JP4133635B2 - Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment - Google Patents

Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment Download PDF

Info

Publication number
JP4133635B2
JP4133635B2 JP2003194572A JP2003194572A JP4133635B2 JP 4133635 B2 JP4133635 B2 JP 4133635B2 JP 2003194572 A JP2003194572 A JP 2003194572A JP 2003194572 A JP2003194572 A JP 2003194572A JP 4133635 B2 JP4133635 B2 JP 4133635B2
Authority
JP
Japan
Prior art keywords
heat
porous
radiator
refrigerant
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003194572A
Other languages
Japanese (ja)
Other versions
JP2005032881A (en
Inventor
勝章 田中
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003194572A priority Critical patent/JP4133635B2/en
Publication of JP2005032881A publication Critical patent/JP2005032881A/en
Application granted granted Critical
Publication of JP4133635B2 publication Critical patent/JP4133635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発熱源となる電子部品等を搭載した電機器モジュールの熱を積極的に放熱させる冷却装置を備えた電機器システムと、その冷却装置と、その冷却装置に使用される多孔質放熱体とに関するものである。
【0002】
【従来の技術】
発熱源となる電子部品や電気部品を搭載した電機器モジュールは種々あるが、その一例として、スイッチング回路等を備えたインバータ装置(半導体モジュール)がある。そこで使用されるパワーMOSFETやIGBT等の半導体チップは、大電流を制御するため非常に大きな発熱を伴う。例えば、電気自動車等に使用されるインバータ装置の場合、数十〜数百A程度の大電流が上記半導体チップによって制御されるため、半導体チップは相当大きな発熱を伴い、高温となる。このような半導体チップは、保証温度以上に過熱されると誤作動を生じ得るため、安定した動作を確保するには、その冷却(放熱)が不可欠である。
【0003】
このようは半導体チップを搭載した半導体モジュールの効率的な冷却方法や冷却装置は従来から種々提案されており、例えば、下記特許文献1、2に関連する開示がなされている。
【0004】
特許文献1では、電子部品等の発熱を熱伝導部材で受熱して、それを放熱部材で放熱させるものである。この放熱部材は、ウレタン等の発泡材に金属メッキを施したものからなり、空気との接触面積を増大させて電子部品等の放熱性を高めている。
【0005】
特許文献2では、電子部品等を搭載する緻密質セラミック層と冷媒(ガスまたは水)を通過させる多孔質セラミック層とを積層したセラミック放熱基板を使用している。冷媒を使用することで、電子部品等の放熱性を高めている。
【0006】
【特許文献1】
特開2000−101005号公報
【特許文献2】
特開平4−83368号公報
【0007】
【発明が解決しようとする課題】
しかし、上記特許文献のいずれのものでも、半導体モジュール等の発熱量が大きい場合には、その冷却性を十分に確保することはできない。
例えば、上記特許文献1の放熱部材を使用した場合、熱は主に薄い金属メッキ層しか流れず、その受熱側から放熱側へ至る十分な熱伝導経路は確保されていない。このため、その放熱部材の全体が有効に活用されず、その放熱部材によって、小型化を図りつつ多量の熱を放熱させることは困難である。また、特許文献1の場合は、自然空冷させているだけであるため、冷却性能も低い。
【0008】
上記特許文献2の場合、多孔質セラミック層に冷媒を流して強制冷却しているため冷却性能の向上が望める。しかし、その多孔質セラミック層は、単にほぼ均一な多孔質とされているに過ぎず、特許文献1の場合と同様、受熱から放熱に至る熱伝導経路を考慮した形態とはなっていない。このため、例えば、多孔質セラミック層の内、緻密質セラミック層に近接した部分でのみ、実質的な冷却がなされるといった事態も考えられる。これでは、多孔質セラミック層全体が有効活用されず、電子部品等の放熱性をさらに高めることはできない。
【0009】
本発明は、このような事情に鑑みてなされたものであり、多孔質放熱体に冷媒を通過させて電機器モジュールを強制冷却する場合に、その多孔質放熱体でより効率的に冷却させることを可能とする冷却装置を備えた電機器システムを提供することを目的とする。また、その冷却装置および多孔質放熱体を併せて提供することを目的とする。
【0010】
【課題を解決するための手段および発明の効果】
本発明者は、上記課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、電機器モジュールの冷却装置に使用する多孔質放熱体中の気孔分布を再検討することにより、多孔質放熱体を全体的に有効活用して電機器モジュールの冷却効率を高め得ることを思い付き、本発明の電機器システムを開発するに至ったものである。
【0011】
(電機器システム)
(1)すなわち、本発明の電機器システムは、発熱源となる電子部品または電気部品を有する電機器モジュールと、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を有する冷却装置と、を備えた電機器システムであって、
前記多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、該低気孔率部は受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする。
【0012】
本発明の電機器システムによれば、冷却装置の多孔質放熱体を全体的に有効活用して、従来以上に優れた放熱性が得られ、電機器モジュールをより一層効率的に冷却することが可能となる。この理由は次のように考えられる。
【0013】
電子部品等で生じた熱は電機器モジュールから冷却装置へ伝わり、冷却装置の多孔質放熱体は受熱した熱を冷媒へ放熱する。このとき、当然ながら、多孔質放熱体の受熱側が高温で、放熱側が低温といった温度勾配を生じ得る。ここで、多孔質放熱体が全体的に均質で、冷媒の温度が多孔質放熱体の各部でほぼ一定だとすると、冷媒との温度差の大きい受熱側での放熱量が相当大きくなる。逆に、受熱側から離れた部分(放熱側)での放熱量は相当小さくなる。その結果、多孔質放熱体からの放熱量は、上記温度勾配の影響を受けて、多孔質放熱体の部分によって大きく異なることとなる。言換えれば、多孔質放熱体は、受熱側の部分でしか実質的な放熱がされていないこととなり、その全体が有効活用されていない状態となる。特に、冷却装置ひいては多孔質放熱体の小型化等が強く要請される状況下では、このような多孔質放熱体の放熱特性は好ましくない。そこで、多孔質放熱体の受熱側以外の部分からも効率的な放熱がなされて、全体としての放熱量が増加する方が好ましい。
【0014】
本発明では、前述したように、受熱側での気孔率を小さくしている。逆にいえば、気孔以外の骨格部分の体積率を大きくしている。骨格部分の体積率が大きいため、その分、熱の輸送経路(以下、「熱流路」という。)が確保され、多孔質放熱体へ入ってきた熱の多くが、受熱側以外の部分へも熱伝導によって輸送され易くなる。そして、受熱側以外の部分には、気孔率が比較的高い高気孔率部が設けられている。この部分は、低気孔率部とは逆に、骨格部分の体積率が小さく冷媒との接触面積も大きいため、低気孔率部から輸送されてきた熱は、他へのさらなる熱伝導よりも、冷媒との熱伝達を主に行うようになる。つまり、冷媒へ十分な放熱がなされるようになる。
【0015】
こうして、本発明の多孔質放熱体の場合、その全体が有効活用されて、放熱量の格段な増加が見込まれる。また、多孔質放熱体への受熱量が急増したような場合でも、受熱側から他の部分への熱流路が確保されているために、受熱側付近に熱溜りができることもなく、電機器モジュールの安定した冷却性が確保される。
【0016】
(2)また、本発明は、発熱源となる電子部品または電気部品を有する電機器モジュールと、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を有する冷却装置と、を備えた電機器システムであって、
前記多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、該小孔径部は、受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器システムとしても良い。
【0017】
この場合も、上記電機器システムと同様に、冷却装置の多孔質放熱体を全体的に有効活用して、従来以上に優れた放熱性を得ることができ、電機器モジュールをより一層効率的に冷却することが可能となる。その理由も、前述したものと同様に考えられる。
【0018】
(電機器モジュールの冷却装置)
本発明は、上記電機器システムとしてのみならず、電機器モジュールの冷却装置としても把握できる。
(1)すなわち、本発明は、発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置であって、
前記冷却装置は、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより前記電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を備え、該多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、該低気孔率部は、受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置であっても良い。
【0019】
(2)さらに、本発明は、発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置であって、
前記冷却装置は、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより前記電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を備え、該多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、該小孔径部は、受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置であっても良い。
【0020】
(電機器モジュールの冷却装置用多孔質放熱体)
本発明は、上記電機器システムや電機器モジュールの冷却装置としてのみならず、電機器モジュールの冷却装置用多孔質放熱体としても把握できる。
(1)すなわち、本発明は、発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置に使用され、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体であって、
前記多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、該低気孔率部は受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置用多孔質放熱体であっても良い。
【0021】
(2)さらに、本発明は、発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置に使用され、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体であって、
該多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、該小孔径部は受熱側に設けられ、前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置用多孔質放熱体であっても良い。
【0022】
ところで、上述した低気孔率部と高気孔率部との気孔率の相違や小孔径部と大孔径部との平均孔径の相違は相対的なものであって、使用される冷媒の種類や冷媒に印加される圧力、要求される放熱量、多孔質放熱体のサイズ等によって適宜決定されるものである。本発明の多孔質放熱体は、低気孔率部および高気孔率部、または小孔径部および大孔径部を有する2層構造であっても良いし、それらが3層以上ある多層構造であっても良い。
【0023】
また、多孔質放熱体が、低気孔率部から高気孔率部にかけて気孔率が傾斜的に変化する傾斜気孔率放熱体であったり、小孔径部から大孔径部にかけて平均孔径が傾斜的に変化する傾斜孔径放熱体であると、熱の輸送や放熱がよりスムーズとなり、さらなる放熱性の向上が期待できる。但し、本明細書でいう傾斜は必ずしも、滑らかな連続して傾斜である必要はない。つまり、気孔率や平均孔径が段階的に変化するような傾斜であっても良い。
【0024】
ちなみに、本発明では、低気孔率部や小孔径部等でも、冷媒と熱交換を行って放熱性を確保するのが好ましいため、多孔質放熱体中にある気孔の最小孔径を冷媒が通過し得る程度のものとした。さもないと、低気孔率部や小孔径部等に内包された空気等が断熱部分となって、逆に、多孔質放熱体の放熱性を大きく低下させる要因となるからである。但し、最小孔径が必ずしも低気孔率部や小孔径部にあるとは限らないことを断っておく。
【0025】
また、多孔質放熱体には受熱側が複数あっても良い。この場合、その内の少なくとも一つの受熱側に低気孔率部が設けられていれば良い。もっとも、全受熱側に低気孔率部を設けるとより好ましい。例えば、多孔質放熱体が両側から受熱する場合、その両側に低気孔率部を設けて、中央部を高気孔率部にしたりすると良い。
【0026】
多孔質放熱体の受熱側は、必ずしも電機器モジュールの直下や直上に設けられている必要はなく、電機器モジュールと多孔質放熱体との位置関係は問わない。電機器システムの設計上、熱伝導部材等を介して迂回した熱伝導経路を形成する場合もある。その場合、その熱伝導部材等に接続される方が受熱側となるだけのことである。
【0027】
本発明でいう多孔質放熱体は、熱伝導性や冷媒との間の熱伝達性に優れた材質であると好適である。具体例として金属材料があり、特に、多孔質放熱体は、アルミニウム(Al)を主成分とする金属多孔質体であると好適である。Al合金等からなる金属多孔質体は、熱伝導性に優れ、しかも軽量であり、多くの場合、耐蝕性にも優れるので非常に好ましい。
【0028】
本発明の多孔質放熱体は、例えば、金属粉末やセラミック粉末を成形、焼結(焼成)等させた焼結体等でも良いし、気泡を含む発泡体等でも良い。このような発泡体は、例えば、金属溶湯を調製する溶湯調製工程中または該金属溶湯を凝固させる凝固工程中に発泡させて気泡を含んだ状態で凝固させた金属発泡体であっても良い。なお、その際の発泡方法は種々あり、例えば、溶湯中へ発泡剤を混入したり、ガスを混入しても良い。
【0029】
多孔質放熱体の気孔率や平均孔径は、成形体密度や発泡率等の変更によって調整できる。多孔質放熱体の位置によって、その気孔率や平均孔径を変更するには、成形体密度や発泡率等を部分的に変化させて多孔質放熱体を製造すれば良い。より簡易な方法として、気孔率や平均孔径の異なる多孔質体を積層して本発明の多孔質放熱体としても良い。
【0030】
本発明の冷却装置は、別途製造された多孔質放熱体を、それを囲繞する筐体に配設したり、熱伝導部材等に接合したものでも良い。多孔質放熱体と、筐体や熱伝導部材等とを、ダイキャストや鋳込み等によって一体的に製造したものでも良い。
【0031】
本発明の多孔質放熱体を通過させる冷媒には、空気、ガス、油、水等、種々考えられるが、電機器モジュールの発熱量、使用環境、冷媒の圧送装置等に応じて適宜選択すれば良い。中でも、冷媒が水(冷却水)の場合、冷却効率が高くて好ましい。特に、本発明の電機器システムを自動車等に搭載する場合、エンジンやモータの冷却に冷却水が使用されることが多いため、冷媒の共通化を図れて好ましい。
【0032】
電機器モジュールに組込まれる電子部品や電気部品は、特に限定されない。例えば、インバータ装置の場合なら、スイッチング回路を形成するパワーMOSFETやIGBT等の半導体チップがある。このほか、変圧用のトランス等の電気部品であっても良い。
【0033】
これらの電子部品や電気部品は、通常、配線基板に搭載されており、その配線基板を通して電機器モジュールから冷却装置へ放熱される。その配線基板には、メタルベース基板やSiCやAl23等からなるセラミック基板等がある。このとき、電子部品や電気部品から各基板への熱伝導性を確保するために、両者間にヒートスプレッタが配設されることもある。また、電子部品や電気部品を搭載した配線基板は、冷却装置に直接搭載されることもあるが、通常は、熱伝導部材等を介して、冷却装置の受熱面に配設されることが多い。この熱伝導部材は、電機器モジュールの筐体自体で兼ねても良いし、両者間を密着させるためにゲル状の熱伝導剤を使用しても良い。
【0034】
【発明の実施の形態】
実施形態を挙げて、本発明をより具体的に説明する。
(第1実施形態)
本発明に係る第1実施形態であるインバータシステム100を図1に示す。インバータシステム100は、電気自動車やハイブリット車の三相誘導電動機(三相モータ)の駆動制御用のインバータ装置10と、このインバータ装置10を水冷する冷却装置20とからなる。
【0035】
インバータ装置10は、その詳細を図示していないが、スイッチング回路を構成するパワーMOSFETやIGBT等の電子部品およびコイルやコンデンサー等の電気部品と、それらの部品を搭載する熱伝導性絶縁基板と、その熱伝導性絶縁基板を内底面に密着固定させてその全体を囲繞するアルミニウム合金製のケースとを備える。前記電子部品等で生じた発熱は、熱伝導性絶縁基板を通じてケースへと放熱される。このケースはヒートシンクの役割をも果す。
【0036】
冷却装置20は、アルミニウム合金製の金属発泡体121と、この金属発泡体121に接して配設された熱伝導板125を備え、熱伝導板125と一体となって形成されたハウジング126とからなる。このハウジング126は、熱伝導板125と共に冷媒である冷却水の通路を構成している。
【0037】
車両に設けられたウォータポンプから圧送されてきた冷却水は、ハウジング126内の金属発泡体121を通過して受熱し、同じく車両に設けられたラジエターに送られて冷却されて、前記ウォータポンプに戻る。
【0038】
ここで、金属発泡体121は、アルミニウム合金の溶湯中に発泡剤を混入させて溶製した多孔質体である。その際、凝固工程中での冷却速度を制御することで、受熱側であるインバータ装置10側(図上側)の気孔径が小さく、ハウジング126側(図下側)の気孔径が大きくなるようにして、平均孔径を傾斜的に変化させてある。従って、本実施形態の金属発泡体121は傾斜孔径放熱体となっている。
【0039】
さらにこの金属発泡体121は、単に平均孔径が傾斜的に変化しているのみならず、気孔率も傾斜的に変化している。つまり、受熱側であるインバータ装置10側(図上側)の気孔率が低く、ハウジング126側(図下側)の気孔率が高い傾斜気孔率放熱体となっている。
【0040】
なお、小孔径部(低気孔率部)の平均孔径は、冷却水が通過できるような平均孔径となっている。但し、このような平均孔径は、冷却水の圧力とも関連して適宜決定されるものであり、必ずしも一律に特定されるものではない。また、いうまでもないが、上記金属発泡体121を含めて本発明でいう多孔質体は、各気孔がクローズしているものではない。つまり、各気孔が外部に連通し、連続的にオープンな気孔であり、冷却水等の冷媒が外部から内部へ流入し、その内部から外部へ流出できるものとなっている。
【0041】
(第2実施形態)
本発明の第2実施形態であるインバータシステム200を図2に示す。第1実施形態と同様の部材には同じ符号を付して示し、その詳細な説明は省略する。
インバータシステム200は、上記第1実施形態の金属発泡体121を第1金属発泡体221および第2金属発泡体222に変更したものである。
【0042】
第1金属発泡体221および第2金属発泡体222も、金属発泡体121と同様に、アルミニウム合金の溶湯中に発泡剤を混入させて溶製した多孔質体からなる。但し、第1金属発泡体221および第2金属発泡体222は、それぞれを単体で観ると、金属発泡体121と異なり、気孔分布が傾斜しておらず、ほぼ均一な気孔分布となっている。具体的に言えば、第1金属発泡体221は、第2金属発泡体222よりも相対的に、平均孔径が小さく気孔率も低くしてある。ここで、第1金属発泡体221が受熱側である。従って、第1金属発泡体221は、本発明でいう小孔径部および低気孔率部を構成し、第2金属発泡体222は、本発明でいう大孔径部および高気孔率部を構成する。
【0043】
本実施形態では、金属発泡体を2つ積層して本発明でいう多孔質放熱体を形成したが、金属発泡体を3つ以上積層して多孔質放熱体を形成しても良い。その際、少なくとも、低気孔率部または小孔径部と、高気孔率部または大孔径部とを構成する金属発泡体があれば足るが、3つ以上の金属発泡体の平均孔径や気孔率をそれぞれ段階的に変化させるとより好ましい。なお、平均孔径や気孔率を変化させることは、Al合金溶湯に混入させる発泡剤の量や冷却速度等の調整により、容易に行うことができる。
【0044】
本実施形態のように、平均孔径や気孔率の異なる金属発泡体を複数積層する場合でも、各金属発泡体の平均孔径は、冷却水の圧力に応じて冷却水が通過できる孔径となっている。言換えるなら、積層される金属発泡体の内、最小孔径が冷却水の圧力に応じて冷却水が通過できる孔径に設定されていれば良い。
【0045】
なお、複数の金属発泡体を積層して多孔質放熱体を形成するときでも、第1実施形態のように、平均孔径や気孔率が連続的に傾斜した状態とすることは可能である。積層される金属発泡体のそれぞれの平均孔径等を連続的に変化させたものとすれば良いからである。このような方法は、大型の多孔質放熱体を形成する場合は別として、小型の多孔質放熱体を形成する場合には、高コストとなり好ましくない。そこで、上記本実施形態のように、平均孔径や気孔率を段階的に変化させて、全体としてそれらが傾斜した状態とすることで、各金属発泡体の製造、ひいては多孔質放熱体の製造が容易となり、その低コスト化も図れる。
【0046】
上記実施形態では、熱伝導板125やハウジング126と、多孔質放熱体である金属発泡体121または第1金属発泡体221および第2金属発泡体222とを別体としたが、それらはダイキャスト等によって一体的に製造されたものでも良い。
【0047】
また、上記実施形態では、金属発泡体で多孔質放熱体を構成したが、それに限らない。例えば、多孔質放熱体は、多孔質焼結体であっても、金属繊維等を編んだものであっても良いし、さらには、セラミックス繊維や金属繊維等からなるプリフォームに合金溶湯を適度に含浸させたものでも良い。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す断面図である。
【図2】本発明の第2実施形態を示す断面図である。
【符号の説明】
10 インバータ装置(電機器モジュール)
20 冷却装置
100 インバータシステム(電機器システム)
121 金属発泡体(多孔質放熱体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric equipment system including a cooling device that actively dissipates heat of an electric equipment module that is equipped with an electronic component or the like that is a heat generation source, the cooling device, and a porous heat radiation used in the cooling device. It is about the body.
[0002]
[Prior art]
There are various types of electrical equipment modules on which electronic parts and electrical parts that serve as heat sources are mounted. As an example, there is an inverter device (semiconductor module) provided with a switching circuit or the like. Semiconductor chips such as power MOSFETs and IGBTs used therefor generate a large amount of heat to control a large current. For example, in the case of an inverter device used for an electric vehicle or the like, since a large current of about several tens to several hundreds of A is controlled by the semiconductor chip, the semiconductor chip generates a large amount of heat and becomes a high temperature. Such a semiconductor chip may malfunction if it is heated to a temperature higher than the guaranteed temperature. Therefore, cooling (heat dissipation) is indispensable to ensure a stable operation.
[0003]
In this way, various efficient cooling methods and cooling devices for semiconductor modules on which semiconductor chips are mounted have been proposed in the past. For example, disclosures relating to Patent Documents 1 and 2 below have been made.
[0004]
In Patent Document 1, heat generated by an electronic component or the like is received by a heat conducting member and is radiated by a heat radiating member. The heat radiating member is made of a foamed material such as urethane and metal-plated. The heat radiating member increases the contact area with the air to enhance the heat radiating property of the electronic component or the like.
[0005]
In Patent Document 2, a ceramic heat dissipation substrate is used in which a dense ceramic layer on which electronic components and the like are mounted and a porous ceramic layer through which a refrigerant (gas or water) passes are laminated. By using a refrigerant, heat dissipation of electronic parts and the like is enhanced.
[0006]
[Patent Document 1]
JP 2000-101005 A [Patent Document 2]
JP-A-4-83368 [0007]
[Problems to be solved by the invention]
However, in any of the above-mentioned patent documents, when the heat generation amount of the semiconductor module or the like is large, the cooling performance cannot be sufficiently ensured.
For example, when the heat radiating member of Patent Document 1 is used, heat mainly flows through a thin metal plating layer, and a sufficient heat conduction path from the heat receiving side to the heat radiating side is not ensured. For this reason, the whole heat radiating member is not utilized effectively, and it is difficult to radiate a large amount of heat while reducing the size by the heat radiating member. In the case of Patent Document 1, since only natural air cooling is performed, the cooling performance is low.
[0008]
In the case of the above-mentioned Patent Document 2, the cooling performance is expected to be improved because the coolant is forced to flow through the porous ceramic layer. However, the porous ceramic layer is merely a substantially uniform porous material, and, as in the case of Patent Document 1, it does not have a form that takes into consideration a heat conduction path from heat reception to heat dissipation. For this reason, for example, a situation where substantial cooling is performed only in a portion close to the dense ceramic layer in the porous ceramic layer may be considered. In this case, the entire porous ceramic layer is not effectively used, and the heat dissipation of electronic parts and the like cannot be further improved.
[0009]
The present invention has been made in view of such circumstances, and when a cooling medium is forcedly cooled by passing a refrigerant through the porous radiator, the porous radiator can more efficiently cool the module. It is an object of the present invention to provide an electric device system including a cooling device that enables the above. Moreover, it aims at providing the cooling device and a porous heat radiator together.
[0010]
[Means for Solving the Problems and Effects of the Invention]
As a result of intensive studies to solve the above-mentioned problems and repeated trial and error, the present inventor reexamined the pore distribution in the porous radiator used for the cooling device of the electrical equipment module. As a result, it has been conceived that the cooling efficiency of the electric equipment module can be enhanced by effectively utilizing the electric power as a whole, and the electric equipment system of the present invention has been developed.
[0011]
(Electric equipment system)
(1) That is, the electric device system of the present invention has an electronic device module having an electronic component or an electric component serving as a heat source, and a large number of pores communicating with the outside, and allows the refrigerant to pass through the pores. A cooling device having a porous radiator that dissipates heat received from the electric device module to the refrigerant, and an electric device system comprising:
The porous radiator has at least a low porosity portion having a low porosity and a high porosity portion having a high porosity, and the low porosity portion is provided on the heat receiving side, and is the smallest in the porous radiator. The hole diameter is a hole diameter through which the refrigerant can pass.
[0012]
According to the electrical equipment system of the present invention, it is possible to effectively utilize the porous heat radiating body of the cooling device as a whole, to obtain better heat dissipation than before, and to cool the electrical equipment module more efficiently. It becomes possible. The reason is considered as follows.
[0013]
The heat generated in the electronic component or the like is transmitted from the electric device module to the cooling device, and the porous heat radiating body of the cooling device radiates the received heat to the refrigerant. At this time, as a matter of course, a temperature gradient in which the heat receiving side of the porous radiator is high temperature and the heat releasing side is low temperature may occur. Here, if the porous heat radiating body is generally homogeneous and the temperature of the refrigerant is substantially constant in each part of the porous heat radiating body, the amount of heat radiated on the heat receiving side having a large temperature difference from the refrigerant becomes considerably large. On the contrary, the amount of heat radiation at the part away from the heat receiving side (heat radiation side) becomes considerably small. As a result, the amount of heat released from the porous radiator is greatly affected by the portion of the porous radiator due to the influence of the temperature gradient. In other words, the porous heat radiating body is substantially radiated only at the heat receiving side, and the whole is not effectively utilized. In particular, the heat dissipation characteristics of such a porous heat dissipator are not preferable in a situation where downsizing of the cooling device and thus the porous heat dissipator is strongly required. Therefore, it is preferable that efficient heat radiation is performed from a portion other than the heat receiving side of the porous heat radiator to increase the heat radiation amount as a whole.
[0014]
In the present invention, as described above, the porosity on the heat receiving side is reduced. Conversely, the volume ratio of the skeleton portion other than the pores is increased. Since the volume ratio of the skeletal part is large, a heat transport path (hereinafter referred to as “heat channel”) is ensured, and much of the heat that has entered the porous radiator is also transferred to parts other than the heat receiving side. It becomes easy to be transported by heat conduction. And the high porosity part with a comparatively high porosity is provided in parts other than a heat receiving side. Contrary to the low porosity part, this part has a small volume ratio of the skeleton part and a large contact area with the refrigerant, so that the heat transported from the low porosity part is more than the heat conduction to the other, Heat transfer with the refrigerant is mainly performed. That is, sufficient heat dissipation is performed to the refrigerant.
[0015]
Thus, in the case of the porous heat dissipating body of the present invention, the whole is effectively utilized, and a significant increase in the heat radiation amount is expected. In addition, even when the amount of heat received by the porous heat sink increases rapidly, a heat flow path from the heat receiving side to other parts is secured, so there is no heat accumulation near the heat receiving side, and the electrical equipment module Stable cooling performance is ensured.
[0016]
(2) In addition, the present invention has an electric device module having an electronic component or an electric component serving as a heat generation source, and a large number of pores communicating with the outside. By passing a refrigerant through the pore, A cooling device having a porous radiator that radiates received heat to the refrigerant, and an electrical equipment system comprising:
The porous radiator has at least a small hole diameter portion having a small average pore diameter and a large hole diameter portion having a large average pore diameter, the small hole diameter portion is provided on the heat receiving side, and the minimum pore diameter in the porous heat radiator is It is good also as an electric equipment system characterized by the hole diameter which can pass the refrigerant.
[0017]
In this case as well, as with the electrical equipment system, the porous radiator of the cooling device can be effectively used as a whole to obtain better heat dissipation than before, and the electrical equipment module can be made more efficient. It becomes possible to cool. The reason is also considered as described above.
[0018]
(Cooling device for electrical equipment module)
The present invention can be grasped not only as the electric equipment system but also as a cooling device for electric equipment modules.
(1) That is, the present invention is a cooling device for cooling an electric device module having an electronic component or an electrical component that is a heat source,
The cooling device includes a porous radiator that has a large number of pores communicating with the outside, and dissipates heat received from the electrical equipment module to the refrigerant by allowing the refrigerant to pass through the pores. The body has at least a low-porosity portion having a low porosity and a high-porosity portion having a high porosity, the low-porosity portion is provided on the heat receiving side, and the minimum pore diameter in the porous heat dissipator is It may be a cooling device for an electric equipment module, which has a hole diameter allowing passage of the refrigerant.
[0019]
(2) Furthermore, the present invention is a cooling device for cooling an electronic device module having an electronic component or an electrical component that is a heat source,
The cooling device includes a porous radiator that has a large number of pores communicating with the outside, and dissipates heat received from the electric device module to the refrigerant by passing the refrigerant through the pores. The body has at least a small pore diameter portion having a small average pore diameter and a large pore diameter portion having a large average pore diameter. The small pore diameter portion is provided on a heat receiving side, and the minimum pore diameter in the porous heat radiating body is the passage of the refrigerant. It is possible to use a cooling device for an electric equipment module characterized by having a hole diameter that can be reduced.
[0020]
(Porous radiator for cooling device of electrical equipment module)
The present invention can be grasped not only as a cooling device for the electric device system or electric device module, but also as a porous radiator for the cooling device of the electric device module.
(1) That is, the present invention is used in a cooling device that cools an electronic device module having an electronic component or an electrical component serving as a heat generation source, and has a large number of pores communicating with the outside, and allows the refrigerant to pass through the pores. A porous radiator that dissipates heat received from the electric device module to the refrigerant,
The porous radiator has at least a low porosity portion having a low porosity and a high porosity portion having a high porosity, and the low porosity portion is provided on the heat receiving side, and is the smallest in the porous radiator. The hole diameter may be a hole diameter that allows the refrigerant to pass therethrough, and may be a porous heat radiator for a cooling device of an electric equipment module.
[0021]
(2) Furthermore, the present invention is used in a cooling device that cools an electronic device module having an electronic component or an electrical component serving as a heat generation source, and has a large number of pores communicating with the outside, and allows the refrigerant to pass through the pores. A porous radiator that dissipates heat received from the electric device module to the refrigerant,
The porous radiator has at least a small pore diameter portion having a small average pore diameter and a large pore diameter portion having a large average pore diameter, the small pore diameter portion is provided on the heat receiving side, and the minimum pore diameter in the porous radiator is the above-mentioned It may be a porous heat dissipator for a cooling device of an electric equipment module, which has a hole diameter allowing passage of a refrigerant.
[0022]
By the way, the difference in porosity between the low porosity portion and the high porosity portion described above and the difference in average pore diameter between the small pore diameter portion and the large pore diameter portion are relative, and the type of refrigerant used and the refrigerant The pressure is appropriately determined depending on the pressure applied to the substrate, the required heat radiation amount, the size of the porous heat radiator, and the like. The porous heat radiator of the present invention may have a two-layer structure having a low porosity portion and a high porosity portion, or a small pore diameter portion and a large pore diameter portion, or a multilayer structure having three or more layers. Also good.
[0023]
In addition, the porous radiator is an inclined porosity radiator in which the porosity changes in an inclined manner from the low porosity portion to the high porosity portion, or the average pore diameter changes in an inclined manner from the small pore diameter portion to the large pore diameter portion. When the inclined hole diameter heat dissipating body is used, heat transport and heat dissipation become smoother, and further improvement in heat dissipation can be expected. However, the inclination referred to in this specification is not necessarily a smooth continuous inclination. That is, the inclination may be such that the porosity and the average pore diameter change stepwise.
[0024]
Incidentally, in the present invention, it is preferable to ensure heat dissipation by exchanging heat with the refrigerant even in a low porosity portion, a small pore diameter portion, etc., so that the refrigerant passes through the minimum pore diameter of the pores in the porous radiator. It was as much as to get. Otherwise, the air contained in the low porosity part, the small hole diameter part or the like becomes a heat insulating part, and conversely, it becomes a factor of greatly reducing the heat dissipation of the porous heat radiating body. However, it should be noted that the minimum pore diameter is not necessarily in the low porosity portion or the small pore diameter portion.
[0025]
Further, the porous heat radiator may have a plurality of heat receiving sides. In this case, the low porosity part should just be provided in the at least 1 heat receiving side among them. However, it is more preferable to provide a low porosity portion on the entire heat receiving side. For example, when the porous heat radiator receives heat from both sides, a low porosity part may be provided on both sides, and the center part may be a high porosity part.
[0026]
The heat receiving side of the porous radiator is not necessarily provided directly below or directly above the electric equipment module, and the positional relationship between the electric equipment module and the porous radiator is not limited. Due to the design of the electric equipment system, there is a case where a heat conduction path that is bypassed through a heat conduction member or the like is formed. In that case, the direction connected to the heat conducting member or the like is merely the heat receiving side.
[0027]
The porous heat radiator referred to in the present invention is preferably a material excellent in heat conductivity and heat transfer between the refrigerant and the refrigerant. A specific example is a metal material. In particular, the porous heat dissipator is preferably a metal porous body mainly composed of aluminum (Al). A porous metal body made of an Al alloy or the like is very preferable because it is excellent in thermal conductivity, is lightweight, and in many cases is also excellent in corrosion resistance.
[0028]
The porous heat radiator of the present invention may be, for example, a sintered body obtained by molding and sintering (sintering) metal powder or ceramic powder, or a foam containing bubbles. Such a foam may be, for example, a metal foam that is foamed and solidified in a state including bubbles during a melt preparation process for preparing a molten metal or a solidification process for solidifying the molten metal. There are various foaming methods at that time, and for example, a foaming agent or gas may be mixed into the molten metal.
[0029]
The porosity and average pore diameter of the porous heat radiator can be adjusted by changing the density of the molded body, the foaming rate, and the like. In order to change the porosity and the average pore diameter depending on the position of the porous radiator, the porous radiator may be manufactured by partially changing the density of the molded body, the foaming rate, and the like. As a simpler method, porous bodies having different porosities and average pore diameters may be laminated to form the porous heat radiator of the present invention.
[0030]
In the cooling device of the present invention, a separately manufactured porous heat radiating member may be disposed in a casing surrounding the porous heat radiating member, or may be joined to a heat conducting member or the like. The porous heat radiating body and the casing, the heat conducting member, or the like may be integrally manufactured by die casting or casting.
[0031]
Various refrigerants such as air, gas, oil, and water can be considered as the refrigerant that passes through the porous radiator of the present invention. However, the refrigerant can be appropriately selected according to the calorific value of the electrical equipment module, the usage environment, the refrigerant pressure feeding device, and the like. good. Especially, when a refrigerant | coolant is water (cooling water), a cooling efficiency is high and preferable. In particular, when the electric device system of the present invention is mounted on an automobile or the like, cooling water is often used for cooling an engine or a motor.
[0032]
There are no particular limitations on the electronic components and electrical components incorporated in the electrical equipment module. For example, in the case of an inverter device, there is a semiconductor chip such as a power MOSFET or IGBT that forms a switching circuit. In addition, an electrical component such as a transformer for transformation may be used.
[0033]
These electronic components and electrical components are usually mounted on a wiring board, and heat is radiated from the electric equipment module to the cooling device through the wiring board. As the wiring substrate, there are a metal base substrate, a ceramic substrate made of SiC, Al 2 O 3 or the like. At this time, in order to secure thermal conductivity from the electronic component or the electrical component to each substrate, a heat spreader may be provided between the two. In addition, a wiring board on which electronic components and electrical components are mounted may be directly mounted on the cooling device, but is usually disposed on the heat receiving surface of the cooling device via a heat conducting member or the like. . This heat conducting member may serve as the housing of the electric device module itself, or a gel-like heat conducting agent may be used to bring them into close contact with each other.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described more specifically with reference to embodiments.
(First embodiment)
The inverter system 100 which is 1st Embodiment which concerns on this invention is shown in FIG. The inverter system 100 includes an inverter device 10 for driving control of a three-phase induction motor (three-phase motor) of an electric vehicle or a hybrid vehicle, and a cooling device 20 that cools the inverter device 10 with water.
[0035]
Although details of the inverter device 10 are not illustrated, electronic components such as power MOSFETs and IGBTs and electrical components such as coils and capacitors that constitute the switching circuit, a thermally conductive insulating substrate on which these components are mounted, And a case made of an aluminum alloy that tightly fixes the thermally conductive insulating substrate to the inner bottom surface and surrounds the whole. Heat generated by the electronic component or the like is radiated to the case through the heat conductive insulating substrate. This case also serves as a heat sink.
[0036]
The cooling device 20 includes a metal foam 121 made of an aluminum alloy and a heat conduction plate 125 disposed in contact with the metal foam 121, and a housing 126 formed integrally with the heat conduction plate 125. Become. The housing 126 constitutes a passage of cooling water that is a refrigerant together with the heat conduction plate 125.
[0037]
Cooling water pumped from a water pump provided in the vehicle passes through the metal foam 121 in the housing 126 and receives heat, and is sent to a radiator also provided in the vehicle to be cooled, and is supplied to the water pump. Return.
[0038]
Here, the metal foam 121 is a porous body prepared by mixing a foaming agent in a molten aluminum alloy. At that time, by controlling the cooling rate during the solidification process, the pore diameter on the inverter device 10 side (the upper side in the figure) which is the heat receiving side is small, and the pore diameter on the housing 126 side (the lower side in the figure) is increased. Thus, the average pore diameter is changed in an inclined manner. Therefore, the metal foam 121 of this embodiment is a slanted hole diameter radiator.
[0039]
Further, the metal foam 121 has not only the average pore diameter changing in an inclined manner but also the porosity changing in an inclined manner. That is, it is an inclined porosity radiator having a low porosity on the inverter device 10 side (upper side in the figure), which is the heat receiving side, and a high porosity on the housing 126 side (lower side in the figure).
[0040]
In addition, the average hole diameter of a small hole diameter part (low-porosity part) is an average hole diameter through which cooling water can pass. However, such an average pore diameter is appropriately determined in relation to the pressure of the cooling water, and is not necessarily specified uniformly. Needless to say, the pores in the present invention including the metal foam 121 do not have closed pores. That is, each pore communicates with the outside, and is a continuously open pore. A coolant such as cooling water can flow from the outside to the inside and can flow from the inside to the outside.
[0041]
(Second Embodiment)
The inverter system 200 which is 2nd Embodiment of this invention is shown in FIG. The same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
The inverter system 200 is obtained by changing the metal foam 121 of the first embodiment into a first metal foam 221 and a second metal foam 222.
[0042]
Similarly to the metal foam 121, the first metal foam 221 and the second metal foam 222 are made of a porous body prepared by mixing a foaming agent in the molten aluminum alloy. However, when the first metal foam body 221 and the second metal foam body 222 are viewed as a single body, unlike the metal foam body 121, the pore distribution is not inclined and has a substantially uniform pore distribution. Specifically, the first metal foam 221 has a smaller average pore diameter and a lower porosity than the second metal foam 222. Here, the first metal foam 221 is the heat receiving side. Accordingly, the first metal foam 221 constitutes the small pore diameter portion and the low porosity portion referred to in the present invention, and the second metal foam 222 constitutes the large pore diameter portion and the high porosity portion referred to in the present invention.
[0043]
In the present embodiment, two metal foams are stacked to form the porous heat dissipator as used in the present invention, but three or more metal foams may be stacked to form a porous heat dissipator. At that time, at least a metal foam constituting a low porosity portion or a small pore diameter portion and a high porosity portion or a large pore diameter portion is sufficient, but the average pore diameter or porosity of three or more metal foams is sufficient. It is more preferable to change each step step by step. Note that changing the average pore diameter and the porosity can be easily performed by adjusting the amount of the foaming agent mixed in the molten Al alloy, the cooling rate, and the like.
[0044]
Even when a plurality of metal foams having different average pore diameters and porosity are laminated as in the present embodiment, the average pore diameter of each metal foam is a hole diameter through which cooling water can pass according to the pressure of the cooling water. . In other words, it is only necessary that the minimum pore diameter of the metal foams to be laminated is set to a hole diameter through which the cooling water can pass according to the pressure of the cooling water.
[0045]
Even when a plurality of metal foams are laminated to form a porous heat radiating body, it is possible to make the average pore diameter and the porosity continuously inclined as in the first embodiment. This is because the average pore diameter and the like of the metal foams to be laminated may be continuously changed. Such a method is not preferable because a high cost is required when a small porous radiator is formed, apart from when a large porous radiator is formed. Therefore, as in the above-described embodiment, the average pore diameter and porosity are changed in stages, and by making them in an inclined state as a whole, the production of each metal foam, and thus the production of the porous heat radiator, can be performed. It becomes easy and the cost can be reduced.
[0046]
In the above embodiment, the heat conductive plate 125 and the housing 126 and the metal foam 121 or the first metal foam 221 and the second metal foam 222, which are porous radiators, are separated, but they are die-cast. For example, it may be manufactured integrally.
[0047]
Moreover, in the said embodiment, although the porous heat sink was comprised with the metal foam, it is not restricted to it. For example, the porous heat dissipator may be a porous sintered body or a braided metal fiber or the like. Furthermore, a molten alloy is appropriately applied to a preform made of ceramic fiber or metal fiber. It may be impregnated with.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention.
[Explanation of symbols]
10 Inverter device (electric equipment module)
20 Cooling device 100 Inverter system (electric equipment system)
121 Metal foam (porous heat radiator)

Claims (11)

発熱源となる電子部品または電気部品を有する電機器モジュールと、
外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を有する冷却装置と、
を備えた電機器システムであって、
前記多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、
該低気孔率部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器システム。
An electric device module having an electronic component or an electric component to be a heat source;
A cooling device having a plurality of pores communicating with the outside, and having a porous heat radiator that radiates heat received from the electrical equipment module to the refrigerant by allowing the refrigerant to pass through the pores;
An electrical equipment system comprising:
The porous radiator has at least a low porosity portion with a low porosity and a high porosity portion with a high porosity,
The low porosity portion is provided on the heat receiving side,
The electric equipment system, wherein the minimum hole diameter in the porous heat radiating body is a hole diameter through which the refrigerant can pass.
前記多孔質放熱体は、前記低気孔率部から前記高気孔率部にかけて前記気孔率が傾斜的に変化している傾斜気孔率放熱体である請求項1に記載の電機器システム。2. The electrical equipment system according to claim 1, wherein the porous radiator is an inclined porosity radiator in which the porosity changes in an inclined manner from the low porosity portion to the high porosity portion. 発熱源となる電子部品または電気部品を有する電機器モジュールと、
外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を有する冷却装置と、
を備えた電機器システムであって、
前記多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、
該小孔径部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器システム。
An electric device module having an electronic component or an electric component to be a heat source;
A cooling device having a large number of pores communicating with the outside, and having a porous heat radiator that radiates heat received from the electrical equipment module to the refrigerant by allowing the refrigerant to pass through the pores;
An electrical equipment system comprising:
The porous radiator has at least a small pore diameter portion having a small average pore diameter and a large pore diameter portion having a large average pore diameter,
The small hole diameter portion is provided on the heat receiving side,
The electric equipment system, wherein the minimum hole diameter in the porous heat radiating body is a hole diameter through which the refrigerant can pass.
前記多孔質放熱体は、前記小孔径部から前記大孔径部にかけて前記平均孔径が傾斜的に変化している傾斜孔径放熱体である請求項3に記載の電機器システム。The electrical equipment system according to claim 3, wherein the porous radiator is an inclined hole diameter radiator in which the average hole diameter changes in an inclined manner from the small hole diameter portion to the large hole diameter portion. 前記多孔質放熱体は、アルミニウム(Al)を主成分とする金属多孔質体である請求項1〜4のいずれかに記載の電機器システム。The electrical equipment system according to claim 1, wherein the porous heat dissipating body is a metal porous body mainly composed of aluminum (Al). 前記多孔質放熱体は、金属溶湯を調製する溶湯調製工程中または該金属溶湯を凝固させる凝固工程中に発泡させて気泡を含んだ状態で凝固させた金属発泡体である請求項1〜5のいずれかに記載の電機器システム。The porous heat radiator is a metal foam that is foamed during a melt preparation step for preparing a molten metal or a solidification step for solidifying the molten metal and solidified in a state including bubbles. The electric device system according to any one of the above. 前記冷媒は、冷却水である請求項1または3に記載の電機器システム。The electric equipment system according to claim 1, wherein the refrigerant is cooling water. 発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置であって、
前記冷却装置は、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより前記電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を備え、
該多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、
該低気孔率部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置。
A cooling device that cools an electronic device module having an electronic component or an electrical component as a heat source,
The cooling device includes a porous radiator that has a large number of pores communicating with the outside, and dissipates heat received from the electric device module to the refrigerant by allowing the refrigerant to pass through the pores.
The porous radiator has at least a low porosity portion with a low porosity and a high porosity portion with a high porosity,
The low porosity portion is provided on the heat receiving side,
The cooling device for an electric equipment module, wherein the minimum hole diameter in the porous radiator is a hole diameter through which the refrigerant can pass.
発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置であって、
前記冷却装置は、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより前記電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体を備え、
該多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、
該小孔径部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置。
A cooling device that cools an electronic device module having an electronic component or an electrical component as a heat source,
The cooling device includes a porous radiator that has a large number of pores communicating with the outside, and dissipates heat received from the electric device module to the refrigerant by allowing the refrigerant to pass through the pores.
The porous radiator has at least a small pore diameter portion having a small average pore diameter and a large pore diameter portion having a large average pore diameter,
The small hole diameter portion is provided on the heat receiving side,
The cooling device for an electric equipment module, wherein the minimum hole diameter in the porous radiator is a hole diameter through which the refrigerant can pass.
発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置に使用され、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体であって、
前記多孔質放熱体は、気孔率の低い低気孔率部と気孔率の高い高気孔率部とを少なくとも有し、
該低気孔率部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置用多孔質放熱体。
Used in a cooling device for cooling an electric device module having an electronic component or an electric component as a heat source, and has a large number of pores communicating with the outside, and receives heat from the electric device module by allowing a refrigerant to pass through the pores. A porous radiator that dissipates heat to the refrigerant,
The porous radiator has at least a low porosity portion with a low porosity and a high porosity portion with a high porosity,
The low porosity portion is provided on the heat receiving side,
The porous heat radiator for a cooling device of an electric equipment module, wherein the minimum hole diameter in the porous heat radiator is a hole diameter through which the refrigerant can pass.
発熱源となる電子部品または電気部品を有する電機器モジュールを冷却する冷却装置に使用され、外部に連通した多数の気孔をもち、該気孔中に冷媒を通過させることにより該電機器モジュールから受熱した熱を該冷媒へ放熱する多孔質放熱体であって、
該多孔質放熱体は、平均孔径の小さい小孔径部と平均孔径の大きい大孔径部とを少なくとも有し、
該小孔径部は受熱側に設けられ、
前記多孔質放熱体中の最小孔径は前記冷媒の通過が可能な孔径であることを特徴とする電機器モジュールの冷却装置用多孔質放熱体。
Used in a cooling device for cooling an electric device module having an electronic component or an electric component as a heat source, and has a large number of pores communicating with the outside, and receives heat from the electric device module by allowing a refrigerant to pass through the pores. A porous radiator that dissipates heat to the refrigerant,
The porous radiator has at least a small pore diameter portion having a small average pore diameter and a large pore diameter portion having a large average pore diameter,
The small hole diameter portion is provided on the heat receiving side,
The porous heat radiator for a cooling device of an electric equipment module, wherein the minimum hole diameter in the porous heat radiator is a hole diameter through which the refrigerant can pass.
JP2003194572A 2003-07-09 2003-07-09 Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment Expired - Fee Related JP4133635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194572A JP4133635B2 (en) 2003-07-09 2003-07-09 Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194572A JP4133635B2 (en) 2003-07-09 2003-07-09 Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment

Publications (2)

Publication Number Publication Date
JP2005032881A JP2005032881A (en) 2005-02-03
JP4133635B2 true JP4133635B2 (en) 2008-08-13

Family

ID=34205704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194572A Expired - Fee Related JP4133635B2 (en) 2003-07-09 2003-07-09 Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment

Country Status (1)

Country Link
JP (1) JP4133635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117258A (en) * 2013-01-24 2013-05-22 上海交通大学 High-hole-density through hole metal foam electronic element heat-dissipation device based on impact jet flow

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG143943A1 (en) * 2003-12-26 2008-07-29 Agency Science Tech & Res A heat extractor
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
WO2007125802A1 (en) 2006-04-24 2007-11-08 Sumitomo Electric Industries, Ltd. Heat transfer member, protruding structural member, electronic device, and electric product
JP2008251652A (en) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp Heat sink
JP4956787B2 (en) * 2007-03-29 2012-06-20 日産自動車株式会社 Cooling system
US20090321045A1 (en) * 2008-06-30 2009-12-31 Alcatel-Lucent Technologies Inc. Monolithic structurally complex heat sink designs
WO2010084955A1 (en) * 2009-01-22 2010-07-29 京セラ株式会社 Board for mounting component, and package for holding component using same
JP6353682B2 (en) * 2014-04-01 2018-07-04 昭和電工株式会社 Boiling cooler
CN105188311B (en) * 2015-08-23 2017-06-16 杭州玄冰科技有限公司 A kind of liquid cooling plate
JP6477800B2 (en) * 2017-08-02 2019-03-06 三菱マテリアル株式会社 heatsink
WO2020158739A1 (en) * 2019-01-30 2020-08-06 京セラ株式会社 Heatsink member and electronic device provided with same
JP6984778B1 (en) * 2021-05-20 2021-12-22 富士電機株式会社 Semiconductor device with cooling device and cooling device
KR102539336B1 (en) * 2021-06-07 2023-06-01 중앙대학교 산학협력단 Semiconductor device thermal management module and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117258A (en) * 2013-01-24 2013-05-22 上海交通大学 High-hole-density through hole metal foam electronic element heat-dissipation device based on impact jet flow
CN103117258B (en) * 2013-01-24 2016-01-13 上海交通大学 Based on the high density holes open-pore metal foam electronic device radiating device of impact jet flow

Also Published As

Publication number Publication date
JP2005032881A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4133635B2 (en) Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment
EP3736856B1 (en) Microelectronics assembly including top and bottom packages in stacked configuration with shared cooling
KR20010076991A (en) Foam metal heat sink
US20210153394A1 (en) Cooling arrangement for electrical components, converter with a cooling arrangement, and aircraft having a converter
JP2002270743A (en) Mounting structure of semiconductor element
US9263365B2 (en) Electronic component and electronic component cooling method
JP2003324173A (en) Cooling device for semiconductor element
US11085703B2 (en) Heatsink
CN110364497A (en) Method for the electronic-component module of power control and its manufacture
Hoque et al. Modular heat sinks for enhanced thermal management of electronics
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
CN113921486A (en) Power electronic component and power electronic device
CN210014475U (en) Radiator, air condensing units and air conditioner
CN210014478U (en) Radiator, air condensing units and air conditioner
JP2019201026A (en) Heat receiving jacket, liquid cooling system, and manufacturing method for heat receiving jacket
KR101253306B1 (en) Heat-dissipating device and method for manufacturing the device
CN106439668A (en) Vehicular lamp
JP6710320B2 (en) Vehicle power converter
CN207741053U (en) A kind of radiator structure of LED array module
JP5100165B2 (en) Cooling board
CN110707054A (en) Direct cooling heat dissipation substrate and power module thereof
JP5056036B2 (en) Heat dissipation structure for electronic component equipment
US11910521B2 (en) Power device assemblies having embedded PCBS and enhanced cooling and methods of fabricating the same
CN217985855U (en) Phase change heat sink and electronic device having the same
JP2000031363A (en) Heat sink and board therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees