JP4127680B2 - Hearing aid processing method and hearing aid using the same - Google Patents

Hearing aid processing method and hearing aid using the same Download PDF

Info

Publication number
JP4127680B2
JP4127680B2 JP2004105909A JP2004105909A JP4127680B2 JP 4127680 B2 JP4127680 B2 JP 4127680B2 JP 2004105909 A JP2004105909 A JP 2004105909A JP 2004105909 A JP2004105909 A JP 2004105909A JP 4127680 B2 JP4127680 B2 JP 4127680B2
Authority
JP
Japan
Prior art keywords
hearing
excitation pattern
person
nerve excitation
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105909A
Other languages
Japanese (ja)
Other versions
JP2005295119A (en
Inventor
三樹夫 東山
道子 風間
義典 高橋
清明 寺田
真一 坂本
健志 中市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Rion Co Ltd
Original Assignee
Waseda University
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Rion Co Ltd filed Critical Waseda University
Priority to JP2004105909A priority Critical patent/JP4127680B2/en
Publication of JP2005295119A publication Critical patent/JP2005295119A/en
Application granted granted Critical
Publication of JP4127680B2 publication Critical patent/JP4127680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、周波数選択性の劣化に基づいて補聴調整する補聴処理方法及びそれを用いた補聴器に関する。   The present invention relates to a hearing aid processing method for adjusting hearing aid based on frequency selective deterioration and a hearing aid using the hearing aid processing method.

現在一般に普及している補聴器のほとんどは、数種類の調整機能を有する。これらの調整機能には、例えばサブボリューム、出力制限、音質調整(主にフィルタを用いた周波数特性変更装置)、自動利得調整(AGC)などがあり、各調整の度合はユーザ若しくは調整者(医師、販売店員等)が自由に変更することができる。これらの調整は、装用者のオージオグラム(最小可聴閾値の上昇)を特定の計算式に代入して得られた調整値に基づいて行われる。   Most hearing aids that are currently in widespread use have several types of adjustment functions. These adjustment functions include, for example, sub-volume, output limitation, sound quality adjustment (mainly a frequency characteristic changing device using a filter), automatic gain adjustment (AGC), etc. The degree of each adjustment depends on the user or adjuster (doctor) , Sales clerk, etc.) can freely change. These adjustments are made based on adjustment values obtained by substituting the wearer's audiogram (increase in minimum audible threshold) into a specific calculation formula.

また、難聴の要因としては、オージオグラムの形状の他に、周波数選択性の劣化などが考えられる。オージオグラムの形状が殆ど同じであっても、周波数選択性の劣化の度合が異なると、オージオグラムの形状を基に補聴器を調整したとても、文章了解度が改善されない場合がある。また、同じタイプの補聴器を使用している難聴者であっても、周波数選択性の劣化の度合が異なり、雑音下での文章了解度が改善されない場合がある。   As a cause of hearing loss, in addition to the shape of the audiogram, the deterioration of frequency selectivity can be considered. Even if the shape of the audiogram is almost the same, if the degree of deterioration in frequency selectivity is different, the degree of sentence comprehension may not be improved if the hearing aid is adjusted based on the shape of the audiogram. Further, even hearing-impaired people who use the same type of hearing aid may have different degrees of frequency selectivity degradation, and may not improve sentence comprehension under noise.

周波数選択性の劣化の度合については、聴覚フィルタ形状から個々の難聴者の度合を知ることができる。健聴者における聴覚フィルタ形状の個人差は小さいが、感音性難聴者における聴覚フィルタ形状は、周波数や音圧レベルに応じて様々に異なることが知られている。   As for the degree of deterioration of frequency selectivity, the degree of individual hearing loss can be known from the shape of the auditory filter. It is known that although the individual difference in the shape of the auditory filter in a normal hearing person is small, the shape of the auditory filter in a person with sensorineural hearing loss varies depending on the frequency and the sound pressure level.

そこで、聴覚フィルタ形状を短時間で測定する方法としては,周波数分解能測定装置などが知られている(例えば、特許文献1参照)。
また,聴覚フィルタ形状の他に、臨界帯域幅やマスキングパターンなどを用いても、周波数選択性の劣化度合を知ることができる。
Thus, a frequency resolution measuring device or the like is known as a method for measuring the auditory filter shape in a short time (see, for example, Patent Document 1).
In addition to the auditory filter shape, the degree of frequency selectivity degradation can be determined by using a critical bandwidth, a masking pattern, or the like.

特開2001−95785号公報JP 2001-95785 A

しかし、周波数選択性の劣化の度合については、聴覚フィルタ形状などから測定することは可能であるが、現在の補聴器が有する機能では、周波数選択性の劣化を補償することはできない。
そこで、周波数選択性の劣化に基づいて調整できる補聴器の出現が望まれる。
However, although the degree of frequency selectivity degradation can be measured from the shape of an auditory filter, etc., the function of current hearing aids cannot compensate for frequency selectivity degradation.
Therefore, the appearance of a hearing aid that can be adjusted based on the deterioration of frequency selectivity is desired.

本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、補聴器装用者(難聴者)の周波数選択性の劣化に基づいて補聴調整することができる補聴処理方法及びそれを用いた補聴器を提供しようとするものである。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to adjust hearing aid based on the deterioration of frequency selectivity of a hearing aid wearer (deaf person). It is intended to provide a hearing aid processing method and a hearing aid using the same.

上記課題を解決すべく請求項1に係る発明は、マイクロホンで入力した音声信号を補聴処理してイヤホンから音声信号を出力する補聴処理方法であって、入力音声信号の主要正弦波ピークに対する各聴覚フィルタの出力を周波数軸上畳み込み演算して健聴者及び難聴者の聴神経興奮パターンを算出し、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正処理して出力音声信号とするものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a hearing aid processing method for outputting a sound signal from an earphone by performing a hearing aid process on a sound signal input by a microphone, and each hearing for each main sine wave peak of the input sound signal. The filter output is convoluted on the frequency axis to calculate the auditory nerve excitation pattern of the normal hearing person and the deaf person, and the input sound signal is corrected so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person It is processed into an output audio signal.

請求項に係る発明は、請求項記載の補聴器において、前記聴神経興奮パターンは、入力音声信号のある特定の周波数成分を用いて算出される。 The invention according to claim 2 is the hearing aid of claim 1, wherein the acoustic nerve excitation pattern is calculated using a specific frequency component with the input speech signal.

請求項に係る発明は、マイクロホンで入力した音声信号を補聴処理してイヤホンから音声信号を出力する補聴器であって、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正処理して出力音声信号とする補聴処理部を備え、この補聴処理部は、健聴者及び難聴者の聴覚フィルタ形状を記憶する聴覚フィルタ形状記憶部と、マイクロホンの出力信号を各種処理する信号処理部と、この信号処理部の出力信号に対する各聴覚フィルタの出力を周波数軸上畳み込み演算して健聴者及び難聴者の聴神経興奮パターンを算出する聴神経興奮パターン算出部と、難聴者の聴神経興奮パターンが健聴者の聴神経興奮パターンと同一になるためのゲイン係数を算出する比較部と、この比較部が算出したゲイン係数を用いて前記信号処理部の出力信号を補正処理する補正処理部からなるものである。 The invention according to claim 3 is a hearing aid that outputs a sound signal from an earphone by performing a hearing process on a sound signal input by a microphone, such that the auditory nerve excitation pattern of the deaf person is the same as that of a normal hearing person. A hearing aid processing unit that corrects the input speech signal to produce an output speech signal, the hearing aid processing unit comprising a hearing filter shape storage unit that stores the hearing filter shape of the normal hearing person and the deaf person, and an output signal of the microphone A signal processing unit that performs various processing, an auditory excitation pattern calculation unit that calculates an auditory nerve excitation pattern of a normal hearing person and a deaf person by performing a convolution operation on the output of each auditory filter with respect to an output signal of the signal processing unit, and a hearing loss A comparison unit that calculates a gain coefficient for the auditory nerve excitation pattern of the normal listener to be the same as that of a normal hearing person, and a gain calculated by the comparison unit. It is made of the correction processing unit for correcting processing the output signal of the signal processing unit by using the down coefficient.

請求項に係る発明は、請求項記載の補聴器において、前記聴神経興奮パターンは、入力音声信号のある特定の周波数成分を用いて算出される。 The invention according to claim 4 is the hearing aid according to claim 3 , wherein the auditory nerve excitation pattern is calculated using a specific frequency component of the input audio signal.

以上説明したように請求項1に係る発明によれば、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正して出力音声信号とするので、周波数選択性の劣化が補償され、健聴者と同じような感覚で音声を聴取することができる。   As described above, according to the first aspect of the present invention, the input sound signal is corrected to the output sound signal so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person. Deterioration of frequency selectivity is compensated, and sound can be heard with the same feeling as a normal hearing person.

また、周波数選択性の劣化の度合を表している聴覚フィルタ形状を用いて、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正して出力音声信号とするので、周波数選択性の劣化が補償され、健聴者と同じような感覚で音声を聴取することができる。 In addition , by using an auditory filter shape representing the degree of frequency selectivity degradation, the input audio signal is corrected and the output audio so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person Since it is a signal, the deterioration of frequency selectivity is compensated, and sound can be heard with the same feeling as a normal hearing person.

請求項に係る発明によれば、聴神経興奮パターンが、入力音声信号のある特定の周波数成分を用いて算出されるので、演算処理の高速化が図れる。 According to the second aspect of the present invention, the auditory nerve excitation pattern is calculated using a specific frequency component of the input audio signal, so that the calculation process can be speeded up.

請求項に係る発明によれば、補聴処理部による補聴処理により、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正して出力音声信号とするので、周波数選択性の劣化が補償され、健聴者と同じような感覚で音声を聴取することができる。 According to the invention of claim 3 , the hearing sound processing by the hearing aid processing unit corrects the input sound signal so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person. Therefore, the deterioration of the frequency selectivity is compensated, and the sound can be heard with the same feeling as a normal hearing person.

また、補聴処理部による補聴処理が、周波数選択性の劣化の度合を表している聴覚フィルタ形状を用いて、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正して出力音声信号とするので、周波数選択性の劣化が補償され、健聴者と同じような感覚で音声を聴取することができる。 In addition , the hearing aid processing by the hearing aid processing unit uses an auditory filter shape that indicates the degree of frequency selectivity degradation, and the hearing excitation pattern of the deaf person is the same as the auditory nerve excitation pattern of the normal hearing person. Since the audio signal is corrected to be an output audio signal, the deterioration of frequency selectivity is compensated, and the audio can be heard with the same feeling as a normal hearing person.

請求項に係る発明によれば、聴神経興奮パターンが、入力音声信号のある特定の周波数成分を用いて算出されるので、演算処理の高速化が図れる。 According to the fourth aspect of the present invention, since the auditory nerve excitation pattern is calculated using a specific frequency component of the input audio signal, the calculation process can be speeded up.

以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る補聴器のブロック構成図、図2は聴覚フィルタから聴神経興奮パターンを算出する方法の説明図、図3は聴覚フィルタ形状を用いた場合の補正処理手順を示すフローチャート、図4は聴神経興奮パターンの一例である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a block diagram of a hearing aid according to the present invention, FIG. 2 is an explanatory diagram of a method for calculating an auditory nerve excitation pattern from an auditory filter, and FIG. 3 is a flowchart showing a correction processing procedure when an auditory filter shape is used. FIG. 4 is an example of the acoustic nerve excitation pattern.

図1に示すように、本発明に係る補聴器1は、マイクロホン2、補聴処理部3、イヤホン4からなる。そして、補聴処理部3は、信号処理部5、聴神経興奮パターン算出部6,7、聴覚フィルタ形状記憶部8,9、比較部10、補正処理部11などを備えている。なお、健聴者の聴覚フィルタ形状のデータは予め聴覚フィルタ形状記憶部8に記憶され、難聴者(補聴器装用者)の聴覚フィルタ形状のデータも予め測定されて聴覚フィルタ形状記憶部9に記憶されている。   As shown in FIG. 1, a hearing aid 1 according to the present invention includes a microphone 2, a hearing aid processing unit 3, and an earphone 4. The hearing aid processing unit 3 includes a signal processing unit 5, auditory nerve excitation pattern calculation units 6 and 7, auditory filter shape storage units 8 and 9, a comparison unit 10, a correction processing unit 11, and the like. The hearing filter shape data of the normal hearing person is stored in advance in the auditory filter shape storage unit 8, and the hearing filter shape data of the hearing impaired person (hearing aid wearer) is also measured in advance and stored in the auditory filter shape storage unit 9. Yes.

マイクロホン2は、音声信号を電気信号に変換し、変換した電気信号を出力する。補聴処理部3は、マイクロホン2が出力した電気信号から各種の信号処理を行い、補聴処理を施した電気信号を出力する。イヤホン4は、補聴処理部3の出力信号を音響信号に変換し、音声信号として出力する。   The microphone 2 converts an audio signal into an electric signal and outputs the converted electric signal. The hearing aid processing unit 3 performs various signal processing from the electrical signal output from the microphone 2 and outputs the electrical signal subjected to the hearing aid processing. The earphone 4 converts the output signal of the hearing aid processing unit 3 into an acoustic signal and outputs it as an audio signal.

信号処理部5は、マイクロホン2が出力した電気信号からパワースペクトルを算出したり、ピークピッキングを行ったり、各種の信号処理を行い、処理を施した電気信号を出力する。   The signal processing unit 5 calculates a power spectrum from the electrical signal output from the microphone 2, performs peak picking, performs various signal processing, and outputs the processed electrical signal.

聴神経興奮パターン算出部6は、信号処理部5の出力信号であるパワースペクトル又は特定の周波数成分と、聴覚フィルタ形状記憶部8に記憶されている健聴者の聴覚フィルタ形状から、健聴者の聴神経興奮パターンを算出する。また、もう一方の聴神経興奮パターン算出部7は、信号処理部5の出力信号であるパワースペクトル又は特定の周波数成分と、聴覚フィルタ形状記憶部9に記憶されている難聴者の聴覚フィルタ形状から、難聴者の聴神経興奮パターンを算出する。   The auditory nerve excitation pattern calculation unit 6 calculates the auditory nerve excitation of the normal hearing person from the power spectrum that is the output signal of the signal processing unit 5 or a specific frequency component and the auditory filter shape of the normal hearing person stored in the auditory filter shape storage unit 8. Calculate the pattern. Further, the other auditory nerve excitation pattern calculation unit 7 is based on the power spectrum that is the output signal of the signal processing unit 5 or a specific frequency component and the hearing filter shape of the hearing impaired stored in the hearing filter shape storage unit 9. Calculate the auditory nerve excitation pattern of the deaf.

ここで、聴神経興奮パターンとは、蝸牛における基底膜の振動によって刺激された神経活動の分布であり、刺激によって引き起こされる興奮量を周波数の関数として表示したものである。図2に聴覚フィルタバンクに純音が入力された場合の聴神経興奮パターンの算出方法を示す。   Here, the auditory nerve excitation pattern is a distribution of neural activity stimulated by the vibration of the basement membrane in the cochlea, and represents the amount of excitement caused by the stimulation as a function of frequency. FIG. 2 shows a method of calculating the auditory nerve excitation pattern when a pure tone is input to the auditory filter bank.

図2(a)は、入力された純音と健聴者の聴覚フィルタバンクを示す。入力された純音に対して、聴覚フィルタAの通過量はaであるため、出力値aが得られる。同様に聴覚フィルタB及び聴覚フィルタCからは出力値b及び出力値cがそれぞれ得られる。図2(b)に図2(a)で得られた聴覚フィルタの出力値をプロットする。これが聴神経興奮パターンとなり、過去の研究報告で、この聴神経興奮パターンが生理学データと一致することが確認されている。   FIG. 2A shows an input pure tone and an auditory filter bank of a normal hearing person. Since the passing amount of the auditory filter A is a with respect to the input pure sound, the output value a is obtained. Similarly, an output value b and an output value c are obtained from the auditory filter B and the auditory filter C, respectively. FIG. 2B plots the output values of the auditory filter obtained in FIG. This is the acoustic nerve excitation pattern, and past research reports have confirmed that this acoustic nerve excitation pattern matches the physiological data.

図2(c)は、入力された純音と難聴者の聴覚フィルタバンクの一例を示す。難聴者の場合、聴覚フィルタの形状が示すように、聴覚フィルタのバンド幅が健聴者に比べ広がっていることが多い。そこで、聴神経興奮パターンを算出すると、図2(d)に示すように、健聴者と異なることが分かる。   FIG. 2 (c) shows an example of the input pure tone and the hearing filter bank of the deaf person. In the case of a hearing-impaired person, as shown by the shape of the auditory filter, the bandwidth of the auditory filter is often wider than that of a normal hearing person. Therefore, when the auditory nerve excitation pattern is calculated, it can be seen that the auditory nerve excitation pattern is different from that of a normal hearing person as shown in FIG.

比較部10は、健聴者の聴神経興奮パターンと難聴者の聴神経興奮パターンを比較して、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるためのゲイン係数を算出する。   The comparison unit 10 compares the auditory nerve excitation pattern of the normal hearing person with the auditory nerve excitation pattern of the hearing impaired person, and calculates a gain coefficient for the hearing loss excitation pattern of the hearing impaired person to be the same as the auditory nerve excitation pattern of the normal hearing person.

補正処理部11は、比較部10で算出されたゲイン係数を用いて、入力音声信号に相当する信号処理部5の出力信号であるパワースペクトルに補正処理を行い、補正処理した電気信号を出力する。   The correction processing unit 11 performs correction processing on the power spectrum, which is an output signal of the signal processing unit 5 corresponding to the input audio signal, using the gain coefficient calculated by the comparison unit 10, and outputs the corrected electric signal. .

次に、本発明に係る補聴処理方法及びそれを用いた補聴器1の動作を、図3に示すフローチャートにより説明する。
先ず、ステップSP1において、マイクロホン2により音声信号を入力し、ある時間の音声データをN点で切り出してフレーム音声信号s(n)を作成する。ステップSP2において、音声信号s(n) にゼロ詰めを行い、M点とし、M点解析信号y(n)を作成する。M点解析信号y(n)から解析信号x(n)を作成する。
Next, the hearing aid processing method according to the present invention and the operation of the hearing aid 1 using the method will be described with reference to the flowchart shown in FIG.
First, in step SP1, an audio signal is input by the microphone 2, and a frame audio signal s (n) is created by cutting out audio data of a certain time at N points. In step SP2, the audio signal s (n) is zero-padded to obtain an M point, and an M point analysis signal y (n) is created. An analysis signal x (n) is created from the M-point analysis signal y (n).

次いで、ステップSP3において、M点解析信号x(n)より、FFT(高速フーリエ変換)によって、Y(k)を得る。ステップSP4において、M/2点のパワースペクトルP(k)を算出する。   Next, in step SP3, Y (k) is obtained from the M point analysis signal x (n) by FFT (Fast Fourier Transform). In step SP4, a power spectrum P (k) at M / 2 points is calculated.

次いで、ステップSP5において、ピークピッキングを行い、パワースペクトルP(k)からD本の主要正弦波ピークPL(kL)≡|Y(k)|k=kL≡|Y(kL)|(L=1,…D)を抽出する。例えば、D=10として、10本の主要正弦波ピークPL(kL)を抽出する。 Next, in step SP5, peak picking is performed, and D main sine wave peaks P L (k L ) ≡ | Y (k) | 2 | k = kL≡ | Y (k L ) from the power spectrum P (k). | 2 (L = 1,... D) is extracted. For example, assuming that D = 10, ten main sine wave peaks P L (k L ) are extracted.

次いで、ステップSP6において、健聴者の聴神経興奮パターンE(k)を、次の式(1)に示すP(k)の周波数軸上畳み込み演算によって求める。なお、HL(k)は健聴者の聴覚フィルタを表す。 Next, in step SP6, the auditory nerve excitation pattern E (k) of the normal hearing person is obtained by convolution on the frequency axis of P (k) shown in the following equation (1). H L (k) represents a hearing filter of a normal hearing person.

E(k)≡ΣPL(kL)* HL(k) ……(1) E (k) ≡ΣP L (k L ) * H L (k) (1)

次いで、ステップSP7において、難聴者の聴神経興奮パターンF(k)を、次の式(2)に示すP(k)の周波数軸上畳み込み演算によって求める。なお、GL(k)は健聴者の聴覚フィルタを表す。 Next, in step SP7, the auditory nerve excitation pattern F (k) of the deaf person is obtained by convolution calculation on the frequency axis of P (k) shown in the following equation (2). G L (k) represents a hearing filter for a normal hearing person.

F(k)≡ΣPL(kL)* GL(k) ……(2) F (k) ≡ΣP L (k L ) * GL (k) (2)

次いで、ステップSP8において、E(k)≡ΣB(kL)PL(kL)* GL(k)となるようなゲイン係数B(kL)を算出する。ここでは、D本の主要正弦波ピークPL(kL)に対するゲイン係数B(kL)を、E(k)≡ΣB(kL)PL(kL)* GL(k)に関する最小二乗誤差解として求める。 Next, in step SP8, a gain coefficient B (k L ) is calculated such that E (k) ≡ΣB (k L ) P L (k L ) * GL (k). Here, the gain coefficient B (k L ) for the D main sine wave peaks P L (k L ) is defined as the minimum for E (k) ≡ΣB (k L ) P L (k L ) * GL (k). Obtained as a square error solution.

ステップSP9において、求めたゲイン係数B(kL)をY(kL)に乗じたスペクトルY’(k) ≡(B(kL)) 1/2Y(kL)を算出し、スペクトルY’(k)のM点逆FFT(高速フーリエ変換)によって、合成復元波形y’(n)を求める。 In step SP9, calculates the calculated gain coefficient B (k L) and Y (k L) in multiplied spectra Y '(k) ≡ (B (k L)) 1/2 Y (k L), the spectrum Y A composite restoration waveform y ′ (n) is obtained by M point inverse FFT (fast Fourier transform) of “(k)”.

ステップSP10において、合成復元波形y’(n)をN点で打ち切って、解析的信号x’(n)を得た後、解析的信号x’(n)の実部(Re[x’(n)])を採用して復元信号(フレーム音声信号)s’(n)を得る。   In step SP10, the composite restoration waveform y ′ (n) is cut off at N points to obtain the analytic signal x ′ (n), and then the real part (Re [x ′ (n) of the analytic signal x ′ (n) is obtained. )]) To obtain a restored signal (frame audio signal) s ′ (n).

次いで、ステップSP11において、復元信号s’(n)をオーバラップなどの処理を施して波形を整えた後に、処理が施された復元信号s’(n)はイヤホン4から音声信号として出力される。そして、イヤホン4から出力される音声信号は、補聴器装用者(難聴者)にとって、聴神経興奮パターンが健聴者と同一となるような音声信号となるため、健聴者が感じるのと同様な音声信号として聴取される。   Next, in step SP11, the restored signal s ′ (n) is processed by overlapping or the like to adjust the waveform, and then the processed restored signal s ′ (n) is output as an audio signal from the earphone 4. . Then, the audio signal output from the earphone 4 is an audio signal for the hearing aid wearer (deaf person) having the same acoustic nerve excitation pattern as that of the normal hearing person. Listened to.

図4に本発明の実施の形態を用いて算出した聴神経興奮パターンa,b,cを示す。aは健聴者の聴覚フィルタを用いて算出したものである。b及びcは聴覚フィルタのバンド幅が、健聴者に比べ3倍及び6倍に広がっていると仮定した難聴者の聴覚フィルタを用いて算出したものである。   FIG. 4 shows acoustic nerve excitation patterns a, b, and c calculated using the embodiment of the present invention. a is calculated using an auditory filter of a normal hearing person. b and c are calculated using the auditory filter of a hearing impaired person assuming that the bandwidth of the auditory filter is three times and six times that of a normal hearing person.

これら難聴者の聴神経興奮パターンが健聴者の聴神経興奮パターンと一致するようなゲイン係数B(kL)をステップSP8で算出し、次いでステップSP9で合成復元波形y’(n)を求めればよい。 In step SP8, a gain coefficient B (k L ) is calculated in step SP8 so that the auditory nerve excitation pattern of the hearing impaired person matches the auditory nerve excitation pattern of the normal hearing person, and then a composite restoration waveform y ′ (n) is obtained in step SP9.

なお、本発明の実施の形態では、聴覚フィルタ形状を用いて聴神経興奮パターンを算出したが、聴覚フィルタ形状の代わりに臨界帯域幅又はマスキングパターンを用いて聴神経興奮パターンを算出することもできる。   In the embodiment of the present invention, the auditory nerve excitation pattern is calculated using the auditory filter shape, but the auditory nerve excitation pattern can also be calculated using a critical bandwidth or a masking pattern instead of the auditory filter shape.

また、聴覚フィルタ形状、臨界帯域幅又はマスキングパターンを測定装置で測定する場合には、測定装置から聴覚フィルタ形状、臨界帯域幅又はマスキングパターンを求めるための検査音を出力しているため、補聴器を外す必要がある。
しかし、測定に際して補聴器を外す必要がないように、補聴器から聴覚フィルタ形状、臨界帯域幅又はマスキングパターンを求めるための検査音を出力することもできる。
When measuring the auditory filter shape, critical bandwidth, or masking pattern with a measuring device, the test device outputs the test sound for obtaining the auditory filter shape, critical bandwidth, or masking pattern from the measuring device. It is necessary to remove.
However, it is also possible to output a test sound for obtaining an auditory filter shape, a critical bandwidth or a masking pattern from the hearing aid so that the hearing aid does not need to be removed for measurement.

本発明に係る補聴器は、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正して出力音声信号とするため、周波数選択性の劣化が補償され、違和感なく健聴者と同じような感覚で環境音を聴取することができるので、快適に装用でき、補聴器の普及に寄与する。   The hearing aid according to the present invention corrects the input audio signal so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person, so that the deterioration of the frequency selectivity is compensated. Since it is possible to listen to the environmental sound with the same feeling as a normal hearing person without a sense of incongruity, it can be worn comfortably and contributes to the spread of hearing aids.

本発明に係る補聴器のブロック構成図Block diagram of a hearing aid according to the present invention 聴覚フィルタから聴神経興奮パターンを算出する方法の説明図、(a)は入力された純音と健聴者の聴覚フィルタバンク、(b)は健聴者の聴神経興奮パターン、(c)は入力された純音と難聴者の聴覚フィルタバンクの一例、(d)は難聴者の聴神経興奮パターンの一例Explanatory drawing of the method of calculating an auditory nerve excitation pattern from an auditory filter, (a) is an input pure sound and a hearing filter bank of a normal hearing person, (b) is an auditory nerve excitation pattern of a healthy hearing person, (c) is an input pure sound An example of an auditory filter bank of a deaf person, (d) is an example of an auditory nerve excitation pattern of a deaf person 聴覚フィルタ形状を用いた場合の補正処理手順を示すフローチャートFlowchart showing correction processing procedure when auditory filter shape is used 聴神経興奮パターンの一例An example of acoustic nerve excitation pattern

符号の説明Explanation of symbols

1…補聴器、2…マイクロホン、3…補聴処理部、4…イヤホン、5…信号処理部、6,7…聴神経興奮パターン算出部、8,9…聴覚フィルタ形状記憶部、10…比較部、11…補正処理部。   DESCRIPTION OF SYMBOLS 1 ... Hearing aid, 2 ... Microphone, 3 ... Hearing aid processing part, 4 ... Earphone, 5 ... Signal processing part, 6, 7 ... Auditory nerve excitation pattern calculation part, 8, 9 ... Auditory filter shape memory | storage part, 10 ... Comparison part, 11 ... correction processing unit.

Claims (4)

マイクロホンで入力した音声信号を補聴処理してイヤホンから音声信号を出力する補聴処理方法であって、入力音声信号の主要正弦波ピークに対する各聴覚フィルタの出力を周波数軸上畳み込み演算して健聴者及び難聴者の聴神経興奮パターンを算出し、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正処理して出力音声信号とすることを特徴とする補聴処理方法。 A hearing aid processing method for hearing sound processing of an audio signal input by a microphone and outputting an audio signal from an earphone, wherein the output of each auditory filter with respect to a main sine wave peak of the input audio signal is calculated by convolution on the frequency axis, and a normal hearing person and Hearing aid characterized by calculating the auditory nerve excitation pattern of the hearing impaired and correcting the input voice signal to an output voice signal so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person Processing method. 前記聴神経興奮パターンは、入力音声信号のある特定の周波数成分を用いて算出される請求項記載の補聴処理方法。 The acoustic nerve excitation pattern, hearing aid processing method according to claim 1, wherein calculated using the specific frequency component with the input speech signal. マイクロホンで入力した音声信号を補聴処理してイヤホンから音声信号を出力する補聴器であって、難聴者の聴神経興奮パターンが、健聴者の聴神経興奮パターンと同一になるように、入力音声信号を補正処理して出力音声信号とする補聴処理部を備え、この補聴処理部は、健聴者及び難聴者の聴覚フィルタ形状を記憶する聴覚フィルタ形状記憶部と、マイクロホンの出力信号を各種処理する信号処理部と、この信号処理部の出力信号に対する各聴覚フィルタの出力を周波数軸上畳み込み演算して健聴者及び難聴者の聴神経興奮パターンを算出する聴神経興奮パターン算出部と、難聴者の聴神経興奮パターンが健聴者の聴神経興奮パターンと同一になるためのゲイン係数を算出する比較部と、この比較部が算出したゲイン係数を用いて前記信号処理部の出力信号を補正処理する補正処理部からなることを特徴とする補聴器。 A hearing aid that outputs audio signals from earphones after hearing the audio signal input through the microphone, and corrects the input audio signal so that the auditory nerve excitation pattern of the hearing impaired person is the same as the auditory nerve excitation pattern of the normal hearing person A hearing aid processing unit that outputs an audio signal, and the hearing aid processing unit stores an auditory filter shape storage unit that stores the hearing filter shape of the normal hearing person and the deaf person, and a signal processing unit that performs various processing on the output signal of the microphone. The auditory nerve excitation pattern calculation unit for calculating the auditory nerve excitation pattern of the normal hearing person and the deaf person by performing convolution calculation on the output of each auditory filter with respect to the output signal of the signal processing unit, and the auditory nerve excitation pattern of the hearing impaired person A comparison unit that calculates a gain coefficient to be the same as the auditory nerve excitation pattern of the other and the gain coefficient calculated by the comparison unit. Hearing aids, comprising the correction processing unit for correcting processing the output signal of the processing unit. 前記聴神経興奮パターンは、入力音声信号のある特定の周波数成分を用いて算出される請求項記載の補聴器。 The hearing aid according to claim 3 , wherein the auditory nerve excitation pattern is calculated using a specific frequency component of the input audio signal.
JP2004105909A 2004-03-31 2004-03-31 Hearing aid processing method and hearing aid using the same Expired - Fee Related JP4127680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105909A JP4127680B2 (en) 2004-03-31 2004-03-31 Hearing aid processing method and hearing aid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105909A JP4127680B2 (en) 2004-03-31 2004-03-31 Hearing aid processing method and hearing aid using the same

Publications (2)

Publication Number Publication Date
JP2005295119A JP2005295119A (en) 2005-10-20
JP4127680B2 true JP4127680B2 (en) 2008-07-30

Family

ID=35327580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105909A Expired - Fee Related JP4127680B2 (en) 2004-03-31 2004-03-31 Hearing aid processing method and hearing aid using the same

Country Status (1)

Country Link
JP (1) JP4127680B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277355B1 (en) * 2013-02-08 2013-08-28 リオン株式会社 Signal processing apparatus, hearing aid, and signal processing method
JP6696716B2 (en) * 2016-02-26 2020-05-20 株式会社古賀 Vehicle sound evaluation device

Also Published As

Publication number Publication date
JP2005295119A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US5274711A (en) Apparatus and method for modifying a speech waveform to compensate for recruitment of loudness
US7483831B2 (en) Methods and apparatus for maximizing speech intelligibility in quiet or noisy backgrounds
US7978868B2 (en) Adaptive dynamic range optimization sound processor
JP2904272B2 (en) Digital hearing aid and hearing aid processing method thereof
JP2002536930A (en) Adaptive dynamic range optimizing sound processor
Kates Signal processing for hearing aids
JP3784734B2 (en) Acoustic processing apparatus, acoustic processing method, and program
US9949043B2 (en) Method and apparatus for preserving the spectral clues of an audio signal altered by the physical presence of a digital hearing aid and tuning thereafter
EP1104222B1 (en) Hearing aid
JP2532007B2 (en) Hearing aid fitting device
US9232326B2 (en) Method for determining a compression characteristic, method for determining a knee point and method for adjusting a hearing aid
JP4127680B2 (en) Hearing aid processing method and hearing aid using the same
WO2009110243A2 (en) Method for adjusting voice converting processor
JP4225553B2 (en) Hearing aid processing method and hearing aid using the same
JP4225552B2 (en) Hearing aid processing method and hearing aid using the same
CN113827227A (en) Hearing test signal generation method, hearing test method, storage medium, and device
KR100917714B1 (en) Observation device for hearing and control method thereof
KR100632236B1 (en) gain fitting method for a hearing aid
KR102403996B1 (en) Channel area type of hearing aid, fitting method using channel area type, and digital hearing aid fitting thereof
JP5313528B2 (en) Hearing aid signal processing method
US7844058B2 (en) Hearing processing method and hearing aid using the same
Leijon et al. Fast amplitude compression in hearing aids improves audibility but degrades speech information transmission
Levitt Future directions in hearing aid research
de Vries et al. An integrated approach to hearing aid algorithm design for enhancement of audibility, intelligibility and comfort
JP2000352991A (en) Voice synthesizer with spectrum correction function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees