JP4136475B2 - Non-contact measuring method and measuring apparatus - Google Patents

Non-contact measuring method and measuring apparatus Download PDF

Info

Publication number
JP4136475B2
JP4136475B2 JP2002170521A JP2002170521A JP4136475B2 JP 4136475 B2 JP4136475 B2 JP 4136475B2 JP 2002170521 A JP2002170521 A JP 2002170521A JP 2002170521 A JP2002170521 A JP 2002170521A JP 4136475 B2 JP4136475 B2 JP 4136475B2
Authority
JP
Japan
Prior art keywords
light receiving
measured
displacement meter
contact
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002170521A
Other languages
Japanese (ja)
Other versions
JP2004012430A (en
Inventor
平三郎 中川
義昭 垣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd, Mori Seiki Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2002170521A priority Critical patent/JP4136475B2/en
Publication of JP2004012430A publication Critical patent/JP2004012430A/en
Application granted granted Critical
Publication of JP4136475B2 publication Critical patent/JP4136475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を被測定物表面に照射してその反射光を受光する非接触変位計を用い、三角測量法によって被測定物表面の変位量を測定する非接触測定方法及び測定装置に関する。
【0002】
【従来の技術】
上述した非接触変位計は、図15に示す如き基本構造を備える。即ち、図示するように、この非接触変位計30は、レーザ光を被測定物表面Maに向けて照射する投光素子31と、被測定物表面Maによって反射されたレーザ光を受光する受光面32aを具備し、この受光面32aの法線が投光素子31から照射されるレーザ光の光軸に対し傾斜した状態に配置される受光素子32と、投光素子31と被測定物Mとの間に配置され、投光素子31から照射されたレーザ光を集光して被測定物表面Maに導く投光レンズ33と、被測定物表面Maのレーザ光受光位置と受光素子32との間に配置され、被測定物表面Maから反射されたレーザ光を集光して受光素子32の受光面32aに結像せしめる受光レンズ34などを備え、図16に示すように、これらが適宜カバー35内に収容された構成を備える。
【0003】
受光素子32に結像されるレーザ光の光量は、図15に示すように、ガウス分布を示すが、当該受光素子32では、入光光量のピーク位置を結像位置として認識する。
【0004】
そして、上記構成の非接触変位計30は、図16に示すような三次元測定装置50の一部として組み込まれ、測定に供される。尚、図中の符号51は、前記非接触変位計30を支持する支持部材であり、符号52は、被測定物Mが載置される載置台である。支持部材51は適宜送り装置(図示せず)によって直交3軸(X軸,Y軸,Z軸)方向に移動するように構成され、かかる支持部材51の移動によって、非接触変位計30が被測定物Mに対して走査せしめられ、当該被測定物Mの三次元形状が測定される。
【0005】
この非接触変位計30を用いた変位測定の基本原理は、上述の如く三角測量法による。具体的には、図17に示すように、受光レンズ34の中心位置と被測定物表面Maとの間の距離をh、受光レンズ34の中心位置と受光素子32との間の距離をa、受光素子32の中心位置Lに立てた法線と、投光素子から照射されるレーザ光の光軸とが交差する角度をγとし、被測定物表面Maによって反射されたレーザ光が受光素子32の中心位置Lに受光されるとした場合に、被測定物表面Maが上方にεだけ変位することによって、受光素子32のレーザ光受光位置が中心位置LからΔgだけずれたとすると、当該変位εは、下式数式1によってこれを算出することができる。
【0006】
【数1】

Figure 0004136475
【0007】
したがって、適宜校正処理によって、前記距離h及びa、角度γ並びにこの関係における前記受光位置(中心位置)Lを予め既定値として取得しておけば、上記数式1によって被測定物表面Maの変位を測定することができる。
【0008】
【発明が解決しようとする課題】
ところが、被測定物表面Maによって反射される前記反射光は、当該被測定物表面Maの性状に依る影響を極めて受け易く、このため、上述した従来の測定方法及び測定装置では、被測定物表面Maの変位を高精度に測定することができないという問題があった。
【0009】
より具体的に言うと、例えば、旋盤,マシニングセンタ,研削盤といった工作機械によって機械加工された被測定物Mの表面は、鏡面のような平滑面ではなく、当該表面には、図18に示すような波状の凹凸が形成されている。この場合、凹凸の平均位置(図18において実線で示す位置)の変位を検出すべきであるが、レーザ光の光径が表面あらさの凹凸間隔より小さい場合には、凹凸部のどの位置にレーザ光が照射されるかによって、測定される変位に誤差を生じるのである。例えば、レーザ光が凸部(A点)に照射された場合には、Δεの誤差を生じ、レーザ光が凹部(B点)に照射された場合には、Δεの誤差を生じる。
【0010】
また、前記受光面32aに受光されるレーザ光の受光光量は、被測定物Mの表面が平滑面である場合には、受光領域の中心部において最大となるが、上記のような凹凸が存在する表面では、凸部で強く反射されたり、或いは、斜面で反射方向が変向したりして、前記受光面32aにおける受光量のピークが受光領域の中心部から周縁部にズレた(偏った)状態となる。そして、このピークのズレによって測定誤差を生じる。このことは、被測定物表面Maに機械加工によって形成された加工条痕が存在する場合にも、同様の現象として生じる。
【0011】
その一方、近時、リードタイムの短縮といった観点から、工作機械で加工されたワークを、そのまま機上で高精度に形状測定し得る測定装置が待望されているが、前記非接触変位計30は振動等の外乱によって測定精度が影響を受け難いといった優れた特長を有することから、機上計測に最も適したツールであると考えられている。
【0012】
そこで、本発明者らは、上述した非接触変位計30の特長を生かしつつ、更にその測定精度を高めるべく鋭意研究を重ねた結果、本発明をなすに至ったものである。
【0013】
斯くして、本発明は、非接触変位計を用い、三角測量法によって被測定物表面の変位を測定する非接触測定方法及び測定装置において、当該被測定物表面の変位を従来に増して高精度に測定し得る測定方法及び測定装置の提供を、その目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するための本発明は、レーザ光を被測定物表面に照射する投光素子と、前記被測定物表面によって反射されたレーザ光を受光する受光面を具備し、該受光面の法線が前記投光素子から照射されるレーザ光の光軸に対し傾斜した状態に配置される受光素子と、前記被測定物表面のレーザ光受光位置と前記受光素子との間に配置され、前記被測定物表面から反射されたレーザ光を集光して前記受光素子の受光面に結像せしめる受光レンズとを備えた非接触変位計を用い、
前記投光素子から被測定物表面にレーザ光を照射して、その反射光を前記受光素子に受光せしめ、該受光素子受光面の受光位置を検出して、検出された受光位置、並びに前記投光素子,受光レンズ及び受光素子の配置関係を基に、三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量を測定する方法において、
前記被測定物表面に対し予め設定された測定対象点の変位量を測定するに当たり、前記非接触変位計をその平行移動により予め設定された経路で走査し、前記被測定物表面の前記測定対象点を含む所定領域内にレーザ光を照射せしめ、前記走査経路の予め設定された間隔毎に、前記受光素子における受光位置データをサンプリングし、得られた各受光位置データを基に前記三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量をそれぞれ算出した後、算出した変位量の平均値を算出し、該平均値をもって前記測定対象点の変位量とするようにしたことを特徴とする非接触測定方法に係る。
【0015】
そして、この非接触測定方法は、以下の非接触測定装置によって、これを好適に実施することができる。
【0016】
即ち、上記非接触測定装置は、
被測定物が載置される載置台と、
前記載置台上の被測定物表面にレーザ光を照射する投光素子と、前記被測定物表面によって反射されたレーザ光を受光する受光面を具備し、該受光面の法線が前記投光素子から照射されるレーザ光の光軸に対し傾斜した状態に配置される受光素子と、前記被測定物表面のレーザ光受光位置と前記受光素子との間に配置され、前記被測定物表面から反射されたレーザ光を集光して前記受光素子の受光面に結像せしめる受光レンズとからなる非接触変位計と、
前記非接触変位計を支持する支持手段と、
前記支持手段と載置台とを直交3軸方向に相対移動させる送り機構部と、
前記直交3軸方向における前記支持手段と載置台との間の相対位置を検出する位置検出器と、
前記送り機構部の作動を制御する送り制御手段と、
前記非接触変位計の受光素子からその受光位置に係るデータを受信し、受信した受光位置、並びに前記投光素子,受光レンズ及び受光素子の配置関係を基に、三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量を算出し、算出した変位量から前記被測定物に係る形状データを生成する形状データ生成部とから構成されてなり、
前記被測定物表面に対し予め設定された測定対象点の変位量を測定するに当たり、
前記送り制御部
前記非接触変位計から照射されるレーザ光が、前記被測定物表面における前記測定対象点を含む所定領域内、且つ予め設定された経路で前記被測定物表面を照射するように、前記支持手段と載置台とを相対移動させて、前記非接触変位計を前記被測定物に対し走査させるように構成され、
前記形状データ生成部
前記受光素子から受信される受光位置データを、前記経路の予め設定された間隔毎にサンプリングし、得られた各受光位置データを基に前記三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量をそれぞれ算出した後、算出した変位量の平均値を算出し、該平均値をもって前記測定対象点の変位量とするように構成される。
【0017】
尚、上述した所定領域は、円領域であるのが好ましく、その直径、前記被測定物表面の表面あらさに係るJIS B 0601に規定の凹凸平均間隔Smの0.5倍以上2倍以下の範囲内にあるのが好ましい
【0018】
また、前記非接触変位計の走査経路は、これを円弧経路にすると良い。
【0019】
また、機械加工により、加工条痕が測定対象領域に一方向に整列して形成された被測定物表面の前記変位量を測定する際には、前記非接触変位計を、その前記投光素子,受光レンズ及び受光素子を含む平面が前記加工条痕と平行となるように配置して、前記測定を行うようにすると良い。
【0020】
【発明の実施の形態】
以下、本発明の具体的な実施形態について添付図面に基づき説明する。尚、本例では、工作機械で加工されたワークを機上で測定するように構成された測定装置について説明する。したがって、本測定装置は、工作機械の機構部分及び制御部分の一部をそのまま測定用に利用した構成として観念され、以下、当該工作機械の機構部分及び制御部分を含めて測定装置と呼ぶこととする。
【0021】
図1は、本実施形態に係る測定装置の概略構成を示した側面図であり、図2は、そのブロック図である。図1に示すように、本例の測定装置1は、ベッド11と、このベッド11上に立設されたコラム12と、コラム12に上下方向(矢示Z軸方向)に移動可能に支持された主軸頭13と、主軸頭13に回転自在に支持された主軸16と、ベッド11上に矢示Y軸方向に移動可能に設けられたサドル19と、このサドル19上に紙面に対し直交する方向(X軸方向)に移動可能に設けられたテーブル20と、主軸16に保持される非接触変位計30と、数値制御装置40などから構成される。
【0022】
図2に示すように、前記主軸頭13は送り機構部14によって駆動され、そのZ軸方向における位置が送り機構部14に付設された位置検出器15によって検出される。また、主軸16は駆動モータ17によって回転駆動され、その回転位置が当該主軸16に付設された回転位置検出器18によって検出される。
【0023】
また、前記サドル19は送り機構部23によって駆動され、そのY軸方向における位置が送り機構部23に付設された位置検出器24によって検出される。同様に、前記テーブル20は送り機構部21によって駆動され、そのX軸方向における位置が送り機構部21に付設された位置検出器22によって検出される。
【0024】
また、前記非接触変位計30は、上述の図15及び図16に示したものと同様の構成を備える。
【0025】
尚、前記位置検出器15,22,24はそれぞれ磁気スケールや光学スケールなどからなり、回転位置検出器18は光学式のパルスエンコーダなどからなる。
【0026】
前記数値制御装置40は、データ記億部41,プログラム解析部42,送り制御部43,主軸制御部44,変位計制御部46,加工条痕認識部45,形状データ生成部47などから構成される。
【0027】
データ記憶部41はNCプログラム,ツールパスデータ,測定プログラム,形状データといった各種プログラムやデータが格納される機能部であり、数値制御装置40に接続された入出力装置50から前記プログラムやデータが入力され、当該データ記憶部41に格納される。このデータ記憶部41内に格納されたプログラムやデータは、入出力装置50の出力部に出力されるようになっており、その内容を、当該出力部を通して確認することができるようになっている。
【0028】
尚、前記加工プログラムは、言うまでもなく、加工順序にしたがって主軸の回転(回転開始,回転停止,回転方向)、その回転角度や回転速度、送り軸、その移動位置や送り速度といった指令をNCコードで記述したものである。
【0029】
また、測定プログラムも同様に、主軸の回転角度、送り軸、その移動位置や送り速度、測定の開始や終了といった指令を、NCコードを含む特定のコードで記述したものである。
【0030】
例えば、図3に示すように、テーブル20上に載置された被測定物Mの表面Maに適宜設定した測定位置P〜P14の変位量を順次測定する場合、当該測定プログラムでは、まず、測定の開始が指令され、次に、主軸16の初期回転角度が指令された後、主軸16に装着された非接触変位計30を前記各測定位置P〜P14の上方の所定位置に移動させるための座標位置(各送り軸における位置)とその位置に移動する移動速度が順次指令され、最後に測定の終了が指令される。また、本例では、各測定位置P〜P14において、主軸16とテーブル20とが直径dの円弧軌跡で相対移動するように設定され、円弧移動の開始と同時にデータ取り込みが開始され、円弧移動の終了と同時にデータ取り込みが終了される。
【0031】
前記プログラム解析部42は、前記データ記憶部41に格納されたプログラムを順次読み出して、これを実行する機能部であり、例えば、NCプログラムを実行する場合には、プログラム中に指定された主軸の回転、その回転角度や回転速度、送り軸、その移動位置や送り速度といった指令を認識し、指令に応じた制御信号を前記送り制御部43や主軸制御部44に送信する。また、測定プログラムを実行する場合には、プログラム中に指定された主軸の回転角度、送り軸、その移動位置や送り速度、測定の開始や終了といった指令を認識し、指令に応じた制御信号を前記送り制御部43,主軸制御部44,加工条痕認識部45,変位計制御部46や形状データ生成部47に送信する。
【0032】
前記送り制御部43は、前記プログラム解析部42から受信した送り軸,移動位置,送り速度などに関する制御信号に従い、制御対象の各送り機構部14,21,23を各位置検出器15,22,24からフィードバックされる位置信号を基にフィードバック制御して、主軸頭13,サドル19やテーブル20を指令位置に移動させる。これにより、テーブル20上に載置されたワーク(被測定物)と主軸16とが前記直交3軸(X軸,Y軸及びZ軸)方向に適宜相対移動せしめられる。
【0033】
前記主軸制御部44は、前記プログラム解析部42から受信した主軸の回転,その回転角度や回転速度などに関する制御信号に従い、駆動モータ17を回転位置検出器18からフィードバックされる回転位置信号を基にフィードバック制御して、主軸16を指令角度に割り出したり、指令回転速度で回転させる。
【0034】
前記変位計制御部46は、前記プログラム解析部42から受信した制御信号に基づき、前記非接触変位計30の作動を制御する。具体的には、前記プログラム解析部42から測定開始信号を受信して前記非接触変位計30の投光素子31からレーザ光を照射させ、測定終了信号を受信してレーザ光の照射を停止させる。
【0035】
前記加工条痕認識部45は、図4に示した処理を実行する。即ち、前記プログラム解析部42から測定開始信号を受信して処理を開始し(ステップS1)、ついで、前記プログラム解析部42から非接触変位計30の移動位置(測定位置)に係る信号を受信すると(ステップS2)、データ記憶部41に格納されたNCプログラム若しくは当該NCプログラムを生成するためのツールパスデータを解析して、当該測定位置を含む所定領域内に存在する加工条痕の角度(本例では、X軸−Y軸平面における角度)を算出(認識)する(ステップS3)。
【0036】
通常、工作機械によって加工された被測定物Mの加工表面には、図5に示すように、工具Tの走査方向に沿った加工条痕(筋状の加工跡)Tが形成される。尚、図5は、一例としてボールエンドミルによって加工された被測定物Mの加工表面を図示したものである。
【0037】
かかる加工条痕TのX軸−Y軸平面における角度(図6における角度θ)は、データ記憶部41に格納されたNCプログラム若しくはこのNCプログラムを生成するためのツールパスデータからこれを容易に算出することができ、前記加工条痕認識部45は算出した角度データを主軸制御部44に送信し、主軸制御部44は受信した角度位置に主軸16を回転させる。
【0038】
前記非接触変位計30は、主軸16の回転角度が0°のとき、投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面が前記X軸と平行になるように、前記主軸16に装着されており、主軸16が加工条痕Tと一致する角度に回転せしめられると、図7に示すように、非接触変位計30の投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面が加工条痕Tと平行になる。
【0039】
以後、加工条痕認識部45は、プログラム解析部42から非接触変位計30の測定位置に係る信号を受信するたびに、上記加工条痕Tの角度を算出してこれを主軸制御部44に送信し(ステップS5)、プログラム解析部42から測定終了信号を受信した後、処理を終了する(ステップS6)。
【0040】
前記形状データ生成部47は、図8に示した処理を実行する。即ち、前記プログラム解析部42から測定開始信号を受信して処理を開始し(ステップS11)、ついで、前記プログラム解析部42から非接触変位計30を円弧移動させる信号を受信すると(ステップS12)、前記非接触変位計30の受光素子32によって検出された受光位置データ(図17に示したΔg)を、当該円弧移動が終了されるまでの間、所定サンプリング間隔で受信する(ステップS13,S14)。尚、円弧移動の終了時点については、前記位置検出器15,22,24からフィードバックされる位置信号を基に、これを認識する。
【0041】
ついで、形状データ生成部47は、サンプリングした各受光位置データを基に三角測量法によって被測定物表面Maにおける各レーザ光受光位置の変位量をそれぞれ算出し(ステップS15)、算出した変位量を単純平均してその平均値を算出し(ステップS16)、算出した平均値を対応する測定位置の変位量とする。ついで、算出した変位量と前記位置検出器15から受信した位置信号とを基に、所定の基準位置に対する当該測定位置のZ軸方向における位置を算出し(ステップS17)、算出したZ軸方向の位置データと、X軸−Y軸平面における測定位置の位置データとを関連付けて、これを当該測定位置の三次元位置データとしてデータ記憶部41に格納する(ステップS18)。
【0042】
以後、形状データ生成部47は、プログラム解析部42から非接触変位計30を円弧移動させる信号を受信するたびに、上記ステップS12〜S17の処理を繰り返し(ステップS19)、プログラム解析部42から測定終了信号を受信した後、当該処理を終了する(ステップS20)。
【0043】
以上の構成を備えた本例の測定装置1では、テーブル20上に載置された被測定物Mの形状が、以下のようにして測定される。尚、被測定物Mは、データ記憶部41に格納されたNCプログラムに基づいて、図3に示した形状に加工され、当該加工済みの被測定物Mがそのまま機上で測定されるものとする。また、測定は、被測定物表面Maに設定された測定位置P〜P14のZ軸方向における位置を測定するものとする。
【0044】
まず、プログラム解析部42によりデータ記憶部41から測定プログラムが読み出され、当該測定プログラムが順次実行される。
【0045】
即ち、まず、非接触変位計30の投光素子31からレーザ光が照射せしめられ、レーザ光が照射された状態で当該非接触変位計30が、測定位置Pの上方に移動せしめられる。その際、測定位置Pを含む所定領域内に形成された加工条痕Tの角度が、前記加工条痕認識部45によって認識され、認識された角度となるように主軸16が回転せしめられる。これにより、当該主軸16に装着された非接触変位計30の投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面が前記加工条痕Tと平行になる。
【0046】
次に、非接触変位計30が測定位置Pを中心とした直径dの円弧軌跡を描くように移動せしめられる。これにより、非接触変位計30の投光素子31から照射されるレーザ光が、被測定物Mの表面Ma上を、測定位置Pを中心とした直径dの円弧軌跡を描くように走査され、被測定物表面Maによって反射されたレーザ光が連続的に受光素子32に受光される。
【0047】
そして、非接触変位計30が円弧移動する間、非接触変位計30の受光素子32によって検出された受光位置データが、形状データ生成部47によって所定サンプリング間隔でサンプリングされ、サンプリングされた各受光位置データを基に三角測量法によって被測定物表面Maにおける各レーザ光受光位置の変位量がそれぞれ算出され、算出された変位量を単純平均してその平均値が算出され、算出された平均値が当該測定位置Pの変位量とされる。ついで、形状データ生成部47は、算出した変位量を基に、所定の基準位置に対する当該測定位置PのZ軸方向における位置を算出し、算出したZ軸方向の位置データと、X軸−Y軸平面における測定位置Pの位置データとを関連付けて、これを当該測定位置Pの三次元位置データ(形状データ)としてデータ記憶部41に格納する。
【0048】
以後、順次、非接触変位計30が測定位置P〜P14の上方に移動せしめられ、上述の如くして、各測定位置P〜P14における三次元位置が測定され、測定された三次元位置データがデータ記憶部41に格納される。そして、全ての測定位置P〜P14についての測定が終了した後、当該測定処理が終了される。
【0049】
上述したように、レーザ光による非接触変位計30では、被測定物表面Maによって反射されるレーザ反射光が、当該被測定物表面Maの性状に極めて影響され易く、このために、被測定物表面Maの変位量を高精度に測定することができないという根本的な問題がある。
【0050】
しかしながら、本実施形態では、上述したように、測定対象位置を含む周辺領域内の複数点の変位量を測定し、これを平均して当該測定対象位置の変位量としているので、上述した被測定物表面Maの性状が測定精度に与える影響を大幅に緩和することができ、当該変位量を高精度に測定することができる。
【0051】
尚、上記走査円の直径dは、JIS B 0601に規定の凹凸平均間隔Smであって、被測定物表面Maの表面あらさに係る凹凸平均間隔Smの0.5倍以上2倍以下とするのが好ましい。0.5倍未満である場合には、測定精度を期待される程度に高めることができず、2倍を超えると測定対象位置の真の変位量と言えなくなるからである。
【0052】
また、本実施形態では、非接触変位計30の姿勢を、その投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面が、被測定物表面Maの測定対象領域内に存在する加工条痕Tに対して平行となる姿勢としているので、前記受光素子32に受光される光量のピークが受光領域の中心部から周縁部にズレるのを防止することができ、この意味でも当該変位量を高精度に測定することができる。
【0053】
このように、本実施形態によれば、上述した非接触変位計30の有する問題点を解決し、変位量を高精度に測定することができるが、かかる本実施形態、即ち、本発明における効果を下記実験例によってより具体的に実証する。
【0054】
(実験例1)
非接触変位計30として、レーザフォーカス変位計(LT−8110、キーエンス社製)を用い、図9(a)に示すように、試料Mをテーブル20上に載置して、非接触変位計30をX軸方向に走査し、前記試料M表面の変位量を連続的にサンプリング(測定距離10mmで5000点)した後、JIS B 0601に従って、その表面粗さRZLを算出した。
【0055】
尚、非接触変位計30のレーザ光径は30μmであり、図17に示すh,γ,aの値は、それぞれh=30mm,γ=40°,a=10mmであった。また、試料Mには、表面粗さがR=6.0μmとR=11.6μm(いずれも接触式表面粗さ計で測定)に研削加工された2種類の鋼片を用いた。
【0056】
また、試料Mに形成された加工条痕(研削痕)がY軸と平行になるように、当該試料Mをテーブル20上に載置するとともに、主軸16の回転角度αが0°のとき、図15に示した投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面がX軸、即ち加工条根と直交するように、当該非接触変位計30を主軸16に装着し、主軸16の回転角度αを、0°(図9(b)),10°,20°,30°,40°,45°,50°,60°,70°,80°,90°(図9(c))としてX軸方向に走査し、上記の如く試料Mの表面粗さRZLを測定した。その結果を図10に示す。
【0057】
図10から明らかなように、主軸16の回転角度αが90°のとき、即ち、前記投光素子31,受光素子32,投光レンズ33及び受光レンズ34を含む平面が加工条根と平行となるように、当該非接触変位計30を配置することで、その測定精度を高めることができる。
【0058】
(実験例2)
非接触変位計30として上記実験例1と同様のものを用い、図11(a)に示すように、研削加工された試料Mをテーブル20上に載置して、図11(b)に示すように、試料表面の3点(Pa,Pb,Pc)のテーブル20上面からの高さを測定した。尚、試料Mは、接触式表面粗さ計で測定した表面粗さがR=6.0μm、JIS B 0601に規定される凹凸平均間隔Smが30.0μmであった。
【0059】
また、前記試料Mは,その表面に形成された加工条痕(研削痕)がY軸と平行になるように、これをテーブル20上に載置するとともに、主軸16の回転角度αを0°として、図11(a)に示すように、非接触変位計30を、各測定点(Pa,Pb,Pc)を中心として直径dの円弧軌跡を描くように走査させ、走査中、試料表面の変位量を連続的にサンプリング(測定距離10mmで5000点)して、サンプリングした変位量を単純平均し、当該各測定点(Pa,Pb,Pc)の変位量とした。そして算出した変位量から各測定点(Pa,Pb,Pc)のテーブル20上面からの高さを算出し、同位置をタッチプローブ式三次元測定機(BRT504 ミツトヨ社製)によって測定した結果との差をとって、測定誤差を算出した。その結果を図12に示す。
【0060】
図12から明らかなように、この場合には、非接触変位計30の円弧走査直径dを30μm以上、即ち、凹凸平均間隔Smの1.0倍以上とすることで、測定精度を高めることができる。
【0061】
(実験例3)
図13(a),(b)に示すように、試料Mとして、ボールエンドミルによって加工されたものを用い、その加工表面の2つの測定点(Pa,Pb)について測定した以外は上記実験例2と同様にして、各点のテーブル20上面からの高さを測定し、その測定誤差を算出した。その結果を図14に示す。尚、試料Mの加工表面は、接触式表面粗さ計で測定した表面粗さがR=2.3μm、JIS B 0601に規定される凹凸平均間隔Smが40μmであった。
【0062】
図14から明らかなように、この場合には、非接触変位計30の円弧走査直径dを20μm以上、即ち、凹凸平均間隔Smの0.5倍以上とすることで、測定精度を高めることができる。
【0063】
以上、本発明の実施形態について説明したが、本発明の採り得る具体的な態様は、何らこれに限定されるものではない。例えば、上例では、測定にあたって非接触変位計30を円弧走査させるようにしているが、これは、円弧走査が制御上最も平易であると考えられるからであり、測定対象位置を含む周辺領域内の複数点の変位量を測定することができるのであれば、走査経路は円弧走査に何ら限定されるものではない。
【0064】
また、上例では、制御系を工作機械の数値制御装置40内に組み込んだ構成としたが、これに限られるものではなく、かかる制御系を工作機械の数値制御装置40とは別個に設けた構成としても良い。更に、上例では、被測定物Mを工作機械上で測定し得る構成としたが、言うまでもなく、測定装置を工作機械とは別に設けた構成とすることもできる。
【0065】
【発明の効果】
以上詳述したように、本発明によれば、測定対象位置を含む周辺領域内の複数点の変位量を測定し、これを平均して当該測定対象位置の変位量としているので、被測定物表面の性状が測定精度に与える影響を大幅に緩和することができ、当該変位量を高精度に測定することができる。
【0066】
そして、上記測定領域を、直径が、被測定物表面の表面あらさに係るJIS B 0601に規定の凹凸平均間隔Smの0.5倍以上2倍以下である円領域とすることで、より測定精度を高めることができる。
【0067】
また、非接触変位計の姿勢を、その投光素子,受光素子及び受光レンズを含む平面が、被測定物表面の測定対象領域内に存在する加工条痕に対して平行となる姿勢としているので、受光素子に受光される光量のピークが受光領域の中心部から周縁部にズレるのを防止することができ、この意味でも当該変位量を高精度に測定することができる。
【0068】
斯くして、本発明によれば、外乱の影響を受け難いという特長を備えた非接触変位計の測定精度を高めることができるので、かかる非接触変位計を用いることで、工作機械で加工された加工品をそのまま機上で測定することが可能である。これにより、当該加工におけるリードタイムの短縮など、その生産性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る非接触測定装置の概略構成を示した側面図である。
【図2】 本実施形態に係る非接触測定装置の概略構成を示したブロック図である。
【図3】 本実施形態に係る測定手順を説明するための説明図である。
【図4】 本実施形態の加工条痕認識部における処理手順をしめしたフローチャートである。
【図5】 本実施形態の加工条痕認識部における処理を説明するための説明図である。
【図6】 本実施形態の加工条痕認識部における処理を説明するための説明図である。
【図7】 本実施形態の加工条痕認識部における処理を説明するための説明図である。
【図8】 本実施形態の形状データ生成部における処理手順を示したフローチャートである。
【図9】 (a),(b)及び(c)は、実験例1の内容を説明するための説明図である。
【図10】 実験例1における測定結果を示したグラフである。
【図11】 (a)及び(b)は、実験例2の内容を説明するための説明図である。
【図12】 実験例2における測定結果を示したグラフである。
【図13】 (a)及び(b)は、実験例3の内容を説明するための説明図である。
【図14】 実験例3における測定結果を示したグラフである。
【図15】 非接触変位計の基本構造を説明するための説明図である。
【図16】 非接触変位計を備えた測定装置の基本構成を説明するための説明図である。
【図17】 三角測量法による変位測定の基本原理について説明するための説明図である。
【図18】 非接触変位計における問題点を説明するための説明図である。
【符号の説明】
1 測定装置
16 主軸
17 駆動モータ
18 回転位置検出器
20 テーブル
14,21,23 送り機構部
15,22,24 位置検出器
30 非接触変位計
31 投光素子
32 受光素子
33 投光レンズ
34 受光レンズ
40 数値制御装置
41 データ記憶部
42 プログラム解析部
43 送り制御部
44 主軸制御部
45 加工条痕認識部
46 変位計制御部
47 形状データ生成部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact measurement method and a measurement apparatus for measuring a displacement amount of a measurement object surface by a triangulation method using a non-contact displacement meter that irradiates the measurement object surface with laser light and receives reflected light. .
[0002]
[Prior art]
The non-contact displacement meter described above has a basic structure as shown in FIG. That is, as shown in the figure, the non-contact displacement meter 30 includes a light projecting element 31 that irradiates laser light toward the surface to be measured Ma, and a light receiving surface that receives the laser light reflected by the surface to be measured Ma. 32a, a light receiving element 32 disposed in a state where the normal line of the light receiving surface 32a is inclined with respect to the optical axis of the laser light emitted from the light projecting element 31, the light projecting element 31, the object M to be measured, Between the light projecting lens 33 that collects the laser light emitted from the light projecting element 31 and guides it to the surface of the object to be measured Ma, and the light receiving position of the laser light on the surface of the object to be measured Ma and the light receiving element 32. A light receiving lens 34 that is disposed between them and collects the laser light reflected from the surface Ma of the object to be measured and forms an image on the light receiving surface 32a of the light receiving element 32, as shown in FIG. The structure accommodated in 35 is provided.
[0003]
As shown in FIG. 15, the light quantity of the laser light imaged on the light receiving element 32 shows a Gaussian distribution. The light receiving element 32 recognizes the peak position of the incident light quantity as the imaging position.
[0004]
And the non-contact displacement meter 30 of the said structure is integrated as a part of three-dimensional measuring apparatus 50 as shown in FIG. 16, and is used for a measurement. Reference numeral 51 in the figure is a support member that supports the non-contact displacement meter 30, and reference numeral 52 is a placement on which the object to be measured M is placed. On the table is there. The support member 51 is configured to move in the directions of three orthogonal axes (X axis, Y axis, Z axis) by a feeding device (not shown) as appropriate. The movement of the support member 51 causes the non-contact displacement meter 30 to be covered. The measurement object M is scanned, and the three-dimensional shape of the measurement object M is measured.
[0005]
The basic principle of displacement measurement using this non-contact displacement meter 30 is based on the triangulation method as described above. Specifically, as shown in FIG. 17, the distance between the center position of the light receiving lens 34 and the surface of the object to be measured Ma is h, the distance between the center position of the light receiving lens 34 and the light receiving element 32 is a, The angle at which the normal line standing at the center position L of the light receiving element 32 and the optical axis of the laser light emitted from the light projecting element intersect is γ, and the laser light reflected by the surface Ma to be measured is the light receiving element 32. If the light receiving position of the light receiving element 32 is shifted by Δg from the center position L when the surface Ma of the object to be measured is displaced upward by ε, the displacement ε Can be calculated by the following formula 1.
[0006]
[Expression 1]
Figure 0004136475
[0007]
Therefore, if the distance h and a, the angle γ, and the light receiving position (center position) L in this relationship are acquired as default values by appropriate calibration processing, the displacement of the surface Ma of the object to be measured can be calculated by Equation 1 above. Can be measured.
[0008]
[Problems to be solved by the invention]
However, the reflected light reflected by the surface to be measured Ma is very easily affected by the properties of the surface to be measured Ma. For this reason, in the conventional measuring method and measuring apparatus described above, the surface of the object to be measured There was a problem that the displacement of Ma could not be measured with high accuracy.
[0009]
More specifically, for example, the surface of the object M machined by a machine tool such as a lathe, a machining center, or a grinder is not a smooth surface such as a mirror surface, and the surface is shown in FIG. Wavy irregularities are formed. In this case, the average position of the unevenness (in FIG. solid line However, if the laser beam diameter is smaller than the irregularity interval of the surface roughness, the measured displacement depends on which position of the irregularity is irradiated with the laser beam. This causes an error. For example, when the laser beam is irradiated on the convex portion (point A), Δε 1 If the laser beam is irradiated to the recess (point B), Δε 2 Cause an error.
[0010]
In addition, the amount of laser light received by the light receiving surface 32a is maximum at the center of the light receiving region when the surface of the object M to be measured is a smooth surface. On the surface to be reflected, it is strongly reflected by the convex part, or the reflection direction is changed by the inclined surface, and the peak of the light receiving amount on the light receiving surface 32a is shifted (biased) from the center part of the light receiving area to the peripheral part. ) State. A measurement error occurs due to the deviation of the peak. This also occurs as a similar phenomenon even when a machining streak formed by machining is present on the surface to be measured Ma.
[0011]
On the other hand, recently, from the viewpoint of shortening the lead time, there is a need for a measuring device that can measure the shape of a workpiece processed by a machine tool with high accuracy on the machine as it is. It is considered to be the most suitable tool for on-machine measurement because of its excellent feature that measurement accuracy is not easily affected by disturbances such as vibration.
[0012]
Accordingly, the present inventors have made the present invention as a result of intensive studies to further improve the measurement accuracy while taking advantage of the features of the non-contact displacement meter 30 described above.
[0013]
Thus, the present invention provides a non-contact measuring method and measuring apparatus for measuring the displacement of the surface of the object to be measured by a triangulation method using a non-contact displacement meter. It is an object of the present invention to provide a measurement method and a measurement apparatus that can measure with high accuracy.
[0014]
[Means for Solving the Problems]
The present invention for solving the above problems comprises a light projecting element for irradiating the surface of the object to be measured with laser light, and a light receiving surface for receiving the laser light reflected by the surface of the object to be measured. A light receiving element disposed in a state in which a normal line is inclined with respect to an optical axis of the laser light emitted from the light projecting element, and a laser light receiving position on the surface of the object to be measured and the light receiving element, Using a non-contact displacement meter provided with a light receiving lens that focuses the laser light reflected from the surface of the object to be measured and forms an image on the light receiving surface of the light receiving element,
The surface of the object to be measured is irradiated with laser light from the light projecting element, the reflected light is received by the light receiving element, the light receiving position of the light receiving surface of the light receiving element is detected, and the detected light receiving position and the projecting light are detected. In the method of measuring the amount of displacement of the laser light receiving position on the surface of the object to be measured by triangulation based on the arrangement relationship of the optical element, the light receiving lens and the light receiving element,
In measuring the displacement amount of the measurement target point set in advance with respect to the surface of the object to be measured, the non-contact displacement meter is scanned along a path set in advance by the parallel movement thereof, and the object to be measured on the surface of the object to be measured is measured. A predetermined area including a point is irradiated with laser light, light reception position data in the light receiving element is sampled at predetermined intervals of the scanning path, and the triangulation method is performed based on the obtained light reception position data. The amount of displacement of the laser light receiving position on the surface of the object to be measured is calculated by the following, and then the average value of the calculated amounts of displacement is calculated, and the average value is used as the amount of displacement of the measurement target point. This relates to the non-contact measurement method.
[0015]
And this non-contact measuring method can be suitably implemented with the following non-contact measuring apparatus.
[0016]
That is, the non-contact measuring device is
A mounting table on which the object to be measured is mounted;
A light projecting element that irradiates a laser beam onto the surface of the object to be measured on the mounting table; and a light receiving surface that receives the laser light reflected by the surface of the object to be measured. A light receiving element disposed in an inclined state with respect to the optical axis of the laser light emitted from the element, and a laser light receiving position on the surface of the object to be measured and the light receiving element, and from the surface of the object to be measured A non-contact displacement meter comprising a light receiving lens for condensing the reflected laser light and forming an image on the light receiving surface of the light receiving element;
Support means for supporting the non-contact displacement meter;
A feed mechanism that relatively moves the support means and the mounting table in three orthogonal axes;
A position detector for detecting a relative position between the support means and the mounting table in the three orthogonal directions;
Feed control means for controlling the operation of the feed mechanism,
Data on the light receiving position is received from the light receiving element of the non-contact displacement meter, and the object to be measured is obtained by triangulation based on the received light receiving position and the arrangement relationship of the light projecting element, the light receiving lens, and the light receiving element. A displacement amount of the laser beam receiving position on the surface is calculated, and a shape data generation unit that generates shape data related to the object to be measured from the calculated displacement amount,
In measuring the displacement of the measurement target point set in advance with respect to the surface of the object to be measured,
The feed control unit Is ,
The support means so that the laser beam irradiated from the non-contact displacement meter irradiates the surface of the object to be measured in a predetermined region including the measurement target point on the surface of the object to be measured and through a preset path. And the mounting table are relatively moved, and the non-contact displacement meter is scanned with respect to the object to be measured.
The shape data generator Is ,
The light receiving position data received from the light receiving element is sampled at predetermined intervals of the path, and the laser light receiving position on the surface of the object to be measured by the triangulation method based on the obtained light receiving position data. After calculating each of the displacement amounts, an average value of the calculated displacement amounts is calculated, and the average value is used as the displacement amount of the measurement target point.
[0017]
The predetermined area described above is ,Circle region It is preferable that Diameter of Is In addition, 0.5 times or more and 2 times or less of the average unevenness interval Sm defined in JIS B 0601 relating to the surface roughness of the surface of the object to be measured Preferably within the range .
[0018]
The scanning path of the non-contact displacement meter may be an arc path.
[0019]
Further, when measuring the amount of displacement of the surface of the object to be measured, in which machining streaks are aligned in one direction in the measurement target region by machining, the non-contact displacement meter is connected to the light projecting element. It is preferable to perform the measurement by arranging the plane including the light receiving lens and the light receiving element so as to be parallel to the machining stripe.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings. In this example, a measuring device configured to measure a work machined by a machine tool on the machine will be described. Therefore, this measuring apparatus is considered as a configuration in which a part of a mechanical part and a control part of a machine tool are used for measurement as they are, and hereinafter referred to as a measuring apparatus including the mechanical part and the control part of the machine tool. To do.
[0021]
FIG. 1 is a side view showing a schematic configuration of a measuring apparatus according to the present embodiment, and FIG. 2 is a block diagram thereof. As shown in FIG. 1, the measuring apparatus 1 of this example is supported by a bed 11, a column 12 erected on the bed 11, and a column 12 movably in the vertical direction (arrow Z-axis direction). The spindle head 13, the spindle 16 rotatably supported by the spindle head 13, a saddle 19 provided on the bed 11 so as to be movable in the Y-axis direction, and the saddle 19 orthogonal to the paper surface. It comprises a table 20 provided so as to be movable in the direction (X-axis direction), a non-contact displacement meter 30 held by the main shaft 16, a numerical controller 40, and the like.
[0022]
As shown in FIG. 2, the spindle head 13 is driven by a feed mechanism unit 14, and the position in the Z-axis direction is detected by a position detector 15 attached to the feed mechanism unit 14. The main shaft 16 is rotationally driven by a drive motor 17 and the rotational position thereof is detected by a rotational position detector 18 attached to the main shaft 16.
[0023]
The saddle 19 is driven by the feed mechanism 23, and its position in the Y-axis direction is detected by a position detector 24 attached to the feed mechanism 23. Similarly, the table 20 is driven by a feed mechanism unit 21 and its position in the X-axis direction is detected by a position detector 22 attached to the feed mechanism unit 21.
[0024]
The non-contact displacement meter 30 has the same configuration as that shown in FIGS. 15 and 16 described above.
[0025]
The position detectors 15, 22, and 24 are each composed of a magnetic scale, an optical scale, or the like, and the rotational position detector 18 is composed of an optical pulse encoder or the like.
[0026]
The numerical controller 40 includes a data storage unit 41, a program analysis unit 42, a feed control unit 43, a spindle control unit 44, a displacement meter control unit 46, a machining mark recognition unit 45, a shape data generation unit 47, and the like. The
[0027]
The data storage unit 41 is a functional unit that stores various programs and data such as NC programs, tool path data, measurement programs, and shape data. The programs and data are input from the input / output device 50 connected to the numerical controller 40. And stored in the data storage unit 41. The programs and data stored in the data storage unit 41 are output to the output unit of the input / output device 50, and the contents can be confirmed through the output unit. .
[0028]
Needless to say, the machining program uses NC codes for commands such as rotation of the spindle (rotation start, rotation stop, rotation direction), rotation angle and rotation speed, feed axis, movement position and feed speed in accordance with the machining sequence. It is described.
[0029]
Similarly, in the measurement program, commands such as the rotation angle of the spindle, the feed axis, its movement position and feed speed, and the start and end of measurement are described in specific codes including the NC code.
[0030]
For example, as shown in FIG. 3, the measurement position P appropriately set on the surface Ma of the measurement object M placed on the table 20. 1 ~ P 14 In the measurement program, first, the start of measurement is instructed, and then the initial rotation angle of the main shaft 16 is instructed, and then the non-contact displacement meter 30 attached to the main shaft 16 is used. Each measurement position P 1 ~ P 14 The coordinate position (position on each feed axis) for moving to a predetermined position above and the moving speed to move to that position are sequentially commanded, and finally the end of measurement is commanded. In this example, each measurement position P 1 ~ P 14 , The spindle 16 and the table 20 are set so as to move relative to each other along an arc trajectory having a diameter d, and data acquisition is started simultaneously with the start of the arc movement, and data acquisition is ended simultaneously with the end of the arc movement.
[0031]
The program analysis unit 42 is a functional unit that sequentially reads out and executes the programs stored in the data storage unit 41. For example, when executing an NC program, the program analysis unit 42 It recognizes commands such as rotation, its rotation angle and rotation speed, feed axis, its movement position and feed speed, and transmits a control signal corresponding to the command to the feed control unit 43 and the spindle control unit 44. When executing a measurement program, it recognizes commands such as the rotation angle of the spindle, feed axis, its moving position and feed speed, and the start and end of measurement specified in the program, and sends a control signal according to the command. The feed control unit 43, the spindle control unit 44, the machining streak recognition unit 45, the displacement meter control unit 46 and the shape data generation unit 47 are transmitted.
[0032]
The feed control unit 43 controls each feed mechanism unit 14, 21, 23 to be controlled by each position detector 15, 22, 23 according to a control signal regarding the feed axis, movement position, feed speed, etc. received from the program analysis unit 42. Based on the position signal fed back from 24, feedback control is performed to move the spindle head 13, the saddle 19 and the table 20 to the command position. Thereby, the work (object to be measured) placed on the table 20 and the main shaft 16 are appropriately relatively moved in the directions of the three orthogonal axes (X axis, Y axis, and Z axis).
[0033]
The spindle control unit 44 is based on a rotational position signal fed back from the rotational position detector 18 to the drive motor 17 in accordance with a control signal relating to the rotation of the spindle, its rotational angle, rotational speed, etc. received from the program analysis unit 42. By feedback control, the spindle 16 is indexed to the command angle or rotated at the command rotational speed.
[0034]
The displacement meter control unit 46 controls the operation of the non-contact displacement meter 30 based on the control signal received from the program analysis unit 42. Specifically, the measurement start signal is received from the program analysis unit 42, the laser light is irradiated from the light projecting element 31 of the non-contact displacement meter 30, the measurement end signal is received, and the laser light irradiation is stopped. .
[0035]
The processing streak recognition unit 45 executes the processing shown in FIG. That is, when a measurement start signal is received from the program analysis unit 42 and processing is started (step S1), a signal related to the movement position (measurement position) of the non-contact displacement meter 30 is received from the program analysis unit 42. (Step S2), the NC program stored in the data storage unit 41 or the tool path data for generating the NC program is analyzed, and the angle of the machining streak existing in the predetermined area including the measurement position (this In the example, the angle in the X axis-Y axis plane is calculated (recognized) (step S3).
[0036]
Usually, on the processing surface of the workpiece M processed by the machine tool, as shown in FIG. 5, a processing mark (striated processing mark) T along the scanning direction of the tool T is provided. M Is formed. FIG. 5 shows an example of the processed surface of the workpiece M processed by the ball end mill.
[0037]
Such processing streak T M The angle on the X-axis-Y-axis plane (angle θ in FIG. 6) can be easily calculated from the NC program stored in the data storage unit 41 or the tool path data for generating this NC program. The machining streak recognition unit 45 transmits the calculated angle data to the spindle control unit 44, and the spindle control unit 44 rotates the spindle 16 to the received angular position.
[0038]
When the rotation angle of the main shaft 16 is 0 °, the non-contact displacement meter 30 is arranged such that a plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 is parallel to the X axis. The main shaft 16 is mounted on the main shaft 16, and the main shaft 16 is formed with a machining stripe T M 7, the plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 of the non-contact displacement meter 30 is formed into a machining mark T as shown in FIG. 7. M Becomes parallel.
[0039]
Thereafter, each time the machining streak recognition unit 45 receives a signal related to the measurement position of the non-contact displacement meter 30 from the program analysis unit 42, the processing streak T M Is calculated and transmitted to the spindle control unit 44 (step S5). After receiving the measurement end signal from the program analysis unit 42, the process is terminated (step S6).
[0040]
The shape data generation unit 47 executes the processing shown in FIG. That is, a measurement start signal is received from the program analysis unit 42 to start processing (step S11), and then a signal for moving the non-contact displacement meter 30 in an arc is received from the program analysis unit 42 (step S12). The light receiving position data (Δg shown in FIG. 17) detected by the light receiving element 32 of the non-contact displacement meter 30 is received at a predetermined sampling interval until the arc movement is finished (steps S13 and S14). . Note that the end point of the arc movement is recognized based on the position signal fed back from the position detectors 15, 22, and 24.
[0041]
Next, the shape data generation unit 47 calculates the displacement amount of each laser beam reception position on the surface of the object to be measured Ma by the triangulation method based on each sampled light reception position data (step S15), and calculates the calculated displacement amount. The average value is calculated by simple averaging (step S16), and the calculated average value is set as the displacement amount of the corresponding measurement position. Next, based on the calculated displacement amount and the position signal received from the position detector 15, the position in the Z-axis direction of the measurement position with respect to a predetermined reference position is calculated (step S17), and the calculated Z-axis direction is calculated. The position data and the position data of the measurement position on the X-axis / Y-axis plane are associated with each other and stored in the data storage unit 41 as the three-dimensional position data of the measurement position (step S18).
[0042]
Thereafter, each time the shape data generation unit 47 receives a signal for moving the non-contact displacement meter 30 in a circular arc from the program analysis unit 42, the shape data generation unit 47 repeats the processing of steps S12 to S17 (step S19) and performs measurement from the program analysis unit 42. After receiving the end signal, the process ends (step S20).
[0043]
In the measuring apparatus 1 of the present example having the above configuration, the shape of the measurement object M placed on the table 20 is measured as follows. The object to be measured M is processed into the shape shown in FIG. 3 based on the NC program stored in the data storage unit 41, and the processed object M to be processed is directly measured on the machine. To do. Further, the measurement is performed at the measurement position P set on the object surface Ma to be measured. 1 ~ P 14 The position in the Z-axis direction is measured.
[0044]
First, the program analysis unit 42 reads the measurement program from the data storage unit 41, and the measurement program is sequentially executed.
[0045]
That is, first, laser light is irradiated from the light projecting element 31 of the non-contact displacement meter 30, and the non-contact displacement meter 30 is moved to the measurement position P while being irradiated with the laser light. 1 Is moved upward. At that time, measurement position P 1 Processing streak T formed in a predetermined region including M Is recognized by the machining streak recognition unit 45, and the main shaft 16 is rotated so as to be the recognized angle. As a result, the plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 of the non-contact displacement meter 30 mounted on the main shaft 16 becomes the machining streak T. M Becomes parallel.
[0046]
Next, the non-contact displacement meter 30 is moved to the measurement position P 1 Is moved so as to draw an arc trajectory having a diameter d centered at. As a result, the laser light emitted from the light projecting element 31 of the non-contact displacement meter 30 moves on the surface Ma of the object M to be measured at the measurement position P. 1 The laser beam that is scanned so as to draw an arc trajectory having a diameter d centered on and reflected by the surface Ma of the object to be measured is continuously received by the light receiving element 32.
[0047]
Then, while the non-contact displacement meter 30 moves in a circular arc, the light reception position data detected by the light receiving element 32 of the non-contact displacement meter 30 is sampled by the shape data generation unit 47 at a predetermined sampling interval, and each received light reception position is sampled. Based on the data, the amount of displacement of each laser beam receiving position on the surface Ma to be measured is calculated by triangulation, and the average value is calculated by simply averaging the calculated amounts of displacement, and the calculated average value is Measurement position P 1 The amount of displacement. Next, the shape data generation unit 47 determines the measurement position P with respect to a predetermined reference position based on the calculated displacement amount. 1 The position in the Z-axis direction is calculated, the calculated position data in the Z-axis direction, and the measurement position P in the X-axis-Y-axis plane 1 And the position data of the measurement position P 1 Is stored in the data storage unit 41 as three-dimensional position data (shape data).
[0048]
Thereafter, the non-contact displacement meter 30 is sequentially moved to the measurement position P. 2 ~ P 14 Each measurement position P as described above. 2 ~ P 14 The three-dimensional position at is measured, and the measured three-dimensional position data is stored in the data storage unit 41. And all the measurement positions P 1 ~ P 14 After the measurement for is finished, the measurement process is finished.
[0049]
As described above, in the non-contact displacement meter 30 using laser light, the laser reflected light reflected by the surface to be measured Ma is very easily influenced by the properties of the surface to be measured Ma. There is a fundamental problem that the amount of displacement of the surface Ma cannot be measured with high accuracy.
[0050]
However, in the present embodiment, as described above, the displacement amounts at a plurality of points in the peripheral region including the measurement target position are measured and averaged to obtain the displacement amount of the measurement target position. The influence of the property of the object surface Ma on the measurement accuracy can be greatly relieved, and the displacement can be measured with high accuracy.
[0051]
The diameter d of the scanning circle is the average unevenness interval Sm defined in JIS B 0601, and is 0.5 times or more and 2 times or less the unevenness average interval Sm related to the surface roughness of the object surface Ma to be measured. Is preferred. This is because if it is less than 0.5 times, the measurement accuracy cannot be increased to an expected level, and if it exceeds 2 times, it cannot be said that it is the true displacement amount of the measurement target position.
[0052]
In the present embodiment, the non-contact displacement meter 30 is positioned so that the plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 is within the measurement target region of the surface of the object to be measured Ma. Existing processing streak T M Therefore, it is possible to prevent the peak of the amount of light received by the light receiving element 32 from deviating from the central portion to the peripheral portion of the light receiving region. Can be measured.
[0053]
As described above, according to the present embodiment, the above-described problems of the non-contact displacement meter 30 can be solved and the amount of displacement can be measured with high accuracy. However, this embodiment, that is, the effect of the present invention. Is demonstrated more specifically by the following experimental example.
[0054]
(Experimental example 1)
As the non-contact displacement meter 30, a laser focus displacement meter (LT-8110, manufactured by Keyence Corporation) is used, and the sample M is placed on the table 20 as shown in FIG. Is scanned in the X-axis direction, and the displacement amount of the surface of the sample M is continuously sampled (5000 points at a measurement distance of 10 mm), and then the surface roughness R according to JIS B 0601. ZL Was calculated.
[0055]
The laser beam diameter of the non-contact displacement meter 30 was 30 μm, and the values of h, γ, and a shown in FIG. 17 were h = 30 mm, γ = 40 °, and a = 10 mm, respectively. Sample M has a surface roughness of R. y = 6.0μm and R y Two types of steel pieces ground to 11.6 μm (both measured with a contact-type surface roughness meter) were used.
[0056]
Further, when the sample M is placed on the table 20 so that the machining marks (grinding marks) formed on the sample M are parallel to the Y axis, and the rotation angle α of the main shaft 16 is 0 °, The non-contact displacement meter 30 is mounted on the main shaft 16 so that the plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 shown in FIG. The rotation angle α of the main shaft 16 is 0 ° (FIG. 9B), 10 °, 20 °, 30 °, 40 °, 45 °, 50 °, 60 °, 70 °, 80 °, 90 ° ( Scanning in the X-axis direction as shown in FIG. 9C, the surface roughness R of the sample M as described above. ZL Was measured. The result is shown in FIG.
[0057]
As is apparent from FIG. 10, when the rotation angle α of the main shaft 16 is 90 °, that is, the plane including the light projecting element 31, the light receiving element 32, the light projecting lens 33, and the light receiving lens 34 is parallel to the processing root. Thus, the measurement accuracy can be improved by arranging the non-contact displacement meter 30.
[0058]
(Experimental example 2)
As the non-contact displacement meter 30, the same one as in the above experimental example 1 is used, and as shown in FIG. 11A, the ground sample M is placed on the table 20 and shown in FIG. Thus, the height from the upper surface of the table 20 at the three points (Pa, Pb, Pc) on the sample surface was measured. Sample M has a surface roughness R measured with a contact surface roughness meter. y = 6.0 μm, and the unevenness average interval Sm defined in JIS B 0601 was 30.0 μm.
[0059]
In addition, the sample M is placed on the table 20 so that the machining marks (grinding marks) formed on the surface thereof are parallel to the Y axis, and the rotation angle α of the main shaft 16 is set to 0 °. As shown in FIG. 11 (a), the non-contact displacement meter 30 is scanned so as to draw an arc locus having a diameter d around each measurement point (Pa, Pb, Pc). The displacement amount was continuously sampled (5000 points at a measurement distance of 10 mm), and the sampled displacement amounts were simply averaged to obtain the displacement amount at each measurement point (Pa, Pb, Pc). Then, the height from the upper surface of the table 20 of each measurement point (Pa, Pb, Pc) is calculated from the calculated displacement, and the same position is measured with a touch probe type coordinate measuring machine (BRT504 manufactured by Mitutoyo Corporation). The measurement error was calculated by taking the difference. The result is shown in FIG.
[0060]
As is apparent from FIG. 12, in this case, the measurement accuracy can be improved by setting the arc scanning diameter d of the non-contact displacement meter 30 to 30 μm or more, that is, 1.0 times or more of the uneven average interval Sm. it can.
[0061]
(Experimental example 3)
As shown in FIGS. 13 (a) and 13 (b), the sample M was processed by a ball end mill, and the above experimental example 2 was performed except that two measurement points (Pa, Pb) on the processed surface were measured. In the same manner as described above, the height of each point from the upper surface of the table 20 was measured, and the measurement error was calculated. The result is shown in FIG. The processed surface of sample M has a surface roughness R measured with a contact-type surface roughness meter. y = 2.3 μm, and the unevenness average interval Sm defined in JIS B 0601 was 40 μm.
[0062]
As is apparent from FIG. 14, in this case, the measurement accuracy can be improved by setting the arc scanning diameter d of the non-contact displacement meter 30 to 20 μm or more, that is, 0.5 times or more of the uneven average interval Sm. it can.
[0063]
As mentioned above, although embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all. For example, in the above example, the non-contact displacement meter 30 is scanned in an arc for measurement. This is because the arc scan is considered to be the simplest in terms of control, and it is within the peripheral region including the measurement target position. The scanning path is not limited to the arc scanning as long as the displacement amount of the plurality of points can be measured.
[0064]
In the above example, the control system is incorporated in the numerical control device 40 of the machine tool. However, the present invention is not limited to this, and the control system is provided separately from the numerical control device 40 of the machine tool. It is good also as a structure. Further, in the above example, the measurement object M can be measured on the machine tool. However, it is needless to say that the measurement apparatus may be provided separately from the machine tool.
[0065]
【The invention's effect】
As described above in detail, according to the present invention, the displacement amount of a plurality of points in the peripheral region including the measurement target position is measured and averaged to obtain the displacement amount of the measurement target position. The influence of the surface properties on the measurement accuracy can be greatly reduced, and the amount of displacement can be measured with high accuracy.
[0066]
The measurement area is a circular area having a diameter that is not less than 0.5 times and not more than 2 times the average unevenness interval Sm defined in JIS B 0601 relating to the surface roughness of the surface of the object to be measured. Can be increased.
[0067]
In addition, the posture of the non-contact displacement meter is such that the plane including the light projecting element, the light receiving element, and the light receiving lens is parallel to the machining streak existing in the measurement target area on the surface of the object to be measured. Thus, it is possible to prevent the peak of the amount of light received by the light receiving element from deviating from the center portion of the light receiving region to the peripheral portion, and in this sense, the displacement amount can be measured with high accuracy.
[0068]
Thus, according to the present invention, the measurement accuracy of a non-contact displacement meter having the feature of being hardly affected by disturbance can be increased. Therefore, by using such a non-contact displacement meter, it is processed by a machine tool. The processed product can be directly measured on the machine. Thereby, the productivity, such as shortening of the lead time in the said process, can be improved.
[Brief description of the drawings]
FIG. 1 is a side view showing a schematic configuration of a non-contact measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of a non-contact measuring apparatus according to the present embodiment.
FIG. 3 is an explanatory diagram for explaining a measurement procedure according to the embodiment.
FIG. 4 is a flowchart showing a processing procedure in a processing mark recognition unit of the present embodiment.
FIG. 5 is an explanatory diagram for explaining a process in a machining mark recognition unit of the present embodiment.
FIG. 6 is an explanatory diagram for explaining a process in a machining mark recognition unit of the present embodiment.
FIG. 7 is an explanatory diagram for explaining processing in a machining streak recognition unit of the present embodiment.
FIG. 8 is a flowchart showing a processing procedure in a shape data generation unit of the present embodiment.
FIGS. 9A, 9B, and 9C are explanatory diagrams for explaining the contents of Experimental Example 1. FIGS.
10 is a graph showing measurement results in Experimental Example 1. FIG.
FIGS. 11A and 11B are explanatory diagrams for explaining the contents of Experimental Example 2. FIGS.
12 is a graph showing measurement results in Experimental Example 2. FIG.
FIGS. 13A and 13B are explanatory diagrams for explaining the contents of Experimental Example 3. FIGS.
14 is a graph showing measurement results in Experimental Example 3. FIG.
FIG. 15 is an explanatory diagram for explaining a basic structure of a non-contact displacement meter.
FIG. 16 is an explanatory diagram for explaining a basic configuration of a measuring apparatus including a non-contact displacement meter.
FIG. 17 is an explanatory diagram for explaining the basic principle of displacement measurement by triangulation.
FIG. 18 is an explanatory diagram for explaining a problem in a non-contact displacement meter.
[Explanation of symbols]
1 Measuring device
16 Spindle
17 Drive motor
18 Rotational position detector
20 tables
14, 21, 23 Feed mechanism
15, 22, 24 Position detector
30 Non-contact displacement meter
31 Emitting element
32 Light receiving element
33 Projection lens
34 Light receiving lens
40 Numerical controller
41 Data storage unit
42 Program analysis section
43 Feed control unit
44 Spindle controller
45 Processing mark recognition part
46 Displacement meter controller
47 Shape data generator

Claims (9)

レーザ光を被測定物表面に照射する投光素子と、
前記被測定物表面によって反射されたレーザ光を受光する受光面を具備し、該受光面の法線が前記投光素子から照射されるレーザ光の光軸に対し傾斜した状態に配置される受光素子と、
前記被測定物表面のレーザ光受光位置と前記受光素子との間に配置され、前記被測定物表面から反射されたレーザ光を集光して前記受光素子の受光面に結像せしめる受光レンズとを備えた非接触変位計を用い、
前記投光素子から被測定物表面にレーザ光を照射して、その反射光を前記受光素子に受光せしめ、該受光素子受光面の受光位置を検出して、検出された受光位置、並びに前記投光素子,受光レンズ及び受光素子の配置関係を基に、三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量を測定する方法において、
前記被測定物表面に対し予め設定された測定対象点の変位量を測定するに当たり、
前記非接触変位計を平行移動により予め設定された経路で走査し、前記被測定物表面の前記測定対象点を含む領域であって、直径が、前記被測定物表面の表面あらさに係るJIS B 0601に規定の凹凸平均間隔Smの0.5倍以上2倍以下である円領域内にレーザ光を照射せしめ、
前記走査経路の予め設定された間隔毎に、前記受光素子における受光位置データをサンプリングし、得られた各受光位置データを基に前記三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量をそれぞれ算出した後、
算出した変位量の平均値を算出し、該平均値をもって前記測定対象点の変位量とするようにしたことを特徴とする非接触測定方法。
A light projecting element that irradiates the surface of the object to be measured with a laser beam;
A light receiving surface that receives a laser beam reflected by the surface of the object to be measured, and is disposed in a state in which a normal line of the light receiving surface is inclined with respect to the optical axis of the laser beam emitted from the light projecting element. Elements,
A light receiving lens disposed between the laser light receiving position on the surface of the object to be measured and the light receiving element, and condensing the laser light reflected from the surface of the object to be measured and forming an image on the light receiving surface of the light receiving element; Using a non-contact displacement meter with
The surface of the object to be measured is irradiated with laser light from the light projecting element, the reflected light is received by the light receiving element, the light receiving position of the light receiving surface of the light receiving element is detected, and the detected light receiving position and the projecting light are detected. In the method of measuring the amount of displacement of the laser light receiving position on the surface of the object to be measured by triangulation based on the arrangement relationship of the optical element, the light receiving lens and the light receiving element,
In measuring the displacement of the measurement target point set in advance with respect to the surface of the object to be measured,
Said non-contact displacement meter, the translation, scanned at a preset path, wherein a region including the measurement target point of the workpiece surface, a diameter, according to the surface roughness of the workpiece surface A laser beam is irradiated in a circular region that is 0.5 times or more and 2 times or less of the uneven average spacing Sm defined in JIS B 0601 ,
The light receiving position data in the light receiving element is sampled at predetermined intervals of the scanning path, and the displacement of the laser light receiving position on the surface of the object to be measured by the triangulation method based on the obtained light receiving position data. After calculating each quantity,
A non-contact measurement method characterized in that an average value of the calculated displacement amounts is calculated, and the average value is used as the displacement amount of the measurement target point.
前記非接触変位計の走査経路を円弧経路としたことを特徴とする請求項1記載の非接触測定方法。Non-contact measuring method according to claim 1 Symbol mounting, characterized in that the scanning path of the non-contact displacement meter and an arc path. 前記測定対象領域内に、機械加工によ加工条痕が一方向に整列して形成された前記被測定物を測定する際には、
前記非接触変位計を、その前記投光素子,受光レンズ及び受光素子を含む平面が前記加工条痕と平行となるように配置して、前記測定を行うようにしたことを特徴とする請求項1又は2記載の非接触測定方法。
Wherein the measurement target region, when measuring the measured object processing streaks that by the machining are formed aligned in a direction,
The non-contact displacement meter is disposed so that a plane including the light projecting element, the light receiving lens, and the light receiving element is parallel to the machining stripe, and the measurement is performed. The non- contact measuring method according to 1 or 2 .
前記加工条痕の有無及びその整列方向を認識する条痕認識手段によって、前記被測定物表面の測定対象領域に形成された加工条痕を認識した後、
前記条痕認識手段による認識結果を基に、前記非接触変位計を、その前記投光素子,受光レンズ及び受光素子を含む平面が前記加工条痕と平行となるように配置して、前記測定を行うようにしたことを特徴とする請求項記載の非接触測定方法。
After the by presence or absence and striations recognizing means for recognizing the alignment direction of the processing striations, recognizes the machining streaks formed in the measurement target region of the workpiece surface,
Based on the recognition result by the streak recognition means, the non-contact displacement meter is arranged so that the plane including the light projecting element, the light receiving lens and the light receiving element is parallel to the processing streak, and the measurement is performed. The non-contact measuring method according to claim 3, wherein:
前記条痕認識手段による加工条痕の認識が、前記被測定物の機械加工に用たNCプログラム若しくは該NCプログラムを生成するためのツールパスデータを基に行なわれることを特徴とする請求項記載の非接触測定方法。 Claims wherein the recognition processing streaks by streaking recognition means, characterized in that it is carried out on the basis of tool path data to generate the NC program or the NC program had use in machining of the workpiece 4. The non-contact measuring method according to 4 . 被測定物が載置される載置台と、
前記載置台上の被測定物表面にレーザ光を照射する投光素子と、前記被測定物表面によって反射されたレーザ光を受光する受光面を具備し、該受光面の法線が前記投光素子から照射されるレーザ光の光軸に対し傾斜した状態に配置される受光素子と、前記被測定物表面のレーザ光受光位置と前記受光素子との間に配置され、前記被測定物表面から反射されたレーザ光を集光して前記受光素子の受光面に結像せしめる受光レンズとからなる非接触変位計と、
前記非接触変位計を支持する支持手段と、
前記支持手段と載置台とを直交3軸方向に相対移動させる送り機構部と、
前記直交3軸方向における前記支持手段と載置台との間の相対位置を検出する位置検出器と、
前記送り機構部の作動を制御する送り制御手段と、
前記非接触変位計の受光素子からその受光位置に係るデータを受信し、受信した受光位置、並びに前記投光素子,受光レンズ及び受光素子の配置関係を基に、三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量を算出し、算出した変位量から前記被測定物に係る形状データを生成する形状データ生成手段とから構成されてなり、
前記被測定物表面に対し予め設定された測定対象点の変位量を測定するに当たり、
前記送り制御手段
前記非接触変位計から照射されるレーザ光が、前記被測定物表面における前記測定対象点を含む領域であって、直径が、前記被測定物表面の表面あらさに係るJIS B 0601に規定の凹凸平均間隔Smの0.5倍以上2倍以下である円領域内、且つ予め設定された経路で前記被測定物表面を照射するように、前記支持手段と載置台とを相対移動させて、前記非接触変位計を前記被測定物に対し走査させるように構成され、
前記形状データ生成手段
前記受光素子から受信される受光位置データを、前記経路の予め設定された間隔毎にサンプリングし、得られた各受光位置データを基に前記三角測量法によって前記被測定物表面におけるレーザ光受光位置の変位量をそれぞれ算出した後、算出した変位量の平均値を算出し、該平均値をもって前記測定対象点の変位量とするように構成されてなることを特徴とする非接触測定装置。
A mounting table on which the object to be measured is mounted;
A light projecting element that irradiates a laser beam onto the surface of the object to be measured on the mounting table; and a light receiving surface that receives the laser light reflected by the surface of the object to be measured. A light receiving element disposed in an inclined state with respect to the optical axis of the laser light emitted from the element, and a laser light receiving position on the surface of the object to be measured and the light receiving element, and from the surface of the object to be measured A non-contact displacement meter comprising a light receiving lens for condensing the reflected laser light and forming an image on the light receiving surface of the light receiving element;
Support means for supporting the non-contact displacement meter;
A feed mechanism that relatively moves the support means and the mounting table in three orthogonal axes;
A position detector for detecting a relative position between the support means and the mounting table in the three orthogonal directions;
Feed control means for controlling the operation of the feed mechanism,
Data on the light receiving position is received from the light receiving element of the non-contact displacement meter, and the object to be measured is obtained by triangulation based on the received light receiving position and the arrangement relationship of the light projecting element, the light receiving lens, and the light receiving element. The amount of displacement of the laser beam receiving position on the surface is calculated, and is configured from shape data generating means for generating shape data relating to the object to be measured from the calculated amount of displacement,
In measuring the displacement of the measurement target point set in advance with respect to the surface of the object to be measured,
The feed control means includes
The laser beam emitted from the non-contact displacement meter is a region including the measurement target point on the surface of the object to be measured, and the diameter is uneven as defined in JIS B 0601 relating to the surface roughness of the surface of the object to be measured. The support means and the mounting table are moved relative to each other so as to irradiate the surface of the object to be measured in a circular region that is 0.5 times or more and 2 times or less of the average interval Sm , and A non-contact displacement meter is configured to scan the object to be measured;
The shape data generating means includes :
The light receiving position data received from the light receiving element is sampled at predetermined intervals of the path, and the laser light receiving position on the surface of the object to be measured by the triangulation method based on the obtained light receiving position data. A non-contact measuring apparatus configured to calculate an average value of the calculated displacement amounts and calculate the average value as a displacement amount of the measurement target point.
前記送り制御手段は、前記非接触変位計の走査経路円弧経路となるように、前記送り機構部の作動を制御するように構成されてなることを特徴とする請求項記載の非接触測定装置。 Said feed control means such that said scanning path of the non-contact displacement meter is arcuate path, the non-contact measurement according to claim 6, characterized by being configured to control the operation of the feed mechanism apparatus. 前記被測定物表面の測定対象領域に、機械加工によって形成され、一方向に整列された加工条痕が存在するか否かを認識するとともに、該加工条痕の前記整列方向を認識する条痕認識手段と、
前記非接触変位計を、その投光素子から照射されるレーザ光の光軸周りに回転させる回転駆動手段と、
前記条痕認識手段から認識信号を受信し、前記条痕認識手段によって加工条痕の存在が確認された場合に、前記非接触変位計の前記投光素子,受光レンズ及び受光素子を含む平面が前記加工条痕に対して平行となるように、前記回転駆動手段の作動を制御して前記非接触変位計の回転位置を制御する回転制御手段とを更に備えたことを特徴とする請求項6又は7記載の非接触測定装置。
The measurement object area on the surface of the object to be measured recognizes whether or not there is a machining mark formed by machining and aligned in one direction, and the stripe for recognizing the alignment direction of the machining mark. Recognition means;
Rotation driving means for rotating the non-contact displacement meter around the optical axis of the laser light emitted from the light projecting element;
A plane including the light projecting element, the light receiving lens, and the light receiving element of the non-contact displacement meter when a recognition signal is received from the mark recognizing means and the presence of a processed mark is confirmed by the mark recognizing means. wherein in parallel with respect to the processing striations, claim 6, wherein the rotation operation of the driving means controlled by further comprising a rotation control means for controlling the rotational position of the non-contact displacement meter Or the non- contact measuring apparatus of 7 .
前記被測定物の機械加工に用たNCプログラム若しくは該NCプログラムを生成するためのツールパスデータを記憶する記憶手段を更に備えてなり、
前記条痕認識手段が、前記記憶手段に格納されたNCプログラム若しくはツールパスデータを基に、前記加工条痕を認識するように構成されてなる請求項記載の非接触測定装置。
Further comprising becomes in a storage means for storing the tool path data for generating an NC program or the NC program had use in machining of the object to be measured,
9. The non-contact measuring apparatus according to claim 8 , wherein the streak recognition unit is configured to recognize the processing streak based on an NC program or tool path data stored in the storage unit.
JP2002170521A 2002-06-11 2002-06-11 Non-contact measuring method and measuring apparatus Expired - Lifetime JP4136475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170521A JP4136475B2 (en) 2002-06-11 2002-06-11 Non-contact measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170521A JP4136475B2 (en) 2002-06-11 2002-06-11 Non-contact measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2004012430A JP2004012430A (en) 2004-01-15
JP4136475B2 true JP4136475B2 (en) 2008-08-20

Family

ID=30436750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170521A Expired - Lifetime JP4136475B2 (en) 2002-06-11 2002-06-11 Non-contact measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP4136475B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805570B2 (en) 2009-11-10 2014-08-12 Mitsubishi Heavy Industries, Ltd. Workpiece measuring device, collision preventing device, and machine tool
JP5638904B2 (en) * 2010-09-29 2014-12-10 富士重工業株式会社 Distance measuring device and distance measuring method
WO2016163355A1 (en) * 2015-04-09 2016-10-13 三菱電機株式会社 Displacement measurement device
JP6694473B2 (en) * 2018-06-08 2020-05-13 Dmg森精機株式会社 Measuring system, measuring method and measuring program
JP7181790B2 (en) * 2018-12-28 2022-12-01 株式会社キーエンス Laser processing equipment

Also Published As

Publication number Publication date
JP2004012430A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP5372598B2 (en) Processing method and processing system
JP5465922B2 (en) Processing method and processing system
EP0626896A1 (en) Laser work station guidance system calibration
JPS59501540A (en) automatic welding system
US6927863B2 (en) Apparatus for measuring a measurement object
JP2016061631A (en) Screw groove shape measurement device and tool machine using the same
JP3267340B2 (en) Tool measuring device
JP3433710B2 (en) V-groove shape measuring method and apparatus
JP4136475B2 (en) Non-contact measuring method and measuring apparatus
JP5393864B1 (en) Work shape measuring method and work shape measuring apparatus
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JPH0852733A (en) Dicing apparatus
JP4159809B2 (en) Non-contact measuring method and measuring apparatus
JP2001264048A (en) Method and device for measuring shape of v-groove
CN113319750B (en) Grinding wheel grooving method for online detection and real-time groove correction
JP3748866B2 (en) Tool measuring apparatus and method
JPH11166816A (en) Method for determining shape and dimension of subject for measurement
JP7512119B2 (en) Image measuring head device that can be attached to an NC machine tool, and method for controlling an NC machine tool system
JP3077263B2 (en) Cutting tool edge position detection device
JP2021079483A (en) Processing device
JP2020196028A (en) Laser beam machine and laser beam machining method
JP2010046778A (en) Non-contact type detector for detecting position of thread groove and machine tool
JP7282362B2 (en) Automatic geometry measuring device and machine tool equipped with the same
JP2676616B2 (en) Measuring method for rotary tools
JPH07286845A (en) Method and instrument for measuring three-dimensional shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term