JP4129762B2 - Sea surface waste disposal site - Google Patents

Sea surface waste disposal site Download PDF

Info

Publication number
JP4129762B2
JP4129762B2 JP2002128680A JP2002128680A JP4129762B2 JP 4129762 B2 JP4129762 B2 JP 4129762B2 JP 2002128680 A JP2002128680 A JP 2002128680A JP 2002128680 A JP2002128680 A JP 2002128680A JP 4129762 B2 JP4129762 B2 JP 4129762B2
Authority
JP
Japan
Prior art keywords
water
revetment
disposal site
layer
impervious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128680A
Other languages
Japanese (ja)
Other versions
JP2003320335A (en
Inventor
良樹 北浦
望 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Construction Co Ltd filed Critical Toyo Construction Co Ltd
Priority to JP2002128680A priority Critical patent/JP4129762B2/en
Publication of JP2003320335A publication Critical patent/JP2003320335A/en
Application granted granted Critical
Publication of JP4129762B2 publication Critical patent/JP4129762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、産業廃棄物、一般廃棄物等の廃棄物を海面で最終処分するための海面廃棄物処分場に関する。
【0002】
【従来の技術】
近年、廃棄物特に産業廃棄物の排出量は膨大となり、その最終処分場を海面に求めることが種々検討されている。
図3は、この種の海面廃棄物処分場の1つの形態を示したもので、廃棄物の埋立処分域1は、護岸2により外水域(外海)Aから締切られた内水域B内に設定されている。護岸2は、ここではケーソン式護岸からなっており、海底地盤3に造成した捨石マウンド4上に据付けられたケーソン5と、ケーソン5の背後に裏込石を投入して造成した裏込層6とこの裏込層6の背後に埋立土(山土、山砂、スラグ等)を投入して造成した腹付層7とからなっている。この護岸2を構成する腹付層7の背面(法面)すなわち内水域Bの側面には遮水シートを二重に配した二重シート構造物(遮水構造物)8が設置され、また、前記内水域Bの底面には、不透水層9上に遮水シート8´を重ねてなる複合構造物(遮水構造物)10が設置されている。この場合、内水域Bの側面の二重シート構造物8は、その背後に埋立土や石材などを投入して造成した被覆層(法面被覆層)11により、内水域Bの底面の複合構造物10は、前記同様の被覆層(底面被覆層)11´によりそれぞれ安定化されている。
そして、このように構成した海面廃棄物処分場においては、その内水域Bの水位L1が外水域Aの水位(平均潮位)L0と同等かそれよりもわずか低くなるように管理されており、万一遮水構造物8、10に破損が生じても汚染水が外水域Aへ流出しないようになっている。なお、海底地盤3が不透水性である場合は、内水域Bの底面に対する遮水構造物の設置を省略してもよい。
【0003】
【発明が解決しようとする課題】
ところで、上記した従来の海面廃棄物処分場によれば、護岸2を構成する捨石マウンド4および裏込層6がかなりの透水性を有しているため、内水域Bの側面上の二重シート構造物8の裏面側にも海水が浸透しており、満潮時等で外水域Aの水位が上昇する場合は、同じく図3に示すように外水域Aと内水域Bとの水位差(内外水位差)による静水圧PAが二重シート構造物8に作用する。また、海底地盤3が、砂礫土層のように透水性の高いものである場合は、内水域Bの底面の複合構造物10の裏面側にも前記同様に内外水位差による静水圧PBが作用する。一方、外水域Aに大きな波浪が生ずるような場合は、この波浪による水圧FA、FBが前記捨石マウンド4、裏込層6または海底地盤3を透過して二重シート構造物8または複合構造物10に作用する。
すなわち、内水域Bの側面の二重シート構造物8および内水域Bの底面の複合構造物10には、内外水位差による静水圧PA、PBと波浪による水圧FA、FBが揚圧力として作用しており、これにより二重シート構造物8、複合構造物10が浮き上がってしまい、破損などのトラブルが発生する。このため、従来は、内水域Bの側面上の二重シート構造物8についてはその上の被覆層11を厚くして載荷重を増加させることにより、一方、内水域Bの底面の複合構造物10についてその不透水層9を厚くしたりその上の底面被覆層11´を厚くすることにより前記トラブルに対処するようにしていた。しかし、このような対策によれば、被覆層11、11´や不透水層9が厚くなる分、埋立処分域1の内容積が減少し、廃棄物の埋立処分容量(埋立処分効率)の低下が避けられず、その上、それらの造成に多大の時間とコストとを要するようになる。また、遮水構造物8、10については、護岸2の最終締切りから被覆層11、11´の造成が完了するまで、すなわち完成断面とするまでかなりの期間を要することから、この間、二重シート構造物8や複合構造物10中の遮水シート8´の浮上がりの危険がつきまとい、前記被覆層11、11´を厚くする対策では役に立たない。
【0004】
なお、例えば、特開平7−42130号公報、特開2001−232322号公報等には、遮水性の内壁と外壁とからなる二重壁構造体内に充填材を充填して締切部となし、該締切部内の水位を管理して埋立処分域内の汚染水が外部へ漏出するのを防止するようにした海面廃棄物処分場が記載されており、このような処分場によれば、二重壁構造体自体が不透水性護岸として機能するため、上記したような内水域Bの側面に対する二重シート構造物8の設置は不要となる。しかし、海底地盤3が、前記透水性の高い砂礫土層である場合は、上記したように内水域Bの底面の複合構造物10の裏面側に、前記内外水位差による静水圧PB並びに波浪による水圧FB(図3)が依然として作用することになり、複合構造物10の不透水層9を厚くしたりその上の被覆層11´を厚くする対策が必要となる。
【0005】
本発明は、上記した従来の技術的背景に鑑みてなされたもので、その課題とするところは、遮水構造物に対する内外水位差による静水圧並びに波浪による水圧の影響を低く抑えることができ、もって埋立処分効率の向上、施工性の向上、施工期間の短縮、施工コストの低減等に大きく寄与する海面廃棄物処分場を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る海面廃棄物処分場は、護岸で締切った内水域を廃棄物の埋立処分域とする海面廃棄物処分場であって、前記内水域の側面および/または底面に遮水シートを含む遮水構造物を設置した海面廃棄物処分場において、前記遮水構造物の裏面側でかつ護岸背面の法尻付近となる土中に、外水域からの浸透水を強制的に揚水するポンプを埋設し、一端が前記ポンプに接続された揚水管および信号線を護岸の内部を通して護岸上面に引出したことを特徴とする。このように構成した海面廃棄物処分場においては、護岸、海底地盤等を浸透して遮水構造物の裏面側に達しようとする海水が、ポンプにより強制的に外部へ排出されるので、遮水構造物に作用する静水圧および波力による水圧が著しく低減される。
特に、本発明の海面廃棄物処分場においては、上記ポンプを護岸の法尻付近に埋設しているので、内水域の側面側および内水域の底面側へ浸透する海水を効率よく揚水できる。
【0007】
本発明の海面廃棄物処分場において、上記遮水構造物は、遮水シートを二重に配した二重シート構造物であっても、遮水シートと不透水層を重ねた複合構造物であってもよい。この場合、前記二重シート構造物は、二枚の遮水シートを相互に密着する状態で重ね合せた二層構造としてもよいが、二枚の遮水シートを不織布、固化処理土、スラグ等の中間層を介して重ねたサンドイッチ構造としてよい。また、前記複合構造物を構成する不透水層の材料は任意であり、コンクリートプレキャスト版、コンクリートブロック、アスファルトマット、アスファルトマスティック等はもとより、水中コンクリート、固化処理土、地盤改良土などを用いることができる。
本発明の海面廃棄物処分場において、上記遮水構造物を設置する場所は、護岸の構造および海底地盤の性状によって異なり、護岸および海底地盤が透水性を有している場合は内水域の側面と内水域の底面との双方に、海底地盤が不透水性で護岸が透水性を有している場合は内水域の側面だけに、護岸が不透水性で海底地盤が透水性を有している場合は内水域の底面だけにそれぞれ遮水構造物を設置してもよい。一方、前記二重シート構造物と複合構造物とは、必要に応じて内水域の側面と内水域の底面との何れか一方に分けて設置しても、内水域の側面と内水域底面との双方に共通に設置してもよい。
本発明の海面廃棄物処分場は、上記遮水構造物の上に、さらに被覆層を造成してもよいものである。この場合は、上記した遮水構造物に作用する静水圧および波力による水圧が著しく低減されることから、該被覆層の厚さを薄くすることができる。
【0008】
上記海面廃棄物処分場の管理方法としては、遮水構造物の裏面側の土中の水圧を検出し、該検出結果に基づいて揚水手段を作動させるのが望ましい。このように水圧に応じて水中ポンプを作動させることで、満潮時や波浪の大きい時間帯だけ揚水手段を作動させて、その運転コストの低減を図ることができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基いて説明する。
図1は,本発明の実施の形態としての海面廃棄物処分場を示したものである。本海面廃棄物処分場は、ケーソン式護岸2で締切った内水域Bを廃棄物の埋立処分域とするもので、その全体的な構造は、前記図3に示したものと同じあるので、ここでは、図3に示した部分と同一部分には同一符号を付し、重複する説明を省略することとする。
【0010】
本実施の形態においては、ケーソン5の背面側の裏込層6の背後に造成した腹付層7の法尻付近に水中ポンプ12と水圧センサ13とを設置している。水中ポンプ12には、前記腹付層7内を延ばした揚水管14および信号線15の一端が接続されており、これら揚水管14および信号線15は護岸2の上面へ引出されている。護岸2の上面側において、前記揚水管14の他端は外水域Aに臨む位置まで延長されると共に、前記信号線15の他端は図示を略す制御装置に接続されている。一方、水圧センサ13には、同じく前記腹付層7内を延ばした信号線16の一端が接続され、この信号線16の他端は、前記制御装置に接続されている。前記水中ポンプ12と揚水管14とは、外水域Aから捨石マウンド4および裏込層6を透過した浸透水を海上へ強制的に排出する揚水手段を構成しており、その水中ポンプ12の運転は、前記制御装置により制御されるようになっている。なお、水中ポンプ12および水圧センサ13は、護岸2の長手方向へ所定のピッチで複数配設されている。
【0011】
本海面廃棄物処分場の構築工法の基本は従来と同様であり、先ず海底地盤3上の計画線に沿って捨石マウンド4を造成し、次に、この捨石マウンド4上にケーソン5を据付け、その後、ケーソン5の背後に裏込石を投入して裏込層6を造成し、さらにこの裏込層6の背後に埋立土を投入して腹付層7を造成し、前記した施工を適宜繰返して護岸2を次第に延ばす。
【0012】
上記した護岸2の構築に際しては、その裏込層6の造成を終えた時点で、腹付層7の法尻付近となる海底地盤3の表層部に上記水中ポンプ12および水圧センサ13を設置し、これら水中ポンプ12および水圧センサ13から必要な揚水管14および信号線15、16を水面上へ引出しておく。そして、前記裏込層6上に腹付層7用の埋立土を投入し、この埋立土が所定高さだけ堆積した時点でその法面に前記揚水管14、信号線15、16を添わせ、この上にさらに埋立土を投入堆積させて腹付層7を完成させ、これにより揚水管14、信号線15、16が腹付層7内に埋設された完成断面となる。
【0013】
本海面廃棄物処分場の構築に際しては、上記護岸2の構築と平行して、該護岸2を構成する腹付層7の法面すなわち内水域Bの側面に前記した遮水シートを二重に配した二重シート構造物8を、護岸2により仕切られた内水域Bの底面に前記不透水層9と遮水シート8´とを重ねてなる複合構造物10をそれぞれ設置する。このようにして護岸2の構築、二重シート構造物8の設置および複合構造物10の設置を順次進め、護岸2による最終締切りを行い、さらに二重シート構造物8の設置並びに複合構造の複合構造物10の最終設置を終える。その後は、遮水構造物としての二重シート構造物8および複合構造物10の上に埋立土または石材などの被覆材を投入して被覆層11、11´を薄く造成し、これにて海面廃棄物処分場は完成する。
【0014】
このように完成した海面廃棄物処分場は、その内水域B内の水位L1が外水域Aの平均潮位L0と同等かそれよりもわずか低くなるように管理されると共に、水圧センサ13による水圧監視が継続される。この水圧監視下において、いま満潮時等で外水域Aの水位が上昇し、あるいは外水域Aに大きな波浪が発生すると、護岸2の法尻付近の水圧が上昇し、この水圧上昇が水圧センサ13により検出される。この水圧センサ13の信号は信号線16を経由して制御装置へ送出されており、制御装置は、この水圧センサ13により検出された水圧が予め設定した設定圧以上になると、水中ポンプ12へ信号線15を通じて起動信号を出力し、これにより水中ポンプ12が作動して護岸2の法尻付近に浸透する海水が揚水管14を通じて外水域Aへ排出される。この結果、内水域Bの側面の二重シート構造物8並びに内水域Bの底面上の複合構造物10に作用する水位差による静水圧PB並びに波浪による水圧FB(図3)が著しく低減され、これにより二重シート構造物8並びに複合構造物10の浮上がりが防止される。
すなわち、二重シート構造物8並びに複合構造物10の破損が未然に防止され、したがって、本海面廃棄物処分場は、廃棄物の埋立処分が終了するまで安定的に維持される。換言すれば、従来必要としていた遮水構造物8、10を安定化するための法面被覆層11、底面被覆層11´の厚さを従来(図3)よりも薄くすることができることに加え、複合構造物10を構成する不透水層9の厚さを薄くすることができ、その分、埋立処分域1の埋立処分効率が向上し、また、施工期間の短縮並びに施工コストの低減を達成できる。
【0015】
因みに、捨石マウンド4、裏込層6、腹付層7、海底地盤3の透水係数をそれぞれ1.0E+0cm/s、1.0E+0cm/s、1.0E−3cm/s、1.0E−1〜−2cm/sとし、内外水位差の最大値を1.8mとして遮水構造物8、10にかかる圧力水頭を浸透流解析法により試算すると、10〜100リットル/分/mの揚水量で、揚水なしの場合に比べて70〜100%低下することが明らかとなった。前記揚水量の水準は、汎用の水中ポンプの利用で十分に達成可能な範囲であり、本発明はきわめて実用的である、といえる。
【0016】
なお、上記実施の形態においては、内水域Bの側面に二重シート構造物8を、内水域Bの底面に複合構造物10をそれぞれ設置するようにしたが、両者は、逆の配置、すなわち内水域Bの側面に複合構造物10を、内水域Bの底面に二重シート構造物8をそれぞれ設置してもよいことはもちろんである。また、二重シート構造物8および複合構造物10とは、内水域Bの側面と底面とに使い分けることなく、その双方に共通に設置してもよいものである。
また、上記腹付層7は、必ずしも必要としないもので、この腹付層7を省略する場合は、裏込層6の法面上に遮水構造物としての二重シート構造物8または複合構造物10が設置されることになる。また、当然のこととしてこの場合は、裏込層6の法尻付近に水中ポンプ12および圧力センサ13が設置されることになる。
【0017】
図2は、本発明の参考例としての海面廃棄物処分場を示したものである。本参考例の特徴とするところは、内壁21と外壁22とを適当な間隔で配置した二重壁構造体23内に充填材24を充填してなる遮水壁20をケーソン式護岸2の背後に一体的に設け、この遮水壁20を内水域Bの側面として用いた点にある。前記内壁21と外壁22とは、ここでは鋼矢板または鋼管矢板を水密継手を介して連続に打設することにより構築されており、遮水壁20の全体は、十分なる遮水性を有するものとなっている。すなわち、護岸2は、その背面に遮水壁20を備えることにより、全体として遮水性護岸として機能しており、したがって、本参考例においては、上記第1の実施の形態において必要とした内水域Bの側面上の二重シート構造物8(図1)は不要となっている。
【0018】
ここで、上記二重壁構造体23の内壁21と外壁22として用いられる矢板は、海底地盤3中に根入れされているが、海底地盤3が透水性の高い砂礫土層である場合は、外水域Aの海水がこの矢板の下側を透過して内水域Bの底面の複合構造物10の裏面側へ到達する。そこで、本参考例においては、内壁21の背後であってその根入れ先端付近の海底地盤3中に、上記実施の形態で用いた水中ポンプ12と水圧センサ13とを設置すると共に、それらに必要な揚水管14および信号線15、16を前記内壁21に添って護岸2上へ引出すようにしている。。
【0019】
参考例において、ケーソン式護岸2の構築手順は上記第1の実施の形態の場合と実質同じあり、捨石マウンド4上に据付けたケーソン5の背後に裏込層6を造成するが、ここでは、その腹付層7の造成に先行して遮水壁20の構築を行い、この遮水壁20の構築中または構築後に腹付層7の造成を行っている。
遮水壁20の構築に際しては、上記護岸2の裏込層6から所定距離だけ内水域B側へ離して海底地盤3中に鋼矢板または鋼管矢板を打設して、内壁21と外壁22とを有する二重壁構造体23を構築し、続いて、この二重壁構造体23内に充填材24を充填する。充填材24としては、固化処理土、粘性土等の不透水性材料を用いるか、あるいは前記腹付層7の造成に用いる埋立土(山土、山砂、スラグ等)をそのまま用いることができる。充填材24として前記不透水性材料を用いる場合は、遮水壁20の構築完了後またはその構築の進行に応じて、該遮水壁20と裏込層6との間に前記埋立土を投入し、腹付層7を造成する。一方、充填材24として前記埋立土を用いる場合は、二重壁構造体23内に対する充填材24の投入と平行して、外壁22と前記裏込層6との間にもこの埋立土を投入してもよい。
【0020】
このようにして遮水壁20とケーソン式護岸23とが一体となった遮水性護岸が完成するが、この完成後は、内壁21の背後であってその根入れ先端付近の海底地盤3中に、水中ポンプ12と水圧センサ13とを埋設し、さらにそれらに必要な揚水管14および信号線15、16を前記内壁21に添って設置する。その後は、護岸2により仕切られた内水域Bの底面に、遮水壁20と接続する状態で前記した不透水層9と遮水シート8´とを重ねてなる複合構造物(遮水構造物)10を設置し、さらにこの上に、前記同様の底面被覆層11´を薄く造成し、これにて海面廃棄物処分場は完成する。
【0021】
海面廃棄物処分場の完成後は、実施の形態の場合と同様に、内水域B内の水位Lが外水域Aの平均潮位Lと同等かそれよりもわずか低くなるように管理し、これと同時に水圧センサ13による水圧監視をスタートさせる。このような水圧監視下において、いま、満潮時等で外水域Aの水位が上昇し、あるいは外水域Aに大きな波浪が発生すると、二重壁構造体23の根入れ先端付近の水圧が上昇し、この水圧上昇が水圧センサ13により検出され、実施の形態と同様に制御装置の指令で水中ポンプ12が作動し、これにより二重壁構造体23の根入れ先端付近に浸透する海水が揚水管14を通じて外水域Aへ排出される。この結果、内水域Bの底面上の複合構造物10に作用する水位差による静水圧P並びに波浪による水圧F(図3)が著しく低減され、複合構造物10の浮上がりが防止され、これにより実施の形態と同様の効果が得られるようになる。
【0022】
なお、本発明は、揚水手段を構成する水中ポンプ12の設置場所は任意であり、上記した護岸2の法尻付近に加えてあるいは代えて、他の場所に設置してもよい。
また、水中ポンプ12および水圧センサ13は、腹付層7内に予め設けた比較的口径の大きい管路を通して据付けるようにしてもよい。
また、上記実施の形態においては、水中ポンプ12の近傍に設置した水圧センサ13により検出した水圧データを水中ポンプ12の運転管理に用いたが、本発明は、この運転管理に用いるデータを限定するものではなく、例えば、外水域Aの潮位を検出する潮位センサを設けて、この潮位センサにより検出した潮位データを水中ポンプ12の運転管理に用いてもよい。
さらに、上記揚水手段を構成する水中ポンプ12は、吸水機能を有する他のポンプに代えてもよいことはもちろんである。
【0023】
【発明の効果】
以上、説明したように、本発明に係る海面廃棄物処理場によれば、遮水構造物の裏面側から強制的に揚水して、遮水構造物に作用する内外水位差による静水圧並びに波浪による水圧の影響を低く抑えることができるので、遮水構造物は余分に載荷重を増やしたりそれ自体を大型に形成しなくても十分に安定し、埋立処分効率の向上、施工性の向上、施工期間の短縮、施工コストの低減等を達成することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態としての海面廃棄物処理場を模式的に示す断面図である。
【図2】 本発明の参考例としての海面廃棄物処理場を模式的に示す断面図である。
【図3】 従来の海面廃棄物処理場を模式的に示す断面図である。
【符号の説明】
1 埋立処分域
2 ケーソン式護岸(透水護岸)
3 海底地盤
4 捨石マウンド
5 ケーソン
6 裏込層
7 腹付層
8 二重シート構造物(遮水構造物)
8´ 遮水シート
9 不透水層(遮水構造物)
10 複合構造物(遮水構造物)
11 法面被覆層
11´ 底面被覆層
12 水中ポンプ(揚水手段)
13 水圧センサ
14 揚水管(揚水手段)
20 遮水壁
23 二重壁構造体
A 外水域
B 内水域
[0001]
[Technical field to which the invention belongs]
The present invention, industrial waste relates to waste general waste sea level waste disposal site for final disposal at sea level.
[0002]
[Prior art]
In recent years, the amount of waste, especially industrial waste, has become enormous, and various studies have been conducted to find the final disposal site on the sea surface.
Fig. 3 shows one form of this type of sea surface waste disposal site. Waste landfill disposal area 1 is set in inner water area B cut off from outer water area (outer sea) A by revetment 2 Has been. The revetment 2 is a caisson-type revetment here, and a caisson 5 installed on a rubble mound 4 formed on the seabed 3 and a back layer 6 formed by putting a backstone behind the caisson 5. And a backed layer 7 formed by introducing landfill soil (mountain soil, mountain sand, slag, etc.) behind the back layer 6. A double sheet structure (water-impervious structure) 8 in which double water-impervious sheets are arranged is installed on the back surface (slope) of the bellows layer 7 constituting the revetment 2, that is, the side surface of the inner water area B. On the bottom surface of the inner water area B, a composite structure (water-impervious structure) 10 in which a water-impervious sheet 8 ′ is stacked on an impermeable layer 9 is installed. In this case, the double sheet structure 8 on the side surface of the inner water area B is composed of a composite structure on the bottom surface of the inner water area B by a covering layer (slope covering layer) 11 formed by introducing landfill soil or stone material behind the structure. The objects 10 are stabilized by the same coating layer (bottom surface coating layer) 11 'as described above.
In the sea surface waste disposal site constructed in this way, the water level L 1 in the inner water area B is managed so as to be equal to or slightly lower than the water level (average tide level) L 0 in the outer water area A. Even if the water shielding structures 8 and 10 are damaged, the contaminated water is prevented from flowing into the outer water area A. In addition, when the seabed ground 3 is impermeable, installation of the water-impervious structure to the bottom surface of the inner water area B may be omitted.
[0003]
[Problems to be solved by the invention]
By the way, according to the above-mentioned conventional sea surface waste disposal site, the rubble mound 4 and the back layer 6 constituting the revetment 2 have considerable water permeability. When seawater has also permeated into the back side of the structure 8 and the water level in the outer water area A rises at high tide, etc., the difference in water level between the outer water area A and the inner water area B (internal and external) as shown in FIG. hydrostatic pressure P a by water level difference) is applied to the double seat structure 8. In addition, when the seabed ground 3 is highly permeable like a gravel soil layer, the hydrostatic pressure P B due to the difference in water level between the inside and outside is also present on the back side of the composite structure 10 at the bottom of the inner water area B. Works. On the other hand, when large waves are generated in the outer water area A, the water pressures F A and F B due to the waves pass through the rubble mound 4, the back layer 6 or the seabed ground 3, and the double sheet structure 8 or composite It acts on the structure 10.
That is, in the double sheet structure 8 on the side surface of the inner water area B and the composite structure 10 on the bottom surface of the inner water area B, the hydrostatic pressures P A and P B due to the difference in internal and external water levels and the water pressures F A and F B due to waves are raised. The double sheet structure 8 and the composite structure 10 are lifted up due to the pressure acting, causing troubles such as breakage. For this reason, conventionally, for the double sheet structure 8 on the side surface of the inner water area B, by increasing the load by increasing the coating layer 11 thereon, the composite structure on the bottom surface of the inner water area B is provided. The above-mentioned trouble is dealt with by increasing the thickness of the water-impermeable layer 9 and increasing the thickness of the bottom surface coating layer 11 ′ thereon. However, according to such measures, the internal volume of the landfill disposal area 1 is reduced by the increase in the thickness of the covering layers 11, 11 ′ and the impermeable layer 9, and the waste landfill disposal capacity (landfill disposal efficiency) is reduced. In addition, it takes a lot of time and cost to create them. In addition, for the water-impervious structures 8 and 10, since it takes a considerable period from the final cutoff of the revetment 2 to the completion of the formation of the covering layers 11 and 11 ′, that is, to complete the cross section, a double sheet is used during this period. There is a danger that the water shielding sheet 8 'in the structure 8 or the composite structure 10 will be lifted up, and it is not useful for measures to increase the thickness of the covering layers 11, 11'.
[0004]
For example, in JP-A-7-42130 and JP-A-2001-232322, a double wall structure composed of a water-impervious inner wall and an outer wall is filled with a filler to form a cutoff part. A sea surface waste disposal site has been described that controls the water level in the deadline to prevent leakage of contaminated water in the landfill disposal area to the outside. Since the body itself functions as an impermeable revetment, it is not necessary to install the double sheet structure 8 on the side surface of the inner water area B as described above. However, when the seabed 3 is the highly permeable gravel soil layer, the hydrostatic pressure P B and the waves due to the difference between the internal and external water levels are formed on the back side of the composite structure 10 at the bottom of the inner water area B as described above. The water pressure F B (FIG. 3) due to the above still acts, and it is necessary to take measures to increase the thickness of the water-impermeable layer 9 of the composite structure 10 and the thickness of the covering layer 11 ′ thereon.
[0005]
The present invention has been made in view of the above-described conventional technical background, and the problem is that the hydrostatic pressure due to the difference in water level between the inside and outside of the water-impervious structure and the influence of the water pressure due to waves can be kept low. Therefore, it is to provide a sea surface waste disposal site that greatly contributes to improving landfill disposal efficiency, improving workability, shortening the construction period, and reducing construction costs.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a sea surface waste disposal site according to the present invention is a sea surface waste disposal site in which an inland water area cut off at a revetment is a landfill disposal area of waste, and the side surface of the inland water area and / or Alternatively, in a sea surface waste disposal site where a water-impervious structure including a water-impervious sheet is installed on the bottom surface, seepage water from the outside water area in the soil on the back side of the water-impervious structure and near the bottom of the revetment A pump for forcibly pumping water is buried, and a pumping pipe and a signal line, one end of which is connected to the pump, are drawn out to the revetment upper surface through the inside of the revetment . In the sea surface waste disposal site configured in this way, seawater that penetrates the revetment, seabed ground, etc. and tries to reach the back side of the impermeable structure is forcibly discharged to the outside by the pump. Hydrostatic pressure acting on the water structure and water pressure due to wave forces are significantly reduced.
In particular, in the sea surface waste disposal site of the present invention, since the pump is embedded in the vicinity of the shore of the revetment, seawater penetrating into the side surface of the inner water area and the bottom surface side of the inner water area can be pumped efficiently.
[0007]
In the sea surface waste disposal site according to the present invention, the water-impervious structure is a composite structure in which a water-impervious sheet and an impermeable layer are stacked, even if the water-impervious sheet is a double sheet structure. There may be. In this case, the double sheet structure may have a two-layer structure in which two water-impervious sheets are stacked in close contact with each other, but the two water-impervious sheets are nonwoven fabric, solidified soil, slag, etc. It is good also as a sandwich structure piled up through the intermediate layer. In addition, the material of the impermeable layer constituting the composite structure is arbitrary, and not only concrete precast plates, concrete blocks, asphalt mats, asphalt mastics, but also underwater concrete, solidified soil, ground improvement soil, etc. Can do.
In the sea surface waste disposal site of the present invention, the place where the water-impervious structure is installed varies depending on the structure of the revetment and the properties of the seabed ground. When the seabed is impervious and the revetment is permeable to both the inner water area and the bottom of the inner water area, the revetment is impermeable and the submarine ground is permeable only to the side of the inner water area. If there is, a water-impervious structure may be installed only on the bottom surface of the inner water area. On the other hand, even if the double sheet structure and the composite structure are installed separately on either the side surface of the inner water area or the bottom surface of the inner water area as necessary, the side surface of the inner water area and the bottom surface of the inner water area You may install in both .
In the sea surface waste disposal site of the present invention, a coating layer may be further formed on the water shielding structure. In this case, since the hydrostatic pressure and the water pressure due to the wave force acting on the above-described water-impervious structure are significantly reduced, the thickness of the coating layer can be reduced.
[0008]
As a management method of the sea surface waste disposal site, it is desirable to detect the water pressure in the soil on the back side of the water-impervious structure and to operate the pumping means based on the detection result. Thus, by operating the submersible pump according to the water pressure, it is possible to operate the pumping means only at the time of high tide or during a time period when the waves are large, and the operation cost can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a sea surface waste disposal site as an embodiment of the present invention. In this sea surface waste disposal site, the inland water area B cut off by the caisson-type revetment 2 is used as the landfill disposal area of waste, and the overall structure is the same as that shown in FIG. Here, the same parts as those shown in FIG. 3 are denoted by the same reference numerals, and redundant description will be omitted.
[0010]
In the present embodiment , a submersible pump 12 and a water pressure sensor 13 are installed in the vicinity of the bottom of the belly layer 7 formed behind the back layer 6 on the back side of the caisson 5. One end of a pumping pipe 14 and a signal line 15 extending in the bellows layer 7 is connected to the submersible pump 12, and the pumping pipe 14 and the signal line 15 are drawn to the upper surface of the revetment 2. On the upper surface side of the revetment 2, the other end of the pumping pipe 14 is extended to a position facing the outer water area A, and the other end of the signal line 15 is connected to a control device (not shown). On the other hand, the water pressure sensor 13 is connected to one end of a signal line 16 that similarly extends in the belly layer 7, and the other end of the signal line 16 is connected to the control device. The submersible pump 12 and the pumping pipe 14 constitute pumping means for forcibly discharging the permeated water that has passed through the rubble mound 4 and the back layer 6 from the outer water area A to the sea. Are controlled by the control device. A plurality of submersible pumps 12 and water pressure sensors 13 are arranged at a predetermined pitch in the longitudinal direction of the revetment 2.
[0011]
The basic construction method for this sea surface waste disposal site is the same as before. First, the rubble mound 4 is created along the planned line on the seabed ground 3, and then the caisson 5 is installed on the rubble mound 4. Thereafter, a back lining stone is placed behind the caisson 5 to form a back lining layer 6, and landfill soil is placed behind the back lining layer 6 to create a bellows layer 7. Repeat and extend the revetment 2 gradually.
[0012]
When constructing the revetment 2 described above, the submersible pump 12 and the water pressure sensor 13 are installed on the surface layer portion of the seabed 3 near the bottom of the belly layer 7 when the formation of the backing layer 6 is completed. The necessary pumping pipes 14 and signal lines 15 and 16 are drawn out from the submersible pump 12 and the water pressure sensor 13 onto the water surface. Then, landfill for the backing layer 7 is put on the backing layer 6, and when the landfill is deposited to a predetermined height, the pumping pipe 14, the signal lines 15 and 16 are attached to the slope. Further, landfill soil is further deposited and deposited thereon to complete the bellows layer 7, thereby forming a completed cross section in which the pumping pipe 14 and the signal lines 15 and 16 are embedded in the bellows layer 7.
[0013]
In constructing this sea surface waste disposal site, the above-mentioned water-impervious sheet is doubled on the slope of the bellows layer 7 constituting the revetment 2, that is, on the side of the inner water area B, in parallel with the construction of the revetment 2. The composite structure 10 formed by superimposing the water-impermeable layer 9 and the water-impervious sheet 8 ′ on the bottom surface of the inner water area B partitioned by the revetment 2 is installed in the double sheet structure 8 arranged. In this way, the construction of the revetment 2, the installation of the double sheet structure 8 and the installation of the composite structure 10 are sequentially advanced, the final cut-off by the revetment 2 is performed, the installation of the double sheet structure 8 and the composite structure The final installation of the structure 10 is finished. After that, a covering material such as landfill or stone is put on the double sheet structure 8 and the composite structure 10 as a water-impervious structure, and the covering layers 11 and 11 'are thinly formed. The waste disposal site is completed.
[0014]
The sea surface waste disposal site completed in this way is managed so that the water level L 1 in the inner water area B is equal to or slightly lower than the average tide level L 0 in the outer water area A, and by the water pressure sensor 13. Water pressure monitoring continues. Under this water pressure monitoring, when the water level in the outer water area A rises at the time of high tide or a large wave is generated in the outer water area A, the water pressure in the vicinity of the shore of the revetment 2 rises. Is detected. The signal from the water pressure sensor 13 is sent to the control device via the signal line 16, and the control device sends a signal to the submersible pump 12 when the water pressure detected by the water pressure sensor 13 exceeds a preset pressure. An activation signal is output through the line 15, whereby the submersible pump 12 is activated, and seawater that permeates near the shore of the revetment 2 is discharged to the outside water area A through the pumping pipe 14. As a result, the hydrostatic pressure P B due to the water level difference acting on the double sheet structure 8 on the side surface of the inner water area B and the composite structure 10 on the bottom surface of the inner water area B and the water pressure F B due to waves (FIG. 3) are significantly reduced. This prevents the double sheet structure 8 and the composite structure 10 from being lifted.
That is, the double sheet structure 8 and the composite structure 10 are prevented from being damaged, and thus the sea surface waste disposal site is stably maintained until the landfill disposal of the waste is completed. In other words, the thickness of the slope coating layer 11 and the bottom surface coating layer 11 ′ for stabilizing the water-impervious structures 8 and 10 that are conventionally required can be made thinner than that of the conventional (FIG. 3). In addition, the thickness of the impermeable layer 9 constituting the composite structure 10 can be reduced, so that the landfill disposal efficiency of the landfill disposal area 1 is improved, and the construction period is shortened and the construction cost is reduced. it can.
[0015]
By the way, the hydraulic conductivity of the rubble mound 4, back lining layer 6, bellow layer 7 and seabed ground 3 is 1.0E + 0 cm / s, 1.0E + 0 cm / s, 1.0E-3 cm / s, 1.0E-1 to -2 cm / s, respectively. If the maximum value of the difference between the internal and external water levels is 1.8 m and the pressure head applied to the impermeable structures 8 and 10 is estimated by the osmotic flow analysis method, the pumping rate is 10 to 100 liters / minute / m and there is no pumping. It became clear that it fell by 70 to 100% compared with. The level of the pumping amount is in a range that can be sufficiently achieved by using a general-purpose submersible pump, and it can be said that the present invention is extremely practical.
[0016]
In the above embodiment, the double sheet structure 8 is installed on the side surface of the inner water area B and the composite structure 10 is installed on the bottom surface of the inner water area B. Of course, the composite structure 10 may be installed on the side surface of the inner water area B, and the double sheet structure 8 may be installed on the bottom surface of the inner water area B. In addition, the double sheet structure 8 and the composite structure 10 may be installed in common on both sides of the inner water area B without using them separately.
The belly layer 7 is not necessarily required. When the belly layer 7 is omitted, the double sheet structure 8 or the composite as a water-blocking structure on the slope of the back layer 6 is used. The structure 10 will be installed. Of course, in this case, the submersible pump 12 and the pressure sensor 13 are installed in the vicinity of the bottom of the back layer 6.
[0017]
FIG. 2 shows a sea surface waste disposal site as a reference example of the present invention. The feature of the present reference example is that a double wall structure 23 in which an inner wall 21 and an outer wall 22 are arranged at an appropriate interval is provided with a water shielding wall 20 filled with a filler 24 behind the caisson-type revetment 2. The impermeable wall 20 is used as a side surface of the inner water area B. Here, the inner wall 21 and the outer wall 22 are constructed by continuously driving steel sheet piles or steel pipe sheet piles through watertight joints, and the entire impermeable wall 20 has sufficient water shielding properties. It has become. That is, the revetment 2 functions as a water-impervious revetment as a whole by providing the water-impervious wall 20 on the back surface thereof. Therefore, in this reference example , the inner water area required in the first embodiment is used. The double sheet structure 8 (FIG. 1) on the side surface of B is not necessary.
[0018]
Here, the sheet pile used as the inner wall 21 and the outer wall 22 of the double wall structure 23 is embedded in the seabed ground 3, but when the seabed 3 is a highly permeable gravel soil layer, Seawater in the outer water area A passes through the lower side of the sheet pile and reaches the back surface side of the composite structure 10 on the bottom surface of the inner water area B. Therefore, in this reference example , the submersible pump 12 and the water pressure sensor 13 used in the above embodiment are installed in the seabed ground 3 behind the inner wall 21 and in the vicinity of the tip of the root, and necessary for them. The lift pipe 14 and the signal lines 15 and 16 are pulled out along the inner wall 21 onto the revetment 2. .
[0019]
In this reference example , the construction procedure of the caisson type revetment 2 is substantially the same as the case of the first embodiment, and the back layer 6 is created behind the caisson 5 installed on the rubble mound 4. The water blocking wall 20 is constructed prior to the formation of the bellows layer 7, and the belly layer 7 is formed during or after the construction of the water shielding wall 20.
In constructing the impermeable wall 20, a steel sheet pile or a steel pipe sheet pile is placed in the seabed ground 3 away from the back layer 6 of the revetment 2 to the inner water area B side by a predetermined distance, and the inner wall 21 and the outer wall 22 A double-wall structure 23 having the following structure is constructed, and subsequently, the double-wall structure 23 is filled with a filler 24. As the filler 24, a water-impermeable material such as solidified soil or viscous soil, or landfill soil (mountain soil, mountain sand, slag, etc.) used for forming the bellows layer 7 can be used as it is. . When the impermeable material is used as the filler 24, the landfill is introduced between the impermeable wall 20 and the backing layer 6 after completion of the impermeable wall 20 or according to the progress of the construction. Then, the belly layer 7 is formed. On the other hand, when the landfill is used as the filler 24, the landfill is also introduced between the outer wall 22 and the backing layer 6 in parallel with the filling of the filler 24 into the double wall structure 23. May be.
[0020]
In this way, a water-impervious revetment in which the impermeable wall 20 and the caisson-type revetment 23 are integrated is completed. The submersible pump 12 and the water pressure sensor 13 are embedded, and the pumping pipe 14 and the signal lines 15 and 16 necessary for them are installed along the inner wall 21. Thereafter, a composite structure (water-blocking structure) in which the above-described water-impermeable layer 9 and the water-blocking sheet 8 ′ are overlapped with the water-blocking wall 20 on the bottom surface of the inner water area B partitioned by the revetment 2. ) 10 is installed, and a bottom covering layer 11 'similar to the above is formed thinly thereon, thereby completing the sea surface waste disposal site.
[0021]
After completion of sea waste disposal sites, as in the case of the embodiment, and manages as the water level L 1 of the inner waters in B is slightly lower than or equal to the mean tide level L 0 of the outer body of water A, At the same time, the water pressure monitoring by the water pressure sensor 13 is started. Under such water pressure monitoring, when the water level in the outer water area A rises at high tide or the like, or when a large wave is generated in the outer water area A, the water pressure near the root of the double wall structure 23 increases. the water pressure increase is detected by the pressure sensor 13, water pump 12 is operated by a command similar to the control device in the embodiment, thereby seawater pumping tube to penetrate near the embedment tip of the double wall structure 23 14 to the outside water area A. As a result, the hydrostatic pressure P B due to the water level difference acting on the composite structure 10 on the bottom surface of the inner water area B and the water pressure F B due to the waves (FIG. 3) are significantly reduced, and the composite structure 10 is prevented from being lifted, the same effect as a more preferred embodiment to can be obtained.
[0022]
In the present invention, the installation place of the submersible pump 12 constituting the pumping means is arbitrary, and may be installed in another place in addition to or in place of the above-mentioned vicinity of the seawall 2.
Further, the submersible pump 12 and the water pressure sensor 13 may be installed through a relatively large pipe line provided in the bellows layer 7 in advance .
Moreover, in the said embodiment, although the water pressure data detected by the water pressure sensor 13 installed in the vicinity of the submersible pump 12 was used for the operation management of the submersible pump 12, this invention limits the data used for this operation management. For example, a tide level sensor that detects the tide level in the outer water area A may be provided, and the tide level data detected by the tide level sensor may be used for operation management of the submersible pump 12.
Furthermore, it goes without saying that the submersible pump 12 constituting the pumping means may be replaced with another pump having a water absorption function.
[0023]
【The invention's effect】
As described above, according to the sea surface waste treatment plant according to the present invention, hydrostatic pressure and waves due to a difference in water level between the inside and outside acting on the water shielding structure are forcibly pumped from the back side of the water shielding structure. The water-impervious structure is sufficiently stable without increasing the loading load or forming itself large, improving landfill disposal efficiency, improving workability, Shortening the construction period and reducing construction costs can be achieved .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a sea surface waste disposal site as an embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing a sea surface waste disposal site as a reference example of the present invention.
FIG. 3 is a cross-sectional view schematically showing a conventional sea surface waste disposal site.
[Explanation of symbols]
1 Landfill disposal area 2 Caisson-type revetment (water-permeable revetment)
3 Submarine ground 4 Rubble mound 5 Caisson 6 Backing layer 7 Lined layer 8 Double sheet structure (water-blocking structure)
8 'Impervious sheet 9 Impervious layer (water impervious structure)
10 Composite structure (water-proof structure)
11 Slope coating layer 11 'Bottom coating layer 12 Submersible pump (pumping means)
13 Water pressure sensor 14 Pumping pipe (pumping means)
20 Impermeable wall 23 Double wall structure A Outside water area B Inside water area

Claims (4)

護岸で締切った内水域を廃棄物の埋立処分域とする海面廃棄物処分場であって、前記内水域の側面および/または底面に遮水シートを含む遮水構造物を設置した海面廃棄物処分場において、前記遮水構造物の裏面側でかつ護岸背面の法尻付近となる土中に、外水域からの浸透水を強制的に揚水するポンプを埋設し、一端が前記ポンプに接続された揚水管および信号線を護岸の内部を通して護岸上面に引出したことを特徴とする海面廃棄物処分場。A sea surface waste disposal site that uses the inner water area cut off at the revetment as a landfill disposal area for waste, and has a water shielding structure including a water shielding sheet on the side surface and / or bottom surface of the inner water area. At the disposal site, a pump for forcibly pumping infiltrated water from the outside water area is buried in the soil on the back side of the water-impervious structure and near the rear edge of the revetment, and one end is connected to the pump. A sea surface waste disposal site characterized by the fact that the water pumping pipe and signal line are drawn to the top of the revetment through the inside of the revetment . 遮水構造物が、遮水シートを二重に配した二重シート構造物または遮水シートと不透水層を重ねた複合構造物であることを特徴とする請求項1に記載の海面廃棄物処分場。  2. The sea surface waste according to claim 1, wherein the water-impervious structure is a double sheet structure in which water-impervious sheets are doubled or a composite structure in which a water-impervious sheet and an impermeable layer are stacked. Disposal site. 遮水構造物の上に、被覆層を造成したことを特徴とする請求項1または2に記載の海面廃棄物処分場。The sea surface waste disposal site according to claim 1 or 2 , wherein a coating layer is formed on the water-impervious structure . 護岸がケーソン式護岸であり、揚水管および信号線がケーソン背後の腹付層内を延ばされることを特徴とする請求項1乃至3の何れか1項に記載の海面廃棄物処分場。The sea surface waste disposal site according to any one of claims 1 to 3, wherein the revetment is a caisson-type revetment, and a pumping pipe and a signal line are extended in an abdomen layer behind the caisson .
JP2002128680A 2002-04-30 2002-04-30 Sea surface waste disposal site Expired - Fee Related JP4129762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128680A JP4129762B2 (en) 2002-04-30 2002-04-30 Sea surface waste disposal site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128680A JP4129762B2 (en) 2002-04-30 2002-04-30 Sea surface waste disposal site

Publications (2)

Publication Number Publication Date
JP2003320335A JP2003320335A (en) 2003-11-11
JP4129762B2 true JP4129762B2 (en) 2008-08-06

Family

ID=29542351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128680A Expired - Fee Related JP4129762B2 (en) 2002-04-30 2002-04-30 Sea surface waste disposal site

Country Status (1)

Country Link
JP (1) JP4129762B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979228B2 (en) * 2005-11-25 2012-07-18 ワールドエンジニアリング株式会社 Additional construction method of impermeable layer
JP5054388B2 (en) * 2007-02-05 2012-10-24 五洋建設株式会社 Construction method of impermeable structure for sea surface waste disposal site
JP5669192B2 (en) * 2011-01-13 2015-02-12 五洋建設株式会社 Quay structure or revetment structure
JP5660618B2 (en) * 2011-04-26 2015-01-28 ケミカルグラウト株式会社 Revetment reinforcement method
JP6402522B2 (en) * 2014-07-28 2018-10-10 宇部興産機械株式会社 Dust removal equipment and operation method of dust removal equipment
KR101875497B1 (en) * 2016-11-11 2018-07-09 지에스건설주식회사 Hybrid pipeline transportation system of offshore waste landfill, and operating method for the same
JP7213140B2 (en) * 2019-05-20 2023-01-26 東洋建設株式会社 Material using coal ash and landfill method
CN111549718B (en) * 2020-04-15 2021-04-27 李建 Multi-functional hydraulic engineering retaining wall

Also Published As

Publication number Publication date
JP2003320335A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
CN101270571B (en) Reinforcing method for layered dead weight, prepressing water discharge concretion combination dynamic consolidation soft ground base
CN101148890B (en) Bridge caisson composite pile foundation and reverse construction method thereof
CN102535488B (en) Waterproof construction method for bottom plate of high-water-level basement
CN110029690B (en) Percolate leakage detection and collection structure and construction method thereof
AU2015230478A1 (en) Hollow cylindrical pier for fixing offshore platform structure to bed and method of installing and constructing same
CN103374900B (en) Build the gravity type quay on muddy foundation and construction method thereof
CN113957913A (en) Construction method of film bag sand filling combined steel sheet pile cofferdam
JP4129762B2 (en) Sea surface waste disposal site
JP4979228B2 (en) Additional construction method of impermeable layer
CN103243704A (en) Shallow mud foundation treatment method
CN108570996A (en) It builds a dam under the conditions of shallow water mud cofferdam method
JPH11158886A (en) Method for constructing underwater foundation
Chu et al. Embankments on soft ground and ground improvement
Bittner et al. Design and construction of the Sutong Bridge foundations
JP4315620B2 (en) Impermeable treatment method for managed waste landfill revetment
CN214738650U (en) Multifunctional landscape pool for anti-floating underground drainage
GB1367881A (en) Hydraulic engineering installations
CN111305050B (en) Protection process for existing piers on two sides in tunnel construction
JP7329249B2 (en) Managed seawall
JP5669192B2 (en) Quay structure or revetment structure
KR100429370B1 (en) Method for constructing revetment dike using a fiber for public works
CN111663493A (en) Repairing and reinforcing method suitable for block wharf after foundation damage
JP2007105618A (en) Water barrier structure of waste landfill site
CN212772421U (en) Membrane bag fills sand and combines steel sheet pile cofferdam structure
CN210917310U (en) Disposal drainage consolidation processing system for hydraulic filling deep and thick soft foundation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

R150 Certificate of patent or registration of utility model

Ref document number: 4129762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees