JP4132698B2 - Iron-based shape memory alloy tube and manufacturing method thereof - Google Patents

Iron-based shape memory alloy tube and manufacturing method thereof Download PDF

Info

Publication number
JP4132698B2
JP4132698B2 JP2001082752A JP2001082752A JP4132698B2 JP 4132698 B2 JP4132698 B2 JP 4132698B2 JP 2001082752 A JP2001082752 A JP 2001082752A JP 2001082752 A JP2001082752 A JP 2001082752A JP 4132698 B2 JP4132698 B2 JP 4132698B2
Authority
JP
Japan
Prior art keywords
mold
shape memory
iron
memory alloy
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001082752A
Other languages
Japanese (ja)
Other versions
JP2002283025A (en
Inventor
公生 中村
山本  匡昭
吉貞 道浦
眞好 喜多川
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2001082752A priority Critical patent/JP4132698B2/en
Publication of JP2002283025A publication Critical patent/JP2002283025A/en
Application granted granted Critical
Publication of JP4132698B2 publication Critical patent/JP4132698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄系形状記憶合金管、及びその管を遠心金型鋳造により製造する方法に関するものである。
【0002】
【従来の技術】
例えば、新トンネル工法(WBR工法)に適用される鉄系形状記憶合金製管継手の遠心鋳造法による製造は、特開平10−280061号公報等に開示され、図1、図5に示すように、円筒形モールド(金型)1をローラ2により回転し、そのモールド1内面に、溶解炉3から、三角取鍋4、鋳込用トラフ5を介して溶湯aを鋳込んで、所要厚の円筒状溶湯層(管状体)cを形成することによって行うのが一般的である。
【0003】
このとき、図5に示すように、固定のトラフ5から、筒軸方向固定のモールド1内面に溶湯aを鋳込んだり、図1に示すように、前記筒軸方向固定のモールド1に対し、トラフ5を矢印方向に移動させたり、逆に、筒軸方向固定のトラフ5に対し、モールド1をその筒軸方向に移動させて、モールド1内面に溶湯aを鋳込んだりしている。
【0004】
【発明が解決しようとする課題】
図5に示す製造方法は、モールド1内面にその一端から溶湯aを鋳込んでいるため、所要長さの管とするには、溶湯aの流れ性の点から、その管肉厚を厚くせねばならない。また、管(製品)の筒軸方向(長さ方向)における肉厚の均一性を得ることが難しく、外面にピンホール欠陥、内面にドロス欠陥(酸化物の巻き込み欠陥)といった鋳造欠陥などを生じる可能性が大きくなる。このため、管内外面を多量に切削加工して、形状記憶性能の発揮に必要な柱状晶組織帯のみを継手素材に残すことが必要となる。さらに、厚肉管では形状記憶特性に優れた柱状晶組織が得にくくなり、この方法で、薄肉管を製造する(溶湯を少ない重量で鋳造する)とモールド1に均一に溶湯aが流れることなく凝固を開始するため、湯境といった鋳造欠陥が出やすいこと、などの問題がある。
【0005】
したがって、図1に示すように、トラフ5とモールド1をその筒軸方向に相対的に移動させると、鋳込んだ個所の溶湯aの量により、その鋳込み個所の層厚を決定できるため、薄肉管の製造が可能である。
【0006】
しかし、その製造方法においても、使用に耐え得る十分な形状記憶性能を発揮する鉄系形状記憶合金管を得ていないのが実情である。
【0007】
この発明は、上記実情の下、使用に耐え得る十分な形状記憶性能を発揮するようにすることを課題とする。
【0008】
【課題を解決するための手段】
上記課題を達成するため、この発明は、まず、形状記憶特性に必要な柱状晶組織を得やすい薄肉管を安定して製造し得るために、トラフとモールドを相対的に移動させる遠心鋳造法を採用し、つぎに、その遠心鋳造において、柱状晶組織の発現には、鋳込温度、鋳込速度、冷却速度、モールド回転数及びモールド内面のコーティング厚を制御すればよいと考え、それらを最適値とすることとしたのである。
【0009】
トラフとモールドの相対移動は、どちらか一方を動かせばよいが、トラフを動かす方が、その駆動力及び設備も小型ですむ。この場合、トラフは長樋となって、相対移動により鋳込み部(鋳込まれる個所)が動くことから、単位鋳込み量は、その鋳込み部のみでよいため少なくなって、モールド内に静かに溶湯を鋳込むことができ、管状体内面のドロス欠陥の発生(巻き込み)が少なくなる。このため、その欠陥を除去するための切削加工代を小さくすることができ、コスト面で有利となる。
【0010】
鋳込温度は1400℃以上とした。これ未満であると、湯流れが悪くなり、管全長に亘り、均一な厚みを得にくいからである。この温度が高くなればなるほど良好な湯流れ性を発揮するが、1600℃を越えると、溶湯の酸化が進むとともに、溶解炉から注湯取鍋への出湯時に大巾な温度低下を招いて目標の鋳込温度を得ることが困難となるとともに、経済的でない。このため、上限は1600℃とするとよい。
【0011】
鋳込速度は、モールド内面に形成される管状体の肉厚に応じて適宜に設定され、注湯取鍋の傾動速度及びトラフとモールドの相対速度の制御によってその設定をすることができ、この発明では、注湯取鍋からの溶湯流出量を3.0〜10.0kg/sec、相対速度を50〜150mm/secとした。これにより、管状体の肉厚が5〜20mmのものを容易に製造することができる。
【0012】
溶湯(管状体)の冷却は、モールド内又は外面の空冷、水冷等により行い、一般に、凝固組織は冷却条件により、急冷側から、チル晶、柱状晶、等軸晶となり、形状記憶特性に関しては、柱状晶が好ましい。その形状記憶性能を発揮する柱状晶組織を得るには適切な冷却速度が必要で、これは管状体の冷却条件(モールドの材質および厚み、回転数、コーティング条件など)に支配され、実験等により、冷却速度は1〜30℃/secとする。さらには、3〜20℃/secの範囲が好ましい。30℃/secを越えると、得られる管状体の凝固組織でチル層が増加し、形状記憶特性を低下させる。一方、1℃/sec未満であると、等軸晶が多くなり同様に形状記憶特性を低下させる。因みに、回転数は柱状晶の成長には影響が少ない。
【0013】
コーティング層厚は20〜1000μm、好ましくは50〜800μmとする。20μm未満では、上記冷却速度が好ましい範囲を超える。また、製造上の観点から形状記憶合金溶湯とモールドの間で焼き付きが生じるため、モールドを保護する機能が失われる。さらに、鋳造割れや湯境といった鋳造欠陥を生じる。一方、1000μmを越えると、外面に鋳造欠陥(ガス欠陥)を生じ、製造効率の面から、コーティング作業の繰り返し作業と鋳造後のモールドに残ったコーティング材の除去作業に時間を要する。
【0014】
モールド回転数(GNo.)は50〜150Gとする。この値を出ると、溶湯を正常に鋳込みにくくなる。ここで、GNo.=遠心力の加速度/重力の加速度=rω2 /g(・・・▲1▼)で表すことができ、この関係を管の直径D(cm)と回転数N(rpm)によって表すと、r=D/2、ω2 =(2πN)2 /602 (・・・▲2▼)となる。▲1▼に▲2▼を代入すると、GNo.=(D/2g)・(2πN)2 /602 (但し、g=980(cm/sec2 )、π=3.14)、まとめると、GNo.=DN2 /17900となり、最終的に、管の直径(D)と回転数(N)が分かれば、GNo.を得ることができ、逆に、このGNo.の特定から回転数(N)を特定し得る。
【0015】
【発明の実施の形態】
この発明の実施形態としては、上述の各条件を満たすものとして、回転する横向き円筒状モールド内にトラフを介して鉄系形状記憶合金溶湯を鋳込んで、そのモールド内面に前記溶湯から成る管状体を形成する金型遠心鋳造による鉄系形状記憶合金管の製造方法において、前記モールド内面にその内面保護用コーティング層を20〜1000μm厚に形成した後、モールドを回転数(GNo.)50〜150Gで回転させるとともに、トラフとモールドをその筒軸方向に相対的に速度50〜150mm/secで移動させ、その状態で、鉄系形状記憶合金溶湯を鋳込温度1400℃以上、溶湯流出量3.0〜10.0kg/secでモールド内面に鋳込むとともに、その鋳込まれた溶湯の冷却速度を1〜30℃/secとする構成を採用し得る。
【0016】
上記コーティング層の形成には、はけ塗り、スプレー塗布などの周知の手段を適宜に採用し得るが、スプレー塗布の場合には、コーティング材噴出ノズルとモールドをその筒軸方向に相対的に移動させるとともにそのモールドを回転させながら、前記ノズルからコーティング材をモールド内面に噴出して形成するとよい。このようにすれば、層厚を均一にし得るとともに、作業性もよい。また、トラフが移動するものの場合には、そのトラフにノズルを付設することにより、その塗布作業もできる。
【0017】
コーティング材としては、シリカ粉末や珪藻土といった珪酸(SiO2 )成分を80〜90重量%程度含有した骨材に粘結材及び水を配合したものが一般的であるが、主成分がジルコニア系骨材であるものを採用するとよい。鉄系形状記憶合金の溶融金属を鋳造した際、表層に塩基性の酸化物を生じやすく、前記酸性酸化物の珪酸成分を含有する骨材を配合したコーティング材を使用すると、これらが反応して化学的焼着やガス欠陥を生じやすくなる。このため、鉄系形状記憶合金に使用するコーティング材には、高融点で溶融金属と化学的反応が生じにくいジルコニア(ZrO2 )系、マグネシア(MgO)系、クロマイト(Cr2 3 )系の塩基性または中性酸化物の性質を示す骨材を使用する。
【0018】
この塩基性および中性酸化物のジルコニア(ZrO2 )系、マグネシア(MgO)系、クロマイト(Cr2 3 )系骨材の内、マグネシア系は保湿作用が大きく金型へ使用する際に水分の除去が難しく、残留水分によるピンホール欠陥を生じてしまう。また、クロマイト系ではコーティング層の成形が難しくコーティングの強度が低くなるためモールドの保護機能が損なわれる。これに対し、ジルコニア系はそのような問題はない。このため、鉄系形状記憶合金鋳造用金型コーティング材としては、ジルコニア系が好ましく、これにより、鋳肌外面のピンホール発生を抑制し、内面のドロス発生も抑制する。しかし、そのジルコニア系の内、ジルコニア(ZrO2 )は純度が高く高価なため、天然に産出され、比較的安価なジルコン(ZrSiO4 )骨材がより好ましい。このとき、ジルコン骨材(ジルコン90重量%以上)には、珪酸成分を含有しているが少量のため問題はない。
【0019】
そのコーティング材の成分重量比は、水:骨材:粘結材=100:30〜50:1.0〜3.0とするとよい。骨材が重量比で水100に対して30未満では、コーティング被膜層厚さが薄くモールドの保護性能が小さい。また、適切な被膜厚さを得るために繰り返しスプレーコーテイングしなければならず、生産性の面で問題となる。一方、50を越えると、コーティング材をスプレーすることが困難になる。粘結材は、重量比で水100に対して1.0未満では、骨材の結合力が弱くコーティング被膜が容易に剥離するため、モールド保護ができなくなる。一方、3.0を越えると、粘結材中に含有する結晶水量が多くなりピンホール欠陥が増大する。
【0020】
このような方法で製造される鉄系形状記憶合金管は、そのマクロ組織が断面積において80%以上の柱状晶からなるものとすれば、形状回復率を3.0%近くからそれ以上を得ることができ、降伏強度も300MPa以上となる。
【0021】
【実施例】
図1に示す遠心鋳造機により、鉄系形状記憶合金(Fe−0.05%C−28%Mn−6%Si−5%Cr)によってパイプを製造した。まず、コーティング材bとして、表1に示す骨材、粘結材はベントナイトを使用し、配合割合は水:骨材:粘結材=100:30〜50:1.0〜3.0(重量比)のものを使用した。
【0022】
【表1】

Figure 0004132698
【0023】
このコーティング材bをポンプ6からホース6aを介してノズル8に送り込み、台車7を前後動させるとともに、モールド1を回転させ、ノズル8からモールド1内面にコーティング材bを噴出(スプレー)して、コーティング層を600μm厚程度に形成した。このとき、スプレー前にモールド1は150〜250℃に予熱した。
【0024】
つぎに、高周波溶解炉3から、三角取鍋4に形状記憶合金の溶湯aを注入して、その取鍋4をモールド1に対して所要位置までレール9上を移動させる。この後、取鍋4を矢印のごとく傾動するとともに、台車7を矢印のごとく後退(1回)させて、トラフ5からモールド1内面に約70kgの溶湯aを鋳込んだ。
【0025】
この方法において、表2に示すように、各条件を設定し、その各条件下の管をそれぞれ鋳造後、1100℃で溶体化処理を施し、それらの形状回復率を測定した。
【0026】
その方法は、形状回復率測定試験片(全長:55mm、平行部:φ4×23L、標点距離:20mm、M10ネジ加工)内の加工ひずみを取り除くため、測定前に応力除去焼鈍(873K×10min→炉冷、Ar雰囲気)を施した。回復率の測定は、以下の▲1▼〜▲3▼を2度繰り返すことによって行った(トレーニング処理)。
【0027】
▲1▼ 引張歪み付与
各試料ごとに定められた歪量(6%、8%)を引張試験機で付与した後、試験片のケガキ線(20mm)を標点間距離として、それをデジタルノギスにて測定した。引張速度は、試験機のクロスヘッド速度=1.0mm/min(歪み速度=8.3×10-4)とし、恒温室(300K)にて行った。0.2%耐力も同時に測定した。
【0028】
▲2▼ 加熱処理
試験片に歪みを付与した後、小型熱処理炉を用いて、Ar雰囲気中で873K×10min(2度目は、573K×10min)の熱処理を行った。処理後は空冷とした。
【0029】
▲3▼ 形状回復率測定
試料を放冷させた後、標点間距離を再度測定し、その収縮量を計算した。
【0030】
【表2】
Figure 0004132698
【0031】
この表2に示す測定結果によれば、上述の鋳込温度などの各要素が特定値内に入る各実施例1〜7は、十分に使用に耐え得るものであるのに対し、その特定値内に入らない比較例1〜4は、何らかの欠陥があって、使用に耐え得ないものであることがわかる。
【0032】
また、図2(a)には実施例2の鋳肌表面写真を、同図(b)には、同条件で、シリカ系コーティング材を使用した場合の鋳肌表面写真をそれぞれ示す。また、図3には、実施例2の金属組織写真を示す。
【0033】
その図2(a)と(b)の比較から、鋳肌について、前者は全域が均一な点模様を呈しているのに対し、後者は焼着やピンホールなどの欠陥が認められる。これにより、この発明に係るものが優れていることが理解できる。また、下記表3に示すように、シリカ系に比べジルコニア系のコーティング材は、熱伝導率のよい溶融状態から凝固に至る速度が速くなるため、図3に示すように、形状記憶効果の発現に必要な一方向凝固組織が生成しやすくなる。この一方向凝固組織が得られることにより、図4に示すように、形状記憶特性において、シリカ系に比べ、ジルコニア系のコーティング材bによるものは、同等もしくはそれ以上の性能が得られた。
【0034】
【表3】
Figure 0004132698
【0035】
【発明の効果】
この発明は、以上のように各鋳造条件を特定したので、優れた品質の鉄系形状記憶管が得られ、産業上に及ぼす効果は極めて大きい。
【図面の簡単な説明】
【図1】一実施例に係る遠心鋳造機の概略図
【図2(a)】一実施例による鋳肌表面写真
【図2(b)】比較例の鋳肌表面写真
【図3】同実施例による鋳物金属組織写真
【図4】形状記憶効果回復率図
【図5】従来の遠心鋳造機の概略図
【符号の説明】
1 円筒型(モールド)
2 回転用ローラ
3 高周波溶解炉
4 三角取鍋
5 鋳込用トレイ
6 コーティングポンプ
7 移動台車
8 コーティングノズル
9 レール
a 鉄系形状記憶合金溶湯
b コーティング材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron-based shape memory alloy tube and a method for manufacturing the tube by centrifugal mold casting.
[0002]
[Prior art]
For example, the manufacture of ferrous shape memory alloy pipe joints applied to the new tunnel method (WBR method) by centrifugal casting is disclosed in Japanese Patent Application Laid-Open No. 10-280061, as shown in FIGS. The cylindrical mold (mold) 1 is rotated by the roller 2, and the molten metal a is cast on the inner surface of the mold 1 from the melting furnace 3 through the triangular ladle 4 and the casting trough 5. Generally, it is performed by forming a cylindrical molten metal layer (tubular body) c.
[0003]
At this time, as shown in FIG. 5, the molten metal a is cast from the fixed trough 5 to the inner surface of the mold 1 fixed in the cylinder axis direction, or the mold 1 fixed in the cylinder axis direction as shown in FIG. The trough 5 is moved in the direction of the arrow, or conversely, the mold 1 is moved in the cylinder axis direction with respect to the trough 5 fixed in the cylinder axis direction, and the molten metal a is cast on the inner surface of the mold 1.
[0004]
[Problems to be solved by the invention]
In the manufacturing method shown in FIG. 5, since the molten metal a is cast from one end of the inner surface of the mold 1, in order to obtain a pipe having a required length, the thickness of the pipe is increased from the viewpoint of the flowability of the molten metal a. I have to. In addition, it is difficult to obtain a uniform thickness in the tube axis direction (length direction) of the pipe (product), and casting defects such as pinhole defects on the outer surface and dross defects (oxide entrapment defects) occur on the inner surface. The potential increases. For this reason, it is necessary to cut a large amount of the inner and outer surfaces of the pipe and leave only the columnar crystal structure bands necessary for exhibiting the shape memory performance in the joint material. Furthermore, it is difficult to obtain a columnar crystal structure with excellent shape memory characteristics with a thick-walled tube. When a thin-walled tube is manufactured by this method (casting a molten metal with a small weight), the molten metal a does not flow uniformly in the mold 1. Since solidification is started, there is a problem that casting defects such as a hot water boundary are likely to occur.
[0005]
Therefore, as shown in FIG. 1, when the trough 5 and the mold 1 are relatively moved in the direction of the cylinder axis, the layer thickness of the casting portion can be determined by the amount of the molten metal a in the casting portion. Tubes can be manufactured.
[0006]
However, even in the manufacturing method, the actual situation is that an iron-based shape memory alloy tube that exhibits sufficient shape memory performance to withstand use has not been obtained.
[0007]
This invention makes it a subject to exhibit sufficient shape memory performance which can endure use in the said situation.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention first provides a centrifugal casting method in which a trough and a mold are relatively moved in order to stably manufacture a thin-walled tube that can easily obtain a columnar crystal structure necessary for shape memory characteristics. Next, in the centrifugal casting, it is thought that it is necessary to control the casting temperature, casting speed, cooling speed, mold rotation speed, and coating thickness on the inner surface of the mold in order to develop the columnar crystal structure. It was decided to be a value.
[0009]
To move the trough and mold relative to each other, it is only necessary to move either one, but moving the trough requires smaller driving force and equipment. In this case, the trough is long and the casting part (the part to be cast) moves by relative movement, so the unit casting amount is small because only the casting part is required, and the molten metal is gently poured into the mold. It is possible to cast, and the occurrence (winding) of dross defects on the inner surface of the tubular body is reduced. For this reason, the machining allowance for removing the defect can be reduced, which is advantageous in terms of cost.
[0010]
The casting temperature was 1400 ° C. or higher. If it is less than this, the hot water flow becomes worse and it is difficult to obtain a uniform thickness over the entire length of the pipe. The higher this temperature is, the better the hot water flow will be. However, if the temperature exceeds 1600 ° C, the oxidation of the molten metal will proceed and the temperature will drop greatly when pouring from the melting furnace to the pouring ladle. It is difficult to obtain a casting temperature of 1 and it is not economical. For this reason, an upper limit is good to set it as 1600 degreeC.
[0011]
The casting speed is appropriately set according to the thickness of the tubular body formed on the inner surface of the mold, and can be set by controlling the tilting speed of the pouring ladle and the relative speed of the trough and the mold. In the invention, the amount of molten metal outflow from the pouring ladle is set to 3.0 to 10.0 kg / sec, and the relative speed is set to 50 to 150 mm / sec. Thereby, the thing with a thickness of 5-20 mm of a tubular body can be manufactured easily.
[0012]
The molten metal (tubular body) is cooled by air cooling, water cooling, etc. in the mold or on the outer surface. Generally, the solidified structure becomes chill crystals, columnar crystals, equiaxed crystals from the quenching side, depending on the cooling conditions. Columnar crystals are preferred. An appropriate cooling rate is required to obtain a columnar crystal structure that exhibits its shape memory performance, which is governed by the cooling conditions of the tubular body (mold material and thickness, rotation speed, coating conditions, etc.) The cooling rate is 1 to 30 ° C./sec. Furthermore, the range of 3-20 degreeC / sec is preferable. When it exceeds 30 ° C./sec, the chill layer increases in the solidified structure of the obtained tubular body, and the shape memory characteristics are deteriorated. On the other hand, if it is less than 1 ° C./sec, the number of equiaxed crystals increases and the shape memory characteristics are similarly lowered. Incidentally, the rotational speed has little influence on the growth of columnar crystals.
[0013]
The coating layer thickness is 20 to 1000 μm, preferably 50 to 800 μm. If it is less than 20 micrometers, the said cooling rate will exceed a preferable range. Further, from the viewpoint of manufacturing, seizure occurs between the molten shape memory alloy and the mold, so that the function of protecting the mold is lost. Further, casting defects such as casting cracks and hot water boundaries occur. On the other hand, if it exceeds 1000 μm, a casting defect (gas defect) occurs on the outer surface, and from the viewpoint of production efficiency, it takes time to repeat the coating operation and to remove the coating material remaining in the mold after casting.
[0014]
Mold rotation speed (GNo.) Shall be 50-150G. When this value is exceeded, it becomes difficult to cast the molten metal normally. Here, GNo. = Acceleration of centrifugal force / acceleration of gravity = rω 2 / g (... (1)), and this relationship is expressed by the diameter D (cm) of the tube and the rotation speed N (rpm). = D / 2, the ω 2 = (2πN) 2/ 60 2 (··· ▲ 2 ▼). Substituting (2) into (1), GNo. = (D / 2g) · ( 2πN) 2/60 2 ( where, g = 980 (cm / sec 2), π = 3.14), summary, GNo. = DN 2/17900, and the finally, knowing the diameter of the tube (D) and rotational speed (N) is, GNo. Conversely, this GNo. The number of rotations (N) can be specified from the specification of.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, assuming that the above-mentioned conditions are satisfied, a tubular body made of the molten metal is cast on the inner surface of the mold by casting a molten iron-based shape memory alloy through a trough in a rotating horizontal cylindrical mold. In the method of manufacturing an iron-based shape memory alloy tube by mold centrifugal casting to form the inner surface protective coating layer on the inner surface of the mold to a thickness of 20 to 1000 μm, the mold is rotated at a rotational speed (GNo.) Of 50 to 150G. And the trough and the mold are moved relatively at a speed of 50 to 150 mm / sec in the cylinder axis direction, and in this state, the molten iron-based shape memory alloy is cast at a temperature of 1400 ° C. or more and the molten metal flow rate is 3. It is possible to adopt a configuration in which the casting rate is 0 to 10.0 kg / sec and the cooling rate of the cast molten metal is 1 to 30 ° C./sec. .
[0016]
For the formation of the coating layer, well-known means such as brush coating or spray coating can be appropriately employed. However, in the case of spray coating, the coating material ejection nozzle and the mold are relatively moved in the cylinder axis direction. The coating material may be ejected from the nozzle to the inner surface of the mold while rotating the mold. In this way, the layer thickness can be made uniform and the workability is also good. In the case where the trough moves, a coating operation can be performed by attaching a nozzle to the trough.
[0017]
As a coating material, an aggregate containing 80 to 90% by weight of a silicic acid (SiO 2 ) component such as silica powder or diatomaceous earth is generally mixed with a binder and water, but the main component is zirconia bone. It is good to adopt what is a material. When casting a molten metal of an iron-based shape memory alloy, a basic oxide is likely to be formed on the surface layer, and when a coating material containing an aggregate containing a silicic acid component of the acidic oxide is used, these react. Prone to chemical deposition and gas defects. For this reason, coating materials used for iron-based shape memory alloys include zirconia (ZrO 2 ) -based, magnesia (MgO) -based, and chromite (Cr 2 O 3 ) -based materials that have a high melting point and are unlikely to chemically react with molten metal. Use aggregates that exhibit basic or neutral oxide properties.
[0018]
Of these basic and neutral oxide zirconia (ZrO 2 ), magnesia (MgO), and chromite (Cr 2 O 3 ) aggregates, magnesia has a high moisture retention and moisture when used in molds. It is difficult to remove the pinhole defect due to residual moisture. Further, in the chromite system, it is difficult to form a coating layer, and the strength of the coating is lowered, so that the protective function of the mold is impaired. On the other hand, the zirconia system does not have such a problem. For this reason, as a die coating material for iron-based shape memory alloy casting, a zirconia-based material is preferable, thereby suppressing the occurrence of pinholes on the outer surface of the casting surface and the occurrence of dross on the inner surface. However, among the zirconia series, zirconia (ZrO 2 ) is high in purity and expensive, and thus naturally produced and relatively inexpensive zircon (ZrSiO 4 ) aggregate is more preferable. At this time, the zircon aggregate (zircon 90% by weight or more) contains a silicic acid component, but there is no problem because the amount is small.
[0019]
The component weight ratio of the coating material is preferably water: aggregate: caking additive = 100: 30-50: 1.0-3.0. When the aggregate is less than 30 by weight with respect to 100 water, the coating film layer thickness is thin and the protective performance of the mold is small. In addition, in order to obtain an appropriate film thickness, spray coating must be repeated, which is a problem in terms of productivity. On the other hand, if it exceeds 50, it becomes difficult to spray the coating material. If the weight ratio of the binder is less than 1.0 with respect to 100 of water, the bonding strength of the aggregate is weak and the coating film is easily peeled off, so that the mold cannot be protected. On the other hand, if it exceeds 3.0, the amount of water of crystallization contained in the binder increases and pinhole defects increase.
[0020]
An iron-based shape memory alloy tube manufactured by such a method obtains a shape recovery rate of nearly 3.0% or more if the macrostructure is made of columnar crystals having a cross-sectional area of 80% or more. And the yield strength is 300 MPa or more.
[0021]
【Example】
The pipe was manufactured with the iron-type shape memory alloy (Fe-0.05% C-28% Mn-6% Si-5% Cr) with the centrifugal casting machine shown in FIG. First, as the coating material b, the aggregate and the binder shown in Table 1 use bentonite, and the blending ratio is water: aggregate: caking binder = 100: 30-50: 1.0-3.0 (weight) Ratio) was used.
[0022]
[Table 1]
Figure 0004132698
[0023]
This coating material b is sent from the pump 6 to the nozzle 8 via the hose 6a, and the carriage 7 is moved back and forth, the mold 1 is rotated, and the coating material b is ejected (sprayed) from the nozzle 8 to the inner surface of the mold 1, The coating layer was formed to a thickness of about 600 μm. At this time, the mold 1 was preheated to 150 to 250 ° C. before spraying.
[0024]
Next, molten metal a of shape memory alloy is poured into the triangular ladle 4 from the high frequency melting furnace 3, and the ladle 4 is moved on the rail 9 to the required position with respect to the mold 1. Thereafter, the ladle 4 was tilted as indicated by an arrow, and the carriage 7 was moved backward as indicated by an arrow (once) to cast about 70 kg of molten metal a from the trough 5 onto the inner surface of the mold 1.
[0025]
In this method, as shown in Table 2, each condition was set, and the tubes under each condition were cast, and then subjected to a solution treatment at 1100 ° C., and their shape recovery rates were measured.
[0026]
The method uses a stress recovery annealing (873 K × 10 min) before measurement in order to remove the processing strain in the shape recovery rate measurement test piece (full length: 55 mm, parallel part: φ4 × 23 L, gauge distance: 20 mm, M10 thread processing). → Furnace cooling, Ar atmosphere). The recovery rate was measured by repeating the following (1) to (3) twice (training process).
[0027]
(1) Applying tensile strain After applying the strain amount (6%, 8%) determined for each sample with a tensile tester, the marking line (20mm) of the test piece is taken as the distance between the gauge points, and this is digital caliper. Measured with The tensile speed was set at a constant temperature room (300 K) with a crosshead speed of the tester = 1.0 mm / min (strain speed = 8.3 × 10 −4 ). The 0.2% yield strength was also measured at the same time.
[0028]
{Circle around (2)} After applying strain to the heat-treated test piece, heat treatment was performed at 873 K × 10 min (second time, 573 K × 10 min) in an Ar atmosphere using a small heat treatment furnace. After the treatment, it was air-cooled.
[0029]
(3) After the shape recovery rate measurement sample was allowed to cool, the distance between the gauge points was measured again, and the amount of shrinkage was calculated.
[0030]
[Table 2]
Figure 0004132698
[0031]
According to the measurement results shown in Table 2, each of Examples 1 to 7 in which each element such as the casting temperature described above falls within a specific value can sufficiently withstand the use, whereas the specific value It can be seen that Comparative Examples 1 to 4 that do not fall within the range have some defects and cannot be used.
[0032]
FIG. 2 (a) shows a cast skin surface photograph of Example 2, and FIG. 2 (b) shows a cast skin surface photograph when a silica-based coating material is used under the same conditions. FIG. 3 shows a metallographic photograph of Example 2.
[0033]
From the comparison between FIGS. 2A and 2B, the casting surface has a uniform dot pattern throughout the former, whereas the latter has defects such as seizure and pinholes. Thereby, it can be understood that the present invention is superior. Further, as shown in Table 3 below, the zirconia-based coating material has a higher rate of solidification from a molten state with good thermal conductivity than the silica-based material. Therefore, as shown in FIG. The unidirectionally solidified structure necessary for this is easily generated. By obtaining this unidirectionally solidified structure, as shown in FIG. 4, in the shape memory characteristic, the performance with the zirconia-based coating material b was equal to or higher than that of the silica-based one.
[0034]
[Table 3]
Figure 0004132698
[0035]
【The invention's effect】
In the present invention, since the respective casting conditions are specified as described above, an iron-type shape memory tube of excellent quality is obtained, and the effect on the industry is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic view of a centrifugal casting machine according to one embodiment. FIG. 2 (a) is a photograph of a casting surface according to one embodiment. FIG. 2 (b) is a photograph of a casting surface of a comparative example. Cast metal structure photograph by example [Fig. 4] Shape memory effect recovery rate diagram [Fig. 5] Schematic diagram of conventional centrifugal casting machine [Explanation of symbols]
1 Cylindrical type (mold)
2 Rolling roller 3 High-frequency melting furnace 4 Triangular ladle 5 Casting tray 6 Coating pump 7 Moving carriage 8 Coating nozzle 9 Rail a Iron-based shape memory alloy molten metal b Coating material

Claims (2)

回転する横向き円筒状モールド(1)内にトラフ(5)を介して鉄系形状記憶合金溶湯(a)を鋳込んで、そのモールド(1)内面に前記溶湯(a)から成る管状体(c)を形成する金型遠心鋳造による鉄系形状記憶合金管の製造方法であって、
上記モールド(1)内面保護用コーティング層コーティング材(b)主成分がジルコニア系骨材であるものとするとともに、その成分重量比を、水:骨材:粘結材=100:30〜50:1.0〜3.0であるものとし、
上記モールド(1)内面にその内面保護用コーティング層を20〜1000μm厚に形成した後、モールド(1)を回転数(GNo.)50〜150Gで回転させるとともに、上記トラフ(5)とモールド(1)をその筒軸方向に相対的に速度50〜150mm/secで移動させ、その状態で、上記鉄系形状記憶合金溶湯(a)を鋳込温度1400℃以上、溶湯流出量3.0〜10.0kg/secで前記モールド(1)内面に鋳込むとともに、その鋳込まれた溶湯(a)の冷却速度を1〜30℃/secとすることを特徴とする鉄系形状記憶合金管の製造方法。
A tubular body (c) made of the molten metal (a) is cast on the inner surface of the mold (1) by casting a molten iron-based shape memory alloy (a) through a trough (5) into a rotating horizontal cylindrical mold (1). A method of manufacturing an iron-based shape memory alloy tube by mold centrifugal casting to form
Together with the mold (1) an inner surface protective coating layer coating of (b) is a main component assumed to be zirconia aggregate, the component weight ratio of water: Aggregate: Nebayuizai = 100: 30 50: 1.0 to 3.0 ,
After forming the inner surface protection coating layer on the inner surface of the mold (1) to a thickness of 20 to 1000 μm, the mold (1) is rotated at a rotational speed (GNo.) Of 50 to 150 G, and the trough (5) and the mold ( 1) is moved at a speed of 50 to 150 mm / sec in the direction of the cylinder axis, and in this state, the iron-based shape memory alloy molten metal (a) is cast at a temperature of 1400 ° C. or more and the molten metal flow rate is 3.0 to An iron-based shape memory alloy tube characterized by being cast into the inner surface of the mold (1) at 10.0 kg / sec and the cooling rate of the cast molten metal (a) being 1 to 30 ° C./sec. Production method.
上記コーティング層を、コーティング材噴出ノズル(8)と上記モールド(1)をその筒軸方向に相対的に移動させるとともにそのモールド(1)を回転させながら、前記ノズル(8)からコーティング材(b)をモールド(1)内面に噴出して形成することを特徴とする請求項1に記載の鉄系形状記憶合金管の製造方法。  The coating layer is moved from the nozzle (8) to the coating material (b The method of manufacturing an iron-based shape memory alloy tube according to claim 1, wherein:
JP2001082752A 2001-03-22 2001-03-22 Iron-based shape memory alloy tube and manufacturing method thereof Expired - Fee Related JP4132698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082752A JP4132698B2 (en) 2001-03-22 2001-03-22 Iron-based shape memory alloy tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082752A JP4132698B2 (en) 2001-03-22 2001-03-22 Iron-based shape memory alloy tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002283025A JP2002283025A (en) 2002-10-02
JP4132698B2 true JP4132698B2 (en) 2008-08-13

Family

ID=18938659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082752A Expired - Fee Related JP4132698B2 (en) 2001-03-22 2001-03-22 Iron-based shape memory alloy tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4132698B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2339485C2 (en) * 2006-01-16 2008-11-27 Олег Владимирович Анисимов Method for manufacturing foundry from metallic melt
JP5455008B2 (en) * 2009-03-04 2014-03-26 株式会社栗本鐵工所 Centrifugal casting method
CA2897822A1 (en) * 2013-01-09 2014-07-17 The Nanosteel Company, Inc. New classes of steels for tubular products
JP6084118B2 (en) * 2013-05-24 2017-02-22 本田技研工業株式会社 Centrifugal casting method
CN106862515B (en) * 2017-03-29 2018-08-14 沈阳工业大学 A kind of preparation facilities and method of the long pipe of major diameter light-alloy
CN111778853B (en) * 2019-04-06 2022-04-12 振中建设集团有限公司 Inner cavity template recycling construction method for concrete structure with closed inner cavity
CN113426977B (en) * 2021-05-12 2022-12-20 广东新兴铸管有限公司 Efficient hot die centrifugal casting production process for nodular cast iron pipe

Also Published As

Publication number Publication date
JP2002283025A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
US20090218066A1 (en) Water-based wash containing a nucleating agent
JP4132698B2 (en) Iron-based shape memory alloy tube and manufacturing method thereof
JP3390281B2 (en) Powder for continuous casting of steel
JP2020175394A (en) Chill roll, twin roll type continuous casting device, thin casting piece casting method, and chill roll production method
JP3780966B2 (en) Continuous casting powder and continuous casting method using it
JP6213101B2 (en) Scum weir, thin slab manufacturing method and thin slab manufacturing apparatus
JP3550373B2 (en) Mold coating material for iron-based shape memory alloy casting
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
CN111136258B (en) Heat treatment method of high-temperature Ti-based alloy casting
CN108607973A (en) A kind of method for casting aluminium alloy generating elongate column crystal solidification tissue
US4210193A (en) Method of producing an aluminum-silicon casting
JP2004002981A (en) Ferrous shape memory alloy tube and its production method
JP4451798B2 (en) Continuous casting method
JP3395729B2 (en) Continuous casting method
CN110614353A (en) Method for reducing machining allowance of inner cavity of centrifugal cast tube
CN110773713B (en) Method for preparing composite metal plate by centrifugal casting
JP2002307150A (en) Method for producing cast iron tube
JP2000094006A (en) Production of thin stainless steel strip
JPS5829546A (en) Production of large sized steel ingot having no segregation
JPS60234751A (en) Flux for continuous casting of steel
JP2021146391A (en) Alloy element additive, copper alloy material production device and production method for copper alloy material
JP2020157328A (en) Copper wire production device and copper wire production method
JPH08257696A (en) Refractory nonwoven fabric for continuously casting steel and method for continuously casting steel using it
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
JPH01237051A (en) Method for continuously casting hoop-state cast slab

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4132698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees