JP4123868B2 - Toroidal continuously variable transmission and continuously variable transmission - Google Patents

Toroidal continuously variable transmission and continuously variable transmission Download PDF

Info

Publication number
JP4123868B2
JP4123868B2 JP2002243388A JP2002243388A JP4123868B2 JP 4123868 B2 JP4123868 B2 JP 4123868B2 JP 2002243388 A JP2002243388 A JP 2002243388A JP 2002243388 A JP2002243388 A JP 2002243388A JP 4123868 B2 JP4123868 B2 JP 4123868B2
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
toroidal
transmission unit
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002243388A
Other languages
Japanese (ja)
Other versions
JP2004084711A5 (en
JP2004084711A (en
Inventor
英司 井上
慎司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002243388A priority Critical patent/JP4123868B2/en
Publication of JP2004084711A publication Critical patent/JP2004084711A/en
Publication of JP2004084711A5 publication Critical patent/JP2004084711A5/ja
Application granted granted Critical
Publication of JP4123868B2 publication Critical patent/JP4123868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

【0001】
【産業上の利用分野】
この発明に係るトロイダル型無段変速機及び無段変速装置は、自動車用自動変速装置として、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する。
【0002】
【従来の技術】
自動車用自動変速装置を構成する変速機の一種としてトロイダル型無段変速機が知られ、一部で実施されている。この様な既に一部で実施されているトロイダル型無段変速機は、入力部から出力部への動力の伝達を互いに並列に設けられた2系統に分けて行なう、所謂ダブルキャビティ型と呼ばれているものである。この様なトロイダル型無段変速機は従来から、特開平2−283949号公報、同8−4869号公報、同8−61453号公報等、多数の公報に記載されて周知であるが、その基本構造に就いて、図9により説明する。
【0003】
この図9に示したトロイダル型無段変速機は、特許請求の範囲に記載した回転軸に相当する入力回転軸1を有する。そして、この入力回転軸1の中間部基端寄り(図9の左寄り)部分及び先端寄り(図9の右寄り)部分の周囲に、それぞれが特許請求の範囲に記載した外側ディスクに相当する入力側ディスク2a、2bを支持している。これら両入力側ディスク2a、2bは上記入力回転軸1に対し、それぞれが特許請求の範囲に記載した軸方向片側面であってトロイド曲面である入力側面3、3同士を互いに対向させた状態で、それぞれボールスプライン4、4を介して支持している。従って上記両入力側ディスク2a、2bは、上記入力回転軸1の周囲に、この入力回転軸1の軸方向の変位自在に、且つ、この入力回転軸1と同期した回転自在に支持されている。
【0004】
又、上記入力回転軸1の基端部(図9の左端部)と上記入力側ディスク2aの外側面との間に、転がり軸受5と、ローディングカム式の押圧装置6とを設けている。そして、この押圧装置6を構成するカム板7を、駆動軸8により回転駆動自在としている。これに対して、上記入力回転軸1の先端部(図9の右端部)と上記別の入力側ディスク2bの外側面との間に、ローディングナット9と、大きな弾力を有する皿板ばね10とを設けている。
【0005】
上記入力回転軸1の中間部は、トロイダル型無段変速機を収納したケーシング11(本発明の実施の形態を示す図1〜3、5参照)内に設置した隔壁部12に設けた通孔13を挿通している。この通孔13の内径側には円筒状の出力筒28を、1対の転がり軸受14、14により回転自在に支持しており、この出力筒28の中間部外周面に出力歯車15を固設している。又、この出力筒28の両端部で上記隔壁部12の両外側面から突出した部分に、特許請求の範囲に記載した内側ディスクに相当する出力側ディスク16a、16bを、スプライン係合により、上記出力筒28と同期した回転自在に支持している。
【0006】
この状態で、特許請求の範囲に記載した軸方向両側面であってそれぞれがトロイド曲面である、上記各出力側ディスク16a、16bの出力側面17、17が、前記各入力側面3、3に対向する。又、これら両出力側ディスク16a、16bの内周面のうちで上記出力筒28の端縁よりも突出した部分と上記入力回転軸1の中間部外周面との間に、それぞれニードル軸受18、18を設けている。そして、上記各出力側ディスク16a、16bに加わる荷重を支承しつつ、上記入力回転軸1に対するこれら各出力側ディスク16a、16bの回転及び軸方向変位を自在としている。
【0007】
又、上記入力回転軸1の周囲で上記入力、出力両側面3、17同士の間部分(キャビティ)に、それぞれ複数個(一般的には2個又は3個)ずつのパワーローラ19、19を配置している。これら各パワーローラ19、19はそれぞれ、上記入力、出力両側面3、17に当接する周面29、29を球状凸面とされたもので、特許請求の範囲に記載した支持部材であるトラニオン20、20の側面部分に、変位軸21、21と、ラジアルニードル軸受22、22と、スラスト玉軸受23、23と、スラストニードル軸受24、24とにより、回転及び若干の揺動変位自在に支持されている。即ち、上記各変位軸21、21は、基半部と先半部とが互いに偏心した偏心軸であり、このうちの基半部を上記各トラニオン20、20の中間部に、図示しない別のラジアルニードル軸受により、揺動変位自在に支持している。
【0008】
上記各パワーローラ19、19は、この様な変位軸21、21の先半部に、上記ラジアルニードル軸受22、22と上記スラスト玉軸受23、23とにより、回転自在に支持している。又、構成各部材の弾性変形に基づく、上記入力回転軸1の軸方向に関する上記各パワーローラ19、19の変位を、上記別のラジアルニードル軸受と上記各スラストニードル軸受24、24とにより、自在としている。
【0009】
更に、上記各トラニオン20、20は、(図9で表裏方向の)両端部に設けた枢軸32、32(本発明の実施の形態を示す図3参照)を、前記ケーシング11内に設置した支持板25a、25b(本発明の実施の形態を示す図1〜4参照)に、揺動並びに軸方向の変位自在に支持している。即ち、上記各トラニオン20、20は、図9の時計方向及び反時計方向の揺動変位自在に支持すると共に、アクチュエータボディー30(本発明の実施の形態を示す図1〜4参照)に収納した油圧式のアクチュエータ31、31(本発明の実施の形態を示す図3参照)により、上記枢軸32、32の軸方向(図1〜4の上下方向、図9の表裏方向)に変位させられる様にしている。
【0010】
上述の様に構成するトロイダル型無段変速機の運転時には、前記駆動軸8により前記入力側ディスク2aを、前記押圧装置6を介して回転駆動する。この押圧装置6は、軸方向の推力を発生させつつ上記入力側ディスク2aを回転駆動するので、上記入力側ディスク2aを含む1対の入力側ディスク2a、2bが、前記各出力側ディスク16a、16bに向け押圧されつつ、互いに同期して回転する。この結果、上記各入力側ディスク2a、2bの回転が、上記各パワーローラ19、19を介して上記各出力側ディスク16a、16bに伝わり、前記出力筒28を介してこれら各出力側ディスク16a、16bと結合された、前記出力歯車15が回転する。
【0011】
運転時には上記押圧装置6が発生する推力により、上記各パワーローラ19、19の周面29、29と上記入力、出力両側面3、17との各当接部の面圧が確保される。又、この面圧は、上記駆動軸8から上記出力歯車15に伝達する動力(トルク)が大きくなる程高くなる。この為、トルク変化に関わらず、良好な伝達効率を得られる。又、伝達すべきトルクが0若しくは僅少の場合にも、前記皿板ばね10及び上記押圧装置6の内径側に設けた予圧ばね26により、上記各当接部の面圧を或る程度確保する。従って、上記各当接部でのトルク伝達は、起動直後から、過大な滑りを伴う事なく、円滑に行なわれる。
【0012】
上記駆動軸8とこの出力歯車15との間の変速比を変える場合には、前記アクチュエータ31、31(図3参照)により上記各トラニオン20、20を、図9の表裏方向に変位させる。この場合、図9の上半部のトラニオン20、20と下半部のトラニオン20、20とは、互いに逆方向に、同じ量だけ変位させる。この変位に伴って、上記各パワーローラ19、19の周面29、29と上記入力、出力両側面3、17との当接部の接線方向に加わる力の向きが変化する。そして、この接線方向の力によって、上記各トラニオン20、20が、それぞれの両端部に設けた枢軸32、32を中心として揺動する。
【0013】
この揺動に伴って、上記各パワーローラ19、19の周面29、29と上記入力、出力両側面3、17との当接部の、これら両側面3、17の径方向に関する位置が変化する。これら各当接部が、上記入力側面3の径方向外側に、上記出力側面17の径方向内側に、それぞれ変化する程、上記変速比は増速側に変化する。これに対して、上記各当接部が、図9に示す様に、上記入力側面3の径方向内側に、上記出力側面17の径方向外側に、それぞれ変化する程、上記変速比は減速側に変化する。
【0014】
この様に変速比を調節すべく、上記各トラニオン20、20を上記各枢軸32、32を中心として揺動変位させる事は、基本的には上記各アクチュエータ31、31による上記各トラニオン20、20の上記各枢軸32、32の軸方向変位により規制する。但し、油圧回路の不具合等、何らかの原因で上記各トラニオン20、20が過度に揺動変位する事を防止する為の構造が、上記不具合の発生時にも上記各パワーローラ19、19の周面29、29の保護(過大な面圧が作用する事による損傷防止)を図る面から必要になる。この為に従来から、例えば実開平6−43404号公報に記載されている様に、各トラニオンの端部とこの端部の近傍部分に設置したストッパとの衝合により、これら各トラニオンの傾斜角度を制限する事が考えられ、実際に行なわれている。
【0015】
【先発明の説明】
更に、各トラニオンの端部に設けた枢軸を支持する為の支持板の一部に突片を設け、この突片とこれら各トラニオンの端部とを衝合させる構造が、特願2002−144286号に開示されている。この様な先発明に係る構造によれば、ストッパとして独立した部材を使用する必要がなくなる為、トロイダル型無段変速機の小型・軽量化と低コスト化とを図れる可能性がある。
【0016】
【発明が解決しようとする課題】
上述した先発明に係る構造は、単に支持板の一部に突片を設ける事を考慮しただけで、この支持板の設置位置に就いては特に考慮していなかった。これに対して、実際にトロイダル型無段変速機を車両用の自動変速装置に組み込む事を考慮した場合、上記突片を設けた支持板の配置に就いて考慮しないと、十分な小型・軽量化を図れない。この理由は、次の通りである。
【0017】
例えば、前置エンジン後輪駆動車(FR車)や四輪駆動車(4WD車)の変速装置は、車体の床面を構成するフロアパネルの下面に設けられた、フロアトンネルと呼ばれる凹溝部内に設置する。この凹溝部の幅寸法は、車体の剛性を確保する必要上、下端開口で広く、上方に向かう程狭くなる。従って、空間の有効利用を考慮した場合、上記凹溝部内に設置する変速装置のケーシングの幅も、上端部に向かう程狭くする必要がある。一方、上記支持板の上端部の幅寸法は、上記突片を設ける事に伴って小さくする事が難しくなる。従って、この突片を備えた支持板をトロイダル型無段変速機の上部に設けると、上記凹溝部を大型化(幅寸法を大きく)する必要が生じる等、トロイダル型無段変速機を組み込んだ変速装置の設置の自由度が低下する。
本発明は、この様な事情に鑑みて、上部の幅寸法を小さく抑えられ、設置空間の幅寸法が狭くて済むトロイダル型無段変速機を実現すべく考えたものである。
【0018】
【課題を解決するための手段】
本発明のトロイダル型無段変速機は、前述した従来から知られているトロイダル型無段変速機と同様に、ケーシングと、回転軸と、1対の外側ディスクと、内側ディスクと、複数の支持部材と、1対の支持板と、複数のパワーローラと、複数のアクチュエータと、アクチュエータボディーとを備える。
このうちのケーシングは、天板部の幅方向両端にそれぞれの基端縁を連続させた1対の側壁部を有し、これら両側壁部の先端同士の間に存在する開口部を、塞ぎ部材により密閉自在としている。
又、上記回転軸は、上記ケーシング内に回転自在に支持されている。
又、上記各外側ディスクは、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で上記回転軸に、この回転軸と同期した回転を自在として支持されている。 又、上記内側ディスクは、上記回転軸の中間部周囲に、断面円弧形である軸方向両側面を上記各外側ディスクの軸方向片側面に対向させた状態で、上記回転軸に対する相対回転を自在に支持されている。
又、上記各支持部材は、軸方向に関して上記内側ディスクの軸方向両側面と上記各外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、上記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられている。
又、上記各支持板は、上記各支持部材の両端部に設けられた上記各枢軸を支持する為のものである。
又、上記各パワーローラは、上記各支持部材の内側面に回転自在に支持され、球状凸面としたそれぞれの周面を、上記内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面とに当接させている。
又、上記各アクチュエータは、上記各支持部材を上記枢軸の軸方向に変位させる為のものである。
更に、上記アクチュエータボディーは、上記各アクチュエータの本体部分を収納している。
特に、本発明のトロイダル型無段変速機に於いては、上記1対の支持板のうちで上記アクチュエータボディーを設置した下側に配置した支持板の幅方向両側縁部にのみ、上記各支持部材の端部に向け突出して上記各枢軸を中心とするこれら各支持部材の傾斜角度を制限する突片を設けている。これら各突片を設ける位置は、上記支持板の幅方向両側縁部の(前後方向)両端部と中央部との3個所位置で、それぞれ上記各支持部材の枢軸よりも上記支持板の幅方向外寄り、且つ、これら各支持部材の外側面よりもこの幅方向に関して内寄り部分としている。更に、上記各突片のうちの中央部の突片により、上記内側ディスクを挟んで設けた1対ずつの支持部材の揺動角度を制限する様に構成している。
【0019】
又、本発明の無段変速装置は、トロイダル型無段変速ユニットと遊星歯車式変速ユニットとを組み合わせると共に、このうちのトロイダル型無段変速ユニットの回転軸に繋がる入力軸と、上記遊星歯車式変速ユニットの構成部材に繋がる出力軸とを備える。
そして、このうちのトロイダル型無段変速ユニットは、上述の様なトロイダル型無段変速機である。
又、上記遊星歯車式変速ユニットは、上記トロイダル型無段変速ユニットの回転軸と内側ディスクとから動力を伝達されるものであって、動力の伝達経路を2系統に切り換える切換手段を有する。
【0020】
【作用】
上述の様に本発明のトロイダル型無段変速機及び無段変速装置の場合には、支持板に各支持部材の傾斜角度を制限する突片を設けている為、この傾斜角度を制限する為に独立した部材が不要になる。又、上記突片を設けるのは、上下1対の支持板のうちの下側の支持板の幅方向両側縁部の両端部と中央部との3個所位置のみであり、上側の支持板には突片を設けない。従って、この上側の支持板の幅寸法、延いてはこの支持板を含むトロイダル型無段変速機を収納するケーシングの上端部の幅寸法を小さく抑えられる。この結果、トロイダル型無段変速機或は無段変速装置により構成する自動変速装置を、車両の床下の限られた空間に設置し易くなる(搭載性が向上する)。
【0021】
【発明の実施の形態】
図1〜7は、本発明の実施の形態の1例を示している。尚、図1、2、3、6、7には縦横比等の寸法関係を、実際の寸法関係で示している。又、斜視図である図4〜5に関しても、この寸法関係を、ほぼ実際の寸法関係に則して描いている。本例の無段変速装置は、特許請求の範囲に記載したトロイダル型無段変速機に対応するトロイダル型無段変速ユニット33と、第一〜第三の遊星歯車式変速ユニット34〜36とを組み合わせて成り、特許請求の範囲に記載した回転軸に相当する入力回転軸1aと、出力軸37とを有する。図示の例では、これら入力回転軸1aと出力軸37との間に伝達軸38を、これら両軸1a、37と同心に、且つ、これら両軸1a、37に対する相対回転を自在に設けている。そして、上記第一、第二の遊星歯車式変速ユニット34、35を上記入力回転軸1aと上記伝達軸38との間に掛け渡す状態で、上記第三の遊星歯車式変速ユニット36をこの伝達軸38と上記出力軸37との間に掛け渡す状態で、それぞれ設けている。
【0022】
このうちのトロイダル型無段変速ユニット33は、それぞれが特許請求の範囲に記載した外側ディスクである1対の入力側ディスク2a、2bと、一体型の出力側ディスク16cと、複数のパワーローラ19、19とを備える。そして、上記1対の入力側ディスク2a、2bは、上記入力回転軸1aを介して互いに同心に、且つ、同期した回転を自在として結合されている。又、上記出力側ディスク16cは、上記両入力側ディスク2a、2b同士の間に、これら両入力側ディスク2a、2bと同心に、且つ、これら両入力側ディスク2a、2bに対する相対回転を自在として支持されている。更に、上記各パワーローラ19、19は、軸方向に関して上記出力側ディスク16cの軸方向両側面と上記両入力側ディスク2a、2bの軸方向片側面との間に、それぞれ複数個ずつ挟持されている。そして、これら両入力側ディスク2a、2bの回転に伴って回転しつつ、これら両入力側ディスク2a、2bから上記出力側ディスク16cに動力を伝達する。
【0023】
又、本例の場合、図3に示す様に、上記各パワーローラ19、19を支持する、特許請求の範囲に記載した支持部材であるトラニオン20、20の長さ方向両端部に設けた、1対の折れ曲がり壁部39、39の先端部同士を、連結部材40、40により連結している。この様な連結部材40は、上記パワーローラ19を跨ぐ様に設けると共に、その両端面を上記トラニオン20の各折れ曲がり壁部39、39の互いに対向する内側面に突き当てた状態で、ねじ41、41により、上記各トラニオン20、20に結合固定している。この様な連結部材40、40を設けた本例の場合には、これら各トラニオン20、20の曲げ剛性の向上を図れ、これら各トラニオン20、20を弾性変形しにくくできる。この結果、これら各トラニオン20、20の変形に基づく変位軸21aの傾斜を防止し、この変位軸21aの先半部に支持した上記各パワーローラ19、19の位置がずれるのを抑える事ができるので、変速動作を安定させる事ができる。尚、本例の場合、上記変位軸21aと、上記パワーローラ19を回転自在に支持するスラスト玉軸受23を構成する外輪とを、一体に形成している。
【0024】
更に、本例の場合には、上記出力側ディスク16cの軸方向両端部を、1対のスラストアンギュラ玉軸受42、42等の転がり軸受により、回転自在に支持している。この為に本例の場合には、上記各トラニオン20、20の両端部を支持する為の1対の支持板25a、25bを支持する為にケーシング11の内側に、アクチュエータボディー30を介して1対の支柱43、43を設けている。これら各支柱43、43はそれぞれ、前記入力回転軸1aを挟んで径方向反対側に、互いに同心に設けられた1対の支持ポスト部44a、44bを、円環状の支持環部45により連結して成る。上記入力回転軸1aは、この支持環部45の内側を挿通している。
【0025】
又、上記各支柱43、43の下端部は、上記アクチュエータボディー30の上面に、それぞれ複数本ずつのボルト46、46により、取付位置並びに取付方向を規制した状態で結合固定している。この為に上記アクチュエータボディー30の上面には、上記各支柱43、43の下端部をがたつきなく内嵌する為の凹部47、47を形成している。又、これら各支柱43、43の下端部には、下端面に開口する複数のねじ孔を形成している。これら各支柱43、43は、それぞれの下端部を上記各凹部47、47に内嵌した状態で、上記アクチュエータボディー30を下方から挿通して上記各ねじ孔に螺合し、更に緊締した上記各ボルト46、46により、上記アクチュエータボディー30の上面の所定位置に固定している。
【0026】
これに対して上記各支柱43、43の上端部は、連結板48の下面に、それぞれボルト49、49により、取付位置を規制した状態で結合固定している。この為に上記連結板48の下面には、上記各支柱43、43の上端部をがたつきなく内嵌する為の凹部50、50を形成している。又、これら各支柱43、43の上端部には、上端面中央部に開口する1個ずつのねじ孔を形成している。これら各支柱43、43は、それぞれの上端部を上記各凹部50、50に内嵌した状態で、上記連結板48を上方から挿通して上記各ねじ孔に螺合し、更に緊締した上記各ボルト49、49により、上記連結板48の下面の所定位置に固定している。
【0027】
上記1対の支柱43、43は、上述の様に上記アクチュエータボディー30の上面と上記連結板48の下面との間に、位置規制して掛け渡す様に連結固定している。この状態で、上記各支柱43、43の両端部近傍に設けた、前記各支持ポスト部44a、44bのうち、下側の支持ポスト部44a、44aは上記アクチュエータボディー30の上面の直上位置に存在する。そして、上記両支柱43、43の支持ポスト部44a、44aに、前記1対の支持板25a、25bのうちの下側の支持板25bに形成した支持孔51b、51bを、がたつきなく外嵌している。又、上側の支持ポスト部44b、44bは上記連結板48の下面の直下位置に存在する。そして、上記両支柱43、43の支持ポスト部44b、44bに、前記1対の支持板25a、25bのうちの上側の支持板25aに形成した支持孔51a、51aを、がたつきなく外嵌している。
【0028】
又、上記下側の支持板25bに、前記各トラニオン20、20の傾斜角度を制限する為のストッパとして機能する、それぞれが特許請求の範囲に記載した突片である、凸部52a、52b、52c(図4、6、7)を突設している。即ち、上記支持板25bの幅方向(図1〜2の表裏方向、図3の左右方向、図6〜7の上下方向)両側縁部の、前後方向(図1〜2、6〜7の左右方向、図3の表裏方向)両端部と中央部との3個所位置に、上記凸部52a、52b、52cを、上記両側縁部から上方に折れ曲がった状態で形成している。尚、前後方向両端部の凸部52a、52cは、図6〜7に示す様に、それぞれ上記下側の支持板25bの前後両端縁から前方又は後方に突出している。
【0029】
これら各凸部52a、52b、52cは、上記各トラニオン20、20がそれぞれの両端部に設けた枢軸32、32を中心として過度に傾斜する事を防止するものである。即ち、上記各トラニオン20、20を枢軸32、32の軸方向に変位させる為のアクチュエータ31、31の油圧回路の不具合等により、上記各枢軸32、32を中心とする上記各トラニオン20、20の傾斜角度を制御できなくなった場合にも、この傾斜角度が過大になる事を阻止する。そして、上記各トラニオン20、20に支持したパワーローラ19、19の周面29、29が、前記入力側ディスク2a、2b、出力側ディスク16cの入力、出力各側面3、17からこれら各ディスク2a、2b、16cの径方向外方に外れる事を防止する。尚、上記各凸部52a、52b、52cのうち、上記前後方向両端部の凸部52a、52cは、それぞれ1個ずつのトラニオン20、20が、所定方向(減速方向)に過度に傾斜する事を防止する。これに対して中央部の凸部52bは、前記出力側ディスク16cを挟んで設けた1対のトラニオン20、20が、上記所定方向と逆方向(増速方向)に過度に傾斜する事を防止する。
【0030】
この様な目的で形成した上記各凸部52a、52b、52cは、上記各トラニオン20、20が過大に傾斜する傾向になった場合に、これら各トラニオン20、20の外側面(上記各パワーローラ19、19を設置した面と反対側の面)の一部と衝合する。この為に、上記各トラニオン20、20の外側面の幅方向両端部に、互いに逆方向に傾斜した傾斜面82、82を形成している。そして、上記各トラニオン20、20が、上記各枢軸32、32を中心として許容限度まで傾斜した場合に、図7に示す様に、上記各凸部52a、52b、52cのうちの何れかの凸部の側面と、上記各傾斜面82、82のうちの何れかとが衝合する様にしている。
【0031】
尚、この衝合に伴ってこれら各傾斜面82、82や上記各凸部52a、52b、52cの側面に、凹み等の損傷が生じない様にしている。即ち、これら各面の傾斜角度を適切に規制して、これら各面同士が広い面積で衝合(面接触)する様に規制すると共に、上記各凸部52a、52b、52c及び上記各トラニオン20、20の一部で互いに衝合する部分を焼き入れ硬化している。又、前記下側の支持板25bには、上記各トラニオン20、20の過大傾斜時に、これら各トラニオン20、20から上記各凸部52a、52b、52cに加わる荷重に拘らず、これら各凸部52a、52b、52cに折損や曲がり等の損傷が生じる事を防止できるだけの強度を持たせている。この為に、上記下側の支持板25bの板厚は、図3〜4に示す様に、幅方向両端縁まで(端縁で薄くなる事なく)ほぼ均一としている。
【0032】
これに対して、傾斜抑止の為の凸部を持たない、上側の支持板25aの幅方向端縁部には、幅方向端縁に向かう程下方に向く方向に傾斜した傾斜面83、83を形成している。従って、上記上側の支持板25aの幅寸法は、下面側から上面側に向かう程狭くなる。これに合わせて、前記ケーシング11の天板部55の左右両端縁と左右1対の側板部84、84の上端縁とを、傾斜板部85、85により連続させている。これら各傾斜板部85、85はそれぞれ、上方に向かう程幅方向中央に向かう方向に傾斜しており、これら各傾斜板部85、85の内面と上記上側の支持板25aの傾斜面83、83とを近接対向させている。この構成により、上記ケーシング11の上端部の幅寸法を、上方に向かう程小さくして、このケーシング11を、車体の下面に設けた、フロアトンネルと呼ばれる凹溝部に効率良く組み付けられる様にしている。
【0033】
又、前記1対の支柱43、43により互いに結合された、前記アクチュエータボディー30と前記連結板48とのうち、アクチュエータボディー30は上記ケーシング11の下部に固定している。この為に、このケーシング11の内面下端開口寄り部分に段部53a、53bを、上記アクチュエータボディー30の幅方向(図1〜2の表裏方向、図3の左右方向)両端寄り部分にボルト挿通孔54、54(図4)を、それぞれ形成している。上記アクチュエータボディー30を上記ケーシング11内に固定する際には、このアクチュエータボディー30の上面幅方向両端寄り部分を上記各段部53a、53bに突き当てる。そして、上記各ボルト挿通孔54、54を下方から挿通した図示しないボルトを、上記各段部53a、53bに開口したねじ孔に螺合し更に緊締する。
【0034】
一方、前記連結板48は上記ケーシング11内に、長さ方向(図1〜2の左右方向、図3の表裏方向)及び幅方向の位置を規制した状態で設置されている。この位置規制を行なう為に、上記連結板48の上面と、上記ケーシング11の天板部55の下面との、互いに対向する部分に、それぞれ位置決め凹部56a、56bを形成している。これら各位置決め凹部56a、56bは、それぞれ円形の平面形状を有する。上記アクチュエータボディー30を上記ケーシング11内に固定した状態で、上記連結板48の上面に形成した各位置決め凹部56a、56aと、上記天板部55の下面に形成した位置決め凹部56b、56bとの間に円筒状の位置決めスリーブ57、57を掛け渡している。この構造により、前記1対の支柱43、43の上下両端部を上記ケーシング11に対し、位置決めした状態で支持固定している。
【0035】
この様にして上記ケーシング11内の所定位置に固定した1対の支柱43、43の中間部に設けられ、それぞれが前記入力側ディスク2a、2bと前記出力側ディスク16cとの側面同士の間に存在する各キャビティ(空間)の中央部に存在する前記各支持環部45、45により、上記出力側ディスク16cを、回転自在に支持している。この為に、これら各支持環部45、45とこの出力側ディスク16cの軸方向両端面、即ち、この出力側ディスク16cの軸方向両側面に設けた出力側面17、17よりも内径側部分との間に、前記各スラストアンギュラ玉軸受42、42を設けている。図示の例の場合、これら各スラストアンギュラ玉軸受42、42を構成する1対の軌道輪58a、58bの外側面(互いに反対側の側面)の内径寄り部分に短円筒状の突条部59、59(図2)を、全周に亙って形成している。
【0036】
そして、これら各突条部59、59を、上記各支持環部45、45及び上記出力側ディスク16cの端部にがたつきなく内嵌する事により、上記各スラストアンギュラ玉軸受42、42の径方向に関する位置決めを図っている。又、一方の軌道輪58a、58aの外側面と上記各支持環部45、45との間にシム板60、60(図2)を挟持して、上記各スラストアンギュラ玉軸受42、42の軸方向に関する位置決めを図っている。又、この状態で、これら各スラストアンギュラ玉軸受42、42に、所望の予圧を付与している。従って上記出力側ディスク16cは、各キャビティ内に1対ずつ設けた上記各支柱43、43同士の間に、径方向及び軸方向に関する位置決めを図られた状態で、回転自在に支持されている。
【0037】
又、図示の無段変速装置の場合、前記入力回転軸1aの基端部(図1の左端部)を図示しないエンジンのクランクシャフトに、駆動軸61を介して結合し、このクランクシャフトにより上記入力回転軸1aを回転駆動する様にしている。又、前記両入力側ディスク2a、2bの軸方向片側面及び上記出力側ディスク16cの軸方向両側面と上記各パワーローラ19、19の周面との転がり接触部(トラクション部)に適正な面圧を付与する為の押圧装置6aとして、油圧式のものを使用している。又、ギヤポンプ等の図示しない油圧源により、この押圧装置6a及び変速の為にトラニオン20、20を変位させる為の油圧式のアクチュエータ31、31、並びに後述する低速用クラッチ62及び高速用クラッチ63を断接させる為の油圧シリンダに、圧油を供給自在としている。
【0038】
又、上記出力側ディスク16cに中空回転軸64の基端部(図1〜2の左端部)をスプライン係合させている。そして、この中空回転軸64を、エンジンから遠い側(図1〜2の右側)の入力側ディスク2bの内側に挿通して、上記出力側ディスク16cの回転力を取り出し自在としている。更に、上記中空回転軸64の先端部(図1〜2の右端部)で上記入力側ディスク2bの外側面から突出した部分に、前記第一の遊星歯車式変速ユニット34を構成する為の、第一の太陽歯車65を固設している。
【0039】
一方、上記入力回転軸1aの先端部(図1〜2の右端部)で上記中空回転軸64から突出した部分と上記入力側ディスク2bとの間に、第一のキャリア66を掛け渡す様に設けて、この入力側ディスク2bと上記入力回転軸1aとが、互いに同期して回転する様にしている。そして、上記第一のキャリア66の軸方向両側面の円周方向等間隔位置(一般的には3〜4個所位置)に、それぞれがダブルピニオン型である前記第一、第二の遊星歯車式変速ユニット34、35を構成する為の遊星歯車67〜69を、回転自在に支持している。更に、上記第一のキャリア66の片半部(図1〜2の右半部)周囲に第一のリング歯車70を、回転自在に支持している。
【0040】
上記各遊星歯車67〜69のうち、前記トロイダル型無段変速ユニット33寄り(図1〜2の左寄り)で上記第一のキャリア66の径方向に関して内側に設けた遊星歯車67は、上記第一の太陽歯車65に噛合している。又、上記トロイダル型無段変速ユニット33から遠い側(図1〜2の右側)で上記第一のキャリア66の径方向に関して内側に設けた遊星歯車68は、前記伝達軸38の基端部(図1の左端部)に固設した第二の太陽歯車71に噛合している。又、上記第一のキャリア66の径方向に関して外側に設けた、残りの遊星歯車69は、上記内側に設けた遊星歯車67、68よりも軸方向寸法を大きくして、これら両歯車67、68に噛合させている。更に、上記残りの遊星歯車69と上記第一のリング歯車70とを噛合させている。尚、径方向外寄りの遊星歯車を、第一、第二の遊星歯車式変速ユニット34、35同士の間で互いに独立させる代りに、幅広のリング歯車をこれら両遊星歯車に噛合させる構造も、採用可能である。
【0041】
一方、前記第三の遊星歯車式変速ユニット36を構成する為の第二のキャリア72を、前記出力軸37の基端部(図1の左端部)に結合固定している。そして、この第二のキャリア72と上記第一のリング歯車70とを、前記低速用クラッチ62を介して結合している。又、上記伝達軸38の先端寄り(図1〜2の右端寄り)部分に第三の太陽歯車73を固設している。又、この第三の太陽歯車73の周囲に、第二のリング歯車74を配置し、この第二のリング歯車74と前記ケーシング11等の固定の部分との間に、前記高速用クラッチ63を設けている。更に、上記第二のリング歯車74と上記第三の太陽歯車73との間に配置した復数組の遊星歯車75、76を、上記第二のキャリア72に回転自在に支持している。これら各遊星歯車75、76は、互いに噛合すると共に、上記第二のキャリア72の径方向に関して内側に設けた遊星歯車75を上記第三の太陽歯車73に、同じく外側に設けた遊星歯車76を上記第二のリング歯車74に、それぞれ噛合している。
【0042】
上述の様に構成する本例の無段変速装置の場合、入力回転軸1aから1対の入力側ディスク2a、2b、各パワーローラ19、19を介して一体型の出力側ディスク16cに伝わった動力は、前記中空回転軸64を通じて取り出される。そして、前記低速用クラッチ62を接続し、前記高速用クラッチ63の接続を断った状態では、前記トロイダル型無段変速ユニット33の変速比を変える事により、上記入力回転軸1aの回転速度を一定にしたまま、前記出力軸37の回転速度を、停止状態を挟んで正転、逆転に変換自在となる。即ち、この状態では、上記入力回転軸1aと共に正方向に回転する第一のキャリア66と、上記中空回転軸64と共に逆方向に回転する前記第一の太陽歯車65との差動成分が、前記第一のリング歯車70から、前記低速用クラッチ62、前記第二のキャリア72を介して、上記出力軸37に伝達される。この状態では、上記トロイダル型無段変速ユニット33の変速比を所定値にする事で上記出力軸37を停止させられる他、このトロイダル型無段変速ユニット33の変速比を上記所定値から増速側に変化させる事により上記出力軸37を、車両を後退させる方向に回転させられる。これに対して、上記トロイダル型無段変速ユニット33の変速比を上記所定値から減速側に変化させる事により上記出力軸37を、車両を前進させる方向に回転させられる。
【0043】
更に、上記低速用クラッチ62の接続を断ち、上記高速用クラッチ63を接続した状態では、上記出力軸37を、車両を前進させる方向に回転させる。即ち、この状態では、上記入力回転軸1aと共に正方向に回転する第一のキャリア66と、上記中空回転軸64と共にこの第一のキャリア66と逆方向に回転する前記第一の太陽歯車65との差動成分に応じて回転する、前記第一の遊星歯車式変速ユニット34の遊星歯車67の回転が、別の遊星歯車69を介して、前記第二の遊星歯車式変速ユニット35の遊星歯車68に伝わり、前記第二の太陽歯車71を介して、前記伝達軸38を回転させる。そして、この伝達軸38の先端部に設けた第三の太陽歯車73と、この太陽歯車73と共に前記第三の遊星歯車式変速ユニット36を構成する第二のリング歯車74及び遊星歯車75、76との噛合に基づき、前記第二のキャリア72及びこの第二のキャリア72に結合した上記出力軸37を、前進方向に回転させる。この状態では、上記トロイダル型無段変速ユニット33の変速比を増速側に変化させる程、上記出力軸37の回転速度を速くできる。
【0044】
図8は、上記トロイダル型無段変速ユニット33の変速比(減速比)と、無段変速装置全体としての速度比との関係の1例を示している。図8の縦軸は、上記トロイダル型無段変速ユニット33の変速比を、同じく横軸は、排気量が3L程度のエンジンで前記入力回転軸1aを一定回転(5600min-1 )させた場合に於ける理論上の車速(km/h)を、それぞれ表している。この様な図8から明らかな通り、前記低速用クラッチ62を接続し、前記高速用クラッチ63の接続を断った状態で、上記トロイダル型無段変速ユニット33の変速比を0.6程度とする事により、上記入力回転軸1aを回転させた状態のまま、上記出力軸37を停止させる事ができる。又、上記トロイダル型無段変速ユニット33の変速比を、0.6程度を境にして変化させる事により、車両を前進或は後退させる事ができる。更に、上記トロイダル型無段変速ユニット33の変速比が2.2〜2.3程度を境に、上記低速用クラッチ62の接続を断ち、上記高速用クラッチ63を接続した状態で、上記トロイダル型無段変速ユニット33の変速比を増速側に変化させる事により、車両の速度を速くできる。
【0045】
上述の様に構成し作用する本例の無段変速装置の組立時には、上記トロイダル型無段変速ユニット33及び前記第一、第二の遊星歯車式変速ユニット34、35を、これら各ユニット33〜35を前記ケーシング11内に収納するのに先立って、図4に示す様に、予めこのケーシング11外で組み立てる。即ち、前記アクチュエータボディー30にそれぞれの下端を結合固定した1対の支柱43、43(図1〜3参照)により、出力側ディスク16c及び中空回転軸64を回転自在に支持できる。又、上記両支柱43、43の上下両端部に設けた各支持ポスト部44a、44bに外嵌支持した上下1対の支持板25a、25bにより、複数のトラニオン20、20及びパワーローラ19、19を所定位置に支持できる。更に、上記中空回転軸64を挿通した前記入力回転軸1aに、前記押圧装置6a、前記1対の入力側ディスク2a、2b、上記第一、第二の遊星歯車式変速ユニット34、35等を組み付ける。
【0046】
従って、無段変速装置を構成する上記トロイダル型無段変速ユニット33及び前記第一、第二の遊星歯車式変速ユニット34、35の主要部を、上記ケーシング11内に組み込む以前に、このケーシング11外で組み立てて、図4に示す様な、上記無段変速装置の主要部となる、モジュール77とする事ができる。このモジュール77の組立作業は、上記ケーシング11に邪魔される事なく、広い空間で行なう事ができて、組立作業が容易になる。又、上記モジュール77を組立後、上記ケーシング11内に収納する以前に、このモジュール77の作動状態を確認できる。そして、この作動状態が不良である場合には、上記ケーシング11外の広い空間で、分解・再組立を容易に行なえる。
【0047】
これに対して、上記モジュール77の作動状態が適正であった場合には、このモジュール77を、前記連結板48を上にして上記ケーシング11内に、このケーシング11の下端開口から挿入する。そして、前記連結板48の上面に形成した各位置決め凹部56a、56aと前記天板部55の下面に形成した位置決め凹部56b、56bとの間に円筒状の位置決めスリーブ57、57を掛け渡すと共に、前記アクチュエータボディー30の上面幅方向両端寄り部分を、前記各段部53a、53bに突き当てる。そして、上記アクチュエータボディー30のボルト挿通孔54、54を下方から挿通した図示しないボルトを、上記各段部53a、53bに開口したねじ孔に螺合し更に緊締して、上記モジュール77を上記ケーシング11内に固定する。この固定作業の後、このケーシング11の下端開口は、塞ぎ部材であるオイルパン81により塞ぐ。
【0048】
尚、前記第三の遊星歯車式変速ユニット36等、上記モジュール77に含まれない構成部分は、このモジュール77を上記ケーシング11内に組み付けた後、このケーシング11内に組み付ける。又、図示の例では、前記各支柱43、43の上部に、前記トラクション部に潤滑油(トラクションオイル)を供給する為の給油ノズル78、78を設けている。これら各給油ノズル78、78には、上記天板部55及び上記連結板48内に設けた給油通路から、上記各位置決め凹部56a、56aと前記各ボルト49、49の中心孔とを通じて、上記潤滑油を送り込む。又、前記各トラニオン20、20の内部に、前記各パワーローラ19、19に関する転がり軸受部に潤滑油を送り込む為の給油通路80、80を設け、上記天板部55内に設けた給油通路から上記各トラニオン20、20内の給油通路80、80に、潤滑油を送り込み自在としている。これに合わせて上記連結板48の下面に、上記各給油通路80、80に向け潤滑油を送り込む為の給油プラグ79、79を設け、上記ケーシング11内への上記モジュール77の組み込みに伴って、上記連結板48側の給油通路と上記各トラニオン20、20側の給油通路80、80とを連通させる様にしている。又、本例の場合、出力側ディスク16cの外周縁及び押圧装置6a外周縁に、径方向に関する凹凸を円周方向等間隔に設け、上記出力側ディスク16c及び入力側ディスク2a、2bの回転速度を検出自在としている。
【0049】
上述の様にしてケーシング11内に組み込まれるモジュール77を構成する、前記トロイダル型無段変速ユニット33の場合には、前述の図9に示した従来構造の場合とは異なり、1対の出力側ディスク16a、16b同士の間に転がり軸受14、14、並びにこの転がり軸受14、14を支持する為の隔壁部12(図9参照)を設置する必要がなくなる。そして、一体型の出力側ディスク16cを使用する等、この出力側ディスク16cの設置部分の軸方向寸法を短縮する事ができる。そして、この様に軸方向寸法を短縮した分だけ、トロイダル型無段変速ユニット33の小型・軽量化を図れる。
【0050】
しかも、本例の場合には、上記出力側ディスク16cを、軸方向両側面を出力側面17、17とした一体構造としているので、トロイダル型無段変速ユニット33の運転時に上記各出力側面17、17に加わる力が、上記出力側ディスク16c内で互いに相殺される。この結果上記出力側ディスク16cは、前記各パワーローラ19、19から加わるモーメント荷重に拘らず、弾性変形を抑えられる。この為、上記出力側ディスク16cの軸方向に関する厚さ寸法の短縮化が可能になり、その面からもトロイダル型無段変速機の小型・軽量化が可能になる。
【0051】
尚、図示は省略するが、一体型の出力側ディスクの外周縁部に出力歯車を一体に設ける事もできる。この様な構造を採用する場合には、上記出力側ディスクから動力を取り出す為の伝達軸を、入力回転軸と平行に設ける。そして、この伝達軸の端部に固設した別の歯車を、上記出力歯車に噛合させる。
【0052】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、トラニオンが過度に傾斜する事を防止する為に独立した部材を使用せず、部品製作、部品管理、組立作業が何れも容易となる構造で、トロイダル型無段変速機を収納したケーシングを限られた空間に組み付け易くなる。この為、トロイダル型無段変速機の車両への搭載性を向上させて、設計の自由度向上を図れる。
又、図示の例の場合には、組立作業の容易化によりトロイダル型無段変速機のコスト低減を図れる他、修理作業も容易にできる。
又、図示の例の場合には、軸方向寸法を短縮して、必要とする性能を確保しつつ、小型・軽量化が可能になり、より小型の車体に組み付け可能になる等、トロイダル型無段変速機の実用化に寄与できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す断面図。
【図2】図1のA部拡大図。
【図3】図1の拡大B−B断面図。
【図4】ケーシングに収納する以前に組み立てた無段変速装置の主要部であるモジュールの斜視図。
【図5】ケーシングを下方から見た状態で示す斜視図。
【図6】連結板と上下1対の支持板とを上方から見た平面図。
【図7】下側の支持板と各トラニオンとの関係を、一部切断して示す平面図。
【図8】エンジンの回転速度を一定とした状態での、トロイダル型無段変速機の変速比と、無段変速装置全体の変速比に比例する車速との関係を示す線図。
【図9】従来から広く知られているトロイダル型無段変速機の基本構成の1例を示す断面図。
【符号の説明】
1、1a 入力回転軸
2a、2b 入力側ディスク
3 入力側面
4 ボールスプライン
5 転がり軸受
6、6a 押圧装置
7 カム板
8 駆動軸
9 ローディングナット
10 皿板ばね
11 ケーシング
12 隔壁部
13 通孔
14 転がり軸受
15 出力歯車
16a、16b、16c 出力側ディスク
17 出力側面
18 ニードル軸受
19 パワーローラ
20 トラニオン
21、21a 変位軸
22 ラジアルニードル軸受
23 スラスト玉軸受
24 スラストニードル軸受
25a、25b 支持板
26 予圧ばね
28 出力筒
29 周面
30 アクチュエータボディー
31 アクチュエータ
32 枢軸
33 トロイダル型無段変速ユニット
34 第一の遊星歯車式変速ユニット
35 第二の遊星歯車式変速ユニット
36 第三の遊星歯車式変速ユニット
37 出力軸
38 伝達軸
39 折れ曲がり壁部
40 連結部材
41 ねじ
42 スラストアンギュラ玉軸受
43 支柱
44a、44b 支柱ポスト部
45 支柱環部
46 ボルト
47 凹部
48 連結板
49 ボルト
50 凹部
51a、51b 支持孔
52a、52b、52c 凸部
53a、53b 段部
54 ボルト挿通孔
55 天板部
56a、56b 位置決め凹部
57 位置決めスリーブ
58a、58b 軌道輪
59 突条部
60 シム板
61 駆動軸
62 低速用クラッチ
63 高速用クラッチ
64 中空回転軸
65 第一の太陽歯車
66 第一のキャリア
67 遊星歯車
68 遊星歯車
69 遊星歯車
70 第一のリング歯車
71 第二の太陽歯車
72 第二のキャリア
73 第三の太陽歯車
74 第二のリング歯車
75 遊星歯車
76 遊星歯車
77 モジュール
78 給油ノズル
79 給油プラグ
80 給油通路
81 オイルパン
82 傾斜面
83 傾斜面
84 側板部
85 傾斜板部
[0001]
[Industrial application fields]
The toroidal type continuously variable transmission and continuously variable transmission according to the present invention are used as an automatic transmission for automobiles or as a transmission for adjusting the operating speed of various industrial machines such as pumps.
[0002]
[Prior art]
  A toroidal continuously variable transmission is known as a type of transmission that constitutes an automatic transmission for automobiles, and is partially implemented. Such toroidal-type continuously variable transmissions that have already been implemented partially transmit power from the input unit to the output unit.ParallelThis is a so-called double cavity type that is divided into two systems. Such a toroidal type continuously variable transmission has been described in many publications such as JP-A-2-283949, JP-A-8-4869, and JP-A-8-61453. The structure will be described with reference to FIG.
[0003]
The toroidal continuously variable transmission shown in FIG. 9 has an input rotary shaft 1 corresponding to the rotary shaft described in the claims. An input side corresponding to the outer disk described in the claims is provided around the intermediate portion proximal end (leftward in FIG. 9) and the distal end (rightward in FIG. 9) of the input rotating shaft 1. The disks 2a and 2b are supported. Both the input side disks 2a, 2b are in a state where the input side surfaces 3, 3 which are axially one side surfaces and toroidal curved surfaces are opposed to each other with respect to the input rotation shaft 1, respectively. Are supported via ball splines 4 and 4, respectively. Accordingly, both the input side disks 2a and 2b are supported around the input rotary shaft 1 so as to be freely displaceable in the axial direction of the input rotary shaft 1 and to be rotatable in synchronization with the input rotary shaft 1. .
[0004]
Further, a rolling bearing 5 and a loading cam type pressing device 6 are provided between the base end portion (left end portion in FIG. 9) of the input rotary shaft 1 and the outer surface of the input side disk 2a. The cam plate 7 constituting the pressing device 6 can be driven to rotate by a drive shaft 8. On the other hand, a loading nut 9 and a disc spring 10 having a large elasticity are provided between the front end portion of the input rotating shaft 1 (the right end portion in FIG. 9) and the outer surface of the other input side disk 2b. Is provided.
[0005]
The intermediate portion of the input rotary shaft 1 is a through hole provided in a partition wall portion 12 installed in a casing 11 (see FIGS. 1 to 3 and 5 showing the embodiment of the present invention) in which a toroidal continuously variable transmission is accommodated. 13 is inserted. A cylindrical output cylinder 28 is rotatably supported by a pair of rolling bearings 14 and 14 on the inner diameter side of the through-hole 13, and an output gear 15 is fixed to the outer peripheral surface of the intermediate portion of the output cylinder 28. is doing. In addition, the output side disks 16a and 16b corresponding to the inner disks described in the claims are connected to the portions protruding from both outer side surfaces of the partition wall portion 12 at both ends of the output cylinder 28 by spline engagement. The output cylinder 28 is rotatably supported in synchronization.
[0006]
In this state, the output side surfaces 17 and 17 of the output side disks 16a and 16b, which are both side surfaces in the axial direction described in the claims and are each a toroidal curved surface, face the input side surfaces 3 and 3, respectively. To do. Also, between the inner peripheral surfaces of these output side disks 16a and 16b, the portions that protrude from the edge of the output cylinder 28 and the outer peripheral surface of the intermediate portion of the input rotary shaft 1 are respectively needle bearings 18, 18 is provided. The output side disks 16a and 16b can freely rotate and be displaced in the axial direction while supporting the load applied to the output side disks 16a and 16b.
[0007]
In addition, a plurality of (typically two or three) power rollers 19 and 19 are respectively provided between the input and output side surfaces 3 and 17 (cavities) around the input rotation shaft 1. It is arranged. Each of these power rollers 19 and 19 has a spherical convex surface on the peripheral surfaces 29 and 29 contacting the input and output side surfaces 3 and 17, respectively, and the trunnion 20 as a support member described in the claims. 20 is supported by a displacement shaft 21, 21, radial needle bearings 22, 22, thrust ball bearings 23, 23, and thrust needle bearings 24, 24 so as to be freely rotatable and slightly oscillating. Yes. That is, each of the displacement shafts 21 and 21 is an eccentric shaft in which the base half and the front half are eccentric from each other, and the base half of these is placed in the middle of each trunnion 20 and 20 and another unillustrated It is supported by a radial needle bearing so as to be able to swing and displace.
[0008]
The power rollers 19 and 19 are rotatably supported by the radial needle bearings 22 and 22 and the thrust ball bearings 23 and 23 on the front half portions of the displacement shafts 21 and 21, respectively. Further, the displacement of the power rollers 19 and 19 in the axial direction of the input rotary shaft 1 based on the elastic deformation of each constituent member can be freely controlled by the separate radial needle bearing and the thrust needle bearings 24 and 24. It is said.
[0009]
Further, each of the trunnions 20 and 20 is provided with support shafts 32 and 32 (see FIG. 3 showing the embodiment of the present invention) provided at both ends (in the front and back directions in FIG. 9). The plates 25a and 25b (see FIGS. 1 to 4 showing the embodiment of the present invention) are supported so as to be swingable and axially displaceable. That is, each of the trunnions 20 and 20 is supported so as to be swingable and displaceable in the clockwise and counterclockwise directions of FIG. 9, and is housed in the actuator body 30 (see FIGS. 1 to 4 showing the embodiment of the present invention). The actuators 31 and 31 of hydraulic type (see FIG. 3 showing the embodiment of the present invention) are displaced in the axial direction of the pivots 32 and 32 (vertical direction in FIGS. 1 to 4 and front and back direction in FIG. 9). I have to.
[0010]
During operation of the toroidal continuously variable transmission configured as described above, the drive shaft 8 rotates the input side disk 2a via the pressing device 6. The pressing device 6 rotationally drives the input-side disk 2a while generating axial thrust, so that a pair of input-side disks 2a and 2b including the input-side disk 2a are connected to the output-side disks 16a, While being pressed toward 16b, they rotate in synchronization with each other. As a result, the rotation of the input side disks 2a, 2b is transmitted to the output side disks 16a, 16b via the power rollers 19, 19, and the output side disks 16a, 16b, The output gear 15 coupled with 16b rotates.
[0011]
Due to the thrust generated by the pressing device 6 during operation, the surface pressure at each contact portion between the peripheral surfaces 29 and 29 of the power rollers 19 and 19 and the input and output side surfaces 3 and 17 is secured. The surface pressure increases as the power (torque) transmitted from the drive shaft 8 to the output gear 15 increases. For this reason, good transmission efficiency can be obtained regardless of torque change. Further, even when the torque to be transmitted is zero or very small, the contact pressure of each contact portion is secured to some extent by the preload spring 26 provided on the inner diameter side of the disc leaf spring 10 and the pressing device 6. . Therefore, torque transmission at each of the abutting portions is smoothly performed without excessive sliding immediately after startup.
[0012]
When changing the gear ratio between the drive shaft 8 and the output gear 15, the trunnions 20 and 20 are displaced in the front and back direction in FIG. 9 by the actuators 31 and 31 (see FIG. 3). In this case, the trunnions 20 and 20 in the upper half portion and the trunnions 20 and 20 in the lower half portion in FIG. 9 are displaced in the opposite directions by the same amount. Along with this displacement, the direction of the force applied in the tangential direction of the contact portion between the peripheral surfaces 29 and 29 of the power rollers 19 and 19 and the input and output side surfaces 3 and 17 changes. Then, the trunnions 20 and 20 swing around the pivots 32 and 32 provided at both ends by the tangential force.
[0013]
Along with this swing, the positions of the abutting portions between the peripheral surfaces 29, 29 of the power rollers 19, 19 and the input and output side surfaces 3, 17 change in the radial direction of the side surfaces 3, 17 To do. The gear ratio changes to the speed increasing side as these abutting portions change radially outward of the input side surface 3 and radially inward of the output side surface 17, respectively. On the other hand, as shown in FIG. 9, the speed change ratio is reduced as the contact portions change inward in the radial direction of the input side surface 3 and outward in the radial direction of the output side surface 17. To change.
[0014]
In order to adjust the gear ratio in this way, the trunnions 20 and 20 are basically oscillated and displaced about the pivots 32 and 32 so that the trunnions 20 and 20 by the actuators 31 and 31 are basically. Is controlled by the axial displacement of each of the pivot shafts 32, 32. However, the structure for preventing the trunnions 20 and 20 from excessively oscillating and displacing for some reason, such as a malfunction in the hydraulic circuit, is provided even when the malfunction occurs. 29 (necessary to prevent damage caused by excessive surface pressure). Therefore, conventionally, as described in, for example, Japanese Utility Model Publication No. Hei 6-43404, the inclination angle of each trunnion is brought into contact with the end portion of each trunnion and a stopper installed in the vicinity of this end portion. It is conceivable to be restricted and is actually being done.
[0015]
[Description of the invention]
Further, a structure in which a protrusion is provided on a part of a support plate for supporting a pivot provided at the end of each trunnion and the protrusion and the end of each trunnion are brought into contact with each other is disclosed in Japanese Patent Application No. 2002-144286. Is disclosed. According to such a structure according to the prior invention, there is no need to use an independent member as a stopper, so there is a possibility that the toroidal type continuously variable transmission can be reduced in size, weight and cost.
[0016]
[Problems to be solved by the invention]
The structure according to the above-described prior invention merely considers the provision of a projecting piece on a part of the support plate, and does not particularly take into account the installation position of the support plate. On the other hand, considering the fact that the toroidal continuously variable transmission is actually incorporated into the automatic transmission for a vehicle, it is necessary to consider the arrangement of the support plate provided with the above-mentioned projecting pieces. I cannot plan. The reason for this is as follows.
[0017]
For example, a transmission for a front engine rear wheel drive vehicle (FR vehicle) or a four wheel drive vehicle (4WD vehicle) is provided in a recessed groove portion called a floor tunnel provided on a lower surface of a floor panel constituting a floor surface of a vehicle body. Install in. The width dimension of the concave groove portion is wide at the lower end opening and becomes narrower toward the upper side in order to ensure the rigidity of the vehicle body. Therefore, when the effective use of space is taken into consideration, the width of the casing of the transmission installed in the concave groove needs to be narrowed toward the upper end. On the other hand, it is difficult to reduce the width dimension of the upper end portion of the support plate as the projecting piece is provided. Therefore, when the support plate provided with the projecting piece is provided on the top of the toroidal continuously variable transmission, it is necessary to increase the size of the concave groove (increase the width dimension). The degree of freedom in installing the transmission is reduced.
In view of such circumstances, the present invention has been conceived to realize a toroidal continuously variable transmission in which the width of the upper portion can be kept small and the width of the installation space can be narrowed.
[0018]
[Means for Solving the Problems]
  The toroidal-type continuously variable transmission of the present invention is similar to the conventionally known toroidal-type continuously variable transmission described above, and includes a casing, a rotating shaft, a pair of outer disks, an inner disk, and a plurality of supports. A member, a pair of support plates, a plurality of power rollers, a plurality of actuators, and an actuator body are provided.
  Of these, the casing has a pair of side wall portions in which the respective base end edges are continuous at both ends in the width direction of the top plate portion, and covers the opening portions existing between the tips of the both side wall portions. It can be sealed freely.
  The rotating shaft is rotatably supported in the casing.
  Each of the outer disks is supported on the rotating shaft so as to freely rotate in synchronization with the rotating shaft in a state where the axial side surfaces of the outer disks face each other in a circular arc shape. In addition, the inner disk rotates relative to the rotating shaft around the middle portion of the rotating shaft, with both axial side surfaces having a circular arc cross section facing one axial side surface of each outer disk. It is supported freely.
  The supporting members are pivoted in a twisted position with respect to the rotating shaft, each in a plurality of positions between both axial side surfaces of the inner disk and one axial side surface of the outer disk with respect to the axial direction. Oscillating displacement around the center is freely provided.
  The support plates are for supporting the pivots provided at both ends of the support members.
  In addition, each of the power rollers includes the support member.Inside surfaceThe circumferential surfaces of the spherical convex surfaces are in contact with both axial side surfaces of the inner disk and one axial side surface of each outer disk.
  The actuators are for displacing the support members in the axial direction of the pivot.
  Further, the actuator body houses a main body portion of each actuator.
  In particular, in the toroidal-type continuously variable transmission according to the present invention, each of the above-mentioned support members is provided only on both side edges in the width direction of the support plate disposed below the actuator body among the pair of support plates. Protruding pieces are provided that project toward the ends of the members and limit the inclination angles of the supporting members around the pivots.The positions where these protrusions are provided are the three positions of both end portions (in the front-rear direction) and the center portion of both side edges in the width direction of the support plate, and the width direction of the support plate is more than the pivot of each support member. The outer portion and the inner portion in the width direction of the support member are formed on the outer side surface. Further, the swinging angle of the pair of supporting members provided with the inner disk interposed therebetween is limited by the central projecting piece among the projecting pieces.
[0019]
The continuously variable transmission of the present invention is a combination of a toroidal type continuously variable transmission unit and a planetary gear type transmission unit, an input shaft connected to the rotation shaft of the toroidal type continuously variable transmission unit, and the planetary gear type And an output shaft connected to the constituent members of the transmission unit.
Of these, the toroidal continuously variable transmission unit is a toroidal continuously variable transmission as described above.
The planetary gear type transmission unit transmits power from the rotating shaft and the inner disk of the toroidal type continuously variable transmission unit, and has switching means for switching the power transmission path between two systems.
[0020]
[Action]
  In the case of the toroidal type continuously variable transmission and continuously variable transmission according to the present invention as described above, the support plate is provided with the projecting piece for limiting the inclination angle of each support member. Independent members are not required. The protrusions are provided on both side edges in the width direction of the lower support plate of the pair of upper and lower support plates.The three locations of both ends and the center of theNo protrusion is provided on the upper support plate. Therefore, the width dimension of the upper support plate, and hence the width dimension of the upper end portion of the casing that houses the toroidal-type continuously variable transmission including the support plate can be kept small. As a result, the automatic transmission configured by the toroidal-type continuously variable transmission or continuously variable transmission can be easily installed in a limited space under the floor of the vehicle (mountability is improved).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
1 to 7 show an example of an embodiment of the present invention. 1, 2, 3, 6, and 7 show dimensional relationships such as aspect ratios in actual dimensional relationships. 4 to 5 which are perspective views, this dimensional relationship is drawn almost in accordance with the actual dimensional relationship. The continuously variable transmission of this example includes a toroidal continuously variable transmission unit 33 corresponding to the toroidal continuously variable transmission described in the claims, and first to third planetary gear transmission units 34 to 36. It has an input rotation shaft 1a corresponding to the rotation shaft described in the claims and an output shaft 37. In the illustrated example, a transmission shaft 38 is provided between the input rotation shaft 1a and the output shaft 37 so as to be concentric with both the shafts 1a and 37 and freely rotatable relative to both the shafts 1a and 37. . The third planetary gear type transmission unit 36 is transferred to the third planetary gear type transmission unit 36 in a state where the first and second planetary gear type transmission units 34 and 35 are bridged between the input rotary shaft 1a and the transmission shaft 38. Each is provided in a state of being spanned between the shaft 38 and the output shaft 37.
[0022]
Of these, the toroidal-type continuously variable transmission unit 33 includes a pair of input-side disks 2a and 2b, an integrated output-side disk 16c, and a plurality of power rollers 19 respectively. , 19. The pair of input side disks 2a and 2b are coupled to each other through the input rotation shaft 1a so as to be concentrically and freely rotatable in synchronization. The output side disk 16c is concentric with the input side disks 2a and 2b between the input side disks 2a and 2b, and can freely rotate relative to the input side disks 2a and 2b. It is supported. Further, a plurality of each of the power rollers 19, 19 is sandwiched between both axial side surfaces of the output side disk 16c and one axial side surface of the both input side disks 2a, 2b with respect to the axial direction. Yes. Then, power is transmitted from the both input side disks 2a, 2b to the output side disk 16c while rotating with the rotation of both the input side disks 2a, 2b.
[0023]
In the case of this example, as shown in FIG. 3, the power rollers 19, 19 are supported at both ends in the longitudinal direction of the trunnions 20, 20 which are the support members described in the claims. The tip portions of the pair of bent wall portions 39, 39 are connected by connecting members 40, 40. Such a connecting member 40 is provided so as to straddle the power roller 19, and both ends of the connecting member 40 are abutted against the mutually opposing inner side surfaces of the bent wall portions 39, 39 of the trunnion 20. 41 is coupled and fixed to each of the trunnions 20 and 20 described above. In the case of this example provided with such connecting members 40, 40, the bending rigidity of the trunnions 20, 20 can be improved, and the trunnions 20, 20 can be hardly elastically deformed. As a result, it is possible to prevent the displacement shaft 21a from being inclined due to the deformation of the trunnions 20 and 20, and to suppress the displacement of the power rollers 19 and 19 supported on the front half of the displacement shaft 21a. Therefore, the shifting operation can be stabilized. In the case of this example, the displacement shaft 21a and the outer ring constituting the thrust ball bearing 23 that rotatably supports the power roller 19 are integrally formed.
[0024]
Furthermore, in the case of this example, both axial ends of the output side disk 16c are rotatably supported by a pair of rolling bearings such as thrust angular ball bearings 42 and 42. For this reason, in the case of this example, the actuator 11 is provided inside the casing 11 to support the pair of support plates 25a and 25b for supporting both ends of the trunnions 20 and 20 via the actuator body 30. A pair of support columns 43 are provided. Each of these columns 43, 43 is connected to a pair of support post portions 44a, 44b concentrically provided on the opposite side in the radial direction across the input rotation shaft 1a by an annular support ring portion 45. It consists of The input rotary shaft 1a passes through the inside of the support ring 45.
[0025]
The lower ends of the support columns 43 and 43 are fixedly coupled to the upper surface of the actuator body 30 by a plurality of bolts 46 and 46 in a state where the mounting position and mounting direction are restricted. For this purpose, the upper surface of the actuator body 30 is formed with recesses 47, 47 for fitting the lower ends of the columns 43, 43 without rattling. In addition, a plurality of screw holes that open to the lower end surface are formed at the lower end portions of the respective columns 43 and 43. These struts 43, 43 are inserted in the actuator body 30 from below, screwed into the screw holes, and further tightened, with their lower ends fitted into the recesses 47, 47. The bolts 46 and 46 are fixed at predetermined positions on the upper surface of the actuator body 30.
[0026]
On the other hand, the upper ends of the columns 43 and 43 are coupled and fixed to the lower surface of the connecting plate 48 with bolts 49 and 49 in a state where the mounting position is restricted. For this purpose, recesses 50 and 50 are formed on the lower surface of the connecting plate 48 for fitting the upper ends of the columns 43 and 43 without rattling. In addition, one screw hole is formed in the upper end portion of each of the columns 43 and 43 so as to open in the center portion of the upper end surface. Each of the columns 43, 43 is inserted into the connecting plate 48 from above, screwed into the screw holes, and further tightened, with the respective upper ends thereof fitted in the recesses 50, 50. The bolts 49 and 49 are fixed at predetermined positions on the lower surface of the connecting plate 48.
[0027]
As described above, the pair of support columns 43 and 43 are connected and fixed between the upper surface of the actuator body 30 and the lower surface of the connecting plate 48 so as to be placed while being restricted in position. In this state, of the support post portions 44a and 44b provided in the vicinity of both ends of the support columns 43 and 43, the lower support post portions 44a and 44a are located immediately above the upper surface of the actuator body 30. To do. Then, the support holes 51b and 51b formed in the lower support plate 25b of the pair of support plates 25a and 25b are removed from the support post portions 44a and 44a of the support columns 43 and 43 without rattling. It is fitted. Further, the upper support post portions 44 b and 44 b are located immediately below the lower surface of the connecting plate 48. Then, the support holes 51a and 51a formed in the upper support plate 25a of the pair of support plates 25a and 25b are fitted into the support post portions 44b and 44b of the both columns 43 and 43 without rattling. is doing.
[0028]
  Further, the lower support plate 25b functions as a stopper for limiting the inclination angle of each trunnion 20, 20., Each is a protrusion described in the claims,Convex portions 52a, 52b, and 52c (FIGS. 4, 6, and 7) are projected. That is, the width direction of the support plate 25b (front and back direction in FIGS. 1 and 2, the left and right direction in FIG. 3, the up and down direction in FIGS. 6 to 7), the front and rear direction (left and right in FIGS. Direction, front and back direction in FIG. 3) The convex portions 52a, 52b, and 52c are formed in a state of being bent upward from the side edge portions at three positions of both end portions and the central portion. The protrusions 52a and 52c at both ends in the front-rear direction protrude forward or backward from the front and rear end edges of the lower support plate 25b, as shown in FIGS.
[0029]
  These convex portions 52a, 52b, and 52c prevent the trunnions 20 and 20 from excessively tilting around the pivots 32 and 32 provided at both ends. That is, due to a malfunction of the hydraulic circuit of the actuators 31, 31 for displacing the trunnions 20, 20 in the axial direction of the pivots 32, 32, etc. Even when the tilt angle cannot be controlled, the tilt angle is prevented from becoming excessive. The circumferential surfaces 29 and 29 of the power rollers 19 and 19 supported by the trunnions 20 and 20 are respectively connected to the input and output side surfaces 3 and 17 of the input side disks 2a and 2b and the output side disk 16c. 2b and 16c are prevented from coming off radially outward.Of the convex portions 52a, 52b, and 52c, the convex portions 52a and 52c at both ends in the front-rear direction are such that one trunnion 20 and 20 is excessively inclined in a predetermined direction (deceleration direction). To prevent. On the other hand, the convex portion 52b in the central portion prevents the pair of trunnions 20, 20 provided with the output side disk 16c between them from excessively tilting in the direction opposite to the predetermined direction (speed increasing direction). To do.
[0030]
The convex portions 52a, 52b, and 52c formed for such a purpose are formed on the outer side surfaces of the trunnions 20 and 20 (the power rollers) when the trunnions 20 and 20 tend to be excessively inclined. 19 and a part of the surface opposite to the surface on which 19 is installed. For this purpose, inclined surfaces 82 and 82 inclined in opposite directions are formed at both ends in the width direction of the outer surfaces of the trunnions 20 and 20. When the trunnions 20 and 20 are tilted to the allowable limit around the pivots 32 and 32, as shown in FIG. 7, any one of the convex portions 52a, 52b, and 52c is projected. The side surface of the portion and one of the inclined surfaces 82 and 82 are in contact with each other.
[0031]
It is to be noted that a damage such as a dent is not caused on the inclined surfaces 82 and 82 and the side surfaces of the convex portions 52a, 52b and 52c along with the collision. That is, the inclination angles of the respective surfaces are appropriately regulated so that the surfaces collide with each other over a wide area (surface contact), and the convex portions 52a, 52b, 52c and the trunnions 20 are arranged. , 20 are hardened by quenching. In addition, the lower support plate 25b has the projections regardless of the load applied from the trunnions 20, 20 to the projections 52a, 52b, 52c when the trunnions 20, 20 are excessively inclined. The 52a, 52b, and 52c are provided with a strength sufficient to prevent damage such as breakage and bending. For this reason, as shown in FIGS. 3 to 4, the thickness of the lower support plate 25b is substantially uniform up to both edges in the width direction (without being thinned at the edges).
[0032]
On the other hand, inclined surfaces 83 and 83 which do not have a convex portion for restraining inclination and are inclined downward in the direction toward the width direction edge are inclined to the width direction edge of the upper support plate 25a. Forming. Accordingly, the width dimension of the upper support plate 25a becomes narrower from the lower surface side toward the upper surface side. In accordance with this, the left and right end edges of the top plate portion 55 of the casing 11 and the upper end edges of the pair of left and right side plate portions 84 and 84 are made continuous by the inclined plate portions 85 and 85. Each of these inclined plate portions 85, 85 is inclined in a direction toward the center in the width direction as it goes upward, and the inclined surfaces 83, 83 of the inner surfaces of these inclined plate portions 85, 85 and the upper support plate 25a. Are in close proximity to each other. With this configuration, the width of the upper end portion of the casing 11 is reduced toward the upper side so that the casing 11 can be efficiently assembled in a concave groove portion called a floor tunnel provided on the lower surface of the vehicle body. .
[0033]
Of the actuator body 30 and the connecting plate 48, which are coupled to each other by the pair of support columns 43, 43, the actuator body 30 is fixed to the lower portion of the casing 11. For this purpose, step portions 53a and 53b are provided near the lower end opening of the inner surface of the casing 11, and bolt insertion holes are provided at both ends of the actuator body 30 in the width direction (front and back direction in FIGS. 1 and 2 and left and right direction in FIG. 3). 54 and 54 (FIG. 4) are formed. When the actuator body 30 is fixed in the casing 11, portions near both ends in the upper surface width direction of the actuator body 30 are brought into contact with the stepped portions 53 a and 53 b. Then, bolts (not shown) inserted through the bolt insertion holes 54 and 54 from below are screwed into screw holes opened in the step portions 53a and 53b and further tightened.
[0034]
On the other hand, the connecting plate 48 is installed in the casing 11 in a state in which the position in the length direction (the left-right direction in FIGS. 1 and 2, the front and back direction in FIG. 3) and the width direction is regulated. In order to perform this position restriction, positioning recesses 56a and 56b are formed in portions of the upper surface of the connecting plate 48 and the lower surface of the top plate portion 55 of the casing 11 facing each other. Each of the positioning recesses 56a and 56b has a circular planar shape. With the actuator body 30 fixed in the casing 11, between the positioning recesses 56 a and 56 a formed on the upper surface of the connecting plate 48 and the positioning recesses 56 b and 56 b formed on the lower surface of the top plate portion 55. Cylindrical positioning sleeves 57 and 57 are stretched over the two. With this structure, the upper and lower ends of the pair of columns 43 and 43 are supported and fixed in a state of being positioned with respect to the casing 11.
[0035]
In this way, it is provided in the middle part of a pair of support columns 43, 43 fixed at a predetermined position in the casing 11, and each is provided between the side surfaces of the input side disks 2a, 2b and the output side disk 16c. The output side disk 16c is rotatably supported by the support ring portions 45, 45 existing at the center of each existing cavity (space). For this purpose, the support ring portions 45, 45 and the axially opposite end faces of the output side disk 16c, that is, the inner diameter side portions of the output side faces 17 and 17 provided on both side faces in the axial direction of the output side disk 16c, The thrust angular ball bearings 42, 42 are provided between them. In the case of the illustrated example, a short cylindrical ridge 59 on the inner diameter portion of the outer surface (side surface opposite to each other) of the pair of race rings 58a, 58b constituting the thrust angular ball bearings 42, 42, 59 (FIG. 2) is formed over the entire circumference.
[0036]
Then, each of the thrust angular ball bearings 42, 42 is fitted by fitting the protrusions 59, 59 into the support ring portions 45, 45 and the end of the output side disk 16c without rattling. Positioning in the radial direction is intended. Also, shim plates 60 and 60 (FIG. 2) are sandwiched between the outer surfaces of one of the race rings 58a and 58a and the support ring portions 45 and 45, so that the shafts of the thrust angular ball bearings 42 and 42 are provided. Positioning with respect to the direction is intended. In this state, a desired preload is applied to each of the thrust angular ball bearings 42, 42. Therefore, the output side disk 16c is rotatably supported in a state where positioning in the radial direction and the axial direction is achieved between the support columns 43, 43 provided in pairs in each cavity.
[0037]
In the illustrated continuously variable transmission, the base end portion (left end portion in FIG. 1) of the input rotary shaft 1a is coupled to the crankshaft of an engine (not shown) via a drive shaft 61, and the crankshaft The input rotary shaft 1a is rotationally driven. Further, a surface suitable for a rolling contact portion (traction portion) between one axial side surface of both the input side disks 2a and 2b and both axial side surfaces of the output side disc 16c and the peripheral surfaces of the power rollers 19 and 19. A hydraulic device is used as the pressing device 6a for applying pressure. Further, a pressing source 6a and hydraulic actuators 31 and 31 for displacing the trunnions 20 and 20 for shifting by a hydraulic source (not shown) such as a gear pump, and a low-speed clutch 62 and a high-speed clutch 63 described later are provided. Pressure oil can be freely supplied to the hydraulic cylinder for connection and disconnection.
[0038]
Further, the base end portion (the left end portion in FIGS. 1 and 2) of the hollow rotary shaft 64 is spline-engaged with the output side disk 16c. The hollow rotary shaft 64 is inserted inside the input side disk 2b on the side far from the engine (the right side in FIGS. 1 and 2) so that the rotational force of the output side disk 16c can be taken out. Further, the first planetary gear type transmission unit 34 is formed at a portion protruding from the outer surface of the input side disk 2b at the tip end portion (the right end portion in FIGS. 1 and 2) of the hollow rotary shaft 64. The first sun gear 65 is fixed.
[0039]
On the other hand, the first carrier 66 is spanned between the portion protruding from the hollow rotary shaft 64 at the tip end portion (the right end portion in FIGS. 1 and 2) of the input rotary shaft 1a and the input side disk 2b. The input side disk 2b and the input rotary shaft 1a rotate in synchronization with each other. Then, the first and second planetary gear types each having a double pinion type at circumferentially equidistant positions (generally 3 to 4 positions) on both axial sides of the first carrier 66. Planetary gears 67 to 69 for constituting the transmission units 34 and 35 are rotatably supported. Further, a first ring gear 70 is rotatably supported around one half of the first carrier 66 (the right half of FIGS. 1 and 2).
[0040]
Among the planetary gears 67 to 69, the planetary gear 67 provided on the inner side in the radial direction of the first carrier 66 near the toroidal type continuously variable transmission unit 33 (leftward in FIGS. 1 and 2) is the first planetary gear 67. Of the sun gear 65. A planetary gear 68 provided on the inner side with respect to the radial direction of the first carrier 66 on the side far from the toroidal-type continuously variable transmission unit 33 (the right side in FIGS. 1 and 2) is a base end portion of the transmission shaft 38 ( It meshes with a second sun gear 71 fixed at the left end of FIG. Further, the remaining planetary gear 69 provided on the outer side in the radial direction of the first carrier 66 has a larger axial dimension than the planetary gears 67 and 68 provided on the inner side, so that both the gears 67 and 68 are provided. Is engaged. Further, the remaining planetary gear 69 and the first ring gear 70 are meshed with each other. In addition, instead of making the radially outward planetary gears independent of each other between the first and second planetary gear type transmission units 34, 35, a structure in which a wide ring gear meshes with these planetary gears, It can be adopted.
[0041]
On the other hand, a second carrier 72 for constituting the third planetary gear type transmission unit 36 is coupled and fixed to the base end portion (left end portion in FIG. 1) of the output shaft 37. The second carrier 72 and the first ring gear 70 are coupled through the low speed clutch 62. Further, a third sun gear 73 is fixedly provided near the tip of the transmission shaft 38 (near the right end in FIGS. 1 and 2). A second ring gear 74 is disposed around the third sun gear 73, and the high-speed clutch 63 is disposed between the second ring gear 74 and a fixed portion of the casing 11, etc. Provided. Further, a reciprocal set of planetary gears 75 and 76 disposed between the second ring gear 74 and the third sun gear 73 are rotatably supported by the second carrier 72. The planetary gears 75 and 76 mesh with each other, and the planetary gear 75 provided on the inner side with respect to the radial direction of the second carrier 72 is used as the third sun gear 73 and the planetary gear 76 provided on the outer side is provided. The second ring gear 74 meshes with each other.
[0042]
In the case of the continuously variable transmission of this example configured as described above, it is transmitted from the input rotating shaft 1a to the integrated output side disk 16c via the pair of input side disks 2a and 2b and the power rollers 19 and 19. Power is taken out through the hollow rotating shaft 64. When the low speed clutch 62 is connected and the high speed clutch 63 is disconnected, the rotational speed of the input rotary shaft 1a is kept constant by changing the gear ratio of the toroidal type continuously variable transmission unit 33. In this state, the rotation speed of the output shaft 37 can be converted into normal rotation and reverse rotation with the stop state interposed therebetween. That is, in this state, the differential component between the first carrier 66 rotating in the forward direction together with the input rotating shaft 1a and the first sun gear 65 rotating in the reverse direction together with the hollow rotating shaft 64 is It is transmitted from the first ring gear 70 to the output shaft 37 via the low speed clutch 62 and the second carrier 72. In this state, the output shaft 37 can be stopped by setting the transmission ratio of the toroidal continuously variable transmission unit 33 to a predetermined value, and the transmission ratio of the toroidal continuously variable transmission unit 33 is increased from the predetermined value. By changing to the side, the output shaft 37 is rotated in the direction of retreating the vehicle. On the other hand, the output shaft 37 is rotated in the direction of moving the vehicle forward by changing the gear ratio of the toroidal type continuously variable transmission unit 33 from the predetermined value to the deceleration side.
[0043]
Further, in a state where the low speed clutch 62 is disconnected and the high speed clutch 63 is connected, the output shaft 37 is rotated in a direction to advance the vehicle. That is, in this state, the first carrier 66 that rotates in the forward direction together with the input rotation shaft 1a, and the first sun gear 65 that rotates in the direction opposite to the first carrier 66 together with the hollow rotation shaft 64 The rotation of the planetary gear 67 of the first planetary gear type transmission unit 34 that rotates in accordance with the differential component of the planetary gears of the second planetary gear type transmission unit 35 via another planetary gear 69. 68, the transmission shaft 38 is rotated via the second sun gear 71. And the 3rd sun gear 73 provided in the front-end | tip part of this transmission shaft 38, the 2nd ring gear 74 and planetary gears 75 and 76 which comprise the said 3rd planetary gear type transmission unit 36 with this sun gear 73. The second carrier 72 and the output shaft 37 coupled to the second carrier 72 are rotated in the forward direction. In this state, the rotational speed of the output shaft 37 can be increased as the gear ratio of the toroidal-type continuously variable transmission unit 33 is changed to the speed increasing side.
[0044]
FIG. 8 shows an example of the relationship between the speed ratio (reduction ratio) of the toroidal-type continuously variable transmission unit 33 and the speed ratio of the continuously variable transmission as a whole. The vertical axis in FIG. 8 represents the gear ratio of the toroidal-type continuously variable transmission unit 33. Similarly, the horizontal axis represents a constant rotation (5600 min) of the input rotary shaft 1a with an engine having a displacement of about 3L.-1 ) Represents the theoretical vehicle speed (km / h). As is apparent from FIG. 8, the speed ratio of the toroidal-type continuously variable transmission unit 33 is set to about 0.6 in a state where the low speed clutch 62 is connected and the high speed clutch 63 is disconnected. Thus, the output shaft 37 can be stopped while the input rotation shaft 1a is rotated. Further, the vehicle can be moved forward or backward by changing the gear ratio of the toroidal-type continuously variable transmission unit 33 around 0.6. Further, when the transmission ratio of the toroidal-type continuously variable transmission unit 33 is about 2.2 to 2.3, the low-speed clutch 62 is disconnected and the high-speed clutch 63 is connected. The speed of the vehicle can be increased by changing the speed ratio of the continuously variable transmission unit 33 to the speed increasing side.
[0045]
At the time of assembling the continuously variable transmission of this example configured and operated as described above, the toroidal type continuously variable transmission unit 33 and the first and second planetary gear type transmission units 34 and 35 are connected to the units 33 to 35, respectively. Prior to housing 35 in the casing 11, as shown in FIG. That is, the output side disk 16c and the hollow rotary shaft 64 can be rotatably supported by a pair of support columns 43 and 43 (see FIGS. 1 to 3) whose lower ends are coupled and fixed to the actuator body 30. Further, a plurality of trunnions 20 and 20 and power rollers 19 and 19 are provided by a pair of upper and lower support plates 25a and 25b that are externally supported by the support post portions 44a and 44b provided at both upper and lower ends of the support columns 43 and 43, respectively. Can be supported at a predetermined position. Further, the pressing device 6a, the pair of input side disks 2a, 2b, the first and second planetary gear type transmission units 34, 35, etc. are connected to the input rotating shaft 1a inserted through the hollow rotating shaft 64. Assemble.
[0046]
Therefore, before the main parts of the toroidal type continuously variable transmission unit 33 and the first and second planetary gear type transmission units 34 and 35 constituting the continuously variable transmission are assembled in the casing 11, the casing 11 Assembling outside, the module 77 can be a main part of the continuously variable transmission as shown in FIG. The assembly work of the module 77 can be performed in a wide space without being obstructed by the casing 11, and the assembly work is facilitated. Further, after the module 77 is assembled, before the module 77 is housed in the casing 11, the operating state of the module 77 can be confirmed. If this operating state is defective, disassembly and reassembly can be easily performed in a wide space outside the casing 11.
[0047]
On the other hand, when the operating state of the module 77 is appropriate, the module 77 is inserted into the casing 11 from the lower end opening of the casing 11 with the connecting plate 48 facing up. Then, cylindrical positioning sleeves 57 and 57 are spanned between the positioning recesses 56a and 56a formed on the upper surface of the connecting plate 48 and the positioning recesses 56b and 56b formed on the lower surface of the top plate portion 55, respectively. The portions close to both ends in the upper surface width direction of the actuator body 30 are brought into contact with the stepped portions 53a and 53b. Then, a bolt (not shown) inserted through the bolt insertion holes 54 and 54 of the actuator body 30 from below is screwed into a screw hole opened in each of the step portions 53a and 53b, and further tightened, whereby the module 77 is fixed to the casing. 11 is fixed inside. After this fixing operation, the lower end opening of the casing 11 is closed with an oil pan 81 which is a closing member.
[0048]
Components such as the third planetary gear type transmission unit 36 that are not included in the module 77 are assembled in the casing 11 after the module 77 is assembled in the casing 11. Further, in the illustrated example, oil supply nozzles 78 and 78 for supplying lubricating oil (traction oil) to the traction portion are provided above the respective columns 43 and 43. The lubrication nozzles 78, 78 are lubricated through the positioning recesses 56 a, 56 a and the central holes of the bolts 49, 49 from the oil supply passages provided in the top plate portion 55 and the connecting plate 48. Feed oil. The trunnions 20 and 20 are provided with oil supply passages 80 and 80 for feeding lubricating oil to the rolling bearing portions related to the power rollers 19 and 19, and from the oil supply passages provided in the top plate portion 55. Lubricating oil can be freely fed into the oil supply passages 80, 80 in the trunnions 20, 20. Correspondingly, on the lower surface of the connecting plate 48, oil supply plugs 79, 79 for feeding lubricating oil toward the oil supply passages 80, 80 are provided, and along with the incorporation of the module 77 into the casing 11, The oil supply passages on the connection plate 48 side and the oil supply passages 80, 80 on the trunnions 20, 20 side are communicated with each other. Further, in the case of this example, the outer peripheral edge of the output side disk 16c and the outer peripheral edge of the pressing device 6a are provided with irregularities in the radial direction at equal intervals in the circumferential direction, and the rotational speeds of the output side disk 16c and the input side disks 2a, 2b. Can be detected freely.
[0049]
In the case of the toroidal-type continuously variable transmission unit 33 constituting the module 77 incorporated in the casing 11 as described above, unlike the conventional structure shown in FIG. There is no need to install the rolling bearings 14 and 14 and the partition wall 12 (see FIG. 9) for supporting the rolling bearings 14 and 14 between the disks 16a and 16b. And the axial dimension of the installation part of this output side disk 16c can be shortened, such as using the integrated output side disk 16c. The toroidal-type continuously variable transmission unit 33 can be reduced in size and weight by reducing the axial dimension in this way.
[0050]
Moreover, in the case of this example, the output side disk 16c has an integral structure with the output side surfaces 17 and 17 on both side surfaces in the axial direction. The forces applied to 17 cancel each other out in the output side disk 16c. As a result, the output side disk 16c can suppress elastic deformation irrespective of the moment load applied from the power rollers 19 and 19. For this reason, the thickness dimension in the axial direction of the output side disk 16c can be shortened, and the toroidal type continuously variable transmission can be reduced in size and weight from the aspect.
[0051]
In addition, although illustration is abbreviate | omitted, an output gear can also be provided integrally in the outer peripheral edge part of an integral type output side disk. When such a structure is employed, a transmission shaft for taking out power from the output side disk is provided in parallel with the input rotation shaft. Then, another gear fixed to the end of the transmission shaft is engaged with the output gear.
[0052]
【The invention's effect】
Since the present invention is configured and operates as described above, a structure that does not use an independent member to prevent the trunnion from being excessively inclined, and that facilitates component production, component management, and assembly work. Thus, it becomes easy to assemble the casing containing the toroidal type continuously variable transmission in a limited space. Therefore, it is possible to improve the degree of design freedom by improving the mounting property of the toroidal type continuously variable transmission on the vehicle.
In the case of the illustrated example, the cost of the toroidal type continuously variable transmission can be reduced by facilitating assembly work, and repair work can be facilitated.
In the case of the illustrated example, there is no toroidal type, such as shortening the axial dimension, ensuring the required performance, making it possible to reduce the size and weight, and assembling it to a smaller vehicle body. This can contribute to the practical use of a step transmission.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
3 is an enlarged cross-sectional view taken along the line BB in FIG.
FIG. 4 is a perspective view of a module that is a main part of a continuously variable transmission assembled before being housed in a casing.
FIG. 5 is a perspective view showing the casing as viewed from below.
FIG. 6 is a plan view of a connecting plate and a pair of upper and lower support plates as viewed from above.
FIG. 7 is a plan view showing the relationship between the lower support plate and each trunnion, partly cut away.
FIG. 8 is a diagram showing the relationship between the speed ratio of the toroidal type continuously variable transmission and the vehicle speed proportional to the speed ratio of the entire continuously variable transmission in a state where the rotational speed of the engine is constant.
FIG. 9 is a cross-sectional view showing an example of a basic configuration of a toroidal-type continuously variable transmission that has been widely known conventionally.
[Explanation of symbols]
1, 1a Input rotary shaft
2a, 2b Input side disk
3 Input side
4 Ball spline
5 Rolling bearing
6, 6a Pressing device
7 Cam plate
8 Drive shaft
9 Loading nut
10 Plate spring
11 Casing
12 Bulkhead
13 through holes
14 Rolling bearing
15 Output gear
16a, 16b, 16c Output side disk
17 Output side
18 Needle bearing
19 Power Roller
20 Trunnion
21, 21a Displacement axis
22 Radial needle bearings
23 Thrust ball bearing
24 Thrust needle bearing
25a, 25b Support plate
26 Preload spring
28 Output tube
29 circumference
30 Actuator body
31 Actuator
32 Axis
33 Toroidal continuously variable transmission unit
34 First planetary gear type transmission unit
35 Second planetary gear type transmission unit
36 Third planetary gear type transmission unit
37 Output shaft
38 Transmission shaft
39 Folding wall
40 connecting members
41 screws
42 Thrust angular contact ball bearings
43 prop
44a, 44b Support post
45 Support ring
46 volts
47 recess
48 connecting plate
49 volts
50 recess
51a, 51b Support hole
52a, 52b, 52c Convex part
53a, 53b Step
54 Bolt insertion hole
55 Top plate
56a, 56b Positioning recess
57 Positioning sleeve
58a, 58b Raceway
59 Projection
60 shim board
61 Drive shaft
62 Low speed clutch
63 High speed clutch
64 Hollow rotating shaft
65 First sun gear
66 First career
67 Planetary Gear
68 Planetary Gear
69 Planetary Gear
70 First ring gear
71 Second sun gear
72 Second career
73 Third Sun Gear
74 Second ring gear
75 planetary gear
76 Planetary Gear
77 modules
78 Refueling nozzle
79 Refueling plug
80 Refueling passage
81 Oil pan
82 Inclined surface
83 Inclined surface
84 Side plate
85 Inclined plate

Claims (4)

天板部の幅方向両端にそれぞれの基端縁を連続させた1対の側壁部を有し、これら両側壁部の先端同士の間に存在する開口部を塞ぎ部材により密閉自在としたケーシングと、このケーシング内に回転自在に支持された回転軸と、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態でこの回転軸に、この回転軸と同期した回転を自在として支持された1対の外側ディスクと、この回転軸の中間部周囲に、断面円弧形である軸方向両側面を上記各外側ディスクの軸方向片側面に対向させた状態で、上記回転軸に対する相対回転を自在に支持された内側ディスクと、軸方向に関してこの内側ディスクの軸方向両側面と上記各外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、上記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられた支持部材と、これら各支持部材の両端部に設けられた上記各枢軸を支持する為の1対の支持板と、上記各支持部材の内側面に回転自在に支持され、球状凸面としたそれぞれの周面を、上記内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面とに当接させたパワーローラと、上記各支持部材を上記枢軸の軸方向に変位させる為の複数のアクチュエータと、これら各アクチュエータの本体部分を収納したアクチュエータボディーとを備えたトロイダル型無段変速機に於いて、上記1対の支持板のうちで上記アクチュエータボディーを設置した下側に配置した支持板の幅方向両側縁部にのみ、上記各支持部材の端部に向け突出して上記各枢軸を中心とするこれら各支持部材の傾斜角度を制限する突片を、上記支持板の幅方向両側縁部の両端部と中央部との3個所位置で、それぞれ上記各支持部材の枢軸よりも上記支持板の幅方向外寄り、且つ、これら各支持部材の外側面よりもこの幅方向に関して内寄り部分に設け、このうちの中央部の突片により、上記内側ディスクを挟んで設けた1対ずつの支持部材の揺動角度を制限する事を特徴とするトロイダル型無段変速機。A casing having a pair of side wall portions in which the respective base end edges are continuous at both ends in the width direction of the top plate portion, and an opening existing between the tips of the both side wall portions is closed by a sealing member; The rotary shaft that is rotatably supported in the casing and the axial side surfaces of the rotary shafts, each of which has a circular arc cross section, are opposed to the rotary shaft in synchronization with the rotary shaft. A pair of outer disks supported as a rotating shaft with the axially opposite side surfaces having an arcuate cross section facing one axial side surface of each of the outer disks around the intermediate part of the rotating shaft. A plurality of inner disks that are supported to freely rotate relative to each other, and a plurality of inner disks that are twisted with respect to the rotating shaft in the axial direction between the both axial side surfaces of the inner disk and one axial side surface of each outer disk. Axis in position A support member provided with swings freely around a supporting plate of a pair for supporting the pivot shafts provided at both ends of each support member, the inner surface of each support member A power roller that is rotatably supported and has a spherical convex surface that is in contact with both axial side surfaces of the inner disk and one axial side surface of each outer disk, and each supporting member is pivoted. A toroidal-type continuously variable transmission comprising a plurality of actuators for displacing the actuator in the axial direction and an actuator body that houses a main body portion of each actuator. Projecting toward the ends of the support members only at the side edges in the width direction of the support plate disposed on the lower side of the support plate, and limiting the inclination angle of the support members around the pivots Pieces, at three positions located between the end portions and the central portion in the width direction both side edges of the support plate, the width direction outer side of the respective said supporting plate than the pivot of the respective support member, and, for each of these support members It is provided in an inward portion with respect to the width direction with respect to the outer side surface, and the swing angle of the pair of support members provided with the inner disk interposed therebetween is limited by a projecting piece at the center portion of these. Toroidal continuously variable transmission. 内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面との間に、それぞれの中間部に支持環部を有する1対の支柱の下端を、この支持環部に回転軸を挿通した状態でアクチュエ−タボディーの上面に結合固定すると共に、上記両支柱の支持環部に上記内側ディスクの軸方向両端部を回転自在に支持し、更に、これら両支柱の両端部近傍部分に各支持板を支持した、請求項1に記載したトロイダル型無段変速機。A state in which the lower end of a pair of support columns having a support ring portion at each intermediate portion is inserted between both axial sides of the inner disc and one axial side surface of each outer disc, and the rotation shaft is inserted into the support ring portion. And fixed to the upper surface of the actuator body, and both end portions in the axial direction of the inner disk are rotatably supported by the support ring portions of the both struts, and each support plate is provided in the vicinity of both end portions of the both struts. The toroidal-type continuously variable transmission according to claim 1, which is supported. トロイダル型無段変速ユニットと遊星歯車式変速ユニットとを組み合わせると共に、このうちのトロイダル型無段変速ユニットの回転軸に繋がる入力軸と、上記遊星歯車式変速ユニットの構成部材に繋がる出力軸とを備え、
このうちのトロイダル型無段変速ユニットは、請求項1〜2の何れかに記載されたトロイダル型無段変速機であり、
上記遊星歯車式変速ユニットは、上記トロイダル型無段変速ユニットの回転軸と内側ディスクとから動力を伝達されるものであって、動力の伝達経路を2系統に切り換える切換手段を有するものである
無段変速装置。
A toroidal-type continuously variable transmission unit and a planetary gear-type transmission unit are combined, and an input shaft connected to the rotation shaft of the toroidal-type continuously variable transmission unit and an output shaft connected to the constituent members of the planetary gear-type transmission unit. Prepared,
Of these, the toroidal type continuously variable transmission unit is the toroidal type continuously variable transmission according to any one of claims 1 and 2,
The planetary gear type transmission unit is configured to transmit power from the rotating shaft and the inner disk of the toroidal-type continuously variable transmission unit, and has switching means for switching the power transmission path between two systems. Step transmission.
遊星歯車式変速ユニットは、トロイダル型無段変速ユニットを構成する1対の外側ディスクにこれら両外側ディスクと同心に結合固定されてこれら両外側ディスクと共に回転するキャリアと、このキャリアの軸方向両側面のうちで一方の外側ディスクに対向する軸方向片面に回転自在に支持された複数の第一の遊星歯車と、上記トロイダル型無段変速ユニットを構成する回転軸の周囲に配置された中空回転軸により内側ディスクに結合された状態で上記各ディスクと同心に且つ回転自在に設けられ、上記各第一の遊星歯車と噛合した第一の太陽歯車と、上記キャリアの他面に回転自在に支持された複数の第二の遊星歯車と、上記各ディスクと同心に且つ回転自在に設けられてこれら各第二の遊星歯車と噛合した第二の太陽歯車と、上記各ディスクと同心に且つ回転自在に設けられ、第三の遊星歯車を介して上記各第一の遊星歯車と噛合したリング歯車とを備えたものであり、
切換手段は、このリング歯車を通じて上記内側ディスクから取り出した動力を出力軸に伝達するモードと、上記第二の太陽歯車を通じてこの内側ディスクから取り出した動力を出力軸に伝達するモードとを選択するものである、
請求項3に記載した無段変速装置。
The planetary gear type transmission unit includes a carrier that is concentrically coupled to and fixed to a pair of outer disks constituting a toroidal type continuously variable transmission unit, and rotates together with the outer disks, and both axial side surfaces of the carrier. A plurality of first planetary gears rotatably supported on one axial surface facing one outer disk, and a hollow rotary shaft arranged around the rotary shaft constituting the toroidal-type continuously variable transmission unit The first sun gear meshed with each of the first planetary gears and rotatably supported on the other surface of the carrier. A plurality of second planetary gears, a second sun gear provided concentrically and rotatably with each of the disks and meshed with each of the second planetary gears, And rotatably provided on the click and concentric, which has a ring gear meshed with the respective first planetary gear through the third planetary gears,
The switching means selects a mode for transmitting the power extracted from the inner disk through the ring gear to the output shaft and a mode for transmitting the power extracted from the inner disk through the second sun gear to the output shaft. Is,
The continuously variable transmission according to claim 3.
JP2002243388A 2002-08-23 2002-08-23 Toroidal continuously variable transmission and continuously variable transmission Expired - Fee Related JP4123868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243388A JP4123868B2 (en) 2002-08-23 2002-08-23 Toroidal continuously variable transmission and continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243388A JP4123868B2 (en) 2002-08-23 2002-08-23 Toroidal continuously variable transmission and continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2004084711A JP2004084711A (en) 2004-03-18
JP2004084711A5 JP2004084711A5 (en) 2005-09-22
JP4123868B2 true JP4123868B2 (en) 2008-07-23

Family

ID=32052163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243388A Expired - Fee Related JP4123868B2 (en) 2002-08-23 2002-08-23 Toroidal continuously variable transmission and continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4123868B2 (en)

Also Published As

Publication number Publication date
JP2004084711A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4123869B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4378898B2 (en) Toroidal continuously variable transmission and continuously variable transmission
US20090247349A1 (en) Reduction Gear Transmission
JP2008025821A (en) Toroidal continuously variable transmission
JP3885650B2 (en) Continuously variable transmission
JP4281370B2 (en) Continuously variable transmission
JP4200728B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4123868B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP2004257533A (en) Toroidal continuously variable transmission and its device
JP2004293691A (en) Toroidal-type continuously variable transmission and continuously variable transmission device
JP4120391B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4193455B2 (en) Toroidal type continuously variable transmission and its assembly method
JP4232515B2 (en) Continuously variable transmission and its assembly method
JP4696537B2 (en) Toroidal continuously variable transmission
JP3882754B2 (en) Continuously variable transmission
JPH11166605A (en) Output side disc unit for toroidal continuously variable transmission
US6960151B2 (en) Toroidal continuously variable transmission
JP2004084710A (en) Toroidal-type continuously variable transmission and continuously variable transmission
JP5867132B2 (en) Friction roller reducer
JP4284992B2 (en) Toroidal continuously variable transmission
JP2006017145A (en) Toroidal type continuously variable transmission for four-wheel drive car
JP4442236B2 (en) Toroidal continuously variable transmission
JP4144166B2 (en) Continuously variable transmission for pumping pump or generator
JPH08135746A (en) Toroidal type continuously variable transmission
JP3374663B2 (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees