JP4130989B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP4130989B2
JP4130989B2 JP10646899A JP10646899A JP4130989B2 JP 4130989 B2 JP4130989 B2 JP 4130989B2 JP 10646899 A JP10646899 A JP 10646899A JP 10646899 A JP10646899 A JP 10646899A JP 4130989 B2 JP4130989 B2 JP 4130989B2
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
plating layer
graphite powder
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10646899A
Other languages
Japanese (ja)
Other versions
JP2000123797A (en
Inventor
誠一 日方
定司 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10646899A priority Critical patent/JP4130989B2/en
Publication of JP2000123797A publication Critical patent/JP2000123797A/en
Application granted granted Critical
Publication of JP4130989B2 publication Critical patent/JP4130989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、性能改善して重負荷用途に適するようにしたアルカリ乾電池に関する。
【0002】
【従来の技術】
ノート型パソコン、CDプレーヤ,MDプレーヤ,液晶テレビ等の携帯用AV機器、携帯電話などのように超重負荷あるいは重負荷の用途が最近のアルカリ乾電池に要求されてきている。
【0003】
かかるアルカリ乾電池において、その正極缶は、鋼板の両面に予めニッケルメッキを施したものをプレス絞りしごき加工するか、鋼板のみで絞り加工した後ニッケルメッキを施し、それぞれ内面に黒鉛粉末を主成分とする導電性被膜を形成させたものが使用されており、これにより正極合剤と正極缶との接触抵抗を低減させ、重負荷特性を改善している。
【0004】
【発明が解決しようとする課題】
ところでアルカリ乾電池において高容量化を実現させるためには、正極合剤中の二酸化マンガン含有率を増加させなければならず、必然的に導電剤の黒鉛粉末の含有率が低くなる。このことは、正極合剤と正極缶との接触抵抗を増大させ、短絡電流の低下や重負荷特性を低下させる原因となる。
【0005】
この対策として、上記したように正極缶の内面に導電性被膜を形成させることが行われているが、このような高容量化電池は、貯蔵後、特に高温貯蔵後に重負荷特性が低下するという問題がある。
本発明は上記問題に対処してなされたもので、アルカリ乾電池の高容量化を達成し、かつ貯蔵後の重負荷特性の低下を防止することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記問題を正極缶を改良することによって達成した。すなわち本発明は、(1)正極端子を兼ねる有底円筒の正極缶と、その正極缶内に配置された中空円筒状の正極合剤と、有底円筒状のセパレータを介して前記正極合剤の中空部に充填されたゲル状亜鉛負極とを備えるアルカリ乾電池において、前記正極缶として、予め両面にニッケルメッキ層を形成させた冷間圧延鋼板材の一方の面にニッケル−鉄合金メッキ層を形成し、その面が内面になるようにプレス絞りしごき加工した缶を使用したことを特徴とする。
【0008】
た、本発明は、(2)正極端子を兼ねる有底円筒の正極缶と、その正極缶内に配置された中空円筒状の正極合剤と、有底円筒状のセパレータを介して前記正極合剤の中空部に充填されたゲル状亜鉛負極とを備えるアルカリ乾電池において、前記正極缶として、冷間圧延鋼板材の一方の面にニッケルメッキ層を形成させ、もう一方の面にニッケル−鉄合金メッキ層を形成させ、ニッケル−鉄合金メッキ層が内面になるようにプレス絞りしごき加工した缶を使用したことを特徴とする。
【0009】
上記(1)の本発明のアルカリ乾電池で使用する正極缶は、その内面に形成されたニッケル−鉄合金メッキ層が、プレス絞りしごき加工時に発生した非常に細かいひび割れによって凹凸面を構成するので、正極合剤や導電性被膜との接触面積が大きくなり、電池の内部抵抗を低減させる。一方、ニッケル−鉄合金メッキ層の下には更にニッケルメッキ層が形成されているので、これらの層がひび割れしても鉄の下地が露出することが少ない。したがって、高温貯蔵した際の鉄の酸化により、正極合剤や導電性被膜との接触抵抗が大きくなることがなく、高温貯蔵後の重負荷特性の劣化が小さい。
【0011】
次に(2)のアルカリ乾電池で使用する正極缶も、内面に形成されたニッケル−鉄合金メッキ層にプレス絞りしごき加工時に細かいひび割れが発生し、凹凸面を構成する。この場合、ニッケル−鉄合金メッキ層は硬度が高いので、ひび割れの間隔が密になり、そのため正極合剤や導電性被膜との接触面積が大きくなるとともに正極合剤の密着性が向上し、電池の内部抵抗を低減させる。ニッケル−鉄合金メッキ層の硬度が高いため、ひび割れはこのメッキ層のごく表層部にのみ発生し、ひび割れによって鉄の下地が露出することがない。したがって、上記の発明同様に高温貯蔵後の重負荷特性の劣化を阻止することができる。
【0012】
上記(1)〜(2)の本発明のアルカリ乾電池はいずれもこのような特性を有するので、正極合剤中の黒鉛粉末含有量を8wt%以下に減量して、その分二酸化マンガンの量を増加させることができ、高容量化を達成できる。また、本発明における正極缶の内面には、さらに黒鉛粉末を主成分とする導電性被膜を形成してもよい。
【0013】
【発明の実施の形態】
以下、本発明の実施例について詳細に説明する。
(1)の発明について。
(実施例1)
まず、予め両面に厚さ1〜2μmのニッケルメッキ層を形成させた冷間圧延鋼板材の一方の面に更に厚さ1〜2μmのニッケル−鉄合金メッキ層を形成させた。このニッケル−鉄合金メッキ層の形成は、硫酸ニッケル200g/l,塩化ニッケル5g/l,硫酸第一鉄8g/l.ホウ酸25g/lおよびサッカリン3g/lを含有し、pH2.3、浴温21℃のパーマロイメッキ浴で処理して行った。
【0014】
この鋼板を用いて、ニッケル−鉄合金メッキ層面が内側になるように、有底の円筒形にプレス絞りしごき加工して正極缶を形成した。この正極缶のメッキ層の構成を図2に示す。この図に示されるように、正極缶の鋼板9には厚さ1〜2μmのニッケルメッキ層10が形成され、その上に、缶内側になる面に厚さ1〜2μmのニッケル−鉄合金メッキ層11が形成されている。
【0015】
このように形成した正極缶の内面に、開口部のガスケットと接する部分を除いて黒鉛粉末を主成分とする導電性被膜を形成した。導電性被膜の塗布方法は、黒鉛粉末を主成分とする導電性塗料をメチルエチルケトン等の低沸点有機溶剤にて希釈し、スプレーガンによって霧状に正極缶内面に塗布することによって行い、正極缶開口部のガスケットに接する部分には塗布しないようにする。導電塗料をスプレーガンにて塗布した後、乾燥機にて溶剤を蒸発させる。残った導電膜の厚さは1〜10μm程度が望ましい。この正極缶のメッキ層の構成を図3に示す。図3において12は導電性被膜である。
【0016】
図3に示す導電性被膜が形成された正極缶を用いて、図1に示すJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。この図1において、1は前記の方法で製造した正極端子を兼ねる有底円筒形の正極缶であり、前記したように、この正極缶の内面側には厚さ1〜2μmのニッケルメッキ層が形成され、その上に厚さ1〜2μmのニッケル−鉄合金メッキ層が形成され、更にその上に導電性被膜が形成されている。
【0017】
この正極缶内には円筒状に加圧成形した3個の正極合剤2が分割充填されている。正極合剤2は二酸化マンガン粉末と黒鉛粉末を混合し、これを成形型を用いて所定の圧力で中空円筒状に加圧成形したものであり、放電容量の高容量化のために正極合剤2中の黒鉛粉末含有率は8wt%となっている。
【0018】
また、正極合剤2の中空部にはアセタール化ポリビニルアルコール繊維の不織布からなる有底円筒状のセパレータ3が配置されている。このセパレータ3を介して、無汞化亜鉛合金粉末、アルカリ電解液及びゲル化剤としてのポリアクリル酸からなるゲル状亜鉛負極4が充填されている。ゲル状亜鉛負極4内には真鍮製の負極集電棒5が、その先端部をゲル状負極4に差し込むようにして装着されている。負極集電棒5の上部外周及び正極缶1の上部内周面には二重環状のポリアミド樹脂からなる絶縁ガスケット6が配設されている。また、絶縁ガスケット6の二重環状部の間にはリング状の金属板7が配設され、かつ金属板7には負極端子を兼ねる帽子型の金属封口板8が集電棒5の頭部に当接するように配設されている。そして、正極缶1の開口縁を内方に屈曲させることによりガスケット6及び金属封口板8で正極缶1内を密封口している。
【0019】
(実施例2)
その内面に黒鉛粉末を主成分とする導電性被膜を形成せず、それ以外は実施例1と同様にして製造した正極缶を用いて、実施例1と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0020】
(比較例1)
予め両面に厚さ1〜2μmのニッケルメッキ層を形成させた冷間圧延鋼板材を有底の円筒形にプレス絞りしごき加工し、内側面に黒鉛粉末を主成分とする導電性被膜を形成したものを正極缶として用い、それ以外は実施例1と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0021】
(比較例2)
冷間圧延鋼板材を有底の円筒形にプレス絞りしごき加工した後で、厚さ1〜2μmのニッケルメッキ層を形成させ、内側面に黒鉛粉末を主成分とする導電性被膜を形成したものを正極缶として用い、それ以外は実施例1と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0022】
(比較例3)
内側面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例1と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0023】
(比較例4)
内側面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例2と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0024】
上記のようにして組み立てた実施例1〜2、比較例1〜4の各LR6形アルカリ乾電池について、60℃で0日、10日及び60日間貯蔵した後の、20℃における内部抵抗と放電容量を調べ、その結果を表1に示した。内部抵抗(mΩ)はそれぞれの電池10個を1kHzの交流抵抗計を用い測定し、それらの平均値を示した。放電容量はそれぞれの電池10個について2Ω連続放電試験を実施し、終止電圧0.9Vまでの持続時間(min)の平均値を示した。
【0025】
【表1】

Figure 0004130989
【0026】
上記表から明らかなように、実施例1〜2は、比較例1〜4に比べて、60℃に60日間貯蔵しても電池の内部抵抗の増大が少なく、放電容量の劣化も少ないことが判る。
【0027】
実施例3)
予め両面に厚さ1〜2μmのニッケルメッキ層を形成させた冷間圧延鋼板材のフープ材に500〜600℃の温度を数時間かけ、鋼板(鉄)とニッケルメッキ層の間にニッケル−鉄合金メッキ層を形成させた。
【0028】
この鋼板を用いて、有底の円筒形にプレス絞りしごき加工して正極缶を形成した。この正極缶のメッキ層の構成を図4に示す。この図に示されるように、正極缶の鋼板9には厚さ1〜2μmのニッケル−鉄合金メッキ層11が形成され、その上に厚さ1〜2μmのニッケルメッキ層10が形成されている。
【0029】
このように形成した正極缶の内面に、実施例1と同様に、開口部のガスケットと接する部分を除いて黒鉛粉末を主成分とする導電性被膜を形成した。導電性被膜の塗布方法は、黒鉛粉末を主成分とする導電性塗料をメチルエチルケトン等の低沸点有機溶剤にて希釈し、スプレーガンによって霧状に正極缶内面に塗布することによって行い、正極缶開口部のガスケットに接する部分には塗布しないようにする。導電塗料をスプレーガンにて塗布した後、乾燥機にて溶剤を蒸発させる。残った導電膜の厚さは1〜10μm程度が望ましい。この正極缶のメッキ層の構成を図5に示す。図5において、12は導電性皮膜である。
【0030】
図5に示す導電性被膜が形成された正極缶を用いて、実施例1と同じく図1に示すJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。この電池の正極合剤2中の黒鉛粉末含有率は8wt%となっている。
【0031】
(実施例4)
その内面に黒鉛粉末を主成分とする導電性被膜を形成せず、それ以外は実施例3と同様にして製造した正極缶を用いて、実施例3と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0032】
上記のようにして組み立てた実施例3〜4と、前記比較例1〜4の各LR6形アルカリ乾電池について、60℃で0日、10日及び60日間貯蔵した後の、20℃における内部抵抗と放電容量を調べ、その結果を表2に示した。内部抵抗(mΩ)はそれぞれの電池10個を1kHzの交流抵抗計を用い測定し、それらの平均値を示した。放電容量はそれぞれの電池10個について2Ω連続放電試験を実施し、終止電圧0.9Vまでの持続時間(min)の平均値を示した。
【0033】
【表2】
Figure 0004130989
【0034】
上記表から明らかなように、実施例3〜4は、比較例1〜4に比べて、60℃に60日間貯蔵しても電池の内部抵抗の増大が少なく、放電容量の劣化も少ないことが判る。これは、鋼板とニッケルメッキ層との間にニッケル−鉄合金メッキ層が形成されているので、メッキの結晶が緻密になり、硬度が高くなって、加工時に発生したひび割れの間隔が0.1mm以下となり(従来のニッケルメッキのみでは0.2〜0.5mm程度)、このため正極合剤および導電性皮膜との接触面積が大きくなるとともに、正極合剤の密着性が向上したためである。
【0035】
(2)の発明について。
(実施例5)
冷間圧延鋼板材の一方の面に厚さ1〜3μmのニッケルメッキ層を形成させ,もう一方の面にニッケル−鉄合金メッキ層を形成させた。このニッケル−鉄合金メッキ層の形成は、硫酸ニッケル200g/l,塩化ニッケル5g/l,硫酸第一鉄8g/l.ホウ酸25g/lおよびサッカリン3g/lを含有し、pH2.3、浴温21℃のパーマロイメッキ浴で処理して行った。
【0036】
この鋼板を用いて、ニッケル−鉄合金メッキ層面が内側になるように、有底の円筒形にプレス絞りしごき加工して正極缶を形成した。この正極缶のメッキ層の構成を図6に示す。この図に示されるように、正極缶の鋼板9の一方の面には厚さ1〜3μmのニッケルメッキ層10が形成され、もう一方の面には厚さ1〜3μmのニッケル−鉄合金メッキ層11が形成されている。
【0037】
このように形成した正極缶の内面に、開口部のガスケットと接する部分を除いて黒鉛粉末を主成分とする導電性被膜を形成した。導電性被膜の塗布方法は、黒鉛粉末を主成分とする導電性塗料をメチルエチルケトン等の低沸点有機溶剤にて希釈し、スプレーガンによって霧状に正極缶内面に塗布することによって行い、正極缶開口部のガスケットに接する部分には塗布しないようにする。導電塗料をスプレーガンにて塗布した後、乾燥機にて溶剤を蒸発させる。残った導電膜の厚さは1〜10μm程度が望ましい。この正極缶のメッキ層の構成を図7に示す。図7において12は導電性被膜である。
【0038】
図7に示す導電性被膜が形成された正極缶を用いて、図1に示すJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。この図1において、1は前記の方法で製造した正極端子を兼ねる有底円筒形の正極缶であり、前記したように、この正極缶の内面側には厚さ1〜3μmのニッケル−鉄合金メッキ層11が形成され、その上に導電性被膜12が形成されている。正極合剤2中の黒鉛粉末含有率は3wt%である。
【0039】
(実施例6)
正極合剤の黒鉛粉末含有率が5wt%であること以外は、実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0040】
(実施例7)
正極合剤の黒鉛粉末含有率が8wt%であること以外は、実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0041】
(実施例8)
正極缶の内面に黒鉛粉末を主成分とする導電性皮膜を形成せず、それ以外は実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0042】
(実施例9)
正極缶の内面に黒鉛粉末を主成分とする導電性皮膜を形成せず、それ以外は実施例6と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0043】
(実施例10)
正極缶の内面に黒鉛粉末を主成分とする導電性皮膜を形成せず、また正極合剤の黒鉛粉末含有率を8wt%とし、それ以外は実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0044】
(比較例5)
予め両面に厚さ1〜3μmのニッケルメッキ層を形成させた冷間圧延鋼板材を有底の円筒形にプレス絞りしごき加工し、内側面に黒鉛粉末を主成分とする導電性被膜を形成したものを正極缶として用い、それ以外は実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0045】
(比較例6)
正極合剤の黒鉛添加率が8%であること以外は、比較例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0046】
(比較例7)
冷間圧延鋼板材を有底の円筒形にプレス絞りしごき加工した後で、厚さ1〜3μmのニッケルメッキ層を形成させ、内側面に黒鉛粉末を主成分とする導電性被膜を形成したものを正極缶として用い、それ以外は実施例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0047】
(比較例8)
正極合剤の黒鉛添加率が8%であること以外は、比較例7と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0048】
(比較例9)
内面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例5と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0049】
(比較例10)
内面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例6と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0050】
(比較例11)
内面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例7と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0051】
(比較例12)
内面に黒鉛粉末を主成分とする導電性被膜を形成しないで、それ以外は比較例8と同様にしてJIS規格LR6形(単3形)アルカリ乾電池を組み立てた。
【0052】
上記のようにして組み立てた実施例5〜10と、比較例5〜12の各LR6形アルカリ乾電池について、60℃で0日、10日及び60日間貯蔵した後の、20℃における内部抵抗と放電容量を調べ、その結果を表3に示した。内部抵抗(mΩ)はそれぞれの電池100個を1kHzの交流抵抗計を用い測定し、それらの平均値を示した。放電容量はそれぞれの電池10個について1.5Ω連続放電試験を実施し、終止電圧0.9Vまでの持続時間(min)の平均値を示した。
【0053】
【表3】
Figure 0004130989
【0054】
上記表から明らかなように、実施例5〜10は、比較例5〜12に比べて、60℃に60日間貯蔵しても電池の内部抵抗の増大が少なく、放電容量の劣化も少ないことが判る。これは、実施例5〜10の電池では正極缶の内面にニッケル−鉄合金メッキ層が形成されているので、メッキの結晶が緻密になり、硬度が高くなったため、加工時に発生したひび割れの間隔が0.1mm以下となり、このため正極合剤および導電性皮膜との接触面積が大きくなるとともに、正極合剤の密着性が向上したためである。なお、正極合剤の黒鉛添加率を8%より多くしても内部抵抗に対する効果は上がらず、一方放電容量は低下する傾向があるので、黒鉛添加率は8%までが好ましい。
【0055】
【発明の効果】
以上説明したように、本発明のアルカリ乾電池はいずれも、正極缶を改良したことにより、高容量化に伴う内部抵抗増大の問題や重負荷特性低下の問題を解決し、高容量で重負荷特性および貯蔵特性に優れたアルカリ乾電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるアルカリ乾電池の断面図。
【図2】本発明の実施例における正極缶の層構成図。
【図3】本発明の他の実施例における正極缶の層構成図。
【図4】本発明の他の実施例における正極缶の層構成図。
【図5】本発明の他の実施例における正極缶の層構成図。
【図6】本発明の他の実施例における正極缶の層構成図。
【図7】本発明の他の実施例における正極缶の層構成図。
【符号の説明】
1…正極缶、2…正極合剤、3…セパレータ、4…ゲル状亜鉛負極、5…負極集電棒、6…絶縁ガスケット、7…リング状金属板、8…金属封口板、9…冷間圧延鋼板材、10…ニッケルメッキ層、11…ニッケル−鉄合金メッキ層、12…黒鉛粉末を主成分とする導電性被膜層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline battery having improved performance and suitable for heavy load applications.
[0002]
[Prior art]
The use of ultra-heavy loads or heavy loads such as notebook personal computers, CD players, MD players, portable AV devices such as liquid crystal televisions, and mobile phones has been required for recent alkaline batteries.
[0003]
In such an alkaline battery, the positive electrode can is either press-drawn and ironed with nickel plating on both sides of the steel plate in advance, or drawn with only steel plate and then nickel-plated, and graphite powder is mainly contained on the inner surface. In this case, the contact resistance between the positive electrode mixture and the positive electrode can is reduced, and the heavy load characteristics are improved.
[0004]
[Problems to be solved by the invention]
By the way, in order to realize high capacity in an alkaline battery, the manganese dioxide content in the positive electrode mixture must be increased, and the content of the graphite powder of the conductive agent is inevitably lowered. This increases the contact resistance between the positive electrode mixture and the positive electrode can, and causes a decrease in short circuit current and heavy load characteristics.
[0005]
As a countermeasure, as described above, a conductive film is formed on the inner surface of the positive electrode can. However, such a high-capacity battery is said to have reduced heavy load characteristics after storage, particularly after high temperature storage. There's a problem.
The present invention has been made in response to the above problems, and aims to achieve a higher capacity of an alkaline dry battery and to prevent deterioration of heavy load characteristics after storage.
[0006]
[Means for Solving the Problems]
The present invention has achieved the above problem by improving the positive electrode can. That is, the present invention provides (1) a bottomed cylindrical positive electrode can also serving as a positive electrode terminal, a hollow cylindrical positive electrode mixture disposed in the positive electrode can, and a positive electrode mixture via a bottomed cylindrical separator. In the alkaline dry battery comprising a gelled zinc negative electrode filled in a hollow portion of the above, as the positive electrode can, a nickel-iron alloy plating layer is formed on one surface of a cold-rolled steel plate material in which a nickel plating layer is previously formed on both surfaces. It is characterized by using a can which has been formed and press-drawn and ironed so that its surface becomes the inner surface.
[0008]
Also, the present invention provides (2) the positive electrode terminal and the positive electrode canister bottomed cylinder serving as a, the hollow cylindrical positive electrode mixture disposed in the positive electrode in the can, the positive electrode via a bottomed cylindrical separator in the alkaline battery and a hollow portion gelled zinc anode which is filled in the material mixture, prior SL as cathode can, on one surface of the cold-rolled steel plate to form a nickel plating layer, a nickel on the other side - An iron alloy plating layer is formed, and a can that is press-drawn and ironed so that the nickel-iron alloy plating layer becomes an inner surface is used.
[0009]
In the positive electrode can used in the alkaline dry battery of the present invention of (1) above, the nickel-iron alloy plating layer formed on the inner surface constitutes an uneven surface due to very fine cracks generated during press drawing and ironing, The contact area with the positive electrode mixture and the conductive coating increases, and the internal resistance of the battery is reduced. On the other hand, since a nickel plating layer is further formed under the nickel-iron alloy plating layer, even if these layers are cracked, the iron base is rarely exposed. Therefore, the oxidation of iron during high temperature storage does not increase the contact resistance with the positive electrode mixture or the conductive coating, and the deterioration of heavy load characteristics after high temperature storage is small.
[0011]
Next, in the positive electrode can used in the alkaline dry battery (2) , the nickel-iron alloy plating layer formed on the inner surface is finely cracked during press drawing and ironing to form an uneven surface. In this case, since the nickel-iron alloy plating layer has a high hardness, the space between the cracks is close, so that the contact area with the positive electrode mixture and the conductive coating is increased and the adhesion of the positive electrode mixture is improved. Reduce internal resistance. Since the nickel-iron alloy plating layer has a high hardness, cracks occur only on the surface layer portion of the plating layer, and the iron base is not exposed by the cracks. Therefore, as in the case of the above-described invention, it is possible to prevent deterioration of heavy load characteristics after high-temperature storage.
[0012]
Since all of the alkaline dry batteries of the present invention of (1) to (2) have such characteristics, the graphite powder content in the positive electrode mixture is reduced to 8 wt% or less, and the amount of manganese dioxide is reduced accordingly. The capacity can be increased and a high capacity can be achieved. Moreover, you may form the electroconductive film which has graphite powder as a main component further on the inner surface of the positive electrode can in this invention.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described in detail below.
About invention of (1).
(Example 1)
First, a nickel-iron alloy plating layer having a thickness of 1 to 2 μm was further formed on one surface of a cold-rolled steel sheet having a nickel plating layer having a thickness of 1 to 2 μm formed on both surfaces in advance. The nickel-iron alloy plating layer was formed by nickel sulfate 200 g / l, nickel chloride 5 g / l, ferrous sulfate 8 g / l. It was treated with a permalloy plating bath containing 25 g / l boric acid and 3 g / l saccharin and having a pH of 2.3 and a bath temperature of 21 ° C.
[0014]
Using this steel sheet, a positive electrode can was formed by press drawing and ironing into a cylindrical shape with a bottom so that the nickel-iron alloy plating layer surface was on the inside. The structure of the plating layer of this positive electrode can is shown in FIG. As shown in this figure, a nickel plating layer 10 having a thickness of 1 to 2 [mu] m is formed on the steel plate 9 of the positive electrode can, and a nickel-iron alloy plating having a thickness of 1 to 2 [mu] m is formed on the inner surface of the can. Layer 11 is formed.
[0015]
A conductive film mainly composed of graphite powder was formed on the inner surface of the positive electrode can thus formed, except for the portion in contact with the gasket of the opening. The conductive coating is applied by diluting a conductive paint mainly composed of graphite powder with a low-boiling organic solvent such as methyl ethyl ketone, and spraying it on the inner surface of the positive electrode can with a spray gun. Do not apply to the part that touches the gasket. After applying the conductive paint with a spray gun, the solvent is evaporated with a dryer. The thickness of the remaining conductive film is preferably about 1 to 10 μm. The structure of the plating layer of this positive electrode can is shown in FIG. In FIG. 3, 12 is a conductive film.
[0016]
A JIS standard LR6 type (AA) alkaline battery shown in FIG. 1 was assembled using the positive electrode can on which the conductive film shown in FIG. 3 was formed. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical positive electrode can also serving as a positive electrode terminal manufactured by the above method. As described above, a nickel plating layer having a thickness of 1 to 2 μm is formed on the inner surface side of the positive electrode can. Then, a nickel-iron alloy plating layer having a thickness of 1 to 2 μm is formed thereon, and a conductive film is further formed thereon.
[0017]
The positive electrode can is divided and filled with three positive electrode mixtures 2 that are pressure-formed in a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and graphite powder, which is pressure-molded into a hollow cylindrical shape at a predetermined pressure using a molding die. The positive electrode mixture 2 is used to increase the discharge capacity. The graphite powder content in 2 is 8 wt%.
[0018]
A hollow cylindrical separator 3 made of a non-woven acetalized polyvinyl alcohol fiber is disposed in the hollow portion of the positive electrode mixture 2. A gelled zinc negative electrode 4 made of non-glazed zinc alloy powder, an alkaline electrolyte, and polyacrylic acid as a gelling agent is filled through the separator 3. A brass negative electrode current collector rod 5 is mounted in the gelled zinc negative electrode 4 so that the tip of the negative electrode current collector rod 5 is inserted into the gelled negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is disposed on the upper outer periphery of the negative electrode current collector rod 5 and the upper inner peripheral surface of the positive electrode can 1. A ring-shaped metal plate 7 is disposed between the double annular portions of the insulating gasket 6, and a hat-shaped metal sealing plate 8 that also serves as a negative electrode terminal is provided on the head of the current collector rod 5. It arrange | positions so that it may contact | abut. Then, the inside of the positive electrode can 1 is sealed with the gasket 6 and the metal sealing plate 8 by bending the opening edge of the positive electrode can 1 inward.
[0019]
(Example 2)
A conductive film mainly composed of graphite powder is not formed on the inner surface, and other than that, a JIS standard LR6 type (AA) is used in the same manner as in Example 1 except that a positive electrode can manufactured in the same manner as in Example 1. Shape) An alkaline battery was assembled.
[0020]
(Comparative Example 1)
A cold-rolled steel plate material having a nickel plating layer with a thickness of 1 to 2 μm formed on both sides in advance was press-drawn and ironed into a bottomed cylindrical shape to form a conductive film mainly composed of graphite powder on the inner surface. A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 1 except that the positive electrode can was used.
[0021]
(Comparative Example 2)
After cold-rolling a cold-rolled steel plate into a bottomed cylindrical shape, a nickel-plated layer with a thickness of 1 to 2 μm is formed, and a conductive coating mainly composed of graphite powder is formed on the inner surface Was used as a positive electrode can and a JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 1 except for the above.
[0022]
(Comparative Example 3)
A JIS standard LR6 type (AA) alkaline dry battery was assembled in the same manner as in Comparative Example 1 except that the conductive film mainly composed of graphite powder was not formed on the inner surface.
[0023]
(Comparative Example 4)
A JIS standard LR6 type (AA) alkaline dry battery was assembled in the same manner as in Comparative Example 2 except that the conductive film mainly composed of graphite powder was not formed on the inner surface.
[0024]
About each LR6 type alkaline dry battery of Examples 1-2 and Comparative Examples 1-4 assembled as described above, internal resistance and discharge capacity at 20 ° C. after storage at 60 ° C. for 0 days, 10 days, and 60 days The results are shown in Table 1. The internal resistance (mΩ) was measured for 10 batteries using a 1 kHz AC resistance meter, and the average value was shown. As for the discharge capacity, a 2Ω continuous discharge test was conducted for each of the 10 batteries, and the average value of the duration (min) up to the final voltage of 0.9 V was shown.
[0025]
[Table 1]
Figure 0004130989
[0026]
As is clear from the above table, Examples 1-2 are less likely to increase the internal resistance of the battery and cause less degradation of the discharge capacity even when stored at 60 ° C. for 60 days compared to Comparative Examples 1-4. I understand.
[0027]
( Example 3)
A cold rolled steel sheet hoop material having a nickel plating layer with a thickness of 1 to 2 μm formed on both sides in advance is subjected to a temperature of 500 to 600 ° C. for several hours, and nickel-iron between the steel sheet (iron) and the nickel plating layer. An alloy plating layer was formed.
[0028]
Using this steel plate, a positive electrode can was formed by press drawing and ironing into a bottomed cylindrical shape. The structure of the plating layer of this positive electrode can is shown in FIG. As shown in this figure, a nickel-iron alloy plating layer 11 having a thickness of 1 to 2 μm is formed on a steel plate 9 of a positive electrode can, and a nickel plating layer 10 having a thickness of 1 to 2 μm is formed thereon. .
[0029]
On the inner surface of the positive electrode can thus formed, similarly to Example 1, a conductive film mainly composed of graphite powder was formed except for the portion of the opening that was in contact with the gasket. The conductive coating is applied by diluting a conductive paint mainly composed of graphite powder with a low-boiling organic solvent such as methyl ethyl ketone, and spraying it on the inner surface of the positive electrode can with a spray gun. Do not apply to the part that touches the gasket. After applying the conductive paint with a spray gun, the solvent is evaporated with a dryer. The thickness of the remaining conductive film is preferably about 1 to 10 μm. The structure of the plating layer of this positive electrode can is shown in FIG. In FIG. 5, 12 is a conductive film.
[0030]
Using the positive electrode can on which the conductive film shown in FIG. 5 was formed, the JIS standard LR6 type (AA) alkaline battery shown in FIG. The graphite powder content in the positive electrode mixture 2 of this battery is 8 wt%.
[0031]
Example 4
JIS standard LR6 type (AA) was used in the same manner as in Example 3 except that a conductive film mainly composed of graphite powder was not formed on the inner surface and a positive electrode can manufactured in the same manner as in Example 3 was used. Shape) An alkaline battery was assembled.
[0032]
For each of the LR6 alkaline batteries of Examples 3 to 4 and Comparative Examples 1 to 4 assembled as described above, the internal resistance at 20 ° C. after storage at 60 ° C. for 0 days, 10 days, and 60 days The discharge capacity was examined and the results are shown in Table 2. The internal resistance (mΩ) was measured for 10 batteries using a 1 kHz AC resistance meter, and the average value was shown. As for the discharge capacity, a 2Ω continuous discharge test was conducted for each of the 10 batteries, and the average value of the duration (min) up to the final voltage of 0.9 V was shown.
[0033]
[Table 2]
Figure 0004130989
[0034]
As is apparent from the above table, Examples 3 to 4 have less increase in the internal resistance of the battery and less deterioration of the discharge capacity even when stored at 60 ° C. for 60 days, compared with Comparative Examples 1 to 4. I understand. This is because a nickel-iron alloy plating layer is formed between the steel plate and the nickel plating layer, so that the crystal of the plating becomes dense, the hardness increases, and the interval between cracks generated during processing is 0.1 mm. This is because the contact area between the positive electrode mixture and the conductive film is increased and the adhesion of the positive electrode mixture is improved.
[0035]
About invention of (2) .
(Example 5)
A nickel plated layer having a thickness of 1 to 3 μm was formed on one surface of the cold-rolled steel sheet, and a nickel-iron alloy plated layer was formed on the other surface. The nickel-iron alloy plating layer was formed by nickel sulfate 200 g / l, nickel chloride 5 g / l, ferrous sulfate 8 g / l. It was treated with a permalloy plating bath containing 25 g / l boric acid and 3 g / l saccharin and having a pH of 2.3 and a bath temperature of 21 ° C.
[0036]
Using this steel sheet, a positive electrode can was formed by press drawing and ironing into a cylindrical shape with a bottom so that the nickel-iron alloy plating layer surface was on the inside. The structure of the plating layer of this positive electrode can is shown in FIG. As shown in this figure, a nickel plating layer 10 having a thickness of 1 to 3 μm is formed on one surface of a steel plate 9 of the positive electrode can, and a nickel-iron alloy plating having a thickness of 1 to 3 μm is formed on the other surface. Layer 11 is formed.
[0037]
A conductive film mainly composed of graphite powder was formed on the inner surface of the positive electrode can thus formed, except for the portion in contact with the gasket of the opening. The conductive coating is applied by diluting a conductive paint mainly composed of graphite powder with a low-boiling organic solvent such as methyl ethyl ketone, and spraying it on the inner surface of the positive electrode can with a spray gun. Do not apply to the part that touches the gasket. After applying the conductive paint with a spray gun, the solvent is evaporated with a dryer. The thickness of the remaining conductive film is preferably about 1 to 10 μm. The structure of the plating layer of this positive electrode can is shown in FIG. In FIG. 7, 12 is a conductive film.
[0038]
A JIS standard LR6 type (AA) alkaline battery shown in FIG. 1 was assembled using the positive electrode can on which the conductive film shown in FIG. 7 was formed. In FIG. 1, 1 is a bottomed cylindrical positive electrode can also serving as a positive electrode terminal manufactured by the above-described method. As described above, a nickel-iron compound having a thickness of 1 to 3 μm is formed on the inner surface side of the positive electrode can. A gold plating layer 11 is formed, and a conductive film 12 is formed thereon. The graphite powder content in the positive electrode mixture 2 is 3 wt%.
[0039]
(Example 6)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as Example 5 except that the graphite powder content of the positive electrode mixture was 5 wt%.
[0040]
(Example 7)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as Example 5 except that the graphite powder content of the positive electrode mixture was 8 wt%.
[0041]
(Example 8)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 5 except that the conductive film mainly composed of graphite powder was not formed on the inner surface of the positive electrode can.
[0042]
Example 9
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 6 except that the conductive film mainly composed of graphite powder was not formed on the inner surface of the positive electrode can.
[0043]
(Example 10)
A conductive film mainly composed of graphite powder is not formed on the inner surface of the positive electrode can, and the graphite powder content of the positive electrode mixture is 8 wt%. Otherwise, the same as in Example 5, JIS standard LR6 type (single Type 3) An alkaline battery was assembled.
[0044]
(Comparative Example 5)
A cold-rolled steel plate material having a nickel plating layer with a thickness of 1 to 3 μm formed on both sides in advance was press-drawn and ironed into a bottomed cylindrical shape to form a conductive film mainly composed of graphite powder on the inner surface. A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 5 except that the positive electrode can was used.
[0045]
(Comparative Example 6)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 5, except that the graphite addition rate of the positive electrode mixture was 8%.
[0046]
(Comparative Example 7)
After cold-rolling a cold-rolled steel plate into a bottomed cylindrical shape, a nickel-plated layer with a thickness of 1 to 3 μm is formed, and a conductive film mainly composed of graphite powder is formed on the inner surface Was used as a positive electrode can, and a JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 5 except for the above.
[0047]
(Comparative Example 8)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 7 except that the graphite addition rate of the positive electrode mixture was 8%.
[0048]
(Comparative Example 9)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 5 except that a conductive film mainly composed of graphite powder was not formed on the inner surface.
[0049]
(Comparative Example 10)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 6 except that the conductive film mainly composed of graphite powder was not formed on the inner surface.
[0050]
(Comparative Example 11)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 7 except that a conductive film mainly composed of graphite powder was not formed on the inner surface.
[0051]
(Comparative Example 12)
A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Comparative Example 8 except that a conductive film mainly composed of graphite powder was not formed on the inner surface.
[0052]
About each LR6 type alkaline dry battery of Examples 5 to 10 and Comparative Examples 5 to 12 assembled as described above, internal resistance and discharge at 20 ° C. after storage at 60 ° C. for 0 days, 10 days, and 60 days The capacity was examined and the results are shown in Table 3. The internal resistance (mΩ) was measured for 100 batteries using a 1 kHz AC resistance meter, and the average value was shown. As for the discharge capacity, a 1.5Ω continuous discharge test was carried out for each of the 10 batteries, and the average value of the duration (min) up to the final voltage of 0.9 V was shown.
[0053]
[Table 3]
Figure 0004130989
[0054]
As is clear from the above table, Examples 5 to 10 have less increase in internal resistance of the battery and less deterioration in discharge capacity even when stored at 60 ° C. for 60 days, as compared with Comparative Examples 5 to 12. I understand. This is because, in the batteries of Examples 5 to 10, since the nickel-iron alloy plating layer was formed on the inner surface of the positive electrode can, the plating crystal became dense and the hardness increased. This is because the contact area between the positive electrode mixture and the conductive film is increased, and the adhesion of the positive electrode mixture is improved. Note that even if the graphite addition rate of the positive electrode mixture is more than 8%, the effect on the internal resistance is not increased, while the discharge capacity tends to decrease. Therefore, the graphite addition rate is preferably up to 8%.
[0055]
【The invention's effect】
As described above, all of the alkaline dry batteries of the present invention have improved the positive electrode can to solve the problem of increase in internal resistance and the decrease in heavy load characteristics due to the increase in capacity, and have high capacity and heavy load characteristics. In addition, an alkaline dry battery excellent in storage characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an alkaline battery according to an embodiment of the present invention.
FIG. 2 is a layer configuration diagram of a positive electrode can in an example of the present invention.
FIG. 3 is a layer configuration diagram of a positive electrode can in another embodiment of the present invention.
FIG. 4 is a layer configuration diagram of a positive electrode can in another embodiment of the present invention.
FIG. 5 is a layer configuration diagram of a positive electrode can in another embodiment of the present invention.
FIG. 6 is a layer configuration diagram of a positive electrode can in another embodiment of the present invention.
FIG. 7 is a layer configuration diagram of a positive electrode can in another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Gel-like zinc negative electrode, 5 ... Negative electrode collector rod, 6 ... Insulating gasket, 7 ... Ring-shaped metal plate, 8 ... Metal sealing plate, 9 ... Cold Rolled steel plate material, 10 ... nickel plating layer, 11 ... nickel-iron alloy plating layer, 12 ... conductive coating layer mainly composed of graphite powder.

Claims (4)

正極端子を兼ねる有底円筒の正極缶と、その正極缶内に配置された中空円筒状の正極合剤と、有底円筒状のセパレータを介して前記正極合剤の中空部に充填されたゲル状亜鉛負極とを備えるアルカリ乾電池において、前記正極缶として、予め両面にニッケルメッキ層を形成させた冷間圧延鋼板材の一方の面にニッケル−鉄合金メッキ層を形成し、その面が内面になるようにプレス絞りしごき加工した缶を使用したことを特徴とするアルカリ乾電池。  A bottomed cylindrical positive electrode can also serving as a positive electrode terminal, a hollow cylindrical positive electrode mixture disposed in the positive electrode can, and a gel filled in the hollow portion of the positive electrode mixture via a bottomed cylindrical separator In the alkaline dry battery comprising a zinc-like negative electrode, as the positive electrode can, a nickel-iron alloy plating layer is formed on one surface of a cold-rolled steel sheet having a nickel plating layer formed on both surfaces in advance, and the surface is formed on the inner surface. An alkaline dry battery using a can that has been press-drawn and ironed so as to become. 正極端子を兼ねる有底円筒の正極缶と、その正極缶内に配置された中空円筒状の正極合剤と、有底円筒状のセパレータを介して前記正極合剤の中空部に充填されたゲル状亜鉛負極とを備えるアルカリ乾電池において、前記正極缶として、冷間圧延鋼板材の一方の面にニッケルメッキ層を形成させ、もう一方の面にニッケル−鉄合金メッキ層を形成させ、ニッケル−鉄合金メッキ層が内面になるようにプレス絞りしごき加工した缶を使用したことを特徴とするアルカリ乾電池。  A bottomed cylindrical positive electrode can also serving as a positive electrode terminal, a hollow cylindrical positive electrode mixture disposed in the positive electrode can, and a gel filled in the hollow portion of the positive electrode mixture via a bottomed cylindrical separator In the alkaline dry battery comprising a zinc-like negative electrode, as the positive electrode can, a nickel plating layer is formed on one surface of a cold rolled steel plate material, a nickel-iron alloy plating layer is formed on the other surface, and nickel-iron An alkaline battery characterized by using a can that is press-drawn and ironed so that the alloy plating layer is on the inner surface. 前記正極缶の内面には、黒鉛粉末を主成分とする導電性被膜が形成されている請求項1または2記載のアルカリ乾電池。 3. The alkaline dry battery according to claim 1, wherein a conductive coating mainly comprising graphite powder is formed on an inner surface of the positive electrode can. 4. 正極合剤中の黒鉛粉末含有率が8wt%以下である請求項1乃至3いずれか1項に記載のアルカリ乾電池。Alkaline battery according to any one of claims 1 to 3 graphite powder content in the positive electrode mixture is not more than 8 wt%.
JP10646899A 1998-08-10 1999-04-14 Alkaline battery Expired - Fee Related JP4130989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646899A JP4130989B2 (en) 1998-08-10 1999-04-14 Alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-226062 1998-08-10
JP22606298 1998-08-10
JP10646899A JP4130989B2 (en) 1998-08-10 1999-04-14 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2000123797A JP2000123797A (en) 2000-04-28
JP4130989B2 true JP4130989B2 (en) 2008-08-13

Family

ID=26446582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646899A Expired - Fee Related JP4130989B2 (en) 1998-08-10 1999-04-14 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4130989B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750950B2 (en) * 2001-01-19 2011-08-17 新日本製鐵株式会社 Ni-plated steel plate for alkaline manganese battery positive electrode can
JP6200719B2 (en) 2013-07-31 2017-09-20 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for battery container
JP6292789B2 (en) 2013-07-31 2018-03-14 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container and battery
JP6798979B2 (en) 2015-03-13 2020-12-09 東洋鋼鈑株式会社 Manufacturing method of surface-treated steel sheet for battery container and surface-treated steel sheet for battery container
KR102479919B1 (en) 2016-09-13 2022-12-20 도요 고한 가부시키가이샤 Manufacturing method of surface-treated steel sheet for battery container

Also Published As

Publication number Publication date
JP2000123797A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
KR100736511B1 (en) Battery can and manufacturing method thereof and battery using the same
JP4130989B2 (en) Alkaline battery
JP2003031224A (en) Light-weight current collector for secondary battery
JP2003017010A (en) Alkaline dry battery
JP4038706B2 (en) Alkaline battery and method for producing the same
WO2000001021A1 (en) Alkaline cell with improved casing
JP2001325924A (en) Alkaline battery
JP2743416B2 (en) Zinc plate for rechargeable batteries
JP3587967B2 (en) Alkaline batteries
JPH10172521A (en) Alkaline battery
EP1009047B1 (en) Battery plate and battery
JP3625008B2 (en) Alkaline battery
KR100359054B1 (en) Metal oxide electrodes modified by conductive slurries and lithium secondary batteries
JP4717222B2 (en) Alkaline battery
JPH10172522A (en) Alkaline battery
JPH0250585B2 (en)
JPH1012199A (en) Alkaline battery
JPH1083801A (en) Alkaline battery
JPS62274568A (en) Rechargeable electro chemical device
JPH08162118A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPS6158163A (en) Alkaline zinc battery
JPS6029166Y2 (en) thin battery
JP3627433B2 (en) Sealed nickel-cadmium storage battery
JP2007026716A (en) Alkaline dry cell
JP2007026715A (en) Alkaline dry cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees