JP4126447B2 - Crusher parts - Google Patents

Crusher parts Download PDF

Info

Publication number
JP4126447B2
JP4126447B2 JP26006397A JP26006397A JP4126447B2 JP 4126447 B2 JP4126447 B2 JP 4126447B2 JP 26006397 A JP26006397 A JP 26006397A JP 26006397 A JP26006397 A JP 26006397A JP 4126447 B2 JP4126447 B2 JP 4126447B2
Authority
JP
Japan
Prior art keywords
less
weight
silicon nitride
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26006397A
Other languages
Japanese (ja)
Other versions
JPH11100272A (en
Inventor
勝伺 坂上
政宏 佐藤
武郎 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26006397A priority Critical patent/JP4126447B2/en
Publication of JPH11100272A publication Critical patent/JPH11100272A/en
Application granted granted Critical
Publication of JP4126447B2 publication Critical patent/JP4126447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐摩耗性が要求される容器、内張材、粉砕用メディア等の被粉砕物と接触する箇所を構成する粉砕機用部材に関するものである。
【0002】
【従来の技術】
従来、粉砕機は耐衝撃性に優れた金属製の粉砕機用部材により構成されていたが、被粉砕物の高純度化、ならびに粉砕機および粉砕機部材の軽量化という近年の要求に対しては、満足し得るものではなかった。
【0003】
すなわち、金属製粉砕機用部材は耐衝撃性に優れるが、その反面、耐摩耗性が不十分であって、金属成分であるFe摩耗粉が混入される場合があり、粉砕物の高純度化は望めなかった。そこで、金属体にコーテイングを施した部材が使用されているが、金属は密度が高いため、粉砕機および粉砕機用部材の重量が大きくなり、これにより、被粉砕物の容量に対して、大きなウエイトを占めていた。
【0004】
かかる問題点を解決するために、アルミナおよびジルコニア等のセラミックスを用いて耐摩耗性と軽量化を達成した粉砕機用部材が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらセラミックス製粉砕機用部材によれば、耐衝撃性に劣り、しかも、熱伝導率も低く、そのため、天然石等の乾式粉砕における温度上昇によって耐熱衝撃性の点から満足し得るものではない。
【0006】
そこで、セラミックス体に金属コーテイングを施した粉砕機用部材が提案されているが、このようなコーテイング技術においてはコーテイング層の摩耗や剥離により、粉砕性能が低下するという問題点がある。
【0007】
また、窒化ケイ素質焼結体からなる粉砕機用部材も特開平5−301775号にて提案されているが、優れた耐衝撃性を有する反面、耐摩耗特性の点で実用上十分に満足できるものではない。
【0008】
したがって本発明の目的は、粉砕時の耐久性、特に耐摩耗性に優れた粉砕機用部材を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、粉砕機用部材に窒化ケイ素質焼結体を採用する場合、その焼結体における成分組成や、密度および気孔率を所定範囲に制御するとともに、ボイド径を特定の分布で存在させると、優れた強度を具備するととともに、さらに系中のSiO2 分から焼結体組織中にSiとして析出させた焼結体が、高温強度とともに優れた靱性を有することを見いだし、粉砕時においても摩耗の少ない優れた粉砕機用部材が得られることを見いだし、本発明に至った。
【0010】
即ち、本発明の粉砕機用部材は、窒化ケイ素を75〜95重量%、Yおよび希土類元素のうちの少なくとも1種を酸化物換算量で1〜12重量%、アルミニウムを酸化物換算量0.01〜5重量%、不純物的酸素を酸化ケイ素換算量で10重量%以下の割合で含み、密度3.20g/cm3 以上、気孔率3%以下、平均ボイド径が5μm以下であり、ボイド径5〜30μmが30%以下、ボイド径30μm以上が5%以下、残部がボイド径5μm以下のボイド径分布を有し、且つラマン分光分析法により検出されるSiの521cm-1のピーク強度の窒化ケイ素の206cm-1のピーク強度に対する比が0.2〜3である窒化ケイ素質焼結体からなることを特徴とするものである。
【0011】
また、前記窒化ケイ素質焼結体には、Mg、W、Mo、Mn、CuおよびFeの酸化物、窒化物、酸窒化物もしくは珪化物の群から選ばれる少なくとも1種を8重量%以下の割合で含むことを特徴とするものである。
【0012】
【発明の実施の形態】
本発明の粉砕機用部材は、β−窒化ケイ素結晶相と、Yおよび希土類元素のうちの少なくとも1種、ケイ素、アルミニウム、酸素および窒素を含む粒界相とからなる窒化ケイ素質焼結体から構成される。
【0013】
上記β−窒化ケイ素結晶相は、平均アスペクト比が3以上、平均短軸径が0.5〜2μmの柱状結晶として存在するものであり、それが互いに絡み合った構造となることで、破壊靱性および強度が向上し、粉砕特性の向上にも寄与する。また、希土類元素、アルミニウムは、粒界相においてはガラス相を形成するか、または希土類元素酸化物−Si3 4 −SiO2 系や、希土類元素酸化物−SiO2 系などの結晶相として存在してもよい。なお、アルミニウムは、β−窒化ケイ素結晶相中に一部固溶していてもよい。
【0014】
本発明によれば、かかる焼結体をラマン分光分析法によって分析した時に、微小のSiが検出されることも大きな特徴である。このSiは、走査型電子顕微鏡(SEM)においても観察することができないレベルのものであり、ラマン分光分析法によって検出されるものである。このSiがSEM観察では検出できないものの、おそらく粒界中もしくは窒化ケイ素粒内に分散しているものと推察される。
【0015】
このようなSiを焼結体中に存在させることにより、室温強度1000MPa以上、1000℃強度が800MPa以上、破壊靱性値が6MPa・m1/2 以上の優れた特性を発揮することができる。この理由は定かではないが、おそらく粒界に分散するSiがクラックの進展を妨げる作用をなしているためと推察されるしかし、ここで粒界に存在するSi粒子は、ごく微量であることが必要であり、例えば、X線回折測定法によって検出されるレベルで存在すると、それが破壊源となり、焼結体の強度を劣化させてしまう。これに対して、本発明の焼結体は、ごく微量のSiまで検出可能なラマン分光分析法に従い、特定のレベルで存在することが必要である。それは、具体的にはβ−窒化ケイ素の206cm-1付近に存在するピークの強度をX1 、Siの521cm-1付近のピークの強度をX2 としたとき、X2 /X1 で表されるピーク比が0.2〜3、好ましくは1〜2であることが重要である。このピーク比が0.2よりも低いと強度、靱性の向上効果が低く、所望の特性が得られず、3を越えると、析出したSi自体が破壊源となり強度を劣化させてしまうためである。
【0016】
また、本発明における窒化ケイ素質焼結体は、組成上では、主成分として、窒化ケイ素を75〜95重量%、好適には80〜90重量%含み、さらに焼結助剤成分として、Yおよび希土類元素のうちの少なくとも1種を酸化物換算量で1〜12重量%、好適には3〜10重量%、アルミニウムを酸化物換算量0.01〜5重量%、好適には1〜4重量%、さらに不純物的酸素を酸化ケイ素換算量で10重量%以下、好適には8重量%以下の割合でそれぞれ含むものであり、これらの範囲内において、高耐摩耗性が得られる。なお、上記希土類元素としては、Er、Yb、LuおよびSm等が挙げられる。
【0017】
ここで、上記不純物的酸素とは、焼結体中の全酸素量から焼結体中のYまたは希土類元素(RE)およびAlに対して化学量論組成(RE2 3 およびAl2 3 )で結合していると仮定される酸素量を差し引いた残りの酸素量であり、そのほとんどは窒化ケイ素粉末中の不可避的酸素または意図的に添加されたSiO2 成分より構成される。
【0018】
これらの焼結助剤成分の含有量を上記のように限定したのは、各成分が上記の範囲より低いと焼成過程で液相が不足し緻密体が得られず強度は低下し、各成分が上記の値より多いと焼成中の液相が増加する結果、窒化ケイ素が異常な粒成長を引き起こしやすくなり、その異常粒が破壊源となり強度を低下させてしまい、また表層では窒化ケイ素の分解が激しくなり強度低下してしまうためである。
【0019】
また、上記窒化ケイ素質焼結体には、助剤成分としてMg、W、Mo、Mn、CuおよびFeの酸化物、窒化物、酸窒化物あるいは珪化物の群から選ばれる少なくとも1種を8重量%以下の割合で含有させることにより、焼結性を高め、緻密化を促進し、さらに特性の改善を図ることができる。
【0020】
そして、かかる組成の窒化ケイ素質焼結体に対して、密度が3.20g/cm3 以上、好適には3.23g/cm3 以上になるように、かつ気孔率を3%以内、好適には1.5%以内であることが、優れた耐摩耗性を達成する上で重要であり、密度が3.20g/cm3 よりも低いと、粉砕時において部材の摩耗が大きくなる。
【0021】
さらに、本発明における窒化ケイ素質焼結体内には、所定の範囲でボイドを均一に点在させることで、破壊源であるクラックが発生した場合において、クラックの進展により破損や欠損および割損が生じても、クラックの進展を防止することができる。このボイドは、平均ボイド径が5μm以下、特に3μm以下であることが重要である。これは、平均ボイド径が5μmを越えると、小さなボイドが均一に点在してクラックが結晶粒界に選択的に進展し、これによって微小な脱粒摩耗やチッピングを併発し、その結果、粉砕メディア中に混入して、粉砕物の高純度化が望めなくなるためである。
【0022】
また、焼結体中のボイドは、直径5〜30μmのボイドが全ボイド数の30%以下、ボイド径30μm以上が5%以下、残部がボイド径5μm以下となるボイド径分布からなることが望ましい。これは、ボイド径30μm以上が5%を越えると、局所的な欠けや脱粒が生じて摩耗を促進し、5〜30μmのボイド数が30%を越えると微小な欠け、脱粒が増加し、摩耗が増加しやすいためである。
【0023】
このようなボイドを均一に点在させるには、窒化ケイ素原料を混合粉砕し、造粒なしに、成形、焼成したり、混合粉末を一旦造粒した後、この造粒した粉体を成形時に成形圧力を十分に上げて造粒粉体をつぶすことにより、均一に点在させることができる。なお、ボイド径分布は、用いる原料粉末と成形時の圧力、さらには焼成温度などの焼成条件による緻密化の程度など周知の手法によって制御できる。
【0024】
このような本発明の窒化ケイ素質焼結体は、例えば、次のような製造方法によって作製される。まず、窒化ケイ素粉末としては、平均粒径が0.4〜1.2μm、不純物酸素量が0.5〜1.5重量%のα−Si3 4 、β−Si3 4 のいずれでもよいが、焼結性を高める上では、α化率が90%以上であることが望ましい。また、窒化ケイ素粉末の0〜80重量%相当量をケイ素粉末に置き換え、ケイ素粉末を低温で窒化して成形体中のα−Si3 4 含有量を高めることができる。このようなα−Si3 4 の含有量の大きい成形体を焼成すると、前述した柱状のβ−窒化ケイ素結晶相の生成を増加させることができ、焼結体の強度および靱性を高くさせることができる。
【0025】
次に、このような窒化ケイ素粉末に対して、希土類元素酸化物粉末、Al2 3 粉末、場合によってはSiO2 粉末を、焼成前の成形体組成が、Yまたは希土類元素のうちの少なくとも1種の酸化物換算量が1〜12重量%、特に3〜10重量%、アルミニウムが酸化物換算で0.01〜5重量%、特に1〜4重量%であること、さらには、成形体中の全酸素量から希土類元素酸化物粉末、Al2 3 粉末中の酸素分を差し引いた残りの酸素量が、SiO2 換算で10重量%以下、特に8重量%以下となるように添加する。
【0026】
また、場合によっては、Mg、W、Mo、Mn、CuおよびFeの酸化物、窒化物、酸窒化物もしくは珪化物のうちの少なくとも1種の粉末を8重量%以下の割合で添加混合する。
【0027】
得られた混合粉末をメッシュパス造粒、スプレー造粒、乾式造粒等により30〜300μmの大きさの造粒体を形成した後に、公知の成形法、たとえばプレス成形、鋳込み成形、押し出し成形、射出成形、冷間静水圧成形などにより所望の形状に成形する。
【0028】
次に、得られた成形体をSiOを含む窒素雰囲気下で1700〜1800℃、特に1720〜1800℃の温度で常圧焼成する。SiOの雰囲気は、SiO2 +Si、もしくはSiO2 +Si3 4 の混合粉末を成形体が収納される焼成鉢内に一緒に入れて焼成することにより形成することができる。この焼成によって焼結体密度が3.20g/cm3 以上となる条件で焼成緻密化する。
【0029】
より具体的には、この時の焼成温度を、窒化ケイ素が常圧にてSi3 4 がケイ素と窒素ガスに分解する平衡温度から約30℃低い温度範囲内で焼成して、ごく微量のSi3 4 を分解させる。この分解によって、生成されたSiが粒界中に粒子として存在することになる。なお、Si量は、上記温度範囲での保持時間などにより任意に制御することが可能である。
【0030】
なお、焼成雰囲気中にSiOを含まない場合、もしくは1800℃を越える焼成温度では、窒化ケイ素の分解が激しく、微量の窒化ケイ素のみを分解させるような細かな制御が難しい。また1700℃よりも低いと、焼結性が低下するとともに、Siの析出が望めず、強度、靱性の向上が望めない。
【0031】
また、上記のようにして常圧焼成によってSiが特定範囲にて析出した焼結体をさらに、熱間静水圧焼成によって、1600〜1800℃の温度で窒素ガス、またはアルゴンガス中で1000〜2000atmの圧力下で焼成して、さらに緻密化を図ることもできる。この場合、焼結体中のSiの析出状態に対しては、変化のないように先の常圧焼成よりも低い温度で処理することが望ましい。
【0032】
【実施例】
窒化ケイ素(Si3 4 )粉末、各種のYまたは希土類元素の酸化物(RE2 3 )、酸化アルミニウム(Al2 3 )および酸化ケイ素(SiO2 )の各粉末を用いて、各成分が表1および表2に示す組成になるように調合し、スプレードライによって粒径が40〜200μmの造粒体を作製した。その後、1〜3ton/cm2 の圧力でもってラバープレス(アイソスタテイックプレス)成形をおこなった。なお、SiO2 量はSi3 4 粉末中の不純物酸素をSiO2 換算したものも含む。各成形体を炭化ケイ素質の匣鉢に入れ、カーボンヒータを用いて、成形体重量の5%のSiO2 +Si(重量比で1:1)混合粉末を配置し、表1、2の条件で5時間、常圧焼成した。なお、試料No.26については、SiO2 +Si混合粉末を配置せずに焼成した。
【0033】
成形体中にSi粉末を含まない場合には、窒素圧9気圧の窒素中、表1、2の焼成温度で5時間焼成し、その後に炉冷して焼結体を得た。また、Si粉末を含む場合には、1150℃で5時間加熱して窒化させ、その後に表1、2の焼成温度で5時間焼成し、続けて炉冷して焼結体を得た。なお、ボイドの大きさは成形時の圧力によって制御した。さらにまた、比較例としてアルミナ焼結体やジルコニア焼結体も作製した。
【0034】
かくして得られた各焼結体に対して、密度、気孔率、強度、靭性、硬度、ボイド分布状態を以下の方法で測定した。密度および気孔率は、JISR1601にて規定された条件の形状にまで加工し、アルキメデス法に基づく比重測定から求めた。強度は、JISR1601に基づき室温の4点曲げ抗折強度試験をおこなって求めた。靭性は鏡面仕上げをおこなった試料に対して、JIS−R1607に基づく室温での破壊靱性を測定することで求めた。硬度はビッカース硬度(荷重2kg)により測定した。さらにボイドの状態はSEMや実体顕微鏡を用いて平均ボイド径、ボイドの分布状態を調べた。
【0035】
さらに、得られた焼結体に対して、ラマン分光分析法により窒化ケイ素の206cm-1のピーク強度X1 と、Siの521cm-1のピーク強度X2 とのX2 /X1 比を求めた。なお、試料No.9についてそのラマン分光分析チャートを図1に示した。
【0036】
摩耗試験として下記のとおり摩耗率を求める試験をおこなった。摩耗率については、60mm×30mm×6mmの試料板を作製し、表面を平滑に仕上げて評価面となし、この面に対してメディアとして水を含んだSiC製GC#240番(80〜130μm)を噴射圧力3.0kg/cm2 で、3分間、試料板に直角(90°)にあてることで、試料板の重量変化を測定し、これを摩耗率とした。
【0037】
なお、上記噴射のノズル径はφ7.6mmとし、衝突距離は10mmとした。
【0038】
メディア摩耗率については、φ10mmの試料体250gをメディアとし、水300ccとともにポットミルに入れ、振動ミルで粉砕媒体を混ぜないでおこなう、からずり試験を80時間おこなった。その後、メディアを取り出し、洗浄および乾燥させ、そのメディアの重量変化により摩耗率を求めた。
【0039】
【表1】

Figure 0004126447
【0040】
【表2】
Figure 0004126447
【0041】
【表3】
Figure 0004126447
【0042】
【表4】
Figure 0004126447
【0043】
表1乃至表4の結果から明らかなとおり、本発明の試料No.1〜15については、強度800MPa以上、靭性6.0MPa・m1/2 以上、硬度14.0GPa以上の機械的特性を、また摩耗率1.0%以下、メディア摩耗率1.0%以下の摩耗特性が達成でき、アルミナ材(試料No.28)やジルコニア材(試料No.29)と比較しても大幅に摩耗率、メディア摩耗率が低く、耐摩耗性に優れていた。
【0044】
表1乃至表4の結果によると、ラマン分光分析により強度比が0.2よりも小さい試料No.21は、強度および靱性の向上効果が十分でなく、強度、靱性ともに満足できるものではなく、摩耗率やメディア摩耗率も十分な特性を有するものではなかった。また、単なる窒素雰囲気中で焼成した試料No.26では、前記強度比が3を越えるものであり、また、組成および焼成条件によって強度比が3を越える試料No.27は靱性が低いものであり、摩耗率、メディア摩耗率ともに低いものであった。
【0045】
また、希土類元素酸化物量、SiO2 量、Al2 3 量が本発明の範囲から逸脱する試料No.16、17、18、19、20では、いずれも本発明の特性を得るには至らず、摩耗特性も低下した。密度が3.00g/cm3 の試料No.16では摩耗率、メディア摩耗率ともに著しく増大している。
【0046】
また、成形条件や焼成条件により密度、平均ボイド径が本発明の範囲から逸脱する試料No.22〜25においては、いずれも摩耗率およびメディア摩耗が大きく粉砕機用部材として満足できるものではなかった。
【0047】
【発明の効果】
以上のとおり、本発明の粉砕機用部材によれば、特定の組成に制御するとともに、さらに密度、気孔率、ボイド分布を制御し、粒界中に微量のSiを適宜に析出させることにより、優れた機械的特性を具備するとともに、粉砕機用部材としての耐摩耗性を向上させることができ、粉砕機用部材の長寿命化を達成することができる。
【図面の簡単な説明】
【図1】本発明における窒化ケイ素質焼結体(試料No.9)のラマン分光分析チャートの一例を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulverizer member that constitutes a portion that comes into contact with an object to be pulverized, such as a container, lining material, and pulverizing media that require wear resistance.
[0002]
[Prior art]
Conventionally, pulverizers have been composed of metal pulverizer members with excellent impact resistance. However, in response to recent demands for higher purity of pulverized materials and weight reduction of pulverizers and pulverizer members. Was not satisfactory.
[0003]
That is, the metal pulverizer member is excellent in impact resistance, but on the other hand, the wear resistance is insufficient, and Fe wear powder, which is a metal component, may be mixed. I couldn't hope. Therefore, a member obtained by coating a metal body is used. However, since the density of the metal is high, the weight of the pulverizer and the pulverizer member is increased. Accounted for the weight.
[0004]
In order to solve such problems, there has been proposed a pulverizer member that achieves wear resistance and weight reduction using ceramics such as alumina and zirconia.
[0005]
[Problems to be solved by the invention]
However, these ceramic crusher members are inferior in impact resistance and have low thermal conductivity, so that they cannot be satisfied from the viewpoint of thermal shock resistance due to a rise in temperature in dry crushing of natural stone or the like.
[0006]
Therefore, a pulverizer member in which metal coating is applied to the ceramic body has been proposed. However, in such a coating technique, there is a problem that the pulverization performance is deteriorated due to wear or peeling of the coating layer.
[0007]
A pulverizer member made of a silicon nitride sintered body has also been proposed in JP-A-5-301775, which has excellent impact resistance but is sufficiently satisfactory in terms of wear resistance. It is not a thing.
[0008]
Accordingly, an object of the present invention is to provide a pulverizer member that is excellent in durability during pulverization, in particular, wear resistance.
[0009]
[Means for Solving the Problems]
When adopting a silicon nitride sintered body as a pulverizer member, the present inventors control the component composition, density and porosity in the sintered body within a predetermined range, and set the void diameter to a specific distribution. When present, it has excellent strength, and further, it has been found that a sintered body precipitated as Si in the sintered body structure from SiO 2 in the system has excellent toughness as well as high temperature strength. In addition, the present inventors have found that an excellent pulverizer member with little wear can be obtained, and have reached the present invention.
[0010]
That is, the pulverizer member of the present invention has silicon nitride of 75 to 95% by weight, at least one of Y and rare earth elements in an oxide equivalent amount of 1 to 12% by weight, and aluminum in an oxide equivalent amount of 0.1. 01 to 5% by weight, containing impurity oxygen in a proportion of 10% by weight or less in terms of silicon oxide, density of 3.20 g / cm 3 or more, porosity of 3% or less, average void diameter of 5 μm or less, void diameter Nitriding with a peak intensity of 521 cm −1 of Si having a void diameter distribution of 5 to 30 μm of 30% or less, void diameter of 30 μm or more and 5% or less, and the remainder being 5 μm or less of void diameter, and detected by Raman spectroscopy The silicon nitride sintered body has a ratio of silicon to a peak intensity of 206 cm −1 of 0.2 to 3.
[0011]
Further, the silicon nitride sintered body contains 8 wt% or less of at least one selected from the group consisting of oxides, nitrides, oxynitrides or silicides of Mg, W, Mo, Mn, Cu and Fe. It is characterized by including in proportion.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The pulverizer member of the present invention comprises a silicon nitride sintered body comprising a β-silicon nitride crystal phase and a grain boundary phase containing at least one of Y and rare earth elements, silicon, aluminum, oxygen and nitrogen. Composed.
[0013]
The β-silicon nitride crystal phase is present as a columnar crystal having an average aspect ratio of 3 or more and an average minor axis diameter of 0.5 to 2 μm. Strength improves and contributes to improvement of grinding characteristics. In addition, rare earth elements and aluminum form a glass phase in the grain boundary phase, or exist as crystal phases such as rare earth element oxide-Si 3 N 4 —SiO 2 system and rare earth element oxide—SiO 2 system May be. Aluminum may be partly dissolved in the β-silicon nitride crystal phase.
[0014]
According to the present invention, it is a great feature that minute Si is detected when such a sintered body is analyzed by Raman spectroscopy. This Si is at a level that cannot be observed even with a scanning electron microscope (SEM), and is detected by Raman spectroscopy. Although this Si cannot be detected by SEM observation, it is presumed that the Si is probably dispersed in the grain boundaries or in the silicon nitride grains.
[0015]
When such Si is present in the sintered body, excellent properties such as room temperature strength of 1000 MPa or more, 1000 ° C. strength of 800 MPa or more, and fracture toughness value of 6 MPa · m 1/2 or more can be exhibited. The reason for this is not clear, but it is presumed that the Si dispersed in the grain boundary probably acts to hinder the progress of cracks. However, the amount of Si particles present in the grain boundary here is very small. For example, if it exists at a level detected by an X-ray diffraction measurement method, it becomes a source of destruction and deteriorates the strength of the sintered body. On the other hand, the sintered body of the present invention needs to exist at a specific level according to a Raman spectroscopic analysis method capable of detecting even a very small amount of Si. It is specifically when the intensity of a peak existing near 206cm -1 silicon β- nitride was the intensity of a peak around 521 cm -1 for X 1, Si and X 2, is represented by X 2 / X 1 It is important that the peak ratio is 0.2-3, preferably 1-2. If this peak ratio is lower than 0.2, the effect of improving strength and toughness is low, and desired characteristics cannot be obtained. If it exceeds 3, the precipitated Si itself becomes a fracture source and deteriorates the strength. .
[0016]
The silicon nitride sintered body in the present invention contains 75 to 95% by weight, preferably 80 to 90% by weight of silicon nitride as a main component in terms of composition. At least one of the rare earth elements is 1 to 12% by weight, preferably 3 to 10% by weight in terms of oxide, and aluminum is 0.01 to 5% by weight in terms of oxide, preferably 1 to 4% by weight. %, Further containing oxygen in an amount of 10% by weight or less, preferably 8% by weight or less in terms of silicon oxide, and within these ranges, high wear resistance can be obtained. In addition, examples of the rare earth element include Er, Yb, Lu, and Sm.
[0017]
Here, the impurity oxygen refers to the stoichiometric composition (RE 2 O 3 and Al 2 O 3 ) based on the total amount of oxygen in the sintered body with respect to Y or rare earth elements (RE) and Al in the sintered body. The remaining oxygen amount after subtracting the oxygen amount assumed to be bound in (3), most of which consists of unavoidable oxygen in the silicon nitride powder or intentionally added SiO 2 component.
[0018]
The content of these sintering aid components is limited as described above. If each component is lower than the above range, the liquid phase is insufficient in the firing process, and a dense body cannot be obtained. If the value is larger than the above value, the liquid phase during firing increases, and silicon nitride tends to cause abnormal grain growth, which becomes a source of fracture and decreases strength. This is because the strength becomes lower and the strength decreases.
[0019]
Further, the silicon nitride sintered body contains at least one selected from the group consisting of oxides, nitrides, oxynitrides or silicides of Mg, W, Mo, Mn, Cu and Fe as auxiliary components. By containing it in a proportion of not more than% by weight, the sinterability can be improved, the densification can be promoted, and the characteristics can be further improved.
[0020]
And with respect to the silicon nitride sintered body having such a composition, the density is preferably 3.20 g / cm 3 or more, preferably 3.23 g / cm 3 or more, and the porosity is preferably within 3%. When the density is lower than 3.20 g / cm 3 , the wear of the member increases during pulverization.
[0021]
Furthermore, in the silicon nitride sintered body according to the present invention, voids are uniformly scattered within a predetermined range. Even if it occurs, the progress of cracks can be prevented. It is important that the void has an average void diameter of 5 μm or less, particularly 3 μm or less. This is because when the average void diameter exceeds 5 μm, small voids are evenly scattered and cracks selectively propagate to the grain boundaries, thereby causing minute degranulation and chipping. This is because it can not be expected to increase the purity of the pulverized product.
[0022]
The voids in the sintered body preferably have a void diameter distribution in which voids having a diameter of 5 to 30 μm are 30% or less of the total number of voids, void diameters of 30 μm or more are 5% or less, and the remainder are void diameters of 5 μm or less. . This is because when the void diameter of 30 μm or more exceeds 5%, local chipping or degranulation occurs to promote wear, and when the number of voids of 5 to 30 μm exceeds 30%, minute chipping or degranulation increases and wear occurs. This is because it is easy to increase.
[0023]
In order to uniformly disperse such voids, the silicon nitride raw material is mixed and pulverized and molded and fired without granulation, or once the mixed powder is granulated, the granulated powder is formed at the time of molding. By crushing the granulated powder by sufficiently raising the molding pressure, it can be uniformly scattered. The void diameter distribution can be controlled by a known method such as the raw material powder to be used, the pressure at the time of molding, and the degree of densification depending on the firing conditions such as the firing temperature.
[0024]
Such a silicon nitride sintered body of the present invention is produced, for example, by the following production method. First, as the silicon nitride powder, either α-Si 3 N 4 or β-Si 3 N 4 having an average particle diameter of 0.4 to 1.2 μm and an impurity oxygen amount of 0.5 to 1.5 wt% can be used. However, in order to improve the sinterability, it is desirable that the pregelatinization rate is 90% or more. Further, the silicon nitride powder can be replaced with silicon powder in an amount corresponding to 0 to 80% by weight, and the silicon powder can be nitrided at a low temperature to increase the α-Si 3 N 4 content in the molded body. When such a molded body having a large content of α-Si 3 N 4 is fired, the formation of the columnar β-silicon nitride crystal phase can be increased, and the strength and toughness of the sintered body can be increased. Can do.
[0025]
Next, a rare earth element oxide powder, an Al 2 O 3 powder, or an SiO 2 powder in some cases, the composition of the compact before firing is Y or at least one of the rare earth elements with respect to such silicon nitride powder. 1 to 12% by weight, especially 3 to 10% by weight of oxide of seeds, 0.01 to 5% by weight, especially 1 to 4% by weight of aluminum in terms of oxide, The remaining oxygen amount obtained by subtracting the oxygen content in the rare earth element oxide powder and the Al 2 O 3 powder from the total oxygen amount is 10% by weight or less, particularly 8% by weight or less in terms of SiO 2 .
[0026]
In some cases, at least one powder of oxides, nitrides, oxynitrides or silicides of Mg, W, Mo, Mn, Cu and Fe is added and mixed at a ratio of 8% by weight or less.
[0027]
After forming the granulated body having a size of 30 to 300 μm by mesh pass granulation, spray granulation, dry granulation, etc., the obtained mixed powder is known molding methods such as press molding, casting molding, extrusion molding, Molded into a desired shape by injection molding, cold isostatic pressing or the like.
[0028]
Next, the obtained molded body is fired at normal pressure at a temperature of 1700 to 1800 ° C., particularly 1720 to 1800 ° C. in a nitrogen atmosphere containing SiO. Atmosphere SiO can be formed by baking SiO 2 + Si, or a mixed powder of SiO 2 + Si 3 N 4 put together in a baking pot shaped body is housed. By this firing, the sintered body is densified under the condition that the sintered body density becomes 3.20 g / cm 3 or more.
[0029]
More specifically, the firing temperature at this time is fired within a temperature range that is about 30 ° C. lower than the equilibrium temperature at which Si 3 N 4 is decomposed into silicon and nitrogen gas at normal pressure, and a very small amount is obtained. Si 3 N 4 is decomposed. Due to this decomposition, the produced Si is present as particles in the grain boundary. The amount of Si can be arbitrarily controlled by the holding time in the above temperature range.
[0030]
In addition, when SiO is not included in the firing atmosphere or when the firing temperature exceeds 1800 ° C., silicon nitride is severely decomposed, and it is difficult to perform fine control such that only a small amount of silicon nitride is decomposed. On the other hand, if the temperature is lower than 1700 ° C., the sinterability is lowered, Si cannot be precipitated, and the strength and toughness cannot be improved.
[0031]
Further, the sintered body in which Si is deposited in a specific range by the normal pressure firing as described above is further subjected to hot isostatic pressure firing at a temperature of 1600 to 1800 ° C. in nitrogen gas or argon gas at 1000 to 2000 atm. It can be further densified by baking under the pressure of. In this case, it is desirable to treat the Si precipitation state in the sintered body at a temperature lower than the previous normal pressure firing so as not to change.
[0032]
【Example】
Each component using silicon nitride (Si 3 N 4 ) powder, various Y or rare earth oxides (RE 2 O 3 ), aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) powder Were prepared so as to have the compositions shown in Tables 1 and 2, and granulated bodies having a particle diameter of 40 to 200 μm were prepared by spray drying. Thereafter, rubber press (isostatic press) molding was performed with a pressure of 1 to 3 ton / cm 2 . The amount of SiO 2 includes the impurity oxygen in the Si 3 N 4 powder converted to SiO 2 . Each molded body is put in a silicon carbide bowl, and using a carbon heater, 5% of the weight of the molded body is mixed with SiO 2 + Si (1: 1 by weight ratio) mixed powder. Baked at normal pressure for 5 hours. Note that Sample No. 26 was fired without placing the SiO 2 + Si mixed powder.
[0033]
When the compact did not contain Si powder, it was fired at the firing temperature shown in Tables 1 and 2 for 5 hours in nitrogen having a nitrogen pressure of 9 atm, and then cooled in a furnace to obtain a sintered body. Moreover, when Si powder was included, it heated at 1150 degreeC for 5 hours, it nitrided, and it baked at the baking temperature of Tables 1 and 2 for 5 hours after that, and furnace-cooled and obtained the sintered compact. The size of the void was controlled by the pressure during molding. Furthermore, an alumina sintered body and a zirconia sintered body were also produced as comparative examples.
[0034]
The density, porosity, strength, toughness, hardness, and void distribution state of each sintered body thus obtained were measured by the following methods. The density and the porosity were obtained by measuring the specific gravity based on the Archimedes method after processing to the shape defined by JIS R1601. The strength was obtained by conducting a four-point bending strength test at room temperature based on JISR1601. The toughness was determined by measuring the fracture toughness at room temperature based on JIS-R1607 with respect to the sample that had been mirror-finished. Hardness was measured by Vickers hardness (load 2 kg). Furthermore, the void state was investigated using SEM and a stereomicroscope for the average void diameter and the distribution state of the voids.
[0035]
Further, determined for the obtained sintered body, the peak intensity X 1 in the silicon nitride 206cm -1 by Raman spectroscopy, the X 2 / X 1 ratio of the peak intensity X 2 of Si 521 cm -1 It was. The Raman spectroscopic analysis chart of sample No. 9 is shown in FIG.
[0036]
As a wear test, a test for determining the wear rate was performed as follows. Regarding the wear rate, a sample plate of 60 mm × 30 mm × 6 mm was prepared, and the surface was smoothed to make an evaluation surface. On this surface, SiC GC # 240 (80-130 μm) containing water as a medium was used. Was applied at a jetting pressure of 3.0 kg / cm 2 at a right angle (90 °) to the sample plate for 3 minutes, and the change in the weight of the sample plate was measured.
[0037]
In addition, the nozzle diameter of the jet was set to φ7.6 mm, and the collision distance was set to 10 mm.
[0038]
As for the media wear rate, a shear test was performed for 80 hours, in which 250 g of a φ10 mm sample was used as media, placed in a pot mill with 300 cc of water, and not mixed with a pulverizing medium using a vibration mill. Thereafter, the media was taken out, washed and dried, and the wear rate was determined by the change in the weight of the media.
[0039]
[Table 1]
Figure 0004126447
[0040]
[Table 2]
Figure 0004126447
[0041]
[Table 3]
Figure 0004126447
[0042]
[Table 4]
Figure 0004126447
[0043]
As is clear from the results of Tables 1 to 4, the samples No. 1 to 15 of the present invention have mechanical properties of a strength of 800 MPa or more, a toughness of 6.0 MPa · m 1/2 or more, and a hardness of 14.0 GPa or more. In addition, wear characteristics of wear rate of 1.0% or less and media wear rate of 1.0% or less can be achieved, and the wear rate is significantly higher than alumina material (sample No. 28) and zirconia material (sample No. 29). The media wear rate was low and the wear resistance was excellent.
[0044]
According to the results of Tables 1 to 4, the sample No. 21 whose strength ratio is smaller than 0.2 by Raman spectroscopic analysis is not sufficient in improving the strength and toughness, and is not satisfactory in both strength and toughness. Neither the wear rate nor the media wear rate had sufficient characteristics. Sample No. 26 fired in a simple nitrogen atmosphere has a strength ratio of more than 3, and sample No. 27 with a strength ratio of more than 3 has low toughness depending on the composition and firing conditions. The wear rate and media wear rate were both low.
[0045]
Moreover, none of the samples No. 16, 17, 18, 19, and 20 in which the rare earth element oxide amount, the SiO 2 amount, and the Al 2 O 3 amount deviate from the scope of the present invention do not provide the characteristics of the present invention. In addition, the wear characteristics also deteriorated. In the sample No. 16 having a density of 3.00 g / cm 3 , both the wear rate and the media wear rate are remarkably increased.
[0046]
In Samples Nos. 22 to 25, in which the density and average void diameter deviate from the scope of the present invention depending on the molding conditions and firing conditions, the wear rate and media wear were all high, and they were not satisfactory as a pulverizer member. .
[0047]
【The invention's effect】
As described above, according to the pulverizer member of the present invention, while controlling to a specific composition, further controlling the density, porosity, void distribution, by appropriately depositing a small amount of Si in the grain boundary, While having excellent mechanical properties, it is possible to improve the wear resistance of the pulverizer member, and to achieve a longer life of the pulverizer member.
[Brief description of the drawings]
FIG. 1 shows an example of a Raman spectroscopic analysis chart of a silicon nitride sintered body (sample No. 9) in the present invention.

Claims (3)

窒化ケイ素を75〜95重量%、Yおよび希土類元素のうちの少なくとも1種を酸化物換算量で1〜12重量%、アルミニウムを酸化物換算量0.01〜5重量%、不純物的酸素を酸化ケイ素換算量で10重量%以下の割合で含み、密度3.20g/cm3 以上、気孔率3%以下、平均ボイド径が5μm以下であり、且つラマン分光分析法により検出されるSiの521cm-1のピーク強度の窒化ケイ素の206cm-1のピーク強度に対する比が0.2〜3である窒化ケイ素質焼結体からなることを特徴とする粉砕機用部材。75 to 95% by weight of silicon nitride, 1 to 12% by weight in terms of oxide of at least one of Y and rare earth elements, 0.01 to 5% by weight in terms of oxide of aluminum, and oxidizing oxygen as an impurity It is contained in a proportion of 10% by weight or less in terms of silicon, has a density of 3.20 g / cm 3 or more, a porosity of 3% or less, an average void diameter of 5 μm or less, and 521 cm − of Si detected by Raman spectroscopy. milling machine member relative to the peak intensity of 206cm -1 of silicon nitride 1 peak intensity is characterized in that it consists of silicon nitride sintered body is 0.2 to 3. 前記焼結体中のボイドが、ボイド径5〜30μmが30%以下、ボイド径30μm以上が5%以下、残部がボイド径5μm以下のボイド径分布を有することを特徴とする請求項1記載の粉砕機用部材。2. The void in the sintered body has a void diameter distribution in which a void diameter of 5 to 30 μm is 30% or less, a void diameter of 30 μm or more is 5% or less, and the remainder is a void diameter of 5 μm or less. Crusher parts. 前記窒化ケイ素質焼結体に、Mg、W、Mo、Mn、CuおよびFeから選ばれる少なくとも1種の金属化合物を8重量%以下の割合で含むことを特徴とする請求項1記載の粉砕機用部材。2. The pulverizer according to claim 1, wherein the silicon nitride sintered body contains at least one metal compound selected from Mg, W, Mo, Mn, Cu and Fe in a proportion of 8 wt% or less. Materials.
JP26006397A 1997-09-25 1997-09-25 Crusher parts Expired - Fee Related JP4126447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26006397A JP4126447B2 (en) 1997-09-25 1997-09-25 Crusher parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26006397A JP4126447B2 (en) 1997-09-25 1997-09-25 Crusher parts

Publications (2)

Publication Number Publication Date
JPH11100272A JPH11100272A (en) 1999-04-13
JP4126447B2 true JP4126447B2 (en) 2008-07-30

Family

ID=17342801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26006397A Expired - Fee Related JP4126447B2 (en) 1997-09-25 1997-09-25 Crusher parts

Country Status (1)

Country Link
JP (1) JP4126447B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576007B2 (en) * 1999-05-06 2010-11-04 株式会社ニッカトー Crushing / dispersing media and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11100272A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
Van Dijen et al. Liquid phase sintering of silicon carbide
Kim et al. Densification and mechanical properties of B4C with Al2O3 as a sintering aid
US7442661B2 (en) Boron carbide based sintered compact and method for preparation thereof
EP2636659B1 (en) High rigidity ceramic material and method for producing same
Zhou et al. Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure
EP0659708B1 (en) Alumina based ceramic material and method of manufacturing the same
Baharvandi et al. Processing and mechanical properties of boron carbide–titanium diboride ceramic matrix composites
JPH0680470A (en) Production of silicon nitride sintered compact
Tani Processing, microstructure and properties of in-situ reinforced SiC matrix composites
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JP4126447B2 (en) Crusher parts
Lee et al. Effect of β–Si3N4 seed crystal on the microstructure and mechanical properties of sintered reaction-bonded silicon nitride
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP3694583B2 (en) Crusher parts
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP3580660B2 (en) Crusher components
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JP3554125B2 (en) Crusher components
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP3051603B2 (en) Titanium compound sintered body
JP3677390B2 (en) Crusher
JP2000143350A (en) Abrasion resistant member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees