JP4137135B2 - Secondary battery charger - Google Patents

Secondary battery charger Download PDF

Info

Publication number
JP4137135B2
JP4137135B2 JP2006072500A JP2006072500A JP4137135B2 JP 4137135 B2 JP4137135 B2 JP 4137135B2 JP 2006072500 A JP2006072500 A JP 2006072500A JP 2006072500 A JP2006072500 A JP 2006072500A JP 4137135 B2 JP4137135 B2 JP 4137135B2
Authority
JP
Japan
Prior art keywords
charging
change rate
battery
secondary battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006072500A
Other languages
Japanese (ja)
Other versions
JP2006217796A (en
Inventor
恭一 有賀
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006072500A priority Critical patent/JP4137135B2/en
Publication of JP2006217796A publication Critical patent/JP2006217796A/en
Application granted granted Critical
Publication of JP4137135B2 publication Critical patent/JP4137135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池の充電装置に係り、特に、正極の電極材にニッケル酸化物を採用した二次電池の充電に好適な充電装置に関する。   The present invention relates to a charging device for a secondary battery, and more particularly, to a charging device suitable for charging a secondary battery employing nickel oxide as a positive electrode material.

従来の充電装置では、特許文献1に開示されているように、端子電圧の変化率に基づく充電完了判定および電池温度の変化率に基づく充電完了判定の欠点を補完し、過剰な充電に起因した電池寿命の低下や充電完了の誤判定を防止するために、電池の端子電圧の変化率および温度の変化率の双方をパラメータとして満充電(100%充電)を判定していた。   In the conventional charging device, as disclosed in Patent Document 1, the drawbacks of the charging completion determination based on the rate of change of the terminal voltage and the charging completion determination based on the rate of change of the battery temperature are complemented, resulting from excessive charging. In order to prevent a decrease in battery life and an erroneous determination of completion of charging, full charge (100% charge) is determined using both the change rate of the terminal voltage of the battery and the change rate of the temperature as parameters.

ここで、正極の電極材にニッケル酸化物を採用するニッカド電池あるいはニッケル水素電池等では、満充電直前から正極において酸素ガスが発生するため、この酸素ガスを負極表面で局部電池反応により消費させることが望ましい。そこで、図5に一例を示したように、負極の容量を正極の容量よりも大きくする(図5では、負極容量が正極容量の1.6倍)、いわゆる充電リザーブを採用する方法が考えられる。
特開平6−315233号公報
Here, in a nickel cadmium battery or nickel metal hydride battery that employs nickel oxide as the electrode material for the positive electrode, oxygen gas is generated in the positive electrode immediately before full charge, so this oxygen gas is consumed by the local battery reaction on the negative electrode surface. Is desirable. Therefore, as shown in FIG. 5, a method of adopting a so-called charge reserve in which the negative electrode capacity is made larger than the positive electrode capacity (in FIG. 5, the negative electrode capacity is 1.6 times the positive electrode capacity) can be considered. .
JP-A-6-315233

上記した従来技術では、電池の端子電圧のみならず電池温度も監視しなければならないので、充電装置が複雑化、大型化してしまうという問題があった。さらに、端子電圧の変化率に基づく充電完了判定では、たとえ電池温度の変化率をパラメータに加えても、依然として正確な充電完了判定が難しいという技術課題があった。   In the above-described conventional technology, not only the terminal voltage of the battery but also the battery temperature must be monitored, which causes a problem that the charging device becomes complicated and large. Furthermore, in the charge completion determination based on the change rate of the terminal voltage, there is a technical problem that even if the change rate of the battery temperature is added to the parameter, it is still difficult to accurately determine the charge completion.

また、充電リザーブを採用する際に、図5に示したように、負極容量を正極容量よりも大きくすれば十分な充電リザーブを確保できるものの、正極容量が負極容量に対してかなり小さくなる。そして、電池の容量は正極容量に依存する正極律束なので、負極容量を大きくしても電池の容量はそれほど増えないという技術課題があった。   Further, when adopting the charge reserve, as shown in FIG. 5, if the negative electrode capacity is made larger than the positive electrode capacity, a sufficient charge reserve can be secured, but the positive electrode capacity becomes considerably smaller than the negative electrode capacity. And since the capacity | capacitance of a battery is a positive electrode rule depending on a positive electrode capacity | capacitance, even if it increased the negative electrode capacity | capacitance, there existed the technical subject that the capacity | capacitance of a battery did not increase so much.

本発明の目的は、上記した従来技術の課題を解決し、正極の電極材にニッケル酸化物を採用した二次電池を小型で簡単な構成としながら十分な充電容量を確保できる二次電池の充電装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art and to charge a secondary battery that can secure a sufficient charging capacity while making the secondary battery employing nickel oxide as a positive electrode material small and simple. To provide an apparatus.

上記した目的を達成するために、本発明は、正極の電極材にニッケル酸化物を採用した二次電池の充電装置において、充電中の二次電池の端子電圧を検知する充電電圧検知手段と、端子電圧の二次変化率を検知する二次変化率検知手段と、二次変化率が、二次電池の充電量が満充電の略97%相当のときの基準変化率を下回ると充電を終了させる充電終了手段とを設け、二次電池の正極の理論容量と負極の理論容量との比を略1:1.2としたことを特徴とする。   In order to achieve the above-described object, the present invention provides a charging device for a secondary battery employing nickel oxide as a positive electrode material, and a charging voltage detecting means for detecting a terminal voltage of the secondary battery being charged, Secondary change rate detection means for detecting the secondary change rate of the terminal voltage, and charging is terminated when the secondary change rate falls below the reference change rate when the charge amount of the secondary battery is approximately 97% of full charge. And a charge termination means for providing a ratio of the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode of the secondary battery to about 1: 1.2.

本発明によれば、以下のような効果が達成される。   According to the present invention, the following effects are achieved.

(1)電池の充電電圧の変化率の変化率すなわち二次変化率は電池の充電量を代表する一方、特に充電後期の満充電直前(満充電状態の97%程度)から、正極では酸素ガスの発生が活性化され、充電電圧の変化率が正の上昇率から負の上昇率へと転じる。したがって、充電電圧の二次変化率を監視すれば、電池の端子電圧を監視するだけで、充電を二次電池の充電量が満充電の略97%相当に達した時点で正確に停止できる。   (1) The rate of change of the charging voltage of the battery, that is, the secondary rate of change represents the amount of charge of the battery. In particular, from the time immediately before the full charge in the latter stage of charging (approximately 97% of the fully charged state), Is activated, and the rate of change of the charging voltage changes from a positive rate of increase to a negative rate of increase. Therefore, if the secondary change rate of the charging voltage is monitored, the charging can be stopped accurately only when the terminal voltage of the battery is monitored and the charging amount of the secondary battery reaches approximately 97% of the full charge.

そして、二次電池の充電量が満充電の略97%相当に達した時点で充電を停止すれば、正極からの酸素の発生が活発化する前に充電を終了できるので、負極の容量を正極の容量よりも大きくする充電リザーブの割合を小さくでき、その分、正極の容量を大きくできる。したがって、満充電前(満充電の約97%)で充電を終了しても、従来よりも大きな充電容量を確保できる。見方を変えれば、従来と同等の充電容量を従来よりも小さな電池で得られるので電池の小型化が可能になる。   If the charge is stopped when the amount of charge of the secondary battery reaches approximately 97% of the full charge, the charge can be terminated before the generation of oxygen from the positive electrode is activated. The ratio of the charge reserve to be larger than the capacity of the battery can be reduced, and the capacity of the positive electrode can be increased accordingly. Therefore, even when charging is completed before full charge (about 97% of full charge), a larger charge capacity than before can be secured. In other words, since a charge capacity equivalent to that of the conventional battery can be obtained with a smaller battery, the battery can be made smaller.

(2)充電の終了判定を電池の端子電圧のみに基づいて行うことができるので、充電回路の簡素化および小型軽量化が可能になる。   (2) Since the end of charging can be determined based only on the terminal voltage of the battery, the charging circuit can be simplified and reduced in size and weight.

(3)二次電池の温度上昇率は満充電の直前から大きくなる傾向を示すので、充電の終了判定を端子電圧の二次変化率と電池温度とに基づいて行うようにすれば、より正確な充電終了判定が可能になる。   (3) Since the temperature rise rate of the secondary battery tends to increase immediately before full charge, it is more accurate if the end-of-charge determination is made based on the secondary change rate of the terminal voltage and the battery temperature. Can be determined.

以下、図面を参照して本発明を詳細に説明する。図1は、本発明の一実施形態である充電装置のブロック図であり、図2は、本実施形態による充電終了の判定メカニズムを説明するための図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a charging apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining a charging end determination mechanism according to the present embodiment.

発明者等の実験結果によれば、二次電池の正極からの酸素ガスの発生は、特に充電後期の満充電直前(満充電状態の97%程度)から活発化し、このとき、充電電圧Vchの変化率ΔV/Δtが、図2に示したように、それまでの正の上昇率から負の上昇率へと転じる。したがって、この転移点(時刻t2 )を検知できれば、充電を満充電の直前で停止させることができ、満充電に対して約97%の充電量を確保しながら、正極からの酸素の発生量を少なく抑えられる。   According to the results of experiments by the inventors, the generation of oxygen gas from the positive electrode of the secondary battery is activated immediately before full charge in the latter stage of charging (about 97% of the fully charged state). As shown in FIG. 2, the change rate ΔV / Δt changes from a positive increase rate up to that to a negative increase rate. Therefore, if this transition point (time t2) can be detected, charging can be stopped immediately before full charge, and the amount of oxygen generated from the positive electrode is reduced while securing a charge amount of about 97% with respect to full charge. It can be reduced.

そこで、本実施形態では前記転移点を検知すべく、充電電圧Vchの変化率ΔV/Δtの変化率すなわち二次変化率Δ(ΔV)/Δ(Δt)に着目し、この二次変化率Δ(ΔV)/Δ(Δt)が略ゼロとなったときに充電を終了するようにした。なお、電池の温度や劣化状態によっては、図2に示したように、本来の転移点の手前(時刻t1 )でも二次変化率Δ(ΔV)/Δ(Δt)が略ゼロとなり得る。したがって、本実施形態では満充電直前の転移点のみを確実に検知すべく、電池の温度や劣化状態も充電終了判定のパラメータとしている。   Therefore, in the present embodiment, in order to detect the transition point, attention is paid to the change rate ΔV / Δt of the charging voltage Vch, that is, the secondary change rate Δ (ΔV) / Δ (Δt). Charging is terminated when (ΔV) / Δ (Δt) becomes substantially zero. Depending on the temperature and deterioration state of the battery, as shown in FIG. 2, the secondary change rate Δ (ΔV) / Δ (Δt) can be substantially zero even before the original transition point (time t1). Therefore, in this embodiment, the temperature and deterioration state of the battery are also used as parameters for determining the end of charging in order to reliably detect only the transition point immediately before full charging.

図1において、充電電流発生部11は、二次電池12を充電するための充電電流Ichを出力する。電圧検知部14は充電電圧Vchを検知する。電圧変化率検知部15は、充電電圧Vchの時間変化率ΔV/Δtを検知する。二次変化率検知部16は、前記時間変化率ΔV/Δtの時間変化率Δ(ΔV)/Δ(Δt)を検知する。比較部17は、前記二次変化率Δ(ΔV)/Δ(Δt)と基準値Vref とを比較し、比較結果を充電終了判定部25へ出力する。前記基準値Vref は、二次電池12の充電量が満充電の略97%に相当するときの二次変化率に予め設定されており、例えば、“0”または“0”相当の値に設定することができる。   In FIG. 1, the charging current generator 11 outputs a charging current Ich for charging the secondary battery 12. The voltage detector 14 detects the charging voltage Vch. The voltage change rate detector 15 detects the time change rate ΔV / Δt of the charging voltage Vch. The secondary change rate detector 16 detects the time change rate Δ (ΔV) / Δ (Δt) of the time change rate ΔV / Δt. The comparison unit 17 compares the secondary change rate Δ (ΔV) / Δ (Δt) with the reference value Vref, and outputs the comparison result to the charge end determination unit 25. The reference value Vref is preset to a secondary change rate when the charge amount of the secondary battery 12 corresponds to approximately 97% of full charge. For example, the reference value Vref is set to a value corresponding to “0” or “0”. can do.

温度センサ20は、二次電池12の温度Tchを検知する。温度変化率検知部21は、電池温度Tchの時間変化率ΔT/Δtを検知する。比較部22は、前記温度変化率ΔT/Δtと基準値Tref とを比較し、比較結果を充電終了判定部25へ出力する。電池温度Tchは、図2に示したように、満充電の直前で急激に上昇することから、本実施形態では、前記基準値Tref を0.2℃/秒に設定し、温度変化率ΔT/Δtが基準値Tref を超えると、満充電の直前であると判断するようにしている。   The temperature sensor 20 detects the temperature Tch of the secondary battery 12. The temperature change rate detector 21 detects the time change rate ΔT / Δt of the battery temperature Tch. The comparison unit 22 compares the temperature change rate ΔT / Δt with the reference value Tref and outputs the comparison result to the charge end determination unit 25. As shown in FIG. 2, the battery temperature Tch rapidly increases immediately before full charge. Therefore, in this embodiment, the reference value Tref is set to 0.2 ° C./second, and the temperature change rate ΔT / When Δt exceeds the reference value Tref, it is determined that it is immediately before full charge.

電流検知部13は前記充電電流Ichを検知する。Vcut 演算部18は、電池の充電量が満充電直前(97%)の更に手前であって、理論的な満充電状態の90〜95%に相当する端子電圧(充電後期電圧)Vcut を、次式(1) に基づいて演算する。なお、係数αは二次電池の内部抵抗係数であり、0.001〜0.01の範囲内にある。係数βは二次電池の内部抵抗に関する温度係数であり、0.01〜0.1の範囲内にある。係数γは二次電池の内部抵抗に関する劣化係数であり、0〜0.2の範囲にある。
Vcut =1.4+(Ich−1.6)α+(25−Tch)β+γ・・・(1)
The current detector 13 detects the charging current Ich. The Vcut calculation unit 18 calculates the terminal voltage (late charge late voltage) Vcut corresponding to 90 to 95% of the theoretical full charge state immediately before the battery charge amount is just before full charge (97%). Calculate based on equation (1). The coefficient α is an internal resistance coefficient of the secondary battery and is in the range of 0.001 to 0.01. The coefficient β is a temperature coefficient related to the internal resistance of the secondary battery, and is in the range of 0.01 to 0.1. The coefficient γ is a deterioration coefficient related to the internal resistance of the secondary battery, and is in the range of 0 to 0.2.
Vcut = 1.4 + (Ich−1.6) α + (25−Tch) β + γ (1)

比較部19は、前記充電後期電圧Vcut と現在の充電電圧Vchとを比較し、比較結果を充電終了判定部25へ出力する。充電終了判定部25は、前記各比較部17,19,22の各比較結果に基づいて、充電の継続または終了を判定し、充電を終了させる場合には、前記充電電流発生部11に対して充電の終了を指示する。   The comparison unit 19 compares the late charging voltage Vcut with the current charging voltage Vch, and outputs the comparison result to the charging end determination unit 25. The charging end determination unit 25 determines the continuation or end of charging based on the comparison results of the comparison units 17, 19, and 22. Instruct the end of charging.

次いで、図3のフローチャートを参照して、上記した第一実施形態の動作を説明する。充電が開始されると、ステップS1では、前記電圧検知部14により二次電池の端子電圧が充電電圧Vchとして検知される。ステップS2では、前記電流検知部13により充電電流Ichが検知される。   Next, the operation of the first embodiment will be described with reference to the flowchart of FIG. When charging is started, in step S1, the voltage detection unit 14 detects the terminal voltage of the secondary battery as the charging voltage Vch. In step S2, the current detector 13 detects the charging current Ich.

ステップS3では、前記Vcut 演算部において、前記式(1) に基づいて充電後期電圧Vcut が演算される。ステップS4では、前記充電電圧Vchと充電後期電圧Vcut とが比較部19において比較され、充電電圧Vchが充電後期電圧Vcutを超えていると、充電の終了判定を行うべくステップS5へ進む。   In step S3, the late charging voltage Vcut is calculated based on the equation (1) in the Vcut calculating section. In step S4, the charging voltage Vch and the late charging voltage Vcut are compared in the comparison unit 19, and if the charging voltage Vch exceeds the late charging voltage Vcut, the process proceeds to step S5 in order to determine whether or not to end the charging.

ステップS5では、前記温度センサ20により二次電池12の表面温度Tchが検知される。ステップS6では、前記温度変化率検知部21において、今回の電池温度Tchと前回以前の電池温度とに基づいて電池温度Tchの変化率ΔT/Δtが演算される。ステップS7では、温度変化率ΔT/Δtが基準値Tref とが比較部22において比較され、温度変化率ΔT/Δtが基準値Tref を超えていると、充電の終了判定を行うべくステップS8へ進む。   In step S5, the surface temperature Tch of the secondary battery 12 is detected by the temperature sensor 20. In step S6, the temperature change rate detector 21 calculates the change rate ΔT / Δt of the battery temperature Tch based on the current battery temperature Tch and the previous battery temperature. In step S7, the temperature change rate ΔT / Δt is compared with the reference value Tref in the comparison unit 22, and if the temperature change rate ΔT / Δt exceeds the reference value Tref, the process proceeds to step S8 to determine the end of charging. .

ステップS8では、前記変化率検知部15において、今回の充電電圧Vchと前回以前の充電電圧とに基づいて充電電圧Vchの変化率ΔV/Δtが演算される。ステップS9では、二次変化率検知部16において、前記変化率ΔV/Δtの変化率Δ(ΔV)/Δ(Δt)が演算される。ステップS10では、充電電圧の2次変化率Δ(ΔV)/Δ(Δt)と基準値Vref とが比較部17において比較される。   In step S8, the change rate detector 15 calculates a change rate ΔV / Δt of the charge voltage Vch based on the current charge voltage Vch and the previous charge voltage. In step S9, the secondary change rate detector 16 calculates the change rate Δ (ΔV) / Δ (Δt) of the change rate ΔV / Δt. In step S10, the comparison unit 17 compares the secondary change rate Δ (ΔV) / Δ (Δt) of the charging voltage with the reference value Vref.

このように、本実施形態ではステップS7の温度条件が満足されるまではステップS8,S9,S10の演算処理が実行されないので装置の演算量を減じることができ、その結果、装置の負荷を軽減できる。   As described above, in this embodiment, since the calculation processes of steps S8, S9, and S10 are not executed until the temperature condition of step S7 is satisfied, the calculation amount of the apparatus can be reduced, and as a result, the load on the apparatus is reduced. it can.

ここで、2次変化率Δ(ΔV)/Δ(Δt)が基準値Vref を下回っていなければ、未だ満充電直前ではないと判定されてステップS11へ進む。ステップS11では充電電圧Vchが再度検知され、ステップS8〜S10の処理が繰り返される。これに対して、2次変化率Δ(ΔV)/Δ(Δt)が基準値Vref を下回っていると、満充電直前と判定されてステップS12へ進む。ステップS12では、充電終了判定部25が充電終了タイミングと判定し、前記充電電流発生部11に対して充電の中止を指示する。   Here, if the secondary change rate Δ (ΔV) / Δ (Δt) is not less than the reference value Vref, it is determined that the secondary change rate Δ (ΔV) / Δ (Δt) is not immediately before full charge, and the process proceeds to step S11. In step S11, the charging voltage Vch is detected again, and the processes in steps S8 to S10 are repeated. On the other hand, if the secondary change rate Δ (ΔV) / Δ (Δt) is lower than the reference value Vref, it is determined that the battery has just been fully charged, and the process proceeds to step S12. In step S <b> 12, the charging end determination unit 25 determines the charging end timing, and instructs the charging current generation unit 11 to stop charging.

本実施形態によれば、二次電池の充電を満充電の直前で正確に終了させることができるので、正極からの酸素の発生を防止でき、負極の劣化を防止できる。   According to the present embodiment, since the charging of the secondary battery can be accurately terminated immediately before full charging, the generation of oxygen from the positive electrode can be prevented and the deterioration of the negative electrode can be prevented.

なお、本実施形態のように満充電状態の直前で充電を終了すると、従来のように過充電を許容して満充電にする場合よりも充電量が少なくなる。しかしながら、本実施形態では、正極からの酸素の発生が活発化する前に充電を終了させることができるので、負極容量の漸減を補償するための充電リザーブを大きく確保する必要がない。したがって、正極容量に対する負極容量の割増率を従来よりも小さくでき、その結果、電池の充電容量自体を従来よりも大きくできる。   Note that if the charging is terminated immediately before the fully charged state as in the present embodiment, the amount of charge is smaller than in the case where the overcharging is allowed and the full charging is performed as in the conventional case. However, in the present embodiment, the charging can be terminated before the generation of oxygen from the positive electrode is activated, so that it is not necessary to ensure a large charge reserve for compensating for the gradual decrease in the negative electrode capacity. Therefore, the rate of increase of the negative electrode capacity with respect to the positive electrode capacity can be made smaller than before, and as a result, the charge capacity of the battery itself can be made larger than before.

図4、5は、それぞれ本実施形態および従来技術の充電装置に好適な二次電池の負極容量と正極容量とを比較して示した図である。   4 and 5 are diagrams comparing the negative electrode capacity and the positive electrode capacity of the secondary battery suitable for the charging device of the present embodiment and the prior art, respectively.

従来技術では正確な充電完了判定が難しく、過充電の度合いが大きくなる傾向にあったので、図5に示したように、負極の理論容量が、局部電池反応による容量の漸減を見越して、正極容量の1.6倍相当に設定されていた。しかしながら、電池の充電容量は正極律束であるため、負極容量のみを増やしても電池が大型化するのみで充電容量は増えない。すなわち、図5のように負極容量が6.1A相当であっても、電池の充電容量は正極容量に相当する3.7Aでしかなかった。したがって、上記した従来技術では、電池を満充電状態まで充電させることができても、正極および負極の総容量に較べて小さな充電容量しか得られない。   In the prior art, accurate charge completion determination was difficult and the degree of overcharge tended to increase, so as shown in FIG. 5, the negative electrode theoretical capacity anticipated a gradual decrease in capacity due to local battery reaction. It was set to 1.6 times the capacity. However, since the charge capacity of the battery is a positive electrode, even if only the negative electrode capacity is increased, the battery is only enlarged and the charge capacity is not increased. That is, as shown in FIG. 5, even if the negative electrode capacity was equivalent to 6.1 A, the charge capacity of the battery was only 3.7 A corresponding to the positive electrode capacity. Therefore, in the above-described conventional technology, even if the battery can be charged to a fully charged state, only a small charge capacity can be obtained as compared with the total capacity of the positive electrode and the negative electrode.

これに対して、本実施形態によれば正極からの酸素の発生を抑えられ、負極容量の漸減を少なく抑えることができる。したがって、負極容量は正極容量の1.0に対して1.2程度で良く、正極容量に対する負極容量の増加分を少なくできる。したがって、正負極の総容量を図5と同様に9.8Aとした場合、本実施形態では、正極容量を4.5Aまで増加させることができるので、満充電前(満充電の約97%)で充電を終了しても、従来よりも大きな充電容量を確保できる。見方を変えれば、本実施形態によれば、従来と同等の充電容量を従来よりも小さな電池で得られるので、電池の小型化が可能になる。   On the other hand, according to the present embodiment, generation of oxygen from the positive electrode can be suppressed, and the gradual decrease in the negative electrode capacity can be suppressed. Therefore, the negative electrode capacity may be about 1.2 with respect to 1.0 of the positive electrode capacity, and the increase in the negative electrode capacity with respect to the positive electrode capacity can be reduced. Therefore, when the total capacity of the positive and negative electrodes is set to 9.8 A as in FIG. 5, in this embodiment, the positive electrode capacity can be increased to 4.5 A. Therefore, before full charge (about 97% of full charge) Even when charging is completed, a larger charging capacity than before can be secured. In other words, according to the present embodiment, a charge capacity equivalent to that of the conventional battery can be obtained with a battery smaller than that of the conventional battery, so that the battery can be downsized.

なお、上記した実施形態では、電池温度Tchの変化率ΔT/Δtが基準値Tref を超えており、かつ充電電圧Vchが充電後期電圧Vcut を超えているときに充電電圧Vchの二次変化率が基準値Vref を下回ったことを条件に充電を終了するものとして説明したが、充電電圧Vchの二次変化率が基準値Vref を下回ったことのみを条件に充電を終了しても良い。   In the above-described embodiment, when the rate of change ΔT / Δt of the battery temperature Tch exceeds the reference value Tref and the charge voltage Vch exceeds the late charge voltage Vcut, the secondary change rate of the charge voltage Vch is Although it has been described that the charging is terminated on the condition that it is below the reference value Vref, the charging may be terminated only on the condition that the secondary change rate of the charging voltage Vch is below the reference value Vref.

あるいは、電池温度Tchの変化率ΔT/Δtと充電電圧Vchの二次変化率とに基づいて、または充電後期電圧Vcut と充電電圧Vchの二次変化率とに基づいて充電の終了判定を行っても良い。さらには、電池温度Tchの変化率ΔT/Δtが基準値Tref を超えたことではなく、電池温度Tchが基準値を超えたことを条件に充電を終了しても良い。   Alternatively, based on the rate of change ΔT / Δt of the battery temperature Tch and the secondary rate of change of the charging voltage Vch, or based on the late rate of charge Vcut and the secondary rate of change of the charging voltage Vch, the end of charging is determined. Also good. Further, the charging may be terminated on the condition that the battery temperature Tch exceeds the reference value instead of the change rate ΔT / Δt of the battery temperature Tch exceeding the reference value Tref.

本発明の一実施形態である充電装置のブロック図である。It is a block diagram of the charging device which is one Embodiment of this invention. 本発明における充電終了の判定メカニズムを説明するための図である。It is a figure for demonstrating the determination mechanism of the completion | finish of charge in this invention. 本発明の一実施形態の動作を示したフローチャートである。It is the flowchart which showed operation | movement of one Embodiment of this invention. 本発明の充電装置に好適な二次電池の正極容量と負極容量との関係を示した図である。It is the figure which showed the relationship between the positive electrode capacity | capacitance and negative electrode capacity | capacitance of a secondary battery suitable for the charging device of this invention. 従来の二次電池の正極容量と負極容量との関係を示した図である。It is the figure which showed the relationship between the positive electrode capacity | capacitance and negative electrode capacity | capacitance of the conventional secondary battery.

符号の説明Explanation of symbols

11…充電電流発生部,12…二次電池,13…電流検知部,14…電圧検知部,15…電圧変化率検知部,16…二次変化率検知部,17,19,22…比較部,18…Vcut 演算部,20…温度センサ,21…温度変化率検知部,25…充電終了判定部   DESCRIPTION OF SYMBOLS 11 ... Charge current generation part, 12 ... Secondary battery, 13 ... Current detection part, 14 ... Voltage detection part, 15 ... Voltage change rate detection part, 16 ... Secondary change rate detection part, 17, 19, 22 ... Comparison part , 18... Vcut calculation unit, 20... Temperature sensor, 21... Temperature change rate detection unit, 25.

Claims (4)

正極の電極材にニッケル酸化物を採用した二次電池の充電装置において、In a secondary battery charger that employs nickel oxide as the positive electrode material,
充電中の二次電池の端子電圧を検知する充電電圧検知手段と、Charging voltage detection means for detecting the terminal voltage of the secondary battery being charged;
前記端子電圧の変化率の変化率を検知する二次変化率検知手段と、Secondary change rate detection means for detecting the change rate of the change rate of the terminal voltage;
前記二次変化率が、二次電池の充電量が満充電の略97%相当の略ゼロの基準変化率を下回ると充電を終了させる充電終了手段とを具備し、Charging termination means for terminating charging when the secondary change rate falls below a substantially zero reference change rate corresponding to substantially 97% of the full charge of the secondary battery,
前記二次電池の正極の理論容量と負極の理論容量との比が略1:1.2であり、The ratio of the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode of the secondary battery is approximately 1: 1.2,
充電中の二次電池の温度を検知する温度センサをさらに具備し、A temperature sensor for detecting the temperature of the secondary battery being charged;
前記充電終了手段は、前記検知された電池温度が予定の基準温度よりも高く、かつ前記端子電圧の二次変化率が前記基準変化率を下回ると充電を終了させることを特徴とする二次電池の充電装置。The secondary battery is characterized in that the charging end means terminates charging when the detected battery temperature is higher than a predetermined reference temperature and a secondary change rate of the terminal voltage is lower than the reference change rate. Charging device.
前記検知された電池温度の変化率を検知する温度変化率検知手段をさらに具備し、Further comprising temperature change rate detection means for detecting the detected battery temperature change rate,
前記充電終了手段は、前記検知された電池温度の変化率が予定の基準変化率よりも高く、かつ前記端子電圧の二次変化率が前記基準変化率を下回ると充電を終了させることを特徴とする請求項1に記載の二次電池の充電装置。The charging end means terminates charging when the detected battery temperature change rate is higher than a predetermined reference change rate and the terminal voltage secondary change rate falls below the reference change rate. The secondary battery charging device according to claim 1.
充電中の二次電池が満充電状態に近いときの端子電圧である充電後期電圧を、当該電池の劣化状態および温度の関数として求める充電後期電圧演算手段をさらに具備し、A charge late voltage calculating means for obtaining a late charge voltage, which is a terminal voltage when the secondary battery being charged is close to a fully charged state, as a function of the deterioration state and temperature of the battery;
前記充電終了手段は、充電中の二次電池の端子電圧が前記充電後期電圧を上回り、かつ前記端子電圧の二次変化率が前記基準変化率を下回ると充電を終了させることを特徴とする請求項1に記載の二次電池の充電装置。The charging end means ends charging when a terminal voltage of a secondary battery being charged exceeds the late charging voltage and a secondary change rate of the terminal voltage falls below the reference change rate. Item 2. The secondary battery charging device according to Item 1.
前記検知された電池温度の変化率を検知する温度変化率検知手段と、A temperature change rate detecting means for detecting a change rate of the detected battery temperature;
充電中の二次電池が満充電状態に近いときの端子電圧である充電後期電圧を、当該電池の劣化状態および温度の関数として求める充電後期電圧演算手段とをさらに具備し、Charging late voltage calculating means for obtaining a charging late voltage, which is a terminal voltage when the secondary battery being charged is close to a fully charged state, as a function of the deterioration state and temperature of the battery, and
前記充電終了手段は、充電中の二次電池の端子電圧が前記充電後期電圧を上回り、かつ検知された電池温度の変化率が予定の基準変化率よりも高く、かつ前記端子電圧の二次変化率が前記基準変化率を下回ると充電を終了させることを特徴とする請求項1に記載の二次電池の充電装置。The charging end means is configured such that the terminal voltage of the secondary battery being charged is higher than the late charging voltage, the detected battery temperature change rate is higher than a predetermined reference change rate, and the terminal voltage secondary change The secondary battery charging device according to claim 1, wherein the charging is terminated when the rate falls below the reference change rate.
JP2006072500A 2006-03-16 2006-03-16 Secondary battery charger Expired - Fee Related JP4137135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072500A JP4137135B2 (en) 2006-03-16 2006-03-16 Secondary battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072500A JP4137135B2 (en) 2006-03-16 2006-03-16 Secondary battery charger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000220714A Division JP2002044879A (en) 2000-07-21 2000-07-21 Charging method and apparatus of secondary battery

Publications (2)

Publication Number Publication Date
JP2006217796A JP2006217796A (en) 2006-08-17
JP4137135B2 true JP4137135B2 (en) 2008-08-20

Family

ID=36980516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072500A Expired - Fee Related JP4137135B2 (en) 2006-03-16 2006-03-16 Secondary battery charger

Country Status (1)

Country Link
JP (1) JP4137135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078380B (en) * 2013-01-24 2015-12-23 浙江绿源电动车有限公司 Battery charger and method for charging batteries

Also Published As

Publication number Publication date
JP2006217796A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US8629656B2 (en) Battery pack and control method therefor
US8093867B2 (en) Charging apparatus and charging method
JP3872388B2 (en) CHARGE STATE DETECTION DEVICE, ITS PROGRAM, CHARGE STATE DETECTION METHOD, CHARGE / DISCHARGE CONTROL DEVICE
WO2015129117A1 (en) Soc estimation device for secondary battery
CN101807802A (en) Battery pack and battery capacity calculating method
JP2013083612A (en) Battery state measurement method and battery state measurement apparatus
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
CN110988691A (en) Battery detection system, battery detection method and battery pack
US11557908B2 (en) Degradation-determination system and method for determining degradation of secondary battery
JP6770933B2 (en) Power storage system
JP2009264779A (en) Battery state detection circuit, battery pack, and charging system
JP2013076585A (en) Method and apparatus for measuring battery state
JP2015104139A (en) Charging method of secondary battery, and charging device employing the same
JP2009133676A (en) Battery pack and charge/discharge method
JP2006302567A (en) Secondary battery pack and its charging method
JP4137135B2 (en) Secondary battery charger
JP2002044879A (en) Charging method and apparatus of secondary battery
JP4514541B2 (en) Battery remaining capacity detection method
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2000278874A (en) Charging of storage battery
JP2006170867A (en) Calculation method of remaining capacity of battery
JP2012115080A (en) Charge control method, charge control system, and charge control program
JP5081722B2 (en) Charge control device for secondary battery
JP2007155434A (en) Method of detecting remaining capacity of secondary battery
JP2006050812A (en) Method for determining full charge of battery, charging system, and charger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees