JP4128904B2 - Transmitter - Google Patents

Transmitter Download PDF

Info

Publication number
JP4128904B2
JP4128904B2 JP2003127124A JP2003127124A JP4128904B2 JP 4128904 B2 JP4128904 B2 JP 4128904B2 JP 2003127124 A JP2003127124 A JP 2003127124A JP 2003127124 A JP2003127124 A JP 2003127124A JP 4128904 B2 JP4128904 B2 JP 4128904B2
Authority
JP
Japan
Prior art keywords
temperature
frequency amplifier
distortion
compensation amount
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003127124A
Other languages
Japanese (ja)
Other versions
JP2004336234A (en
Inventor
哲雄 吉田
量久 生岩
徹 阿部
出 村崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Broadcasting Corp
Original Assignee
Toshiba Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Broadcasting Corp filed Critical Toshiba Corp
Priority to JP2003127124A priority Critical patent/JP4128904B2/en
Publication of JP2004336234A publication Critical patent/JP2004336234A/en
Application granted granted Critical
Publication of JP4128904B2 publication Critical patent/JP4128904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特にOFDM(Orthogonal Frequency Division Multiplex:直交周波数分割多重)伝送方式を採用した地上デジタル放送IF伝送方式のSTL(Studio to Transmitter Link:演奏所・送信所間無線伝送路)/TTL(Transmitter to Transmitter Link:送信所間無線伝送路)伝送に用いられる送信装置に関する。
【0002】
【従来の技術】
現在、我が国では、地上波デジタル放送の実用化に向けて、その伝送方式について標準化が進められている。その中で、既にOFDM(直交周波数分割多重)方式の採用が決定され、IF伝送方式のSTL/TTL伝送にもOFDMが利用されることになっている。
【0003】
ところで、OFDM方式は、周波数利用効率とマルチパス耐力が高いという利点がある。反面、平均電力に対する尖頭値電力の比が大きいため、送信装置には直線性の範囲が広いこと及び低歪みが要求され、低消費電力化が大きな課題となっている。
この課題を克服するために、無線周波数が比較的低く伝送する信号の速度が遅い場合は、ベースバンド帯での適応等化方式による歪み補償技術が、無線周波数が高く伝送する信号の速度が速い場合は、無線周波数帯でのプリディストーション方式による歪み補償技術(例えば特許文献1参照)が、低消費電力化の主流となっている。
【0004】
このうち、無線周波数帯でのプリディストーション方式の場合、歪み補償器での歪み補償量は、室温で送信装置としての歪み発生量が最適になるように調整した後は、調整点は一定である。しかしながら、送信装置の歪み発生部分である高周波増幅器は、一般的に動作温度により歪み発生量が変化するため、周囲温度が変化した場合は歪み補償量に過不足が生じて補償効果が減少する。このことから、温度特性を含めて考えると、大きなバックオフを取らざるを得ず、結果的に高周波増幅器が大型になり、低消費電力化が難しくなる。
【0005】
【特許文献1】
特開2002−135063号公報。
【0006】
【発明が解決しようとする課題】
以上のように、OFDM伝送方式を採用した地上デジタル放送IF伝送方式のSTL/TTL伝送に用いられる送信装置では、無線周波数帯でのプリディストーション方式による歪み補償を採用する場合、周囲温度の変化による歪み補償量の変化が大きいため、低消費電力化が難しく、熱設計面からは装置全体の小型化を阻害している。
【0007】
本発明は上記の課題を解決し、OFDM伝送方式を採用した地上デジタル放送IF伝送方式のSTL/TTL伝送用として、無線周波数帯でのプリディストーション方式による歪み補償を採用する場合に、周囲温度の変化にかかわらず、最適な歪み補償効果が得られ、これによって低消費電力化、小型化を実現することのできる送信装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、地上デジタル放送IF伝送方式のSTL/TTL伝送に用いられる送信装置において、ベースバンド帯送信信号を無線周波数帯に変換する周波数変換器と、前記無線周波数帯に変換された送信信号を増幅する高周波増幅器と、前記高周波増幅器が持つ非線形特性とは逆特性で前記高周波増幅器の入力信号特性を制御することにより、前記高周波増幅器で生じる歪み成分を補償するプリディストーション方式の歪み補償器と、前記高周波増幅器の温度を検出する温度検出器と、前記温度検出器の検出温度に基づいて前記歪み補償器の入力レベルを制御することで歪み補償量を増減する歪み補償量制御手段と、前記高周波増幅器の出力レベルが一定となるように前記高周波増幅器の入力レベルを制御するレベル制御手段とを具備することを特徴とする。
【0009】
上記構成による送信装置では、無線周波数帯でのプリディストーション方式の歪み補償器の歪み補償量が歪み補償器の入力レベルにほぼ比例することに着目し、送信装置の歪み変動部分である高周波増幅器の温度を検出した後、それに対応して歪み補償器の入力レベルを増減して歪み補償量を制御する。このとき、歪み補償器の出力レベル、すなわち高周波増幅器の入力レベルが変化するため、高周波増幅器の出力レベルが一定となるように、その入力レベルを制御するようにしている。
【0010】
上記構成によれば、周囲温度にかかわらず最適な歪み補償効果が得られるため、従来より低消費電力の高周波増幅器で同じ出力の送信装置を作ることができ、その結果、低消費電力化が可能となる。また、低消費電力化を実現したことにより、従来に比べて小形の放熱器が使用可能となり、装置全体の小型化も可能となる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明を地上デジタル放送IF伝送方式のSTL/TTL伝送用の送信装置に適用した場合の構成を示すブロック図である。図1において、入力はベースバンド帯のOFDM信号であり、このベースバンド帯OFDM信号は第1の可変減衰器11を介してアップコンバータ12によって無線周波数帯に変換され、フィルタ13によって不要な周波数成分が除去された後、第1の方向性結合器14を介して歪み補償器15に送られる。
【0012】
歪み補償器15は後段の高周波増幅器17で発生する非線形歪みをプリディストーション方式で補償するもので、その出力は第2の可変減衰器16を介して高周波増幅器17に供給され、ここで電力増幅されて第2の方向結合器18を介して図示しないアンテナ装置へ出力される。
【0013】
上記第1の方向性結合器14は、無線周波数帯に変換されたOFDM信号を本線系から一部分岐させるもので、その出力は第1のレベル検出器19に供給される。この第1のレベル検出器19は歪み補償器15の入力レベルを相対的に検出するもので、その検出結果は温度補償用制御回路20に供給される。
【0014】
一方、高周波増幅器17には温度検出器21が装着され、この温度検出器21により高周波増幅器17の温度が検出されて温度補償用制御回路20に通知される。また、この温度補償用制御回路20には、温度補償データROM22が接続される。このROM22は、予め高周波増幅器17の温度と歪み発生量との関係から、温度と最適な歪み補償量が得られる歪み補償器15の入力レベルとの関係をテーブル化した温度補償データを格納したものである。
【0015】
上記温度補償用制御回路20は、温度補償データROM22を参照して、温度検出器21で検出される温度について第1のレベル検出器19で得られる歪み補償器15の最適入力レベルを求め、このレベルを目標値とする制御信号を第1の可変減衰器11に与える。
【0016】
また、上記第2の方向性結合器18は、高周波増幅器17の出力を本線系から一部分岐させるもので、その出力は第2のレベル検出器23に供給される。この第2のレベル検出器23は高周波増幅器17の出力レベルを相対的に検出するもので、その検出結果はALC(自動レベル制御)回路24に供給される。このALC回路24は第2のレベル検出器23の検出レベル、すなわち高周波増幅器17の出力レベルが規定値となるように、第2の可変減衰器16に制御信号を与える。
【0017】
上記構成において、図2乃至図5を参照してその動作を説明する。
図2は、上記高周波増幅器17がマイクロ波で一般的に用いられるガリウム砒素(GaAs)FET素子を用いている場合の歪み温度特性(IM3)を示しており、A1は室温の場合、A2は室温より低温の場合、A3は室温より高温の場合を示している。図2から明らかなように、高周波増幅器17は、出力レベル一定の場合、室温時のIM3に対して、低温時には減少し、高温時には増加する。
【0018】
図3は、上記プリディストーション方式による歪み補償器15の入力レベル対歪み補償特性(IM3)を示している。図3から明らかなように、歪み補償器15のIM3は、入力レベルに比例して出力側の歪み補償量が増加する。
図4は、上記高周波増幅器17で発生するIM3と歪み補償器15で発生するIM3のレベル差による歪み補償効果量の変化を示している。この図から、レベル差に反比例して補償量が変化することがわかる。
【0019】
今、図2及び図3に示すように、高周波増幅器17の室温でのIM3の値をA、室温より高温時のIM3の値をB、室温より低温時のIM3の値をCとし、歪み補償器15のIM3を室温で入力レベルがaで最適値Aとなるように調整したとする。
【0020】
この状態から高周波増幅器17の温度が上昇し、そのIM3がBの値に増加したとする。このとき、温度補償用制御回路20は、温度検出器21の検出温度に対応する制御データをROM22から読み出し、歪み補償器15のIM3がBと等しくなるように入力信号のレベルを増加させて、歪み補償量を図3に示すbの値に設定する。
【0021】
逆に、高周波増幅器17の温度が低下し、そのIM3がCの値に減少したとする。このとき、温度補償用制御回路20は、温度検出器21の検出温度に対応する制御データをROM22から読み出し、歪み補償器15のIM3がCと等しくなるように入力信号のレベルを減少させて、歪み補償量を図3に示すcの値に設定する。
【0022】
但し、歪み補償器15の入力レベルを変化させると、高周波増幅器17の入出力レベルも変化してしまう。そこで、ALCループにより高周波増幅器17の出力レベルを規定値に制御する。これにより、歪み補償量の最適化による高周波増幅器17の出力レベル変化をなくすことができる。
【0023】
図5に従来の方式の場合と本発明による温度補償を行った場合のIM3温度特性を示す。図中Dが従来方式の場合、Eが本発明による温度補償を行った場合を示している。図5から明らかなように、本発明による温度補償を行うことで、送信装置の温度変化によるIM3の変化は低減される。
【0024】
この結果、周囲温度にかかわらず最適な歪み補償効果が得られるため、従来より低消費電力の高周波増幅器で同じ出力の送信装置を作ることができ、低消費電力化が可能となる。また、低消費電力化を実現したことにより、従来に比べて小形の放熱器が使用可能となり、装置全体を小型化することが可能となる。
【0025】
尚、上記実施形態では、第1の可変減衰器11をベースバンド帯送信信号の入力段に配置するようにしたが、アップコンバータ12とフィルタ13との間、またはフィルタ13と第1の方向性結合器14との間に配置するようにしてもよい。但し、ベースバンド帯で処理した方が回路構成が簡単であり、減衰量の制御も容易となる。その他、本発明の適用において、種々の変形が可能であることはいうまでもない。
【0026】
【発明の効果】
以上のように本発明によれば、OFDM伝送方式を採用した地上デジタル放送IF伝送方式のSTL/TTL伝送用として、無線周波数帯でのプリディストーション方式による歪み補償を採用する場合に、周囲温度の変化にかかわらず、最適な歪み補償効果が得られ、これによって低消費電力化、小型化を実現することのできる送信装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明を地上デジタル放送IF伝送方式のSTL/TTL伝送用の送信装置に適用した場合の一実施形態の構成を示すブロック図。
【図2】 上記実施形態の高周波増幅器がマイクロ波で一般的に用いられるガリウム砒素(GaAs)FET素子を用いている場合の歪み温度特性(IM3)の一例を示す特性図。
【図3】 上記実施形態のプリディストーション方式による歪み補償器の入力レベル対歪み補償特性(IM3)を示す特性図。
【図4】 上記実施形態の高周波増幅器で発生するIM3と歪み補償器で発生するIM3のレベル差による歪み補償効果量の変化を示す特性図。
【図5】 従来の方式の場合と本発明による温度補償を行った場合のIM3温度特性を示す特性図。
【符号の説明】
11…第1の可変減衰器、12…アップコンバータ、13…フィルタ、14…第1の方向性結合器、15…歪み補償器、16…第2の可変減衰器、17…高周波増幅器、18…第2の方向結合器、19…第1のレベル検出器、20…温度補償用制御回路、21…温度検出器、22…温度補償データROM、23…第2のレベル検出器、24…ALC回路。
[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention relates to an STL (Studio to Transmitter Link: radio transmission path between a performance station and a transmitting station) / TTL (Transmitter) of a digital terrestrial broadcasting IF transmission system adopting an OFDM (Orthogonal Frequency Division Multiplex) transmission system. to Transmitter Link: A transmission apparatus used for transmission between radio stations).
[0002]
[Prior art]
At present, in Japan, standardization of the transmission method is being promoted for practical application of terrestrial digital broadcasting. Among them, the adoption of the OFDM (Orthogonal Frequency Division Multiplexing) method has already been decided, and OFDM is also used for STL / TTL transmission of the IF transmission method.
[0003]
By the way, the OFDM method has an advantage of high frequency utilization efficiency and multipath tolerance. On the other hand, since the ratio of the peak power to the average power is large, the transmitter device is required to have a wide linearity range and low distortion, and low power consumption is a big issue.
In order to overcome this problem, when the radio signal is transmitted at a relatively low frequency, the distortion compensation technique based on the adaptive equalization method in the baseband is used to increase the signal transmitted at a high radio frequency. In such a case, distortion compensation technology using a predistortion method in a radio frequency band (see, for example, Patent Document 1) has become the mainstream for reducing power consumption.
[0004]
Among these, in the case of the predistortion method in the radio frequency band, the distortion compensation amount in the distortion compensator is fixed after the adjustment is made so that the distortion generation amount as a transmission device is optimum at room temperature. . However, since the amount of distortion generated by the high-frequency amplifier, which is a distortion generating portion of the transmission apparatus, generally varies depending on the operating temperature, the amount of distortion compensation becomes excessive and insufficient when the ambient temperature changes, and the compensation effect decreases. For this reason, considering the temperature characteristics, a large back-off must be taken, resulting in an increase in size of the high-frequency amplifier and difficulty in reducing power consumption.
[0005]
[Patent Document 1]
JP 2002-135063 A.
[0006]
[Problems to be solved by the invention]
As described above, in a transmitter used for STL / TTL transmission of the digital terrestrial broadcasting IF transmission method adopting the OFDM transmission method, when distortion compensation by the predistortion method in the radio frequency band is adopted, it depends on a change in ambient temperature. Since the amount of distortion compensation is large, it is difficult to reduce the power consumption, and the downsizing of the entire apparatus is hindered from the viewpoint of thermal design.
[0007]
The present invention solves the above-mentioned problems, and when the distortion compensation by the predistortion method in the radio frequency band is adopted for STL / TTL transmission of the digital terrestrial broadcasting IF transmission method adopting the OFDM transmission method, An object of the present invention is to provide a transmitter capable of obtaining an optimum distortion compensation effect regardless of changes, and thereby realizing low power consumption and miniaturization.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a frequency converter that converts a baseband transmission signal into a radio frequency band in a transmission device used for STL / TTL transmission of the digital terrestrial broadcasting IF transmission method, and the radio A high-frequency amplifier that amplifies a transmission signal converted into a frequency band and a distortion component generated in the high-frequency amplifier are compensated by controlling input signal characteristics of the high-frequency amplifier with characteristics opposite to the nonlinear characteristics of the high-frequency amplifier. Predistortion type distortion compensator, temperature detector for detecting the temperature of the high frequency amplifier, and controlling the input level of the distortion compensator based on the temperature detected by the temperature detector, thereby increasing or decreasing the distortion compensation amount. Controls the input level of the high-frequency amplifier so that the output level of the distortion compensation amount control means and the high-frequency amplifier is constant. Characterized by comprising a bell control unit.
[0009]
In the transmission apparatus having the above configuration, paying attention to the fact that the distortion compensation amount of the predistortion type distortion compensator in the radio frequency band is substantially proportional to the input level of the distortion compensator, the high-frequency amplifier that is the distortion fluctuation part of the transmission apparatus After detecting the temperature, the distortion compensation amount is controlled by increasing or decreasing the input level of the distortion compensator correspondingly. At this time, since the output level of the distortion compensator, that is, the input level of the high-frequency amplifier changes, the input level is controlled so that the output level of the high-frequency amplifier becomes constant.
[0010]
According to the above configuration, an optimum distortion compensation effect can be obtained regardless of the ambient temperature, so that a transmitter with the same output can be made with a high-frequency amplifier with lower power consumption than in the past, and as a result, lower power consumption is possible. It becomes. In addition, by realizing low power consumption, it is possible to use a smaller heat sink than in the prior art, and it is possible to reduce the size of the entire apparatus.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a configuration when the present invention is applied to a transmitter for STL / TTL transmission of the digital terrestrial broadcasting IF transmission system. In FIG. 1, an input is an OFDM signal in a baseband, and this baseband OFDM signal is converted into a radio frequency band by an up-converter 12 through a first variable attenuator 11 and an unnecessary frequency component by a filter 13. Is removed and sent to the distortion compensator 15 via the first directional coupler 14.
[0012]
The distortion compensator 15 compensates for non-linear distortion generated in the subsequent high-frequency amplifier 17 by a predistortion method, and its output is supplied to the high-frequency amplifier 17 via the second variable attenuator 16, where the power is amplified. To the antenna device (not shown) via the second directional coupler 18.
[0013]
The first directional coupler 14 partially branches the OFDM signal converted into the radio frequency band from the main line system, and its output is supplied to the first level detector 19. The first level detector 19 relatively detects the input level of the distortion compensator 15, and the detection result is supplied to the temperature compensation control circuit 20.
[0014]
On the other hand, a temperature detector 21 is attached to the high frequency amplifier 17, and the temperature of the high frequency amplifier 17 is detected by the temperature detector 21 and notified to the temperature compensation control circuit 20. A temperature compensation data ROM 22 is connected to the temperature compensation control circuit 20. This ROM 22 stores in advance temperature compensation data in which the relationship between the temperature and the input level of the distortion compensator 15 for obtaining the optimum distortion compensation amount is tabulated from the relationship between the temperature of the high frequency amplifier 17 and the amount of distortion generated. It is.
[0015]
The temperature compensation control circuit 20 refers to the temperature compensation data ROM 22 to obtain the optimum input level of the distortion compensator 15 obtained by the first level detector 19 with respect to the temperature detected by the temperature detector 21. A control signal whose level is a target value is supplied to the first variable attenuator 11.
[0016]
Further, the second directional coupler 18 partially branches the output of the high-frequency amplifier 17 from the main line system, and the output is supplied to the second level detector 23. The second level detector 23 relatively detects the output level of the high-frequency amplifier 17, and the detection result is supplied to an ALC (automatic level control) circuit 24. The ALC circuit 24 gives a control signal to the second variable attenuator 16 so that the detection level of the second level detector 23, that is, the output level of the high frequency amplifier 17 becomes a specified value.
[0017]
The operation of the above configuration will be described with reference to FIGS.
FIG. 2 shows a strain temperature characteristic (IM3) in the case where the high-frequency amplifier 17 uses a gallium arsenide (GaAs) FET element generally used in a microwave. When A1 is room temperature, A2 is room temperature. In the case of a lower temperature, A3 indicates a case of a temperature higher than room temperature. As is apparent from FIG. 2, the high-frequency amplifier 17 decreases at a low temperature and increases at a high temperature with respect to IM3 at room temperature when the output level is constant.
[0018]
FIG. 3 shows the input level versus distortion compensation characteristic (IM3) of the distortion compensator 15 according to the predistortion method. As is apparent from FIG. 3, the distortion compensation amount on the output side of IM3 of the distortion compensator 15 increases in proportion to the input level.
FIG. 4 shows changes in the distortion compensation effect amount due to the level difference between IM3 generated by the high-frequency amplifier 17 and IM3 generated by the distortion compensator 15. From this figure, it can be seen that the compensation amount changes in inverse proportion to the level difference.
[0019]
As shown in FIGS. 2 and 3, the value of IM3 at room temperature of the high-frequency amplifier 17 is A, the value of IM3 at a temperature higher than room temperature is B, and the value of IM3 at a temperature lower than room temperature is C. Assume that IM3 of the vessel 15 is adjusted to an optimum value A at an input level a at room temperature.
[0020]
It is assumed that the temperature of the high-frequency amplifier 17 has risen from this state, and its IM3 has increased to the value B. At this time, the temperature compensation control circuit 20 reads the control data corresponding to the temperature detected by the temperature detector 21 from the ROM 22 and increases the level of the input signal so that IM3 of the distortion compensator 15 becomes equal to B. The distortion compensation amount is set to the value b shown in FIG.
[0021]
On the contrary, it is assumed that the temperature of the high-frequency amplifier 17 is lowered and its IM3 is reduced to the value of C. At this time, the temperature compensation control circuit 20 reads the control data corresponding to the temperature detected by the temperature detector 21 from the ROM 22 and decreases the level of the input signal so that IM3 of the distortion compensator 15 becomes equal to C. The distortion compensation amount is set to the value c shown in FIG.
[0022]
However, when the input level of the distortion compensator 15 is changed, the input / output level of the high-frequency amplifier 17 is also changed. Therefore, the output level of the high frequency amplifier 17 is controlled to a specified value by the ALC loop. Thereby, the output level change of the high frequency amplifier 17 due to the optimization of the distortion compensation amount can be eliminated.
[0023]
FIG. 5 shows IM3 temperature characteristics in the case of the conventional method and in the case where the temperature compensation according to the present invention is performed. In the figure, D indicates a conventional system, and E indicates a case where temperature compensation according to the present invention is performed. As is apparent from FIG. 5, by performing the temperature compensation according to the present invention, the change in IM3 due to the temperature change of the transmitter is reduced.
[0024]
As a result, an optimum distortion compensation effect can be obtained regardless of the ambient temperature. Therefore, a transmission device having the same output can be made with a high-frequency amplifier with lower power consumption than before, and power consumption can be reduced. In addition, by realizing low power consumption, it is possible to use a smaller heat sink than in the prior art, and it is possible to reduce the size of the entire apparatus.
[0025]
In the above embodiment, the first variable attenuator 11 is arranged at the input stage of the baseband transmission signal. However, the first variable attenuator 11 is arranged between the upconverter 12 and the filter 13 or between the filter 13 and the first directivity. You may make it arrange | position between the couplers 14. However, processing in the baseband has a simpler circuit configuration and makes it easier to control the amount of attenuation. In addition, it goes without saying that various modifications are possible in the application of the present invention.
[0026]
【The invention's effect】
As described above, according to the present invention, when the distortion compensation by the predistortion method in the radio frequency band is adopted for the STL / TTL transmission of the terrestrial digital broadcasting IF transmission method adopting the OFDM transmission method, Regardless of the change, an optimal distortion compensation effect can be obtained, thereby providing a transmitter capable of realizing low power consumption and miniaturization.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment when the present invention is applied to a transmission apparatus for STL / TTL transmission of a terrestrial digital broadcasting IF transmission system.
FIG. 2 is a characteristic diagram showing an example of a strain temperature characteristic (IM3) when the high-frequency amplifier according to the embodiment uses a gallium arsenide (GaAs) FET element generally used in a microwave.
FIG. 3 is a characteristic diagram showing an input level versus distortion compensation characteristic (IM3) of the distortion compensator according to the predistortion method of the embodiment.
FIG. 4 is a characteristic diagram showing a change in distortion compensation effect amount due to a level difference between IM3 generated in the high frequency amplifier of the embodiment and IM3 generated in the distortion compensator.
FIG. 5 is a characteristic diagram showing IM3 temperature characteristics in the case of a conventional system and when temperature compensation is performed according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... 1st variable attenuator, 12 ... Up converter, 13 ... Filter, 14 ... 1st directional coupler, 15 ... Distortion compensator, 16 ... 2nd variable attenuator, 17 ... High frequency amplifier, 18 ... Second directional coupler, 19 ... first level detector, 20 ... temperature compensation control circuit, 21 ... temperature detector, 22 ... temperature compensation data ROM, 23 ... second level detector, 24 ... ALC circuit .

Claims (3)

地上デジタル放送IF伝送方式のSTL/TTL伝送に用いられる送信装置において、
ベースバンド帯送信信号を無線周波数帯に変換する周波数変換器と、
前記無線周波数帯に変換された送信信号を増幅する高周波増幅器と、
前記高周波増幅器が持つ非線形特性とは逆特性で前記高周波増幅器の入力信号特性を制御することにより、前記高周波増幅器で生じる歪み成分を補償するプリディストーション方式の歪み補償器と、
前記高周波増幅器の温度を検出する温度検出器と、
前記温度検出器の検出温度に基づいて前記歪み補償器の入力信号レベルを制御することで歪み補償量を増減する歪み補償量制御手段と、
前記高周波増幅器の出力レベルが一定となるように前記高周波増幅器の入力レベルを制御するレベル制御手段と、
を具備する送信装置。
In a transmitter used for STL / TTL transmission of the terrestrial digital broadcast IF transmission system,
A frequency converter for converting a baseband transmission signal into a radio frequency band;
A high-frequency amplifier that amplifies the transmission signal converted into the radio frequency band;
A distortion compensator of a predistortion method that compensates for a distortion component generated in the high-frequency amplifier by controlling the input signal characteristics of the high-frequency amplifier in reverse to the nonlinear characteristics of the high-frequency amplifier;
A temperature detector for detecting the temperature of the high-frequency amplifier;
Distortion compensation amount control means for increasing / decreasing the distortion compensation amount by controlling the input signal level of the distortion compensator based on the temperature detected by the temperature detector;
Level control means for controlling the input level of the high-frequency amplifier so that the output level of the high-frequency amplifier is constant;
A transmission apparatus comprising:
前記歪み補償量制御手段は、前記ベースバンド帯送信信号をレベル制御することを特徴とする請求項1記載の送信装置。The transmission apparatus according to claim 1, wherein the distortion compensation amount control means performs level control on the baseband transmission signal. 前記歪み補償量制御手段は、予め前記高周波増幅器の温度と歪み発生量との関係に基づいて求められた最適歪み補償量を前記高周波増幅器の温度と対応付けて保持する温度補償量テーブルを備え、このテーブルを参照して前記高周波増幅器の温度変化に対応する温度補償量を前記歪み補償器に設定することを特徴とする請求項1記載の送信装置。The distortion compensation amount control means includes a temperature compensation amount table that holds an optimum distortion compensation amount that is obtained in advance based on the relationship between the temperature of the high-frequency amplifier and the amount of distortion generated, in association with the temperature of the high-frequency amplifier, 2. The transmission apparatus according to claim 1, wherein a temperature compensation amount corresponding to a temperature change of the high-frequency amplifier is set in the distortion compensator with reference to the table.
JP2003127124A 2003-05-02 2003-05-02 Transmitter Expired - Lifetime JP4128904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127124A JP4128904B2 (en) 2003-05-02 2003-05-02 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127124A JP4128904B2 (en) 2003-05-02 2003-05-02 Transmitter

Publications (2)

Publication Number Publication Date
JP2004336234A JP2004336234A (en) 2004-11-25
JP4128904B2 true JP4128904B2 (en) 2008-07-30

Family

ID=33503795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127124A Expired - Lifetime JP4128904B2 (en) 2003-05-02 2003-05-02 Transmitter

Country Status (1)

Country Link
JP (1) JP4128904B2 (en)

Also Published As

Publication number Publication date
JP2004336234A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US8340214B2 (en) Method and apparatus for generating predistortion signal
US7489910B2 (en) Wireless transmitter and amplifier
EP0705010B1 (en) Transmitter with compensation of power amplifier distortion
US8295392B2 (en) Digital communication system, indoor unit, and outdoor unit
WO2006059372A1 (en) Signal take-out circuit and distortion compensation amplifier comprising it
WO2005124994A1 (en) High-efficiency amplifier
JP4071031B2 (en) Method and apparatus for reducing distortion in a transmitter
EP1653606B1 (en) High efficiency amplifier
EP1714393B1 (en) Radio transmitter with reduced power consumption
US6999737B2 (en) Wireless transmitter and device for mobile station
JP4128904B2 (en) Transmitter
US10749715B2 (en) Systems and methods for cable headend transmission
US8031803B2 (en) Transmitter capable of suppressing peak of transmission signal
KR100592588B1 (en) TDD System using feed-forword power amplifier for isolation enhancement between transmitter and receiver
KR101131910B1 (en) Output power unit for a mobile telecommunication equipments
JP2009100049A (en) Negative feedback amplifying circuit and radio communication apparatus
JPH03265314A (en) Transmission power control system
KR100700102B1 (en) A Method For Maintaining PAR Of Digital Transceiver
KR100516670B1 (en) Apparatus for output automatic compensation of multi-channel digital transceiver
JP2007150829A (en) Radio device and communication control method
JP5153666B2 (en) Feedforward distortion compensation amplifier
US8274329B2 (en) Signal compensation device and communication apparatus
US8559896B2 (en) System and method for radio power level control
KR20050077855A (en) A method of transmission power control of a power amplifier for a wireless telecommunication system
KR100407939B1 (en) Apparatus for auto gain controller in mobile communication system's BTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term