JP4132921B2 - Anaerobic treatment facility and monitoring method thereof - Google Patents

Anaerobic treatment facility and monitoring method thereof Download PDF

Info

Publication number
JP4132921B2
JP4132921B2 JP2002096703A JP2002096703A JP4132921B2 JP 4132921 B2 JP4132921 B2 JP 4132921B2 JP 2002096703 A JP2002096703 A JP 2002096703A JP 2002096703 A JP2002096703 A JP 2002096703A JP 4132921 B2 JP4132921 B2 JP 4132921B2
Authority
JP
Japan
Prior art keywords
concentration
organic
flow rate
gas generation
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002096703A
Other languages
Japanese (ja)
Other versions
JP2003290789A (en
Inventor
哲史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2002096703A priority Critical patent/JP4132921B2/en
Publication of JP2003290789A publication Critical patent/JP2003290789A/en
Application granted granted Critical
Publication of JP4132921B2 publication Critical patent/JP4132921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、嫌気処理設備及びその監視方法に係り、より詳細には排水を嫌気処理しガスを発生する反応槽を有する嫌気処理設備及びその監視方法に関する。
【0002】
【従来技術】
嫌気処理設備は、汚泥発生量が少なく、消費電力も少ないことから有機性排水の処理によく用いられている。嫌気処理設備は通常、反応槽を有し、反応槽に収容されるグラニュール汚泥により有機性排水を嫌気処理しメタンガスおよび炭酸ガスを生成する。ところで、このような嫌気処理設備においては、種々の要因により正常な処理がなされないことがある。このため、嫌気処理設備を正常に運転するために嫌気処理設備の運転状態を常に監視する必要がある。
【0003】
このような嫌気処理設備の監視方法として、従来、特開平5−328994号公報に開示されるものが知られている。同公報に記載の監視方法は、メタン発酵槽で得られたメタン発酵処理水の一部をモニタリング反応槽で嫌気処理し、このとき発生するガス量とメタン発酵処理水の流量とから残留揮発性有機酸濃度(VFA)を演算し、メタン発酵槽におけるメタン発酵状況の把握を行うものである。
【0004】
【発明が解決しようとする課題】
ところで、嫌気処理設備において正常な運転が行われなくなる原因は一般に次の3つであると考えられている。すなわち(1)高濃度有機性排水の流入、(2)反応槽における汚泥の活性低下、(3)汚泥量の減少、の3つであると考えられている。
【0005】
しかし、前述した従来の公報に記載の監視方法では、算出されるVFAによってメタン発酵槽が消化不良の状態であることは分かるものの、VFAだけでは、上記(2)又は(3)のいずれの原因により消化不良の状態となっているのかを特定することは不可能である。そのため、メタン発酵槽から汚泥を採取して分析により活性をチェックしたり、汚泥量を確認する必要がある。
【0006】
またメタン発酵槽に高濃度の有機性排水が流入した場合にも、メタン発酵槽が有機性排水を処理しきれず、正常な処理が行われなくなるため、水質分析を行ったり、阻害物質が流入されたかどうかを確認したりする必要がある。
【0007】
従って、上記従来の監視方法では、メタン発酵槽が正常運転されない原因を特定するのに多大な時間がかかるという問題があった。
【0008】
本発明は、上記事情に鑑みてなされたものであり、嫌気処理設備が正常運転されない原因を短時間で且つ的確に特定できる嫌気処理設備及びその監視方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は、有機性排水を嫌気処理しガスを発生する反応槽を備えた嫌気処理設備において、前記有機性排水の流量を測定する流量測定手段と、前記流量を調整する流量調整手段と、前記反応槽の上流側に設けられ、前記反応槽に流入される有機性排水中の有機物濃度を測定する流入有機物濃度測定手段と、前記反応槽の下流側に設けられ、前記反応槽から流出される有機性排水中の有機物濃度を測定する流出有機物濃度測定手段と、前記反応槽におけるガス発生量を測定するガス発生量測定手段と、前記流量、前記流入有機物濃度、前記流出有機物濃度および前記ガス発生量に基づいて、下記式:
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
により除去ベースガス発生率を演算する演算手段とを備えることを特徴とする嫌気処理設備である。
【0010】
この嫌気処理設備によれば、流出濃度測定手段で測定される流出有機物濃度が基準値以上になる場合、すなわち嫌気処理設備が正常運転されない場合に、流量調整手段により流量が減少される。この結果、反応槽から流出される有機物濃度が基準値未満となる場合には、嫌気処理設備が正常運転されなくなった原因が、高濃度の有機性排水が反応槽に流入したことにあることが分かる。一方、反応槽から流出される有機物濃度が基準値以上のままである場合には、演算手段で演算される除去ベースガス発生率が正常値と比較される。この結果、除去ベースガス発生率が正常値である場合には、反応槽において汚泥の活性は低下しておらず、反応槽において汚泥量が減少していることが分かる。一方、除去ベースガス発生率が正常値より小さくなる場合には、反応槽において汚泥の活性が低下していることが分かる。こうして、嫌気処理設備が正常運転されない場合にその原因を短時間で且つ的確に特定することが可能となる。
【0011】
上記嫌気処理設備は、前記流入有機物濃度測定手段の上流側に酸生成槽を更に備えることが好ましい。
【0012】
酸生成槽を流入有機物濃度測定手段の下流側であって反応槽の上流側に設置すると、流入有機物濃度測定手段で測定される流入有機物濃度が一時的に大きくなった場合に、その流入有機物濃度が酸生成槽で希釈される。このため、実際に反応槽に流入される有機物濃度は小さくなる。従って、酸生成槽の上流側で測定した流入有機物濃度により除去ベースガス発生率を算出すると、その値は本来の除去ベースガス発生率とはかけ離れたものとなり、除去ベースガス発生率が汚泥の活性低下又は汚泥量減少の指標として的確に機能しなくなるおそれがある。そこで、流入有機物濃度測定手段の上流側に流入有機物濃度測定手段を設けることにより、除去ベースガス発生率が汚泥の活性低下又は汚泥量減少の指標として的確に機能しうることとしている。
【0013】
また本発明は、有機性排水を嫌気処理しガスを発生する反応槽を備えた嫌気処理設備の監視方法において、前記有機性排水の流量を測定する流量測定工程と、前記反応槽に流入される有機性排水中の有機物濃度を測定する流入有機物濃度測定工程と、前記反応槽から流出される有機性排水中の有機物濃度を測定する流出有機物濃度測定工程と、前記反応槽におけるガス発生量を測定するガス発生量測定工程と、前記反応槽から流出される有機物濃度が基準値以上となる場合に前記流量を減少させる流量調整工程と、前記流量調整工程で有機性排水の流量を減少させた結果、前記流出有機物濃度が基準値以上のままである場合に、前記有機性排水の流量、前記反応槽に流入される有機物濃度、前記反応槽から流出される有機物濃度および前記ガス発生量に基づいて、下記式:
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
により演算した除去ベースガス発生率が正常値であるかどうかを判別する判別工程とを含むことを特徴とする嫌気処理設備の監視方法である。
【0014】
この監視方法によれば、流量測定工程で測定される有機性排水の流量が基準値以上になる場合、すなわち嫌気処理設備が正常運転されない場合に、流量が減少される。この結果、反応槽から流出される有機物濃度が低下して基準値未満となる場合には、嫌気処理設備が正常運転されなくなった原因が、高濃度の有機性排水が反応槽に流入したことにあることが分かる。一方、反応槽から流出される有機物濃度が基準値以上のままである場合には、算出された除去ベースガス発生率が正常値であるかどうかが判別される。この結果、除去ベースガス発生率が正常値である場合には、反応槽において汚泥の活性は低下しておらず、反応槽において汚泥量が減少していることが分かり、除去ベースガス発生率が正常値より小さくなる場合には、反応槽において汚泥の活性が低下していることが分かる。こうして、嫌気処理設備が正常運転されない場合にその原因を短時間で且つ的確に特定することが可能となる。
【0015】
上記嫌気処理設備の監視方法は、前記流入有機物濃度測定工程において測定される有機物濃度が所定時間一定であって、前記判別工程で除去ベースガス発生率が前記正常値である場合に、前記流入有機物濃度および前記ガス発生量に基づいて、下記式:
投入ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×流入有機物濃度〕
により演算した投入ベースガス発生率が正常値かどうかを判別する工程を更に含むことが好ましい。
【0016】
この場合、投入ベースガス発生率がその正常値であるとしたら、嫌気処理設備が正常運転されない原因が汚泥以外にあることが分かる。一方、投入ベースガス発生率が正常値より小さい場合には、嫌気処理設備が正常運転されない原因が汚泥量の減少にあることが再確認できる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0018】
図1は、本発明の嫌気処理設備の一実施形態を示す概略図である。図1に示すように、嫌気処理設備10は、酸生成槽1と、グラニュール汚泥を収容する反応槽2とを備えており、酸生成槽1には、流入ライン3が接続され、酸生成槽1と反応槽2とは中間ライン4によって接続され、反応槽2には流出ライン5が接続されている。酸生成槽1は、有機性排水中の有機物を酸生成菌によって分解し、有機酸を生成するものであり、反応槽2は、酸生成槽1から中間ライン4を経て流入される有機酸を、グラニュール汚泥のメタン生成菌によってメタン発酵させ、メタンガス及び炭酸ガスを発生するものである。反応槽2の上部には、ガス排出ライン11を介してガスホルダ16が接続され、ガス排出ライン11には、反応槽2で発生するガス発生量を測定するガス流量計(ガス発生量測定手段)12が設置されている。
【0019】
流入ライン3には流量計(流量測定手段)6および流量調整ポンプ(流量調整手段)7が設置されている。流量計6としては、例えば電磁流量計が用いられる。なお、流量計6は、有機性排水の流量を測定できればよく、必ずしも流入ライン3に設置する必要はない。従って、流量計6は、中間ライン4又は流出ライン5に設置されてもよい。
【0020】
中間ライン4には、反応槽2に流入される有機性排水中の有機物濃度(以下、「流入有機物濃度」という)を測定する濃度計(流入濃度測定手段)8が設置され、流出ライン5には、反応槽2から流出される有機性排水中の有機物濃度(以下、「流出有機物濃度」という)を測定する濃度計(流出濃度測定手段)9が設置されている。濃度計8,9としては、通常はCOD計が用いられるが、COD計の代わりにBOD計を用いることもできる。
【0021】
更に、濃度計9及び流量調整ポンプ7は、制御装置13に電気的に接続されていることが好ましい。この場合、制御装置13により、濃度計9で測定される流出有機物濃度に応じて流量調整ポンプ7により流量が自動的に調整される。また流量計6、濃度計8、濃度計9、ガス流量計12は演算装置(演算手段)14に電気的に接続されている。演算装置14は、流量計6で測定される有機性排水の流量、濃度計8で測定される流入有機物濃度、濃度計9で測定される流出有機物濃度およびガス流量計12で測定されるガス発生量に基づいて、下記式:
【0022】
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
投入ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×流入有機物濃度〕
により除去ベースガス発生率及び投入ベースガス発生率を演算するものである。ここで、除去ベースガス発生率は、反応槽2で除去された有機物量あたりのガス発生量を表すものであり、汚泥の活性の指標となるものである。一方。投入ベースガス発生率は、反応槽2に流入される有機物量あたりのガス発生量を表すものであり、汚泥の量の指標となるものである。なお、演算装置14には、その演算結果を表示する表示装置(図示せず)が設けられることが好ましい。
【0023】
なお、図1に示すように、嫌気処理設備10は、濃度計8の上流側に酸生成槽1を設置しているが、その理由は次の通りである。すなわち、酸生成槽1を濃度計8の下流側で且つ反応槽2の上流側に設置すると、濃度計8で測定される流入有機物濃度が一時的に大きくなった場合に、その流入有機物濃度が酸生成槽1で希釈される。このため、実際に反応槽2に流入される有機物濃度は小さくなる。従って、酸生成槽1の上流側で測定した流入有機物濃度により除去ベースガス発生率を算出すると、その値は本来の除去ベースガス発生率とはかけ離れたものとなり、除去ベースガス発生率が汚泥の活性低下又は汚泥量減少の指標として的確に機能しなくなるおそれがある。そこで、嫌気処理設備10では、濃度計8の上流側に酸生成槽1を設けることにより、除去ベースガス発生率が汚泥の活性低下又は汚泥量減少の指標として的確に機能しうることとしている。
【0024】
次に、前述した嫌気処理設備10の監視方法について、図2のフローチャートを用いて説明する。
【0025】
まず、流入ライン3を通る有機性排水の流量を流量計6で測定し(流量測定工程)、反応槽2に流入される流入有機物濃度を濃度計8で測定し(流入有機物濃度測定工程)、反応槽2から流出される流出有機物濃度を濃度計9で測定する(流出有機物濃度測定工程)。また、反応槽2で発生するメタンガスおよび炭酸ガスのガス発生量は、ガス流量計12で測定する(ガス発生量測定工程)。
【0026】
ここで、流入有機物濃度および流出有機物濃度については、反応槽2における滞留時間(通常4〜8時間)を考慮すると、流入有機物濃度に対する応答である流出有機物濃度に時間遅れが出る。従って、ある時点の流入有機物濃度の測定値に対応する流出有機物濃度の測定値は、反応槽2の滞留時間RT(RT=反応槽2の容量V/有機性排水の流量Q)分遅れた値とすることが好ましい。例えば流入有機物濃度を時刻t1で測定した場合は、流出有機物濃度の測定値は、時刻(t1+RT)における値とする。このようにすることによって、上記除去ベースガス発生率がより適切な値となるため、嫌気処理設備10の正常運転ができない原因をより的確に特定することができる。
【0027】
上記と同様にガス発生量についても流入有機物濃度に対して時間遅れが出るため、ある時点の流入有機物濃度に対応するガス発生量の値は、反応槽2の滞留時間RT分遅れた時点の値とすることが好ましい。
【0028】
次に、反応槽2から流出される流出有機物濃度が基準値以上かどうかが判別され(S201)、基準値以上となる場合には、流量調整ポンプ7により有機性排水の流量が減少される(S202)。流出有機物濃度が基準値未満となる場合には、嫌気処理設備10は、正常に運転されていることになる。このため、制御装置13により流量調整ポンプ7は調整されず、有機性排水の流量はそのまま維持される(S203)。こうして有機性排水の流量が調整される(流量調整工程)。
【0029】
次に、流出有機物濃度が基準値以上かどうかが再び判別され(S204)、流出有機物濃度が基準値以上となる場合には、演算装置14により、上記有機性排水の流量、流入有機物濃度、流出有機物濃度、ガス発生量に基づき、下記式:
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
によって除去ベースガス発生率が演算され、こうして演算した除去ベースガス発生率が正常値であるかどうかが判別される(S205)。ここで、正常値は一般的に0.25〜0.35m3−CH4/kg−CODCrであり、反応槽2の構成によって一定値に定まるものである。またガス中のメタンガス濃度は、反応槽2で発生するガス中のメタンガスの割合(%)であって、反応槽2によってほぼ決まるものであり、通常は80%程度である。一方、流出有機物濃度が基準値未満である場合には、反応槽2が正常に運転されていることになり、演算装置14により除去ベースガス発生率の演算は行われるが、それが正常値であるかどうかの判別は行わない(S206)。この場合は、減少した流量で一定時間維持した後、流量調整ポンプ7により流量を増加させてもとの流量に戻す。
【0030】
上記判別の結果、除去ベースガス発生率が正常値より小さい場合には、汚泥の活性が低下していることを意味する。一方、除去ベースガス発生率が正常値である場合には、汚泥の活性は正常であるが、汚泥の量が減少していることを意味する。このとき、汚泥の活性が低下している場合および汚泥の量が減少している場合のいずれの場合も、反応槽2に汚泥を補充すればよい。これにより流出有機物濃度を基準値より低い値まで低減することができる。
【0031】
次に、嫌気処理設備10の監視を継続するかどうか判断し(S207)、監視を継続しない場合には、監視を終了し、監視を継続する場合には上記S201に戻り、以後、上記の処理を繰り返せばよい。
【0032】
以上のようにして、流出有機物濃度が基準値以上になる場合、すなわち嫌気処理設備10が正常運転されない場合に、測定される流出有機物濃度に応じて有機性排水の流量を調整することで、高濃度の有機性排水が導入されたかどうかが分かり、汚泥については、表1に示すように、除去ベースガス発生率を演算しその値が正常値であるか判別することで、汚泥の活性が低下したか、汚泥の量が減少したかが分かる。
【0033】
【表1】

Figure 0004132921
【0034】
従って、汚泥を採取して汚泥の活性等をチェック等する必要が無くなり、嫌気処理設備10が正常運転されない原因を短時間で且つ的確に特定することが可能となり、これら原因に応じた適切な対応をすることができる。よって、上記嫌気処理設備10の監視方法は、嫌気処理設備10の正常運転に極めて有用である。
【0035】
なお、濃度計8で測定される流入有機物濃度が所定時間一定である場合には、除去ベースガス発生率が正常値かどうかを判別し、除去ベースガス発生率が正常値である場合に、上記流入有機物濃度および上記ガス発生量に基づいて、下記式:
投入ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×流入有機物濃度〕
により演算した投入ベースガス発生率がその正常値かどうかを判別することが好ましい。
【0036】
この場合、投入ベースガス発生率がその正常値であるとしたら、嫌気処理設備10が正常運転されない原因が汚泥以外にあることが分かる。一方、投入ベースガス発生率が正常値より小さい場合には、嫌気処理設備10が正常運転されない原因が汚泥量の減少にあることが再確認できる。
【0037】
ここで、「流入有機物濃度が一定」とは、流入有機物濃度が、所定時間における流入有機物濃度の平均値から±20%の範囲内にあることをいう。また所定時間は特に制限されず、例えば2〜8時間である。
【0038】
【発明の効果】
以上説明したように本発明の嫌気処理設備およびその監視方法によれば、流出有機物濃度が基準値以上になる場合に、流出有機物濃度を測定し、それに応じて有機性排水の流量を調整することで、流出有機物濃度が基準値以上となる原因が、高濃度の有機性排水が流入されたことにあることが分かり、除去ベースガス発生率を算出することで、汚泥の活性が低下したか、汚泥の量が減少したかが分かる。従って、汚泥を採取して汚泥の活性等をチェック等する必要が無くなり、嫌気処理設備が正常運転されない原因を短時間で的確に特定することが可能となる。
【図面の簡単な説明】
【図1】本発明の嫌気処理設備の一実施形態を示す概略図である。
【図2】本発明の嫌気処理設備の監視方法の手順を示すフローチャートである。
【符号の説明】
1…酸生成槽、2…反応槽、6…流量計(流量測定手段)、7…流量調整バルブ(流量調整手段)、8…濃度計(流入有機物濃度測定手段)、9…濃度計(流出有機物濃度測定手段)、10…嫌気処理設備、11…ガス排出ライン(ガス発生量測定手段)、12…ガス流量計(ガス発生量測定手段)、14…演算装置(算出手段)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic treatment facility and a monitoring method thereof, and more particularly, to an anaerobic treatment facility having a reaction tank for anaerobically treating waste water and generating gas, and a monitoring method thereof.
[0002]
[Prior art]
Anaerobic treatment equipment is often used for the treatment of organic wastewater because it generates less sludge and consumes less power. Anaerobic treatment equipment usually has a reaction tank, and anaerobic treatment of organic wastewater with granule sludge accommodated in the reaction tank produces methane gas and carbon dioxide gas. By the way, in such anaerobic processing equipment, normal processing may not be performed due to various factors. For this reason, it is necessary to always monitor the operating state of the anaerobic treatment facility in order to operate the anaerobic treatment facility normally.
[0003]
As such an anaerobic treatment facility monitoring method, a method disclosed in Japanese Patent Laid-Open No. 5-328994 has been known. In the monitoring method described in the publication, a part of the methane fermentation treated water obtained in the methane fermentation tank is anaerobically treated in the monitoring reaction tank, and the residual volatility is determined from the amount of gas generated at this time and the flow rate of the methane fermentation treated water. The organic acid concentration (VFA) is calculated and the methane fermentation status in the methane fermentation tank is grasped.
[0004]
[Problems to be solved by the invention]
By the way, it is generally considered that there are three reasons why normal operation is not performed in an anaerobic treatment facility. That is, (1) inflow of high-concentration organic wastewater, (2) sludge activity reduction in the reaction tank, and (3) reduction of sludge amount are considered.
[0005]
However, in the monitoring method described in the above-mentioned conventional publication, it is understood that the methane fermenter is indigestible by the calculated VFA, but only the cause of the above (2) or (3) can be obtained by the VFA alone. It is impossible to specify whether the condition is indigestion. Therefore, it is necessary to collect the sludge from the methane fermentation tank and check the activity by analysis or confirm the amount of sludge.
[0006]
In addition, even when high-concentration organic wastewater flows into the methane fermenter, the methane fermenter cannot handle the organic wastewater and normal processing cannot be performed. It is necessary to confirm whether or not.
[0007]
Therefore, the conventional monitoring method has a problem that it takes a long time to identify the cause of the methane fermentation tank not operating normally.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an anaerobic treatment facility and a monitoring method thereof that can accurately identify the cause of the anaerobic treatment facility not operating normally in a short time.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an anaerobic treatment facility equipped with a reaction tank for anaerobically treating organic wastewater to generate gas, and a flow rate measuring means for measuring the flow rate of the organic wastewater, and adjusting the flow rate. Flow rate adjusting means, provided on the upstream side of the reaction tank, provided on the downstream side of the reaction tank, inflow organic substance concentration measuring means for measuring the organic substance concentration in the organic waste water flowing into the reaction tank, Outflow organic substance concentration measuring means for measuring the organic substance concentration in the organic waste water flowing out from the reaction tank, gas generation amount measuring means for measuring the gas generation amount in the reaction tank, the flow rate, the inflow organic substance concentration, Based on the outflow organic matter concentration and the gas generation amount, the following formula:
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
And an anaerobic treatment facility characterized by comprising a computing means for computing the removal base gas generation rate.
[0010]
According to this anaerobic treatment facility, the flow rate is reduced by the flow rate adjusting means when the effluent organic substance concentration measured by the effluent concentration measuring means exceeds a reference value, that is, when the anaerobic treatment equipment is not normally operated. As a result, when the concentration of organic substances flowing out from the reaction tank is less than the reference value, the cause of the anaerobic treatment facility not operating normally is that high-concentration organic wastewater has flowed into the reaction tank. I understand. On the other hand, when the concentration of organic substances flowing out from the reaction tank remains at or above the reference value, the removal base gas generation rate calculated by the calculation means is compared with a normal value. As a result, when the removal base gas generation rate is a normal value, it is understood that the activity of sludge is not lowered in the reaction tank, and the amount of sludge is reduced in the reaction tank. On the other hand, when the removal base gas generation rate is smaller than the normal value, it is understood that the activity of the sludge is reduced in the reaction tank. In this way, when the anaerobic treatment facility is not normally operated, the cause can be accurately identified in a short time.
[0011]
It is preferable that the anaerobic treatment facility further includes an acid generation tank on the upstream side of the inflow organic matter concentration measuring means.
[0012]
When the acid generation tank is installed downstream of the inflow organic substance concentration measuring means and upstream of the reaction tank, when the inflow organic substance concentration measured by the inflow organic substance concentration measuring means temporarily increases, the inflow organic substance concentration Is diluted in an acid generator. For this reason, the organic substance density | concentration actually flowed into a reaction tank becomes small. Therefore, if the removal base gas generation rate is calculated from the inflow organic substance concentration measured upstream of the acid generation tank, the value is far from the original removal base gas generation rate, and the removal base gas generation rate is the activity of the sludge. There is a risk that it will not function properly as an indicator of decrease or sludge reduction. Therefore, by providing the inflow organic substance concentration measuring means upstream of the inflow organic substance concentration measuring means, the removal base gas generation rate can function accurately as an index of sludge activity reduction or sludge amount reduction.
[0013]
The present invention also relates to a monitoring method for anaerobic treatment equipment provided with a reaction tank for anaerobically treating organic wastewater to generate gas, and a flow rate measuring step for measuring the flow rate of the organic wastewater, and the flow into the reaction tank. Inflow organic matter concentration measurement process that measures the organic matter concentration in organic wastewater, outflow organic substance concentration measurement step that measures the organic matter concentration in organic wastewater that flows out from the reaction tank, and gas generation amount in the reaction tank A gas generation amount measuring step, a flow rate adjusting step for reducing the flow rate when the concentration of organic matter flowing out from the reaction tank is equal to or higher than a reference value, and a result of reducing the flow rate of organic wastewater in the flow rate adjusting step When the effluent organic substance concentration remains at a reference value or higher, the flow rate of the organic waste water, the organic substance concentration flowing into the reaction tank, the organic substance concentration flowing out from the reaction tank, and the gas Based on the amount of generated, the following formula:
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
And a determination step of determining whether or not the removal base gas generation rate calculated by (1) is a normal value.
[0014]
According to this monitoring method, the flow rate is reduced when the flow rate of the organic waste water measured in the flow rate measurement step is equal to or higher than the reference value, that is, when the anaerobic treatment facility is not normally operated. As a result, if the concentration of organic substances flowing out of the reaction tank decreases below the standard value, the cause of the failure of the anaerobic treatment facility to operate normally is that high-concentration organic wastewater has flowed into the reaction tank. I understand that there is. On the other hand, when the concentration of organic substances flowing out from the reaction tank remains at or above the reference value, it is determined whether or not the calculated removal base gas generation rate is a normal value. As a result, when the removal base gas generation rate is a normal value, it can be seen that the activity of the sludge is not lowered in the reaction tank, and the amount of sludge is reduced in the reaction tank. When it becomes smaller than a normal value, it turns out that the activity of sludge is falling in the reaction tank. In this way, when the anaerobic treatment facility is not normally operated, the cause can be accurately identified in a short time.
[0015]
The anaerobic treatment facility monitoring method is such that when the organic substance concentration measured in the inflow organic substance concentration measurement step is constant for a predetermined time and the removal base gas generation rate is the normal value in the discrimination step, the inflow organic substance Based on the concentration and the amount of gas generated, the following formula:
Input base gas generation rate = gas generation amount x methane gas concentration in gas / [flow rate of organic waste water x inflow organic substance concentration]
It is preferable that the method further includes a step of determining whether or not the input base gas generation rate calculated by (1) is a normal value.
[0016]
In this case, if the input base gas generation rate is the normal value, it can be understood that there is a cause other than sludge that the anaerobic treatment facility is not normally operated. On the other hand, when the input base gas generation rate is smaller than the normal value, it can be reconfirmed that the reason why the anaerobic treatment facility is not normally operated is the decrease in the amount of sludge.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0018]
FIG. 1 is a schematic view showing an embodiment of the anaerobic treatment facility of the present invention. As shown in FIG. 1, the anaerobic treatment facility 10 includes an acid generation tank 1 and a reaction tank 2 that stores granular sludge. The acid generation tank 1 is connected to an inflow line 3 to generate acid. The tank 1 and the reaction tank 2 are connected by an intermediate line 4, and an outflow line 5 is connected to the reaction tank 2. The acid generation tank 1 decomposes the organic matter in the organic wastewater with acid-producing bacteria to generate an organic acid, and the reaction tank 2 receives the organic acid flowing from the acid generation tank 1 through the intermediate line 4. , Methane fermentation with granulated sludge methanogens to generate methane gas and carbon dioxide gas. A gas holder 16 is connected to the upper part of the reaction tank 2 via a gas discharge line 11, and a gas flow meter (gas generation amount measuring means) that measures the amount of gas generated in the reaction tank 2 is connected to the gas discharge line 11. 12 is installed.
[0019]
In the inflow line 3, a flow meter (flow rate measuring means) 6 and a flow rate adjusting pump (flow rate adjusting means) 7 are installed. As the flow meter 6, for example, an electromagnetic flow meter is used. In addition, the flow meter 6 should just be able to measure the flow volume of organic waste_water | drain, and does not necessarily need to be installed in the inflow line 3. FIG. Therefore, the flow meter 6 may be installed in the intermediate line 4 or the outflow line 5.
[0020]
The intermediate line 4 is provided with a concentration meter (inflow concentration measuring means) 8 for measuring the organic substance concentration in the organic waste water flowing into the reaction tank 2 (hereinafter referred to as “inflow organic substance concentration”). Is provided with a densitometer (outflow concentration measuring means) 9 for measuring an organic substance concentration (hereinafter referred to as “outflow organic substance concentration”) in the organic waste water flowing out from the reaction tank 2. As the densitometers 8 and 9, a COD meter is usually used, but a BOD meter may be used instead of the COD meter.
[0021]
Furthermore, it is preferable that the concentration meter 9 and the flow rate adjusting pump 7 are electrically connected to the control device 13. In this case, the flow rate is automatically adjusted by the flow rate adjusting pump 7 in accordance with the outflow organic substance concentration measured by the concentration meter 9 by the control device 13. Further, the flow meter 6, the concentration meter 8, the concentration meter 9, and the gas flow meter 12 are electrically connected to an arithmetic device (calculation means) 14. The arithmetic unit 14 is configured to measure the flow rate of the organic waste water measured by the flow meter 6, the inflow organic matter concentration measured by the concentration meter 8, the outflow organic matter concentration measured by the concentration meter 9, and the gas generation measured by the gas flow meter 12. Based on the quantity, the following formula:
[0022]
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
Input base gas generation rate = gas generation amount x methane gas concentration in gas / [flow rate of organic waste water x inflow organic substance concentration]
Is used to calculate the removal base gas generation rate and the input base gas generation rate. Here, the removal base gas generation rate represents the amount of gas generation per amount of organic matter removed in the reaction tank 2, and serves as an index of sludge activity. on the other hand. The input base gas generation rate represents the amount of gas generated per the amount of organic matter flowing into the reaction tank 2, and serves as an index of the amount of sludge. Note that the arithmetic device 14 is preferably provided with a display device (not shown) for displaying the arithmetic result.
[0023]
As shown in FIG. 1, the anaerobic treatment facility 10 has the acid generation tank 1 installed on the upstream side of the densitometer 8 for the following reason. That is, when the acid generation tank 1 is installed on the downstream side of the densitometer 8 and on the upstream side of the reaction tank 2, when the inflow organic substance concentration measured by the densitometer 8 temporarily increases, the inflow organic substance concentration is It is diluted in the acid generation tank 1. For this reason, the organic substance density | concentration actually flowed into the reaction tank 2 becomes small. Therefore, when the removal base gas generation rate is calculated based on the inflow organic substance concentration measured on the upstream side of the acid generation tank 1, the value is far from the original removal base gas generation rate. There is a risk that it will not function properly as an indicator of activity decline or sludge reduction. Therefore, in the anaerobic treatment facility 10, by providing the acid generation tank 1 on the upstream side of the concentration meter 8, the removal base gas generation rate can function accurately as an index of sludge activity reduction or sludge amount reduction.
[0024]
Next, the monitoring method of the anaerobic treatment facility 10 described above will be described with reference to the flowchart of FIG.
[0025]
First, the flow rate of the organic waste water passing through the inflow line 3 is measured with the flow meter 6 (flow rate measurement step), the concentration of the inflow organic matter flowing into the reaction tank 2 is measured with the concentration meter 8 (inflow organic matter concentration measurement step), The concentration of the effluent organic substance flowing out from the reaction tank 2 is measured by the densitometer 9 (the effluent organic substance concentration measuring step). Moreover, the gas generation amount of the methane gas and carbon dioxide gas which generate | occur | produces in the reaction tank 2 is measured with the gas flowmeter 12 (gas generation amount measurement process).
[0026]
Here, regarding the inflow organic substance concentration and the outflow organic substance concentration, when the residence time (usually 4 to 8 hours) in the reaction tank 2 is taken into consideration, there is a time delay in the outflow organic substance concentration which is a response to the inflow organic substance concentration. Therefore, the measured value of the effluent organic substance concentration corresponding to the measured value of the inflow organic substance concentration at a certain point in time is a value delayed by the residence time RT (RT = volume V of the reaction tank 2 / flow rate Q of the organic waste water) of the reaction tank 2. It is preferable that For example, when the inflow organic substance concentration is measured at time t1, the measured value of the outflow organic substance concentration is the value at time (t1 + RT). By doing in this way, since the said removal base gas generation rate becomes a more suitable value, the cause which cannot perform the normal operation of the anaerobic processing equipment 10 can be specified more correctly.
[0027]
Similarly to the above, the amount of gas generated is delayed with respect to the concentration of inflowing organic matter, so the value of the amount of gas generation corresponding to the concentration of inflowing organic matter at a certain point in time is the value when the reaction tank 2 is delayed by the residence time RT. It is preferable that
[0028]
Next, it is determined whether or not the concentration of the effluent organic substance flowing out from the reaction tank 2 is equal to or higher than the reference value (S201). If the concentration is higher than the reference value, the flow rate of the organic waste water is decreased by the flow rate adjusting pump 7 ( S202). When the outflow organic substance concentration is less than the reference value, the anaerobic treatment facility 10 is operating normally. For this reason, the flow rate adjusting pump 7 is not adjusted by the control device 13, and the flow rate of the organic waste water is maintained as it is (S203). Thus, the flow rate of the organic waste water is adjusted (flow rate adjusting step).
[0029]
Next, it is determined again whether or not the outflow organic substance concentration is equal to or higher than the reference value (S204). If the outflow organic substance concentration is equal to or higher than the reference value, the arithmetic unit 14 causes the organic drainage flow rate, inflow organic substance concentration, outflow to flow out. Based on organic matter concentration and gas generation amount, the following formula:
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
Thus, the removal base gas generation rate is calculated, and it is determined whether or not the calculated removal base gas generation rate is a normal value (S205). Here, the normal value is generally 0.25 to 0.35 m 3 —CH 4 / kg—COD Cr and is determined to be a constant value depending on the configuration of the reaction tank 2. The methane gas concentration in the gas is the ratio (%) of the methane gas in the gas generated in the reaction tank 2 and is almost determined by the reaction tank 2, and is usually about 80%. On the other hand, when the outflow organic substance concentration is less than the reference value, the reaction tank 2 is operating normally, and the calculation of the removal base gas generation rate is performed by the calculation device 14, but this is the normal value. It is not determined whether or not there is (S206). In this case, after maintaining the reduced flow rate for a certain period of time, the flow rate adjustment pump 7 returns the flow rate to the original flow rate even if the flow rate is increased.
[0030]
If the removal base gas generation rate is smaller than the normal value as a result of the determination, it means that the activity of the sludge is reduced. On the other hand, when the removal base gas generation rate is a normal value, it means that the activity of the sludge is normal but the amount of sludge is decreasing. At this time, the sludge may be replenished to the reaction tank 2 in both cases where the activity of the sludge is reduced and the amount of the sludge is reduced. Thereby, the outflow organic substance concentration can be reduced to a value lower than the reference value.
[0031]
Next, it is determined whether or not to continue monitoring the anaerobic treatment facility 10 (S207). If the monitoring is not continued, the monitoring is terminated, and if the monitoring is continued, the process returns to S201. Can be repeated.
[0032]
As described above, when the effluent organic matter concentration is equal to or higher than the reference value, that is, when the anaerobic treatment facility 10 is not normally operated, the flow rate of the organic wastewater is adjusted according to the measured effluent organic matter concentration. It can be seen whether organic wastewater with a concentration has been introduced. As shown in Table 1, sludge activity is reduced by calculating the removal base gas generation rate and determining whether the value is normal. You can see if the amount of sludge has decreased.
[0033]
[Table 1]
Figure 0004132921
[0034]
Therefore, it is not necessary to collect sludge and check the activity of the sludge, etc., and it becomes possible to accurately and accurately identify the cause of the anaerobic treatment facility 10 not operating normally, and take appropriate measures according to these causes. Can do. Therefore, the method for monitoring the anaerobic treatment facility 10 is extremely useful for normal operation of the anaerobic treatment facility 10.
[0035]
When the inflow organic substance concentration measured by the densitometer 8 is constant for a predetermined time, it is determined whether or not the removal base gas generation rate is a normal value, and when the removal base gas generation rate is a normal value, Based on the inflow organic matter concentration and the amount of gas generated, the following formula:
Input base gas generation rate = gas generation amount x methane gas concentration in gas / [flow rate of organic waste water x inflow organic substance concentration]
It is preferable to determine whether or not the input base gas generation rate calculated by the above is a normal value.
[0036]
In this case, if the input base gas generation rate is the normal value, it can be understood that there is a cause other than sludge that the anaerobic treatment facility 10 is not normally operated. On the other hand, when the input base gas generation rate is smaller than the normal value, it can be reconfirmed that the reason why the anaerobic treatment facility 10 is not normally operated is the decrease in the amount of sludge.
[0037]
Here, “the inflowing organic substance concentration is constant” means that the inflowing organic substance concentration is within a range of ± 20% from the average value of the inflowing organic substance concentration at a predetermined time. The predetermined time is not particularly limited, and is 2 to 8 hours, for example.
[0038]
【The invention's effect】
As described above, according to the anaerobic treatment facility and the monitoring method thereof of the present invention, when the spilled organic matter concentration exceeds the reference value, the spilled organic matter concentration is measured and the flow rate of the organic waste water is adjusted accordingly. Therefore, it is clear that the cause of the spilled organic matter concentration exceeding the standard value is that high concentration organic wastewater was introduced, and calculating the removal base gas generation rate, the sludge activity decreased, You can see if the amount of sludge has decreased. Accordingly, there is no need to collect sludge and check the activity of the sludge, and the cause of the anaerobic treatment equipment not operating normally can be accurately identified in a short time.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of an anaerobic treatment facility of the present invention.
FIG. 2 is a flowchart showing a procedure of an anaerobic treatment facility monitoring method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Acid production tank, 2 ... Reaction tank, 6 ... Flowmeter (flow rate measuring means), 7 ... Flow rate adjustment valve (flow rate adjusting means), 8 ... Concentration meter (inflow organic substance concentration measuring means), 9 ... Concentration meter (outflow) Organic substance concentration measuring means), 10 ... anaerobic treatment equipment, 11 ... gas discharge line (gas generation amount measurement means), 12 ... gas flow meter (gas generation amount measurement means), 14 ... arithmetic unit (calculation means).

Claims (4)

有機性排水を嫌気処理しガスを発生する反応槽を備えた嫌気処理設備において、
前記有機性排水の流量を測定する流量測定手段と、
前記流量を調整する流量調整手段と、
前記反応槽の上流側に設けられ、前記反応槽に流入される有機性排水中の有機物濃度を測定する流入有機物濃度測定手段と、
前記反応槽の下流側に設けられ、前記反応槽から流出される有機性排水中の有機物濃度を測定する流出有機物濃度測定手段と、
前記反応槽におけるガス発生量を測定するガス発生量測定手段と、
前記流量、前記流入有機物濃度、前記流出有機物濃度および前記ガス発生量に基づいて、下記式:
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
により除去ベースガス発生率を演算する演算手段と、
を備えることを特徴とする嫌気処理設備。
In anaerobic treatment equipment equipped with a reaction tank that anaerobically treats organic wastewater and generates gas,
Flow rate measuring means for measuring the flow rate of the organic waste water;
Flow rate adjusting means for adjusting the flow rate;
Inflow organic matter concentration measuring means for measuring the concentration of organic matter in the organic wastewater that is provided upstream of the reaction vessel and flows into the reaction vessel;
An outflow organic matter concentration measuring means for measuring the organic matter concentration in the organic waste water that is provided downstream of the reaction vessel and is discharged from the reaction vessel;
A gas generation amount measuring means for measuring a gas generation amount in the reaction vessel;
Based on the flow rate, the inflow organic matter concentration, the outflow organic matter concentration and the gas generation amount, the following formula:
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
Calculating means for calculating the removal base gas generation rate by:
An anaerobic treatment facility characterized by comprising:
前記流入有機物濃度測定手段の上流側に酸生成槽を更に備えることを特徴とする請求項1に記載の嫌気処理設備。The anaerobic treatment facility according to claim 1, further comprising an acid generation tank on the upstream side of the inflow organic matter concentration measuring means. 有機性排水を嫌気処理しガスを発生する反応槽を備えた嫌気処理設備の監視方法において、
前記有機性排水の流量を測定する流量測定工程と、
前記反応槽に流入される有機性排水中の有機物濃度を測定する流入有機物濃度測定工程と、
前記反応槽から流出される有機性排水中の有機物濃度を測定する流出有機物濃度測定工程と、
前記反応槽におけるガス発生量を測定するガス発生量測定工程と、
前記反応槽から流出される有機物濃度が基準値以上となる場合に有機性排水の流量を減少させる流量調整工程と、
前記流量調整工程で有機性排水の流量を減少させた結果、前記流出有機物濃度が基準値以上のままである場合に、前記流量、前記流入有機物濃度、前記流出有機物濃度および前記ガス発生量に基づいて、下記式:
除去ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×(流入有機物濃度−流出有機物濃度)〕
により演算した除去ベースガス発生率が正常値であるかどうかを判別する判別工程と、
を含むことを特徴とする嫌気処理設備の監視方法。
In the monitoring method of anaerobic treatment equipment equipped with a reaction tank that anaerobically treats organic wastewater and generates gas,
A flow rate measuring step for measuring the flow rate of the organic waste water;
An inflow organic substance concentration measuring step for measuring an organic substance concentration in the organic waste water flowing into the reaction tank;
An effluent organic matter concentration measuring step for measuring the organic matter concentration in the organic wastewater discharged from the reaction vessel;
A gas generation amount measuring step for measuring a gas generation amount in the reaction vessel;
A flow rate adjusting step for reducing the flow rate of organic waste water when the concentration of organic matter flowing out of the reaction tank is equal to or higher than a reference value;
As a result of reducing the flow rate of the organic waste water in the flow rate adjusting step, when the outflow organic matter concentration remains at a reference value or more, based on the flow rate, the inflow organic matter concentration, the outflow organic matter concentration, and the gas generation amount And the following formula:
Removal base gas generation rate = gas generation amount × methane gas concentration in gas / [flow rate of organic wastewater × (inflow organic substance concentration−outflow organic substance concentration)]
A determination step of determining whether or not the removal base gas generation rate calculated by the step is a normal value;
A method for monitoring an anaerobic treatment facility characterized by comprising:
前記流入有機物濃度測定工程において測定される有機物濃度が所定時間一定であって、前記判別工程で除去ベースガス発生率が正常値である場合に、前記流入有機物濃度および前記ガス発生量に基づいて、下記式:
投入ベースガス発生率
=ガス発生量×ガス中のメタンガス濃度/〔有機性排水の流量×流入有機物濃度〕
により演算した投入ベースガス発生率がその正常値であるかどうかを判別する工程を更に含むことを特徴とする請求項3に記載の嫌気処理設備の監視方法。
When the organic matter concentration measured in the inflow organic matter concentration measurement step is constant for a predetermined time and the removal base gas generation rate is a normal value in the discrimination step, based on the inflow organic matter concentration and the gas generation amount, Following formula:
Input base gas generation rate = gas generation amount x methane gas concentration in gas / [flow rate of organic waste water x inflow organic substance concentration]
The anaerobic treatment facility monitoring method according to claim 3, further comprising a step of determining whether or not the input base gas generation rate calculated by the step is a normal value.
JP2002096703A 2002-03-29 2002-03-29 Anaerobic treatment facility and monitoring method thereof Expired - Fee Related JP4132921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096703A JP4132921B2 (en) 2002-03-29 2002-03-29 Anaerobic treatment facility and monitoring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096703A JP4132921B2 (en) 2002-03-29 2002-03-29 Anaerobic treatment facility and monitoring method thereof

Publications (2)

Publication Number Publication Date
JP2003290789A JP2003290789A (en) 2003-10-14
JP4132921B2 true JP4132921B2 (en) 2008-08-13

Family

ID=29239620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096703A Expired - Fee Related JP4132921B2 (en) 2002-03-29 2002-03-29 Anaerobic treatment facility and monitoring method thereof

Country Status (1)

Country Link
JP (1) JP4132921B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
JP2006055769A (en) * 2004-08-20 2006-03-02 Ebara Corp Method and apparatus for anaerobic treatment of organic contaminant
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
JP4688059B2 (en) * 2004-10-29 2011-05-25 株式会社日立プラントテクノロジー Anaerobic ammonia oxidation apparatus and operation method thereof
JP4908016B2 (en) * 2006-02-27 2012-04-04 住友重機械エンバイロメント株式会社 Waste water treatment control system and control method
KR100922536B1 (en) 2007-12-13 2009-10-21 효진바이오뱅크(주) Method for stabilizing unstable state of anaerobic digestion biogas system
JP4920074B2 (en) * 2009-11-27 2012-04-18 水ing株式会社 Anaerobic treatment method and apparatus

Also Published As

Publication number Publication date
JP2003290789A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
WO2020244014A1 (en) Method for predicting effluent standards compliance state of rural domestic wastewater treatment facilities based on support vector machine
JP2008168185A (en) Equipment renewal plan support system
WO2020244265A1 (en) Method for predicting operation effectiveness of rural domestic sewage treatment facility using support vector machine
JP4132921B2 (en) Anaerobic treatment facility and monitoring method thereof
JP4309607B2 (en) Organic waste treatment system
CN113003758A (en) Intelligent digital management system and method for circulating cooling water
JP2009165958A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
KR101293581B1 (en) Control method for amount of blast and energy reduction in sewage treatment process through oxygen uptake rate analyzing
CN116199351A (en) Fault-tolerant control method, device, system and medium for dissolved oxygen meter of aeration tank
JP2004188268A (en) Water quality monitoring/controlling apparatus and sewage treating system
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
JPH0938682A (en) Biological water treatment
JP4248043B2 (en) Biological phosphorus removal equipment
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JPH0841670A (en) Chlorine content controller of chlorine generator
JPH11169885A (en) Control method by water treatment process and device therefor
JP2009226234A (en) Sludge volume calculation method, and monitoring method and control method for aeration tank using the same
JP3837765B2 (en) Nitric acid concentration measuring device
JP3467905B2 (en) How to measure respiration rate
JP5801506B1 (en) Operation method of biological denitrification equipment
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
JPH11290888A (en) Method for biological water treatment and its control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees