盤12は、地盤Eから水域Sに出る前あるいは出た後で回転を止めておけばよい。埋設管20列に後方から推進力を加えることで、掘進機10およびそれに続く埋設管20列の一部までが、水域Sに露出する。掘進機10と埋設管20との間の水密隔壁31、41では、水密扉32、42を閉じる。掘進機10に接続されていた各種のケーブルや配管、ダクトなども、後方の埋設管20との間の接続を外す。
なお、内部に大きな空洞のある掘進機10および埋設管20は、水域Sに入ったときに大きな浮力によって上方側に反りかえるような外力を受けることがある。掘進機10の場合は内部に設置された機器の重量がかなりあるので浮力の影響は受け難いとしても、内部がほとんど空洞である埋設管20は浮力の影響を大きく受ける。そこで、埋設管20列の内部で先端近くに重しとなる重量物を運び入れて、浮力と相殺しておくことが有効である。
The excavator 12 of the excavator 10 may stop rotating before or after exiting the ground E from the ground E. By applying a propulsive force to the buried pipe 20 row from the rear, the excavator 10 and a part of the buried pipe 20 row that follows are exposed to the water area S. In the watertight partition walls 31 and 41 between the excavator 10 and the buried pipe 20, the watertight doors 32 and 42 are closed. Various cables, pipes, ducts, and the like connected to the excavator 10 are also disconnected from the rear buried pipe 20.
Note that the excavator 10 and the buried pipe 20 having a large cavity inside may receive an external force that warps upward due to a large buoyancy when entering the water area S. In the case of the excavator 10, since the weight of the equipment installed inside is considerable, the buried pipe 20 which is almost hollow inside is greatly affected by the buoyancy even though it is hardly affected by the buoyancy. Therefore, it is effective to bring in heavy objects near the tip inside the 20 rows of buried pipes and offset the buoyancy.

<掘進機の分離と回収>
図3に示すように、連結装置30、40のうち、埋設管20側の後部装置30に備えたシリンダ装置60を進出駆動させて、掘進機10側に配置された前部装置40を前方側に押し動かす。シリンダ装置60は、埋設管20の内部から油空圧配管などのエネルギー供給源によって駆動することができる。
後部装置30と前部装置40との嵌合連結が解除され、埋設管20および後部装置30と、掘進機40および前部装置40とが、互いに分離される。前部装置40と後部装置30の連結が解除されると、水域Sの水が連結装置30、40の内部に浸入してくる。しかし、水密隔壁31、41の水密扉32、42は閉じられているので、水密隔壁31、41を超えて、埋設管20あるいは掘進機10の内部にまで水が浸入してくることはない。前部装置40と後部装置30とが十分に分離された状態になれば、シリンダ装置60は後部装置30側に退出駆動させる。
<Separation and recovery of excavator>
As shown in FIG. 3, among the coupling devices 30 and 40, the cylinder device 60 provided in the rear device 30 on the buried pipe 20 side is driven forward, and the front device 40 arranged on the excavator 10 side is moved forward. To move. The cylinder device 60 can be driven from the inside of the buried pipe 20 by an energy supply source such as a hydraulic / pneumatic pipe.
The fitting connection between the rear device 30 and the front device 40 is released, and the buried pipe 20 and the rear device 30, and the excavator 40 and the front device 40 are separated from each other. When the connection between the front device 40 and the rear device 30 is released, the water in the water area S enters the connection devices 30 and 40. However, since the watertight doors 32 and 42 of the watertight partition walls 31 and 41 are closed, water does not enter the buried pipe 20 or the excavator 10 beyond the watertight partition walls 31 and 41. When the front device 40 and the rear device 30 are sufficiently separated, the cylinder device 60 is driven to move out toward the rear device 30.

掘進機10と前部装置40とは、水域Sから水上に引き上げられて回収される。なお、前部装置40を後部装置30から分離する前の段階で、掘進機10および前部装置40を、クレーンなどで吊り上げたり、掘進機10の下に支持台を設けた状態にしておけば、前部装置40を後部装置30から切り離したときに、掘進機10が水中でみだりに動いたり姿勢が傾いたりすることが防げる。
水中から引き上げられた掘進機10と前部装置40は、別の新たな推進工事あるいは水中推進工事に使用することができる。掘進機10の内部に水は浸入しておらず、内部機器の水浸かりや海水腐蝕、損傷などの問題は生じていない。
The excavator 10 and the front device 40 are pulled up from the water area S to the water and collected. If the excavator 10 and the front device 40 are lifted by a crane or the like, or a support base is provided under the excavator 10 before the front device 40 is separated from the rear device 30. When the front device 40 is separated from the rear device 30, the excavator 10 can be prevented from moving or tilting in the water.
The excavator 10 and the front device 40 pulled up from the water can be used for another new propulsion work or an underwater propulsion work. Water does not enter the interior of the excavator 10, and problems such as water immersion, seawater corrosion, and damage of internal equipment do not occur.

<埋設管列の仕上げ>
図4に示すように、後部装置30は、埋設管20に取り付けたままでよい。シリンダ装置60は、後部装置30から取り外して回収する。シリンダ装置60は再使用することができる。
水域Sに突き出した埋設管20は、周囲を何ら支持されておらず不安定になり易いので、埋設管20の固定を行うことが有効である。埋設管20の先端に、コンクリートブロックなどからなる固定部材90を配置する。固定部材90は、埋設管20の先端周囲を取り囲んで物理的に保護する。水域Sを通過する船舶の衝突や魚網などに引っ掛けられて、埋設管20が変形したり損傷したりすることを防止できる。固定部材90は、十分な重量があれば、水底に設置するだけでもよい。水底から地盤Eに支持杭やアンカーを打ち込めば、強固に安定した設置ができる。
<Finishing of pipes buried>
As shown in FIG. 4, the rear device 30 may remain attached to the buried pipe 20. The cylinder device 60 is removed from the rear device 30 and collected. The cylinder device 60 can be reused.
Since the buried pipe 20 protruding into the water area S is not supported at all and tends to become unstable, it is effective to fix the buried pipe 20. A fixing member 90 made of a concrete block or the like is disposed at the tip of the buried pipe 20. The fixing member 90 surrounds the tip of the buried pipe 20 and physically protects it. It is possible to prevent the buried pipe 20 from being deformed or damaged by being hit by a collision of a ship passing through the water area S or a fish net. The fixing member 90 may be installed on the bottom of the water as long as it has a sufficient weight. If a support pile or anchor is driven into the ground E from the bottom of the water, a strong and stable installation can be achieved.

図示を省略しているが、埋設管20列の後端側は、例えば、発電所の排水管や取水管に接続するなどして、水域Sに至る管路を構築しておく。埋設管20列の内面に保護モルタルや保護コーティングを施しておくこともできる。このような作業も、埋設管20の前端で水密隔壁31を遮断しておけば、作業者が埋設管20列の内部に立ち入って自由に作業を行うことができる。
所定の管路が構築されたあと、後部装置30の水密隔壁31で水密扉32を開くか取り外してしまえば、水域Sの水が埋設管20列の内部に出入りできるようになる。例えば、水域Sの低温水を発電所の冷水取水装置に取り込んで冷却に使用したり、発電所で発生した排水を水域Sに放出したりすることができる。
Although not shown in the drawings, the rear end side of the row of buried pipes 20 is connected to, for example, a drain pipe or a water intake pipe of a power plant to construct a pipeline that reaches the water area S. Protective mortar and protective coating can be applied to the inner surface of the 20 rows of buried pipes. In such a work, if the watertight partition wall 31 is cut off at the front end of the buried pipe 20, the worker can enter the inside of the buried pipe 20 row and work freely.
If the watertight door 32 is opened or removed by the watertight partition wall 31 of the rear device 30 after the predetermined pipeline is constructed, the water in the water area S can enter and exit the row of buried pipes 20. For example, the low-temperature water in the water area S can be taken into the cold water intake device of the power plant and used for cooling, or the waste water generated in the power plant can be discharged into the water area S.

〔連結部分の詳細構造例(1)〕
図5、6は、連結装置30、40の詳しい具体的構造を示している。前記した管路の構築工程における図2の連結状態を示している。
<後部装置>
後部装置30は、全体形状が、埋設管20の外形と同形の円筒状をなし、鋼材などの構造材料で構成されている。
後部装置30の後端が、埋設管20の先端外周に有する段差形状に嵌合されて一体的に結合されている。埋設管20の端部には元々、互いの連結に利用される段差構造を有しているので、この段差構造を利用して、埋設管20と後部装置30とを連結固定する。埋設管20と後部装置30との嵌合部分には封止材を塗工しておいたり、封止リングを挟み込んだりして、水密状態で連結しておく。
[Detailed structural example of connecting part (1)]
5 and 6 show a detailed specific structure of the coupling devices 30 and 40. The connection state of FIG. 2 in the above-mentioned pipeline construction process is shown.
<Rear device>
The rear device 30 has a cylindrical shape that is the same as the outer shape of the buried pipe 20 and is made of a structural material such as a steel material.
The rear end of the rear device 30 is fitted into and integrated with a stepped shape on the outer periphery of the front end of the buried pipe 20. Since the end portion of the buried pipe 20 originally has a step structure used for mutual connection, the buried pipe 20 and the rear device 30 are connected and fixed using this step structure. A sealing material is applied to a fitting portion between the buried pipe 20 and the rear device 30 or a sealing ring is sandwiched between the buried pipe 20 and the rear device 30 so as to be connected in a watertight state.

後部装置30のうち、埋設管20と接続される後端側には水密隔壁31を有する。水密隔壁31は鋼板などで構成され、施工環境である水中の水圧に十分に耐えて、埋設管20側に水が浸入することを防止する。水密隔壁31の中央には、作業者が出入りできる程度の開口があいており、この開口には水密扉32が設けられている。水密扉32も耐圧性のある鋼板などで構成されている。
図6に詳しく示すように、水密扉32の外周縁を多数の締付ボルト33で水密隔壁41に固定している。水密扉32と水密隔壁31との対面個所にはゴムなどからなる封止パッキンを介在させて、水密性を高めておくことができる。必要時には、締付ボルト33を緩めて水密扉32を取り払える。水密隔壁31の開口を解放状態にできる。
In the rear device 30, a watertight partition wall 31 is provided on the rear end side connected to the buried pipe 20. The watertight partition wall 31 is made of a steel plate or the like, sufficiently withstands the water pressure in the water that is the construction environment, and prevents water from entering the buried pipe 20 side. In the center of the watertight partition wall 31, there is an opening that allows an operator to enter and exit, and a watertight door 32 is provided in this opening. The watertight door 32 is also made of a pressure resistant steel plate or the like.
As shown in detail in FIG. 6, the outer peripheral edge of the watertight door 32 is fixed to the watertight partition wall 41 with a number of fastening bolts 33. Sealing packing made of rubber or the like is interposed between the facing portions of the watertight door 32 and the watertight partition wall 31 to enhance the watertightness. When necessary, the fastening bolt 33 can be loosened to remove the watertight door 32. The opening of the watertight partition wall 31 can be opened.

水密隔壁31のうち、水密扉32よりも外側には、複数個所に貫通孔部50が設けられ、貫通孔部50には、電力ケーブルや通信線、油空圧配管など、埋設管20から掘進機10へと延びる線管類が挿通されている。図示を省略しているが、貫通孔部50は、線管類を取り外したあと、フランジ蓋などを取り付けて塞げば、水密状態で封鎖することができる。
水密隔壁31の前方外周には、後部装置30の外径よりも一段小さな外周で前方に延び、前部装置40との嵌合連結を果たす嵌合内筒34を有する。
嵌合内筒34の内周側には、シリンダ装置60が取り付けられている。図6に示すように、シリンダ装置60は、周方向に等間隔で複数個所に配置されている。シリンダ装置60は空気圧で駆動され、シリンダ装置60の前端に備えた作動軸62が前後に進退駆動できるようになっている。図示を省略したが、シリンダ装置60に圧力空気を供給したりシリンダ装置60の作動開始や作動停止を制御したりする線管類は、シリンダ装置60の後方から水密隔壁31を通して、埋設管20の内部まで引き込まれている。埋設管20の奥側あるいは埋設管20列の後端である出発立坑や地表からでも、シリンダ装置60の作動を制御することができる。
In the watertight partition wall 31, through holes 50 are provided at a plurality of locations outside the watertight door 32, and the through holes 50 are digged from the buried pipe 20 such as power cables, communication lines, and hydraulic / pneumatic pipes. Line tubes extending to the machine 10 are inserted. Although not shown in the drawings, the through-hole portion 50 can be sealed in a watertight state by attaching a flange lid or the like after removing the line tubes.
On the front outer periphery of the watertight partition wall 31, there is a fitting inner cylinder 34 that extends forward with an outer circumference that is one step smaller than the outer diameter of the rear device 30 and that performs fitting connection with the front device 40.
A cylinder device 60 is attached to the inner peripheral side of the fitting inner cylinder 34. As shown in FIG. 6, the cylinder devices 60 are arranged at a plurality of locations at equal intervals in the circumferential direction. The cylinder device 60 is driven by air pressure, and an operating shaft 62 provided at the front end of the cylinder device 60 can be driven forward and backward. Although not shown, the line pipes for supplying pressurized air to the cylinder device 60 and controlling the start and stop of the operation of the cylinder device 60 pass through the watertight partition wall 31 from the rear of the cylinder device 60. It is drawn to the inside. The operation of the cylinder device 60 can also be controlled from the starting shaft or the ground surface which is the rear side of the buried pipe 20 or the rear end of the buried pipe 20 row.

<前部装置>
前部装置40も、後部装置30と同様に鋼材で構成され、全体形状は、埋設管20の外形と同じ円筒状である。したがって、掘進機10、前部装置40、後部装置30および埋設管20は全て同じ外形で連続した円筒状を構成する。
前部装置40の後端には、後部装置30と同様の水密隔壁41を有し、水密隔壁41の中央に設けられた開口を、締付ボルト43で取り付けられた水密扉42で塞いでいる。図示を省略しているが、水密隔壁41には、線管類を通す貫通孔部50も備えている。
水密隔壁41の後方外周には、前部装置40の外周に沿って後方に延びる嵌合外筒44を有する。嵌合外筒44は、後部装置30の嵌合内筒34の外径よりも少し大きな内径と、嵌合内筒34とほぼ同じ長さに設定されている。
<Front device>
The front device 40 is also made of steel like the rear device 30, and the overall shape is the same cylindrical shape as the outer shape of the buried pipe 20. Therefore, the excavator 10, the front device 40, the rear device 30, and the buried pipe 20 all form a continuous cylindrical shape with the same outer shape.
A watertight partition wall 41 similar to the rear device 30 is provided at the rear end of the front device 40, and an opening provided in the center of the watertight partition wall 41 is blocked by a watertight door 42 attached with a tightening bolt 43. . Although not shown, the watertight partition wall 41 is also provided with a through hole portion 50 through which the wire tubes are passed.
A rear outer periphery of the watertight partition wall 41 has a fitting outer cylinder 44 extending rearward along the outer periphery of the front device 40. The fitting outer cylinder 44 is set to have an inner diameter slightly larger than the outer diameter of the fitting inner cylinder 34 of the rear device 30 and substantially the same length as the fitting inner cylinder 34.

嵌合外筒44の内周面には、軸方向の3個所に摺動封止材46が取り付けられている。摺動封止材46は、柔軟性のあるゴム板やブラシ材からなり、嵌合筒部44の周方向で全周にわたって設けられている。摺動封止材45の内周縁が後部装置30の嵌合内筒34の外周面に当接することで、嵌合外筒44と嵌合内筒34との間が水封状態になる。また、嵌合外筒44を嵌合内筒34から軸方向に抜き出すと、摺動封止材45の内周縁が嵌合内筒34の表面に沿って摺動する。
嵌合外筒44の根元側で、前部装置40の後端面に、後部装置30に備えたシリンダ装置60の作動軸62が当接する。作動軸62が進出することで、前部装置40を押し動かすことができる。
On the inner peripheral surface of the fitting outer cylinder 44, sliding sealing materials 46 are attached at three positions in the axial direction. The sliding sealing material 46 is made of a flexible rubber plate or brush material, and is provided over the entire circumference in the circumferential direction of the fitting tube portion 44. The inner peripheral edge of the sliding sealing material 45 contacts the outer peripheral surface of the fitting inner cylinder 34 of the rear device 30, so that the space between the fitting outer cylinder 44 and the fitting inner cylinder 34 is in a water-sealed state. When the fitting outer cylinder 44 is extracted from the fitting inner cylinder 34 in the axial direction, the inner peripheral edge of the sliding sealing material 45 slides along the surface of the fitting inner cylinder 34.
The operating shaft 62 of the cylinder device 60 provided in the rear device 30 abuts on the rear end surface of the front device 40 on the base side of the fitting outer cylinder 44. The front device 40 can be pushed and moved as the operating shaft 62 advances.

<連結装置の作動>
図7は、連結装置30、40の作動状態を示す、前記した管路の構築工程における図3の状態に対応する。
後部装置30に備えるシリンダ装置60を駆動し、作動軸62を前方に進出させる。作動軸62の先端が前部装置40の内部後端面に当接し、前部装置40および掘進機10を前方側に押し出す。嵌合外筒44の摺動封止材45が、嵌合内筒34の外周面を摺動し、嵌合外筒44が嵌合内筒34から前方に抜け出す。その後、シリンダ装置60の作動軸62を後退させれば、作動軸62の先端は前部装置40の内部後端面から離れて、後部装置30側に戻る。
<Operation of connecting device>
FIG. 7 corresponds to the state of FIG. 3 in the above-described pipeline construction process, which shows the operating state of the coupling devices 30 and 40.
The cylinder device 60 provided in the rear device 30 is driven, and the operating shaft 62 is moved forward. The front end of the operating shaft 62 comes into contact with the inner rear end surface of the front device 40 and pushes the front device 40 and the excavator 10 forward. The sliding sealing material 45 of the fitting outer cylinder 44 slides on the outer peripheral surface of the fitting inner cylinder 34, and the fitting outer cylinder 44 comes out of the fitting inner cylinder 34 forward. Thereafter, when the operating shaft 62 of the cylinder device 60 is retracted, the tip of the operating shaft 62 moves away from the inner rear end surface of the front device 40 and returns to the rear device 30 side.

このようにして、前部装置40および掘進機10と、後部装置30および埋設管20とが分離される。
〔連結部分の詳細構造例(2)〕
図8は、さらに別の構造例を示す。図8(a)は、前部装置40と後部装置30との連結状態を示し、図8(b)は分離作業時の状態を示している。前記実施形態と共通する点は説明を省略して、相違点を主に説明する。
前部装置40については、基本的には前記実施形態と共通する構造を備えているので、詳しい説明は省略する。
In this way, the front device 40 and the excavator 10 are separated from the rear device 30 and the buried pipe 20.
[Detailed structural example of the connecting part (2)]
FIG. 8 shows still another structural example. FIG. 8A shows a connection state between the front device 40 and the rear device 30, and FIG. 8B shows a state at the time of separation work. Description of points that are the same as those in the above embodiment will be omitted, and differences will be mainly described.
Since the front device 40 basically has the same structure as that of the above embodiment, a detailed description thereof will be omitted.

後部装置30は、埋設管20の先端に対して、先端面から内周面に嵌合される円筒枠状をなしている。埋設管20の前方に大きく張り出さず、埋設管20の内側に納まっている。
そして、埋設管20の先端外周に存在する段差部分が、後部装置30における嵌合内筒34として利用される。前部装置40の嵌合外筒44の内径を、埋設管20の段差部分の外径よりも少し大きく設定し、嵌合外筒44の長さを、埋設管20の段差部分の長さに合わせて設定している。嵌合外筒44に内周面に設置された摺動水密材46の内周縁が、埋設管20の段差部分の外周面に当接し摺動する。
The rear device 30 has a cylindrical frame shape that is fitted to the inner peripheral surface from the front end surface with respect to the front end of the embedded pipe 20. It does not overhang in front of the buried pipe 20 and is housed inside the buried pipe 20.
Then, the step portion present on the outer periphery of the front end of the buried pipe 20 is used as the fitting inner cylinder 34 in the rear device 30. The inner diameter of the fitting outer cylinder 44 of the front device 40 is set slightly larger than the outer diameter of the stepped portion of the buried pipe 20, and the length of the fitting outer cylinder 44 is set to the length of the stepped portion of the buried pipe 20. It is set together. The inner peripheral edge of the sliding watertight material 46 installed on the inner peripheral surface of the fitting outer cylinder 44 comes into contact with and slides on the outer peripheral surface of the stepped portion of the buried pipe 20.

後部装置30の内周奥には、前記実施形態と同様の水密隔壁31および水密扉32を備える。水密隔壁31の外周近くには、ジャッキねじ装置70が設置されている。ジャッキねじ装置70は、水密隔壁31に支持固定されたナット状の雌ねじ部74と、この雌ねじ部74にねじ込まれ軸方向に延びる雄ねじ軸72とを有する。雌ねじ部74と雄ねじ軸72とは、水密状態で組立てられており、水密隔壁31の水密機能を損なわないようになっている。ジャッキねじ装置70は、後部装置30の周方向に間隔をあけて複数個所に設置されている。
雄ねじ軸72を回動させると、雄ねじ軸72が雌ねじ部74に対して軸方向に進退する。雄ねじ軸72の前方先端は、前部装置40の内部後端面に当接している。雄ねじ軸72の後端側は、水密隔壁31よりも埋設管20の奥側に存在しているので、埋設管20の内部空間に作業者が立ち入って、雄ねじ軸72を操作することができる。
A watertight partition wall 31 and a watertight door 32 similar to those in the above embodiment are provided in the inner periphery of the rear device 30. Near the outer periphery of the watertight partition wall 31, a jack screw device 70 is installed. The jack screw device 70 includes a nut-shaped female screw portion 74 supported and fixed to the watertight partition wall 31 and a male screw shaft 72 that is screwed into the female screw portion 74 and extends in the axial direction. The female screw portion 74 and the male screw shaft 72 are assembled in a watertight state so as not to impair the watertight function of the watertight partition wall 31. The jack screw device 70 is installed at a plurality of locations at intervals in the circumferential direction of the rear device 30.
When the male screw shaft 72 is rotated, the male screw shaft 72 advances and retracts in the axial direction with respect to the female screw portion 74. The front tip of the male screw shaft 72 is in contact with the inner rear end surface of the front device 40. Since the rear end side of the male screw shaft 72 is present on the deeper side of the buried tube 20 than the watertight partition wall 31, an operator can enter the internal space of the buried tube 20 and operate the male screw shaft 72.

図8(b)に示すように、ジャッキねじ装置70の雄ねじ軸72を回して、雄ねじ軸72を前方側に進出させれば、雄ねじ軸72の先端が、前部装置40を押し動かして、前部装置40および掘進機10を前方側に押し出す。前部装置40の嵌合外筒44は、摺動封止材46が、埋設管20の段差部分を利用した嵌合内筒34の外周面に沿って摺動し、抜け出すことになる。
後部装置30から前部装置40および掘進機10が分離されたあとは、ジャッキねじ装置70の雄ねじ軸72を逆方向に回動させ、雄ねじ軸72の先端を後部装置30の内側まで後退させておけばよい。
As shown in FIG. 8B, if the male screw shaft 72 of the jack screw device 70 is turned to advance the male screw shaft 72 forward, the tip of the male screw shaft 72 pushes and moves the front device 40, The front device 40 and the excavator 10 are pushed forward. In the fitting outer cylinder 44 of the front device 40, the sliding sealing material 46 slides along the outer peripheral surface of the fitting inner cylinder 34 using the stepped portion of the buried pipe 20 and comes out.
After the front device 40 and the excavator 10 are separated from the rear device 30, the male screw shaft 72 of the jack screw device 70 is rotated in the reverse direction, and the tip of the male screw shaft 72 is retracted to the inside of the rear device 30. Just keep it.

この実施形態では、ジャッキねじ装置70を用いることで、例えば前記シリンダ装置60を用いる場合に比べて、構造が簡単になり設置スペースも少なくて済む。小口径の埋設管20および掘進機10に適している。但し、ジャッキねじ装置70は、作業者が埋設管20列の先端で操作する必要がある。雄ねじ軸72を、モータなどで駆動すれば、作業者が埋設管20列に入らなくても、ジャッキねじ装置70を駆動することが可能である。
〔連結部分の詳細構造例(3)〕
図9は、さらに別の構造例を示す。図9(a)は、前部装置40と後部装置30との連結状態を示し、図9(b)は分離作業時の状態を示している。さらに、図9(c)は、後部装置30を埋設管20と分離する状態を示している。前記実施形態と共通する点は説明を省略して、相違点を主に説明する。
In this embodiment, by using the jack screw device 70, for example, the structure is simplified and the installation space is small compared to the case of using the cylinder device 60. Suitable for the small-diameter buried pipe 20 and the excavator 10. However, the jack screw device 70 needs to be operated by the operator at the tip of the embedded tube 20 row. If the male screw shaft 72 is driven by a motor or the like, the jack screw device 70 can be driven without the operator entering the embedded tube 20 row.
[Detailed structural example of the connecting part (3)]
FIG. 9 shows still another structural example. FIG. 9A shows a connection state between the front device 40 and the rear device 30, and FIG. 9B shows a state during the separation work. Further, FIG. 9C shows a state in which the rear device 30 is separated from the buried pipe 20. Description of points that are the same as those in the above embodiment will be omitted, and differences will be mainly described.

前部装置40については、基本的に前記実施形態と共通する構造を備えているので、詳しい説明は省略する。
後部装置30は、埋設管20の先端の段差部分に嵌脱自在に取り付けられている。すなわち、後部装置30の後端に、円筒状をなして後方側に延びる嵌合筒部38を有する。嵌合筒部38の外径は、埋設管20の全体外径と同じであり、嵌合筒部38の内径は、埋設管20の段差部分の外径よりも少し大きく、嵌合筒部38の長さは埋設管20の段差部分の長さに対応している。嵌合筒部38の内周面には、前記同様の摺動封止材36が配置されている。摺動封止材36の内周縁が、埋設管20の段差部分の外周面に当接する。
Since the front device 40 basically has the same structure as that of the above embodiment, a detailed description thereof will be omitted.
The rear device 30 is detachably attached to a stepped portion at the tip of the buried pipe 20. That is, it has the fitting cylinder part 38 which makes a cylindrical shape and extends in the rear side at the rear end of the rear part 30. The outer diameter of the fitting tube portion 38 is the same as the entire outer diameter of the buried tube 20, and the inner diameter of the fitting tube portion 38 is slightly larger than the outer diameter of the stepped portion of the buried tube 20. The length corresponds to the length of the stepped portion of the buried pipe 20. A sliding sealing material 36 similar to the above is disposed on the inner peripheral surface of the fitting cylinder portion 38. The inner peripheral edge of the sliding sealing material 36 contacts the outer peripheral surface of the stepped portion of the buried pipe 20.

後部装置30には、前記実施形態と共通するシリンダ装置60や、前部装置40の嵌合外筒44に対応する嵌合内筒34、水密隔壁31、水密扉32も備えている。
図9(a)から図9(b)に示すように、シリンダ装置60を駆動させて、後部装置30および埋設管20から、前部装置40および掘進機10を分離するのは、前記実施形態と共通している。
次に、図9(c)に示すようにして、後部装置30の全体を埋設管20から分離することができる。前記した管路の構築工程のうち、図4に示す仕上げ段階における作業となる。
The rear device 30 is also provided with a cylinder device 60 common to the above embodiment, a fitting inner cylinder 34 corresponding to the fitting outer cylinder 44 of the front device 40, a watertight partition wall 31, and a watertight door 32.
As shown in FIGS. 9A to 9B, the cylinder device 60 is driven to separate the front device 40 and the excavator 10 from the rear device 30 and the buried pipe 20 in the above embodiment. And in common.
Next, as shown in FIG. 9C, the entire rear device 30 can be separated from the buried pipe 20. Of the above-described pipeline construction process, the work is performed in the finishing stage shown in FIG.

すなわち、水中において、後部装置30を埋設管20から前方に引き出す。後部装置30の嵌合筒部38に有する摺動封止材36が、埋設管20の段差部分の外周面を摺動して、埋設管20から後部装置30が抜け出す。シリンダ装置60や水密隔壁31などを含む後部装置30の全体が、埋設管20から分離される。後部装置30は、水中から水面上に回収する。回収された後部装置30は、別の管路構築作業に再び使用することができる。
埋設管20の先端は大きく開口するので、水の出入りがスムーズに行われる。前記図4の状態のように水密隔壁31が存在することで水の流通に抵抗を生じることがなくなる。固定部材90の施工作業で後部装置30が邪魔になることがない。
That is, the rear device 30 is pulled forward from the buried pipe 20 in water. The sliding sealing material 36 included in the fitting cylinder portion 38 of the rear device 30 slides on the outer peripheral surface of the step portion of the buried tube 20, and the rear device 30 comes out of the buried tube 20. The entire rear device 30 including the cylinder device 60 and the watertight partition wall 31 is separated from the buried pipe 20. The rear device 30 collects water from the water on the water surface. The collected rear device 30 can be used again for another pipeline construction work.
Since the tip of the buried pipe 20 is greatly opened, the water can enter and exit smoothly. The presence of the watertight partition wall 31 as in the state of FIG. 4 eliminates resistance to water flow. The rear device 30 does not get in the way of the construction work of the fixing member 90.

本発明にかかる掘進機の連結構造および水中回収方法は、例えば、発電所の取水管路や排水管路の構築など、地中から水中へ至る管路の構築に利用できる。地中のみにおける通常の管路構築に比べて、作業が難しく手間およびコストがかかるとされていた、地中から水中への管路構築を、作業性良く効率的かつ経済的に達成することができる。   The connection structure and underwater recovery method of the excavator according to the present invention can be used for construction of a pipeline from underground to underwater such as construction of a water intake pipeline or a drainage pipeline of a power plant. Compared to ordinary pipeline construction only in the ground, construction of underground pipelines from the ground to the water, which was considered difficult and costly, can be achieved efficiently and economically with good workability. it can.

本発明の実施形態を表す管路の構築工程を段階的に示す模式的構造図The schematic structure figure which shows the construction process of the pipe line showing embodiment of this invention in steps 次の工程を示す模式的構造図Schematic structure diagram showing the next process 次の工程を示す模式的構造図Schematic structure diagram showing the next process 次の工程を示す模式的構造図Schematic structure diagram showing the next process 連結部分の詳細構造を示す軸方向の断面図A sectional view in the axial direction showing the detailed structure of the connecting part 軸直交方向の埋設管側を見た断面図Sectional view of the buried pipe side in the direction perpendicular to the axis 連結部分を分離する作動状態を示す軸方向の断面図A sectional view in the axial direction showing the operating state of separating the connecting parts 連結部分の別の構造例とその分離作動状態を示す断面図Sectional drawing which shows another structural example of a connection part, and its isolation | separation operation state 連結部分の別の構造例とその分離作動状態を示す断面図Sectional drawing which shows another structural example of a connection part, and its isolation | separation operation state

符号の説明Explanation of symbols

10 掘進機
12 掘削盤
20 埋設管
30 後部装置(連結装置)
31、41 水密隔壁
32、42 水密扉
33、43 締付ボルト
34 嵌合内筒
40 前部装置(連結装置)
44 嵌合外筒
46 摺動水密材
50 貫通孔部
60 シリンダ装置(嵌脱駆動部)
62 作動軸
70 ジャッキねじ装置
72 雄ねじ軸
74 雌ねじ部
90 固定部材
E 地盤
S 水域
DESCRIPTION OF SYMBOLS 10 Excavator 12 Excavator 20 Embedded pipe 30 Rear part (connecting device)
31, 41 Watertight partition wall 32, 42 Watertight door 33, 43 Tightening bolt 34 Fitting inner cylinder 40 Front device (connecting device)
44 Fitting outer cylinder 46 Sliding watertight material 50 Through-hole part 60 Cylinder device (fitting / removing drive part)
62 Operating shaft 70 Jack screw device 72 Male screw shaft 74 Female screw part 90 Fixing member E Ground S Water area

Claims (3)

地中から水中へと推進させる掘進機と掘進機の後方に連結される埋設管列との連結構造であって、
前記掘進機の後端側と前記埋設管列の前端側とを軸方向に嵌脱自在に連結する嵌脱連結部と、
前記嵌脱連結部を水密状態で封止する水密封止部と、
前記掘進機の後部および前記埋設管列の前部にそれぞれ配置され、通行可能な開口が水密扉で開閉自在に封鎖される水密隔壁と、
前記掘進機の後部または前記埋設管列の前部に配置され、対面する相手側の埋設管列または掘進機を軸方向に押動して前記嵌脱連結部の連結を解除する嵌脱駆動部と
を備え
前記嵌脱駆動部が、前記掘進機または前記埋設管列の何れかに対して周方向の少なくとも直径の両端になる2個所に配置されてなるシリンダ装置と、シリンダ装置に配置され、軸方向に進退自在に作動し相手側の掘進機または埋設管列に先端を当接させて押動する作動軸とを有する、
ことを特徴とする、掘進機の連結構造。
It is a connection structure of an excavator to be propelled from the ground to the water and a buried pipe line connected to the rear of the excavator,
An engagement / disengagement connecting portion that connects the rear end side of the excavator and the front end side of the buried pipe row in an axially detachable manner;
A watertight sealing part for sealing the fitting / disconnecting part in a watertight state;
A watertight partition wall disposed at a rear portion of the excavator and a front portion of the buried pipe row, and a passable opening is closed by a watertight door so as to be freely opened and closed;
An engagement / disengagement drive unit that is disposed at the rear of the excavator or the front of the embedded pipe row and pushes the opposing buried tube row or the excavator in the axial direction to release the connection of the fitting / disconnecting portion. and,
Equipped with a,
The engagement / disengagement drive unit is disposed at two locations that are at least both ends of the diameter in the circumferential direction with respect to either the excavator or the buried pipe row, and the cylinder device is disposed in the cylinder device in the axial direction. An actuating shaft that operates so as to freely advance and retreat, and pushes with the tip of the other excavator or the buried pipe row in contact with the working shaft.
A connecting structure for an excavator.
前記嵌脱連結部と前記水密封止部と前記水密隔壁と前記嵌脱駆動部とを備える連結装置が、前記掘進機の後端と前記埋設管列の先端との間に装備されてなり、
前記連結装置が、互いに分離自在で、前記掘進機に装着される前部装置と、前記埋設管列に装着される後部装置とからなる
請求項1に記載の掘進機の連結構造。
A connecting device including the fitting / removing connecting portion, the watertight sealing portion, the watertight partition wall, and the fitting / removing driving portion is provided between a rear end of the excavator and a front end of the buried pipe row,
The connection device is separable from each other and comprises a front device mounted on the excavator and a rear device mounted on the buried pipe row .
The connecting structure for an excavator according to claim 1.
請求項1または2に記載された連結構造で埋設管列と連結された掘進機を、地中から水中へと推進させたあと水中で回収する方法であって、
前記掘進機および前記埋設管列のそれぞれに設けられた前記水密隔壁の水密扉を開けた状態で、掘進機および埋設管列を推進させる工程(a)と、
前記掘進機および前記埋設管列のそれぞれに設けられた前記水密隔壁の水密扉を閉じる工程(b)と、
前記水密扉が閉じられた状態で、前記嵌脱駆動部を作動させ、掘進機を埋設管列の前方に移動させて埋設管列との連結を解除する工程(c)と、
前記埋設管列から分離された掘進機を水中から水面上へと回収する工程(d)と、
を含む
ことを特徴とする、掘進機の水中回収方法。
A method of recovering in the water after propelling the excavator connected to the buried pipe row with the connection structure according to claim 1 or 2 ,
A step (a) of propelling the excavator and the buried pipe row in a state where the watertight doors of the watertight partition walls provided in the excavator and the buried pipe row are opened, and
A step (b) of closing a watertight door of the watertight partition provided in each of the excavator and the buried pipe row;
In a state where the watertight door is closed, operating the fitting / removing drive unit, moving the excavator forward of the buried pipe row and releasing the connection with the buried pipe row;
A step (d) of recovering the excavator separated from the buried pipe row from underwater to the water surface;
, Including the,
An underwater recovery method for an excavator.
JP2005344079A 2005-11-29 2005-11-29 Excavator connection structure and excavator underwater recovery method Active JP4139405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344079A JP4139405B2 (en) 2005-11-29 2005-11-29 Excavator connection structure and excavator underwater recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344079A JP4139405B2 (en) 2005-11-29 2005-11-29 Excavator connection structure and excavator underwater recovery method

Publications (2)

Publication Number Publication Date
JP2007146542A JP2007146542A (en) 2007-06-14
JP4139405B2 true JP4139405B2 (en) 2008-08-27

Family

ID=38208263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344079A Active JP4139405B2 (en) 2005-11-29 2005-11-29 Excavator connection structure and excavator underwater recovery method

Country Status (1)

Country Link
JP (1) JP4139405B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778201B1 (en) * 2016-12-19 2017-09-14 주식회사 송현이엔씨 Propulsion method to lift boring machine in water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002184A (en) * 2011-06-17 2013-01-07 Shimizu Corp Block chamber mechanism used in guiding machine
JP2013167073A (en) * 2012-02-15 2013-08-29 Kidoh Construction Co Ltd Rear cylinder separation device
JP6438811B2 (en) * 2015-03-17 2018-12-19 株式会社熊谷組 Pipe installation device
CN105673935B (en) * 2016-03-24 2017-12-29 北京木石金河环保科技有限公司 Split slotting method underground utilities replacing options
CN105782621B (en) * 2016-04-29 2017-10-27 中铁工程装备集团有限公司 A kind of shield machine centre revolving joint floating junction device
JP7357517B2 (en) * 2019-11-22 2023-10-06 九州電力送配電株式会社 Pipe construction method using propulsion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778201B1 (en) * 2016-12-19 2017-09-14 주식회사 송현이엔씨 Propulsion method to lift boring machine in water

Also Published As

Publication number Publication date
JP2007146542A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4139405B2 (en) Excavator connection structure and excavator underwater recovery method
NO20111073A1 (en) Rigeless abandon system
KR100818248B1 (en) Sectional emergency for water structures caisson equipment, the water structure system using this, and repair reinforcement method of construction
US20190071842A1 (en) Hydraulic Excavation and Delivery Device
JP4756210B2 (en) Underwater recovery method and underwater recovery structure for shield machine
JP2008266996A (en) Tunnel excavator and tunnel excavation method
JP2008274614A (en) Underwater excavation equipment and underwater excavation method
JP5797944B2 (en) Propulsion method by reaching underwater
JP3863888B2 (en) Two-stage propulsion method and coupler
JP4230316B2 (en) Method and apparatus for updating existing buried pipe
JP2012144913A (en) Circular vertical shaft construction method for jacking method
JP2013167073A (en) Rear cylinder separation device
JP3971241B2 (en) Method of laying pipe in submarine ground and excavation tip device used for pipe laying method
JP4277181B2 (en) Tunnel construction method with manhole
JP7252608B2 (en) Shaft casing and earth retaining method
JP2011001740A (en) Water take-in apparatus
EP1573137B1 (en) Process and system for the installation of pipelines in shallow or very shallow water
EP2585368B1 (en) Submersible vehicle for dumping rocks
WO2004113621A1 (en) Method of constructing underwater tunnel
KR102114156B1 (en) Old pipe reconstruction semi-shield apparatus and old pipe exchange method
JP3640805B2 (en) Pipe propulsion machine
JP3818055B2 (en) How to collect excavators
NO760153L (en)
CN116677389A (en) Construction method for recycling seafloor water of mini-tunnel pipe jacking machine
JP2007023744A (en) Construction method of pipe line

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

R150 Certificate of patent or registration of utility model

Ref document number: 4139405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250