JP4123513B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP4123513B2
JP4123513B2 JP2003362205A JP2003362205A JP4123513B2 JP 4123513 B2 JP4123513 B2 JP 4123513B2 JP 2003362205 A JP2003362205 A JP 2003362205A JP 2003362205 A JP2003362205 A JP 2003362205A JP 4123513 B2 JP4123513 B2 JP 4123513B2
Authority
JP
Japan
Prior art keywords
plate
nozzle hole
downstream
wall surface
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003362205A
Other languages
Japanese (ja)
Other versions
JP2005127186A (en
Inventor
原田  明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003362205A priority Critical patent/JP4123513B2/en
Publication of JP2005127186A publication Critical patent/JP2005127186A/en
Application granted granted Critical
Publication of JP4123513B2 publication Critical patent/JP4123513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関(以下、エンジンという)へ向かって燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel toward an internal combustion engine (hereinafter referred to as an engine).

特許文献1等に開示の燃料噴射弁では、燃料流れの下流側へ向かうほど噴孔プレートの中心軸線から離れる方向へ傾斜する噴孔を噴孔プレートに形成している。かかる燃料噴射弁では、図16に例示するように噴孔プレート1の板厚方向の断面において噴孔2の内周側内壁面3と外周側内壁面4とが燃料流れの下流側へ向かうほど噴孔プレート1の中心軸線から離れる方向へ傾斜しており、噴孔2を流れる燃料を液膜化して燃料噴霧の微粒化を図ることができる。燃料噴霧の微粒化は、エンジンの動力性能及び燃費を高める上で、また排気ガス中の有毒成分を低減する上で重要となる。   In the fuel injection valve disclosed in Patent Document 1 or the like, the nozzle hole plate is formed with an injection hole that inclines in a direction away from the central axis of the nozzle hole plate toward the downstream side of the fuel flow. In such a fuel injection valve, as illustrated in FIG. 16, the inner peripheral side inner wall surface 3 and the outer peripheral side inner wall surface 4 of the nozzle hole 2 in the cross section in the plate thickness direction of the nozzle hole plate 1 approach the downstream side of the fuel flow. Inclined in the direction away from the central axis of the nozzle hole plate 1, the fuel flowing through the nozzle holes 2 can be formed into a liquid film to atomize the fuel spray. Atomization of the fuel spray is important for improving the power performance and fuel consumption of the engine and reducing toxic components in the exhaust gas.

特開2001−317431号公報JP 2001-317431 A

しかし噴孔2において、入口側開口縁の内周側内壁面3近傍に到達した燃料は図16の破線矢印の如く孔内壁面に沿って流れることで液膜化し易いが、入口側開口縁の外周側内壁面4近傍に到達した燃料は図16の実線矢印のように孔内壁面に沿うことなく液柱状となって流れ易い。この液柱状部分の噴霧は液膜化部分の噴霧に比べ微粒化され難いため、燃料噴霧の微粒化の妨げとなっている。
本発明の目的は、燃料噴霧を微粒化する燃料噴射弁を提供することにある。
However, in the nozzle hole 2, the fuel that has reached the vicinity of the inner peripheral wall surface 3 of the inlet opening edge flows easily along the hole inner wall surface as indicated by the broken line arrow in FIG. The fuel that has reached the vicinity of the outer peripheral side inner wall surface 4 tends to flow in the form of a liquid column without following the inner wall surface of the hole as indicated by the solid line arrow in FIG. Since the spray of the liquid columnar part is less likely to be atomized than the spray of the liquid film part, the atomization of the fuel spray is hindered.
An object of the present invention is to provide a fuel injection valve that atomizes fuel spray.

請求項1に記載の発明によると、噴孔の入口側開口縁のうち少なくとも外周側に、噴孔の内周側内壁面へ向かって燃料流れをガイドするガイド部が形成されている。そのため、噴孔において入口側開口縁の外周側内壁面近傍に到達した燃料は、ガイド部のガイド作用を受けて噴孔の内周側内壁面へと導かれる。噴孔は噴孔プレートの中心軸線から離れる方向へ傾斜しているので、ガイド部のガイド作用により噴孔の内周側内壁面に達した燃料は噴孔の内壁面に沿って流れることで液膜化され、噴射によって微粒化される。   According to the first aspect of the present invention, the guide portion for guiding the fuel flow toward the inner peripheral side inner wall surface of the nozzle hole is formed on at least the outer peripheral side of the inlet side opening edge of the nozzle hole. Therefore, the fuel that has reached the vicinity of the outer peripheral side inner wall surface of the inlet side opening edge at the nozzle hole is guided to the inner peripheral side inner wall surface of the nozzle hole under the guide action of the guide portion. Since the nozzle hole is inclined away from the central axis of the nozzle hole plate, the fuel that has reached the inner wall surface of the nozzle hole due to the guide action of the guide portion flows along the inner wall surface of the nozzle hole, thereby Filmed and atomized by spraying.

請求項2に記載の発明によると、ガイド部は、噴孔の入口側開口縁の周方向全体に亘って形成されている。このガイド部によれば、噴孔において入口側開口縁の周方向の任意箇所に到達した燃料を噴孔の内周側内壁面へと確実に導くことができる。したがって、燃料の液膜化を促進して、燃料噴霧の微粒化効果を高めることができる。   According to the second aspect of the present invention, the guide portion is formed over the entire circumferential direction of the inlet side opening edge of the nozzle hole. According to this guide part, the fuel which reached | attained the arbitrary location of the circumferential direction of the inlet side opening edge in an injection hole can be reliably guide | induced to the inner peripheral side inner wall face of an injection hole. Therefore, the fuel liquid film can be promoted and the atomization effect of the fuel spray can be enhanced.

請求項3に記載の発明によると、上流側プレート及び下流側プレートからなる噴孔プレートにおいて、上流側プレートにガイド部が形成されている。これにより、ガイド部の機能を確保しつつ、下流側プレートにより形成される噴孔下流部において例えば燃料噴霧の微粒化を促進する形状を採用することができる。   According to the third aspect of the present invention, in the nozzle hole plate including the upstream plate and the downstream plate, the guide portion is formed on the upstream plate. Thereby, the shape which promotes atomization of a fuel spray, for example can be employ | adopted in the nozzle hole downstream part formed of a downstream plate, ensuring the function of a guide part.

請求項4に記載の発明によると、噴孔の外周側のうち少なくとも入口側開口縁の外周側に、噴孔の内周側内壁面へ向かって膨らむ膨らみ部が形成されている。そのため、噴孔において入口側開口縁の外周側内壁面近傍に到達した燃料は、膨らみ部の膨らみ先端側へ即ち噴孔の内周側内壁面へ向かって導かれる。噴孔は噴孔プレートの中心軸線から離れる方向へ傾斜しているので、膨らみ部の作用によって噴孔の内周側内壁面に達した燃料は噴孔の内壁面に沿って流れることで液膜化され、噴射によって微粒化される。
請求項5に記載の発明によると、膨らみ部は噴孔の軸方向全体に亘って延びているので、噴孔の形成が容易となる。
According to the fourth aspect of the present invention, the bulge portion that bulges toward the inner wall surface on the inner peripheral side of the nozzle hole is formed at least on the outer peripheral side of the inlet side opening edge in the outer peripheral side of the nozzle hole. Therefore, the fuel that has reached the vicinity of the outer peripheral inner wall surface of the inlet opening edge at the nozzle hole is guided toward the bulging tip side of the bulging portion, that is, toward the inner peripheral inner wall surface of the nozzle hole. Since the nozzle hole is inclined in a direction away from the central axis of the nozzle hole plate, the fuel that has reached the inner wall surface of the nozzle hole by the action of the bulge portion flows along the inner wall surface of the nozzle hole, thereby causing a liquid film And atomized by spraying.
According to the fifth aspect of the present invention, since the bulging portion extends over the entire axial direction of the nozzle hole, the nozzle hole can be easily formed.

請求項6,7に記載の発明によると、上流側プレート及び下流側プレートからなる噴孔プレートにおいて、上流側プレートに膨らみ部が形成されている。これにより、膨らみ部の機能を確保しつつ、下流側プレートにより形成される噴孔下流部において例えば燃料噴霧の微粒化を促進する形状を採用することができる。
請求項8に記載の発明によると、噴孔プレートにおいて共通の板厚方向に重なり合う上流側プレート及び下流側プレートの各板厚をT1、T2とすると、T1<T2である。この板厚設定により、下流側プレートにより形成される噴孔下流部の機能を十分に発揮させることができる。
According to the sixth and seventh aspects of the present invention, in the nozzle hole plate including the upstream side plate and the downstream side plate, the bulging portion is formed on the upstream side plate. Thereby, the shape which promotes atomization of fuel spray, for example can be employ | adopted in the nozzle hole downstream part formed of a downstream plate, ensuring the function of a bulging part.
According to the eighth aspect of the present invention, when the plate thicknesses of the upstream plate and the downstream plate that overlap in the common plate thickness direction in the nozzle hole plate are T 1 and T 2 , T 1 <T 2 . By setting the plate thickness, the function of the downstream portion of the nozzle hole formed by the downstream plate can be sufficiently exhibited.

請求項9に記載の発明によると、弁ボディは、燃料流れの下流側へ向かうほど縮径する内周面に弁座を有しており、噴孔の入口側開口縁は、弁ボディの内周面を燃料流れの下流側へ延ばしてなる仮想面と噴孔プレートとの交線の内周側に形成されている。これにより、弁座と弁部材との間を通過して弁ボディの内周面に沿って下流側へと向かう燃料をガイド部又は膨らみ部へと導いて、ガイド部又は膨らみ部の作用を十分に発揮させることができる。
請求項10に記載の発明によると、噴孔の流路面積は燃料流れの下流側へ向かうほど拡がっているので、燃料噴霧の微粒化効果が増大する。
According to the ninth aspect of the present invention, the valve body has the valve seat on the inner peripheral surface whose diameter is reduced toward the downstream side of the fuel flow, and the inlet side opening edge of the injection hole is formed in the inner side of the valve body. The peripheral surface is formed on the inner peripheral side of the intersection line between the virtual surface formed by extending the downstream side of the fuel flow and the nozzle hole plate. As a result, the fuel that passes between the valve seat and the valve member and travels downstream along the inner peripheral surface of the valve body is guided to the guide portion or the bulge portion, so that the action of the guide portion or the bulge portion is sufficient. Can be demonstrated.
According to the invention described in claim 10, since the flow passage area of the nozzle hole is expanded toward the downstream side of the fuel flow, the atomization effect of the fuel spray is increased.

以下、本発明の複数の実施形態を図に基づいて説明する。
(第一実施形態)
本発明の第一実施形態による燃料噴射弁を図2に示す。燃料噴射弁10は、ガソリンエンジンの吸気管に設置されており、噴射ノズル12から燃焼室の2個の吸気入口へ向かって燃料を噴射する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A fuel injection valve according to the first embodiment of the present invention is shown in FIG. The fuel injection valve 10 is installed in an intake pipe of a gasoline engine, and injects fuel from the injection nozzle 12 toward the two intake inlets of the combustion chamber.

図3に示すように燃料噴射弁10の噴射ノズル12は、弁ボディ14、弁部材としてのノズルニードル20、並びに噴孔プレート30を備えている。
燃料通路18を内部に形成する弁ボディ14は、燃料流れの下流側へ向かうほど縮径するテーパ面状に形成された内周面15を有する。燃料通路18には、ノズルニードル20が往復移動自在に挿入されている。内周面15には、ノズルニードル20が着座並びに離座する弁座16が形成されている。ノズルニードル20が弁座16に着座するときには、燃料通路18が閉塞されて、噴孔プレート30に形成された噴孔40からの燃料噴射が遮断される。また一方、ノズルニードル20が弁座16から離座するときには、燃料通路18が開放されて、噴孔40からの燃料噴射が許容される。
As shown in FIG. 3, the injection nozzle 12 of the fuel injection valve 10 includes a valve body 14, a nozzle needle 20 as a valve member, and an injection hole plate 30.
The valve body 14 forming the fuel passage 18 therein has an inner peripheral surface 15 formed in a tapered surface shape whose diameter is reduced toward the downstream side of the fuel flow. A nozzle needle 20 is inserted into the fuel passage 18 so as to be reciprocally movable. A valve seat 16 on which the nozzle needle 20 is seated and separated is formed on the inner peripheral surface 15. When the nozzle needle 20 is seated on the valve seat 16, the fuel passage 18 is closed, and fuel injection from the injection hole 40 formed in the injection hole plate 30 is blocked. On the other hand, when the nozzle needle 20 moves away from the valve seat 16, the fuel passage 18 is opened and fuel injection from the injection hole 40 is allowed.

噴孔プレート30は全体として薄い円板状を呈し、弁座16に対して燃料流れの下流側に配設されている。噴孔プレート30の上流側端面31と弁ボディ14の下流側端面19とが当接する形態で、噴孔プレート30は弁ボディ14にレーザ溶着されている。噴孔プレート30の上流側端面31と弁ボディ14の内周面15とノズルニードル20の先端面21とによって、扁平な円板状の燃料室17が形成される。図3及び図4に示すように噴孔プレート30には、その中心軸線Oから離れる方向に傾斜する噴孔40が合計12個形成されている。尚、噴孔40の数は12個に限るものではなく、適宜設定され得る。   The nozzle hole plate 30 has a thin disk shape as a whole, and is disposed downstream of the fuel flow with respect to the valve seat 16. The nozzle hole plate 30 is laser welded to the valve body 14 such that the upstream end face 31 of the nozzle hole plate 30 and the downstream end face 19 of the valve body 14 are in contact with each other. The upstream end surface 31 of the nozzle hole plate 30, the inner peripheral surface 15 of the valve body 14, and the tip surface 21 of the nozzle needle 20 form a flat disk-shaped fuel chamber 17. As shown in FIGS. 3 and 4, twelve injection holes 40 are formed in the injection hole plate 30, which are inclined in a direction away from the central axis O. The number of nozzle holes 40 is not limited to 12 and can be set as appropriate.

次に、第一実施形態の噴孔プレート30についてさらに詳しく説明する。
図5に示すように噴孔プレート30は、上流側端面31を形成する上流側プレート50と、上流側プレート50に対し燃料流れの下流側に配設された下流側プレート60とから構成されている。上流側プレート50と下流側プレート60とは、共通の板厚方向に重なり合う形態で互いに接合されている。上流側プレート50の板厚をT1とし、下流側プレート60の板厚をT2とすると、T1<T2である。噴孔40は、上流側プレート50と下流側プレート60とを共に貫く形態で形成されている。
Next, the nozzle hole plate 30 of the first embodiment will be described in more detail.
As shown in FIG. 5, the nozzle hole plate 30 includes an upstream plate 50 that forms the upstream end face 31, and a downstream plate 60 that is disposed downstream of the upstream plate 50 in the fuel flow. Yes. The upstream plate 50 and the downstream plate 60 are joined to each other so as to overlap in the common plate thickness direction. The thickness of the upstream side plate 50 and T 1, when the thickness of the downstream plate 60 and T 2, a T 1 <T 2. The nozzle hole 40 is formed so as to penetrate both the upstream plate 50 and the downstream plate 60.

噴孔40において上流側プレート50が形成する噴孔上流部52は、燃料流れの下流側へ向かうほど流路面積を絞る円形のテーパ孔状である。したがって、噴孔上流部52の内壁面54は、円形輪郭を有し燃料流れの下流側へ向かうほど縮径するテーパ面を構成している。図3及び図4に示すようにいずれの噴孔40についても、弁ボディ14の内周面15を燃料流れの下流側へ延ばしてなる仮想面Qと上流側プレート50の上流側端面31との交線Nよりも内周側に、入口側開口縁をなす噴孔上流部52が形成されている。   The nozzle hole upstream portion 52 formed by the upstream plate 50 in the nozzle hole 40 has a circular tapered hole shape that narrows the flow path area toward the downstream side of the fuel flow. Therefore, the inner wall surface 54 of the nozzle hole upstream portion 52 has a circular surface and has a tapered surface that decreases in diameter toward the downstream side of the fuel flow. As shown in FIGS. 3 and 4, for any of the nozzle holes 40, the imaginary plane Q formed by extending the inner peripheral surface 15 of the valve body 14 to the downstream side of the fuel flow and the upstream end face 31 of the upstream plate 50. An injection hole upstream portion 52 that forms an entrance-side opening edge is formed on the inner peripheral side of the intersection line N.

図5に示すように、噴孔40において下流側プレート60が形成する噴孔下流部62は、燃料流れの下流側へ向かうほど流路面積を拡げる円形のテーパ孔状である。したがって、噴孔下流部62の内壁面64は、円形輪郭を有し燃料流れの下流側へ向かうほど拡径するテーパ面を構成している。図5に示す下流側プレート60の板厚方向の断面において噴孔下流部62の内周側内壁面64aと外周側内壁面64bとは、燃料流れの下流側へ向かうほど下流側プレート60の中心軸線Oから離れる方向へ傾斜している。したがって、中心軸線Oに平行な下流側プレート60の板厚方向軸線O’及び噴孔下流部62の孔軸線を含む仮想面R(本実施形態では図5の断面に一致する)と内周側内壁面64aとの交線La、並びに仮想面Rと外周側内壁面64bとの交線Lbが、下流側へ向かうほど中心軸線Oから離れる傾斜線となっている。ここで交線Laと板厚方向軸線O’とがなす角をθaとし、交線Lbと板厚方向軸線O’とがなす角をθbとすると、θa<θbである。 As shown in FIG. 5, the nozzle hole downstream portion 62 formed by the downstream side plate 60 in the nozzle hole 40 has a circular tapered hole shape that expands the flow path area toward the downstream side of the fuel flow. Therefore, the inner wall surface 64 of the nozzle hole downstream portion 62 has a circular surface and has a tapered surface that increases in diameter toward the downstream side of the fuel flow. In the cross section in the plate thickness direction of the downstream plate 60 shown in FIG. 5, the inner peripheral side inner wall surface 64a and the outer peripheral side inner wall surface 64b of the nozzle hole downstream portion 62 are located at the center of the downstream plate 60 toward the downstream side of the fuel flow. It is inclined in a direction away from the axis O. Therefore, a virtual plane R (which coincides with the cross section of FIG. 5 in this embodiment) including the plate thickness direction axis O ′ of the downstream plate 60 parallel to the central axis O and the hole axis of the nozzle hole downstream portion 62 and the inner peripheral side intersection line L a and the inner wall surface 64a, and the intersection line L b between the virtual plane R and the outer peripheral side inner wall surface 64b has an inclined line away from the center axis O as it goes downstream. Here 'a and is the angle theta a, the intersection line L b and the plate thickness axis O' intersection line L a and the plate thickness axis O When the the angle and theta b, is θ ab .

図6は、噴孔40の形状を模式的に示している。図5及び図6に示すように、噴孔下流部62の上流側端縁は噴孔上流部52の下流側端縁より大径とされ、仮想面Rと噴孔上流部52の内周側内壁面54aとの交線Maが交線Laの延長線に重なっている。それにより、噴孔上流部52の内壁面54と噴孔下流部62の内壁面64とは、交線Ma,La近傍を除く箇所において、噴孔40内に露出する上流側プレート50の露出面56を介し段差状に接続されている。 FIG. 6 schematically shows the shape of the nozzle hole 40. As shown in FIGS. 5 and 6, the upstream end edge of the nozzle hole downstream part 62 has a larger diameter than the downstream edge of the nozzle hole upstream part 52, and the virtual surface R and the inner peripheral side of the nozzle hole upstream part 52 intersection line M a of the inner wall surface 54a overlaps the extension line of the intersection line L a. Thereby, the inner wall surface 64 of the inner wall surface 54 and the injection hole downstream portion 62 of the injection hole upstream portion 52, the intersection line M a, in a region other than L a vicinity of the upstream side plate 50 which is exposed to the injection hole 40 A stepped connection is established via the exposed surface 56.

第一実施形態では、上述した如く噴孔上流部52が上記交線Nの内周側に形成されている。そのため、弁座16とノズルニードル20との間を通過した燃料は、燃料室17内を弁ボディ14の内周面15及び上流側プレート50の上流側端面31に順次沿って流れることで、噴孔上流部52の外周側内壁面54b近傍へと到達し易くなる。外周側内壁面54b近傍に到達した燃料は、図1に実線矢印で示すように、下流側ほど縮径する外周側内壁面54bに沿って流れることで噴孔下流部62の内周側内壁面64aへと導かれる。   In the first embodiment, the nozzle hole upstream portion 52 is formed on the inner peripheral side of the intersection line N as described above. Therefore, the fuel that has passed between the valve seat 16 and the nozzle needle 20 flows in the fuel chamber 17 along the inner peripheral surface 15 of the valve body 14 and the upstream end surface 31 of the upstream plate 50 in order. It becomes easy to reach the vicinity of the outer peripheral side inner wall surface 54 b of the hole upstream portion 52. The fuel that has reached the vicinity of the outer peripheral side inner wall surface 54b flows along the outer peripheral side inner wall surface 54b whose diameter decreases toward the downstream side, as indicated by the solid line arrow in FIG. 64a.

また、弁座16とノズルニードル20との間を通過した燃料は、燃料室17に流入して上流側プレート50の中心軸線O側から噴孔上流部52の内周側内壁面54a近傍へと到達する場合もある。内周側内壁面54a近傍に到達した燃料は、図1に破線矢印で示すように、下流側ほど縮径する内周側内壁面54aに沿って流れることで、内周側内壁面54aに繋がる噴孔下流部62の内周側内壁面64aへと導かれる。   In addition, the fuel that has passed between the valve seat 16 and the nozzle needle 20 flows into the fuel chamber 17 and from the central axis O side of the upstream plate 50 to the vicinity of the inner peripheral side inner wall surface 54a of the injection hole upstream portion 52. Sometimes it reaches. The fuel that has reached the vicinity of the inner peripheral side inner wall surface 54a is connected to the inner peripheral side inner wall surface 54a by flowing along the inner peripheral side inner wall surface 54a that is reduced in diameter toward the downstream side, as indicated by a broken line arrow in FIG. It is guided to the inner peripheral side inner wall surface 64a of the nozzle hole downstream portion 62.

上述した外周側内壁面54b及び内周側内壁面54aのガイド作用によって内周側内壁面64aへと導かれた燃料は、図1に白抜矢印で示すように、下流側ほど拡径する噴孔下流部62の内壁面64に沿って流れることで液膜化され、噴射によって微細に***する。したがって、第一実施形態によれば、噴孔40から噴射される燃料噴霧の微粒化効果を高めることができる。以上、第一実施形態では、噴孔40の入口側開口縁をなす噴孔上流部52の内壁面54の周方向全体で、噴孔40の内周側内壁面の一部である噴孔下流部62の内周側内壁面64aへ向かって燃料流れをガイドするガイド部を形成している。   The fuel guided to the inner peripheral side inner wall surface 64a by the guide action of the outer peripheral side inner wall surface 54b and the inner peripheral side inner wall surface 54a described above is a jet whose diameter increases toward the downstream side as shown by the white arrow in FIG. A liquid film is formed by flowing along the inner wall surface 64 of the hole downstream portion 62, and is finely divided by jetting. Therefore, according to the first embodiment, the atomization effect of the fuel spray injected from the injection hole 40 can be enhanced. As described above, in the first embodiment, the entire downstream of the inner wall surface 54 of the nozzle hole upstream portion 52 that forms the inlet-side opening edge of the nozzle hole 40, and the nozzle hole downstream that is a part of the inner wall surface of the nozzle hole 40. A guide portion that guides the fuel flow toward the inner peripheral wall surface 64a of the portion 62 is formed.

(第二実施形態)
本発明の第二実施形態による燃料噴射弁の要部を図7に示す。第一実施形態と実質的に同一構成部分については、第一実施形態と同一符号を付すことで説明を省略する。
第二実施形態の上流側プレート50が形成する噴孔上流部52の形状は、図8に模式的に示すように、三日月形のテーパ孔状とされている。
(Second embodiment)
The principal part of the fuel injection valve by 2nd embodiment of this invention is shown in FIG. The components that are substantially the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
The shape of the nozzle hole upstream portion 52 formed by the upstream plate 50 of the second embodiment is a crescent-shaped taper hole as schematically shown in FIG.

図7及び図8に示すように、噴孔上流部52の内壁面100のうち内周側内壁面100aと外周側内壁面100bの一部は、円弧形輪郭を有し、燃料流れの下流側へ向かうほど縮径している。外周側内壁面100bの残部は、内周側内壁面100aへ向かって円弧形輪郭をもって膨らむ膨らみ部110を形成している。膨らみ部110は、噴孔上流部52の軸方向全体に亘って延びており、軸方向においては燃料流れの上流側へ向かうほど且つ周方向においてはその両端側へ向かうほど拡径している。以上の構成により噴孔上流部52は、膨らみ部110に対応する箇所が凹む三日月形とされ、燃料流れの下流側へ向かうほど流路面積を絞っている。   As shown in FIGS. 7 and 8, a part of the inner peripheral wall surface 100a and the outer peripheral inner wall surface 100b of the inner wall surface 100 of the nozzle hole upstream portion 52 has an arcuate contour, and downstream of the fuel flow. The diameter decreases toward the side. The remaining part of the outer peripheral side inner wall surface 100b forms a bulging portion 110 that bulges toward the inner peripheral side inner wall surface 100a with an arcuate contour. The bulging portion 110 extends over the entire axial direction of the nozzle hole upstream portion 52, and increases in diameter toward the upstream side of the fuel flow in the axial direction and toward both ends in the circumferential direction. With the above configuration, the nozzle hole upstream portion 52 has a crescent shape in which a portion corresponding to the bulging portion 110 is recessed, and the flow path area is narrowed toward the downstream side of the fuel flow.

内壁面100において、膨らみ部110は上流側プレート50の露出面56を介して噴孔下流部62の内壁面64と段差状に接続される一方、膨らみ部110を形成していない部分(以下、非形成部分という)は噴孔下流部62の内壁面64と直接に接続されている。それにより、仮想面Rと噴孔上流部52の内周側内壁面100aとの交線Maが、仮想面Rと噴孔下流部62の内周側内壁面64aとの交線Laの延長線に重なっている。 In the inner wall surface 100, the bulging portion 110 is connected to the inner wall surface 64 of the nozzle hole downstream portion 62 through the exposed surface 56 of the upstream plate 50 in a stepped manner, while the portion not forming the bulging portion 110 (hereinafter referred to as “the bulging portion 110”). The non-formed portion) is directly connected to the inner wall surface 64 of the nozzle hole downstream portion 62. Thus, intersection line M a of the inner periphery side inner wall surface 100a of the virtual plane R and the injection hole upstream section 52, the intersection line L a of the inner periphery side inner wall surface 64a of a virtual plane R and the injection hole downstream portion 62 It overlaps the extension line.

このような第二実施形態では、第一実施形態と同様、弁座16とノズルニードル20との間を通過した燃料が内周面15及び上流側端面31に順次沿って流れて、噴孔40の入口側開口縁をなす噴孔上流部52の外周側内壁面100b近傍へと到達し易い。外周側内壁面100bのうち膨らみ部110近傍に到達した燃料は、図9に実線矢印で示すように、下流側ほど縮径する膨らみ部110に沿って流れる。そのため当該燃料は、膨らみ部110の膨らみ先端側へ、即ち噴孔下流部62の内周側内壁面64aを一部に含む噴孔40の内周側内壁面へ向かって導かれる。   In such a second embodiment, as in the first embodiment, the fuel that has passed between the valve seat 16 and the nozzle needle 20 sequentially flows along the inner peripheral surface 15 and the upstream end surface 31, and the injection hole 40. It is easy to reach the vicinity of the outer peripheral side inner wall surface 100b of the nozzle hole upstream portion 52 that forms the inlet side opening edge. The fuel that has reached the vicinity of the bulging portion 110 in the outer peripheral side inner wall surface 100b flows along the bulging portion 110 whose diameter decreases toward the downstream side, as indicated by the solid line arrow in FIG. Therefore, the fuel is guided toward the bulging tip side of the bulging portion 110, that is, toward the inner peripheral side inner wall surface of the nozzle hole 40 including a part of the inner peripheral side inner wall surface 64 a of the nozzle hole downstream portion 62.

また、外周側内壁面100bのうち膨らみ部110の非形成部分近傍に到達した燃料は、下流側ほど縮径する当該非形成部分に沿って流れることで、噴孔下流部62の内周側内壁面64aへと導かれる。
さらに、噴孔上流部52の内周側内壁面100a近傍に到達した燃料は、図9に破線で示すように、下流側ほど縮径する当該内周側内壁面100aに沿って流れることで、噴孔下流部62の内周側内壁面64aへと導かれる。
Further, the fuel that has reached the vicinity of the non-formed portion of the bulging portion 110 in the outer peripheral side inner wall surface 100b flows along the non-formed portion whose diameter decreases toward the downstream side. It is guided to the wall surface 64a.
Furthermore, the fuel that has reached the vicinity of the inner peripheral side inner wall surface 100a of the upstream portion 52 of the nozzle hole flows along the inner peripheral side inner wall surface 100a that is reduced in diameter toward the downstream side, as indicated by a broken line in FIG. It is guided to the inner peripheral side inner wall surface 64a of the nozzle hole downstream portion 62.

上述した外周側内壁面100b及び内周側内壁面100aのガイド作用によって内周側内壁面64aへと導かれた燃料は、図9に白抜矢印で示すように噴孔下流部62の内壁面64に沿って流れることで液膜化され、噴射によって微細に***する。したがって、第二実施形態によれば、噴孔40から噴射される燃料噴霧の微粒化効果を高めることができる。以上、第二実施形態では、噴孔上流部52の内壁面100の周方向全体で、噴孔40の内周側内壁面の一部たる噴孔下流部62の内周側内壁面64aへ向かって燃料流れをガイドするガイド部を形成している。   The fuel guided to the inner peripheral side inner wall surface 64a by the guide action of the outer peripheral side inner wall surface 100b and the inner peripheral side inner wall surface 100a is the inner wall surface of the nozzle hole downstream portion 62 as shown by the white arrow in FIG. A liquid film is formed by flowing along 64, and is finely divided by jetting. Therefore, according to the second embodiment, the atomization effect of the fuel spray injected from the injection hole 40 can be enhanced. As described above, in the second embodiment, the entire circumferential direction of the inner wall surface 100 of the nozzle hole upstream portion 52 is directed toward the inner circumferential side inner wall surface 64a of the nozzle hole downstream portion 62, which is a part of the inner circumferential side inner wall surface of the nozzle hole 40. Thus, a guide portion for guiding the fuel flow is formed.

(第三実施形態)
本発明の第三実施形態による燃料噴射弁の要部を図10及び図11に示す。第一実施形態と実質的に同一構成部分については、第一実施形態と同一符号を付すことで説明を省略する。
第三実施形態の噴孔プレート30は1枚のプレートで構成されており、上流側端面31と仮想面Qとの交線Nより内周側に全噴孔40の入口側開口縁を形成している。第三実施形態の噴孔40の形状は、図12に模式的に示すように、三日月形のテーパ孔状とされている。
(Third embodiment)
The principal part of the fuel injection valve by 3rd embodiment of this invention is shown in FIG.10 and FIG.11. The components that are substantially the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
The nozzle hole plate 30 of the third embodiment is composed of a single plate, and forms the inlet side opening edge of all the nozzle holes 40 on the inner peripheral side from the intersection line N between the upstream side end face 31 and the virtual surface Q. ing. The shape of the nozzle hole 40 of the third embodiment is a crescent-shaped tapered hole shape, as schematically shown in FIG.

図10及び図11に示すように、噴孔40の内壁面200のうち内周側内壁面200aと外周側内壁面200bの一部は、円弧形輪郭を有し、燃料流れの下流側へ向かうほど拡径している。外周側内壁面200bの残部は、内周側内壁面200aへ向かって円弧形輪郭をもって膨らむ膨らみ部210を形成している。膨らみ部210は、外周側内壁面200bの軸方向全体に亘って延びており、軸方向においては燃料流れの下流側へ向かうほど且つ周方向においてはその両端側へ向かうほど拡径している。以上の構成により噴孔40は、膨らみ部210に対応する箇所が凹む三日月形とされ、燃料流れの下流側へ向かうほど流路面積を拡げている。   As shown in FIGS. 10 and 11, a part of the inner peripheral wall 200a and the outer peripheral wall 200b of the inner wall 200 of the nozzle hole 40 has an arcuate contour and is downstream of the fuel flow. The diameter increases as you go. The remaining part of the outer peripheral side inner wall surface 200b forms a bulging portion 210 that bulges toward the inner peripheral side inner wall surface 200a with an arcuate contour. The bulging portion 210 extends over the entire axial direction of the outer peripheral side inner wall surface 200b, and increases in diameter toward the downstream side of the fuel flow in the axial direction and toward both ends in the circumferential direction. With the above configuration, the nozzle hole 40 has a crescent shape in which a portion corresponding to the bulging portion 210 is recessed, and the flow path area is expanded toward the downstream side of the fuel flow.

図11に示す噴孔プレート30の板厚方向の断面において噴孔40の内周側内壁面200aと外周側内壁面200bとは、燃料流れの下流側へ向かうほど下流側プレート60の中心軸線Oから離れる方向へ傾斜している。したがって、中心軸線Oに平行な噴孔プレート30の板厚方向軸線O’及び噴孔40の孔軸線を含む仮想面R(本実施形態では図11の断面に一致する)と内周側内壁面200aとの交線La、並びに仮想面Rと外周側内壁面200bとの交線Lbが、下流側へ向かうほど中心軸線Oから離れる傾斜線となっている。ここで板厚方向軸線O’と交線Laとがなす角をθaとし、板厚方向軸線O’と交線Lbとがなす角をθbとすると、θa<θbである。 In the section in the plate thickness direction of the nozzle hole plate 30 shown in FIG. 11, the inner peripheral side inner wall surface 200a and the outer peripheral side inner wall surface 200b of the nozzle hole 40 have a central axis O of the downstream side plate 60 toward the downstream side of the fuel flow. It is inclined away from the direction. Therefore, the imaginary plane R (which coincides with the cross section of FIG. 11 in this embodiment) including the plate thickness direction axis O ′ of the nozzle hole plate 30 parallel to the central axis O and the hole axis of the nozzle hole 40 and the inner peripheral inner wall surface. The intersecting line L a with 200 a and the intersecting line L b between the virtual surface R and the outer peripheral side inner wall surface 200 b are inclined lines that are further away from the central axis O toward the downstream side. Here 'the intersection line L a and is the angle theta a, thickness axis O' thickness axis O when that the intersection line L b the angle and theta b, is θ ab .

このような第三実施形態では、第一実施形態と同様の原理により、弁座16とノズルニードル20との間を通過した燃料が内周面15及び上流側端面31に順次沿って流れて、噴孔40の入口側開口縁のうち外周側内壁面200b近傍へと到達し易い。上流側端面31に沿いつつ外周側内壁面200bの膨らみ部210近傍に到達した燃料は、図13に実線矢印で示すように膨らみ部210の膨らみ先端側へ、即ち噴孔40の内周側内壁面200aへ向かって導かれる。このガイド作用により内周側内壁面200aに達した燃料は、下流側ほど拡径する噴孔40の内壁面200に沿って流れることで液膜化され、噴射によって微細に***する。したがって、第三実施形態によれば、噴孔40から噴射される燃料噴霧の微粒化効果を高めることができる。   In such a third embodiment, the fuel that has passed between the valve seat 16 and the nozzle needle 20 flows along the inner peripheral surface 15 and the upstream end surface 31 sequentially, based on the same principle as in the first embodiment. It is easy to reach the vicinity of the outer peripheral side inner wall surface 200b in the inlet side opening edge of the nozzle hole 40. The fuel that has reached the vicinity of the bulging portion 210 of the outer peripheral side inner wall surface 200b along the upstream end surface 31 moves to the bulging tip side of the bulging portion 210, that is, on the inner peripheral side of the injection hole 40 as shown by the solid line arrow in FIG. It is guided toward the wall surface 200a. The fuel that has reached the inner peripheral side inner wall surface 200a by this guide action is made into a liquid film by flowing along the inner wall surface 200 of the nozzle hole 40 whose diameter increases toward the downstream side, and is finely divided by injection. Therefore, according to the third embodiment, the atomization effect of the fuel spray injected from the injection hole 40 can be enhanced.

尚、上述した第一〜第三実施形態では、弁ボディ14の内周面15を燃料流れの下流側へ延ばしてなる仮想面Qと噴孔プレート30の上流側端面31との交線Nより内周側に、全噴孔40の入口側開口縁を形成している。これに対し第一実施形態の変形例を図14に示すように、交線Nの内周側と外周側とにそれぞれ適数個ずつ噴孔40の入口側開口縁を形成するようにしてもよい。あるいは図15に第一実施形態の別の変形例を示すように、交線Nの内周側と交線N上とにそれぞれ適数個ずつ噴孔40の入口側開口縁を形成するようにしてもよい。   In the first to third embodiments described above, from the intersection line N between the virtual surface Q formed by extending the inner peripheral surface 15 of the valve body 14 to the downstream side of the fuel flow and the upstream end surface 31 of the nozzle hole plate 30. On the inner peripheral side, the inlet side opening edge of all the nozzle holes 40 is formed. On the other hand, as shown in FIG. 14, a modified example of the first embodiment may be configured such that an appropriate number of inlet side opening edges of the injection holes 40 are formed on the inner peripheral side and the outer peripheral side of the intersection line N, respectively. Good. Alternatively, as shown in FIG. 15 as another modification of the first embodiment, an appropriate number of inlet side opening edges of the injection holes 40 are formed on the inner circumference side of the intersection line N and on the intersection line N, respectively. May be.

また、上述した第一及び第二実施形態では、噴孔プレート30を二枚のプレート50,60で構成し、内壁面54又は内壁面100がガイド部として機能する噴孔上流部52を上流側プレート50により形成すると共に、下流側ほど流路面積が拡大する噴孔下流部62を下流側プレート60により形成している。これに対し、第一及び第二実施形態において噴孔プレート30を一枚のプレートで構成し、その一枚のプレートにより噴孔上流部52及び噴孔下流部62の双方を形成するようにしてもよい。
またさらに、上述した第一〜第三実施形態では、弁座16を有する弁ボディ14と、噴孔40が形成される噴孔プレート30とを別体に形成しているが、弁ボディ14と噴孔プレート30とを一体に形成するようにしてもよい。
Further, in the first and second embodiments described above, the nozzle hole plate 30 is constituted by two plates 50 and 60, and the nozzle hole upstream portion 52 in which the inner wall surface 54 or the inner wall surface 100 functions as a guide portion is located upstream. In addition to being formed by the plate 50, the downstream side plate 60 forms the nozzle hole downstream portion 62 in which the flow path area increases toward the downstream side. On the other hand, in the first and second embodiments, the nozzle hole plate 30 is constituted by a single plate, and both the nozzle hole upstream portion 52 and the nozzle hole downstream portion 62 are formed by the single plate. Also good.
In the first to third embodiments described above, the valve body 14 having the valve seat 16 and the injection hole plate 30 in which the injection holes 40 are formed are formed separately. You may make it form the nozzle hole plate 30 integrally.

第一実施形態の燃料噴射弁における燃料流れを説明するための模式図である。It is a schematic diagram for demonstrating the fuel flow in the fuel injection valve of 1st embodiment. 第一実施形態の燃料噴射弁を示す正面図である。It is a front view which shows the fuel injection valve of 1st embodiment. 第一実施形態の燃料噴射弁の要部を示す断面図である。It is sectional drawing which shows the principal part of the fuel injection valve of 1st embodiment. 第一実施形態の燃料噴射弁の要部を示す底面図である。It is a bottom view which shows the principal part of the fuel injection valve of 1st embodiment. 図3の拡大図である。FIG. 4 is an enlarged view of FIG. 3. 第一実施形態の噴孔形状を説明するための模式図である。It is a schematic diagram for demonstrating the nozzle hole shape of 1st embodiment. 第二実施形態の燃料噴射弁の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the fuel injection valve of 2nd embodiment. 第二実施形態の噴孔形状を説明するための模式図である。It is a schematic diagram for demonstrating the nozzle hole shape of 2nd embodiment. 第二実施形態の燃料噴射弁における燃料流れを説明するための模式図である。It is a schematic diagram for demonstrating the fuel flow in the fuel injection valve of 2nd embodiment. 第三実施形態の燃料噴射弁の要部を示す断面図である。It is sectional drawing which shows the principal part of the fuel injection valve of 3rd embodiment. 図10の拡大図である。It is an enlarged view of FIG. 第三実施形態の噴孔形状を説明するための模式図である。It is a schematic diagram for demonstrating the nozzle hole shape of 3rd embodiment. 第三実施形態の燃料噴射弁における燃料流れを説明するための模式図である。It is a schematic diagram for demonstrating the fuel flow in the fuel injection valve of 3rd embodiment. 第一実施形態の変形例の要部を示す断面図である。It is sectional drawing which shows the principal part of the modification of 1st embodiment. 第一実施形態の別の変形例の要部を示す断面図である。It is sectional drawing which shows the principal part of another modification of 1st embodiment. 従来の燃料噴射弁の要部を示す断面図(A)並びに従来の燃料噴射弁における燃料流れを説明するための模式図(B)である。It is sectional drawing (A) which shows the principal part of the conventional fuel injection valve, and a schematic diagram (B) for demonstrating the fuel flow in the conventional fuel injection valve.

符号の説明Explanation of symbols

10 燃料噴射弁、14 弁ボディ、15 内周面、16 弁座、20 ノズルニードル(弁部材)、30 噴孔プレート、31 上流側端面、40 噴孔、50 上流側プレート、52 噴孔上流部、54 内壁面(ガイド部)、54a 内周側内壁面、54b 外周側内壁面、60 下流側プレート、62 噴孔下流部、64 内壁面、64a 内周側内壁面、64b 外周側内壁面、100 内壁面(ガイド部)、100a 内周側内壁面、100b 外周側内壁面、110 膨らみ部、200 内壁面、200a 内周側内壁面、200b 外周側内壁面、210 膨らみ部 DESCRIPTION OF SYMBOLS 10 Fuel injection valve, 14 Valve body, 15 Inner peripheral surface, 16 Valve seat, 20 Nozzle needle (valve member), 30 Injection hole plate, 31 Upstream end surface, 40 Injection hole, 50 Upstream plate, 52 Upstream part of injection hole , 54 inner wall surface (guide portion), 54a inner circumferential side inner wall surface, 54b outer circumferential side inner wall surface, 60 downstream plate, 62 nozzle hole downstream portion, 64 inner wall surface, 64a inner circumferential side inner wall surface, 64b outer circumferential side inner wall surface, DESCRIPTION OF SYMBOLS 100 Inner wall surface (guide part), 100a Inner peripheral side inner wall surface, 100b Outer peripheral side inner wall surface, 110 Swelling part, 200 Inner wall surface, 200a Inner peripheral side inner wall surface, 200b Outer peripheral side inner wall surface, 210 Swelling part

Claims (5)

弁部材が着座並びに離座する弁座を有している弁ボディと、
前記弁座に対し燃料流れの下流側に設けられ、噴孔が形成されている板状の噴孔プレートと、
を備え、
前記噴孔は、前記噴孔プレートの中心軸線から離れる方向へ傾斜しており、
前記噴孔プレートは上流側プレートと、前記上流側プレートに対し燃料流れの下流側に設けられる下流側プレートとから構成され、前記上流側プレートと前記下流側プレートとを共に貫く前記噴孔が前記噴孔プレートに形成されており、
前記噴孔の前記上流側プレートのうち少なくとも外周側に、前記噴孔の内周側内壁面へ向かって燃料流れをガイドするガイド部が形成されており、
前記ガイド部は前記下流側プレートの噴孔の外周側壁面よりも内周側に張り出しており、
前記上流側プレートの噴孔の内周側壁面は前記下流側プレートの噴孔の内周側壁面と連続していることを特徴とする燃料噴射弁。
A valve body having a valve seat on which the valve member is seated and separated;
A plate-like injection hole plate provided on the downstream side of the fuel flow with respect to the valve seat, and formed with injection holes;
With
The nozzle hole is inclined in a direction away from the central axis of the nozzle hole plate,
The injection hole plate is composed of an upstream plate and a downstream plate provided downstream of the fuel flow with respect to the upstream plate, and the injection hole penetrating both the upstream plate and the downstream plate Formed in the nozzle hole plate,
A guide portion that guides the fuel flow toward the inner peripheral wall surface of the nozzle hole is formed at least on the outer peripheral side of the upstream plate of the nozzle hole,
The guide portion projects to the inner peripheral side from the outer peripheral side wall surface of the nozzle hole of the downstream plate,
Fuel injection valve inward wall of the injection hole of the upstream plate is characterized that you have continuous with the inner peripheral side wall surface of the injection hole of said downstream plate.
前記ガイド部は、前記噴孔の入口側開口縁の周方向全体に亘って形成されていることを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the guide portion is formed over the entire circumferential direction of the inlet-side opening edge of the injection hole. 前記上流側プレートと前記下流側プレートとが共通の板厚方向に重なり合う前記噴孔プレートにおいて、前記上流側プレートの板厚をT1とし、前記下流側プレートの板厚をT2とすると、T1<T2であることを特徴とする請求項1に記載の燃料噴射弁。   In the nozzle hole plate in which the upstream plate and the downstream plate overlap in a common plate thickness direction, assuming that the plate thickness of the upstream plate is T1 and the plate thickness of the downstream plate is T2, T1 <T2 The fuel injection valve according to claim 1, wherein 前記弁ボディは、燃料流れの下流側へ向かうほど縮径する内周面に前記弁座を有しており、
前記噴孔の入口側開口縁は、前記弁ボディの内周面を燃料流れの下流側へ延ばしてなる仮想面と前記噴孔プレートとの交線の内周側に形成されていることを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。
The valve body has the valve seat on the inner peripheral surface that is reduced in diameter toward the downstream side of the fuel flow,
The inlet-side opening edge of the nozzle hole is formed on the inner peripheral side of the intersection line between the virtual hole formed by extending the inner peripheral surface of the valve body to the downstream side of the fuel flow and the nozzle hole plate. The fuel injection valve according to any one of claims 1 to 3.
前記噴孔の流路面積は、燃料流れの下流側へ向かうほど拡がっていることを特徴とする請求項1〜4のいずれか一項に記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 4, wherein a flow passage area of the injection hole is expanded toward a downstream side of the fuel flow.
JP2003362205A 2003-10-22 2003-10-22 Fuel injection valve Expired - Fee Related JP4123513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362205A JP4123513B2 (en) 2003-10-22 2003-10-22 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362205A JP4123513B2 (en) 2003-10-22 2003-10-22 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2005127186A JP2005127186A (en) 2005-05-19
JP4123513B2 true JP4123513B2 (en) 2008-07-23

Family

ID=34641930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362205A Expired - Fee Related JP4123513B2 (en) 2003-10-22 2003-10-22 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4123513B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867986B2 (en) * 2008-12-25 2012-02-01 株式会社デンソー Fuel injection nozzle
JP4883102B2 (en) * 2009-02-05 2012-02-22 株式会社デンソー Fuel injection nozzle
CN103748352B (en) * 2011-08-22 2017-02-22 丰田自动车株式会社 Fuel injection valve
JP2014066237A (en) * 2012-09-27 2014-04-17 Toyota Motor Corp Fuel injection valve
WO2014064766A1 (en) 2012-10-23 2014-05-01 三菱電機株式会社 Fuel injection valve
JP5901844B2 (en) 2013-04-16 2016-04-13 三菱電機株式会社 Fuel injection valve
JP6168937B2 (en) * 2013-09-11 2017-07-26 日立オートモティブシステムズ株式会社 Fuel injection valve
JP5893110B1 (en) * 2014-10-01 2016-03-23 三菱電機株式会社 Fuel injection valve
WO2018225221A1 (en) * 2017-06-08 2018-12-13 三菱電機株式会社 Heat source system

Also Published As

Publication number Publication date
JP2005127186A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP3745232B2 (en) Fluid injection nozzle and fluid injection valve including the fluid injection nozzle
JP5984838B2 (en) Injection valve
US9587608B2 (en) Valve for a flowing fluid
JP4218696B2 (en) Fuel injection nozzle
JP2014029159A (en) Valve for spraying fluid
JP4072402B2 (en) Fuel injection valve and internal combustion engine equipped with the same
JP4123513B2 (en) Fuel injection valve
JP6186130B2 (en) Fuel injection valve and fuel injection valve manufacturing method
JP4623175B2 (en) Fuel injection valve for internal combustion engine
JP4196194B2 (en) Injection hole member and fuel injection valve using the same
JP5610079B2 (en) Fuel injection valve
JP2016070070A (en) Fuel injection valve
JP2009085056A (en) Internal combustion engine
JP2016089770A (en) Fuel injection valve
JP4163706B2 (en) Fuel injection device
JP4166792B2 (en) Fuel injection device
JP2011026965A (en) Internal combustion engine
JP4297504B2 (en) Fuel injection valve
JP2001300360A (en) Fluid injection nozzle and fluid injection valve provided with the fluid injection nozzle
JP2019120197A (en) Mixing device
JP2009085055A (en) Internal combustion engine
JP6117323B2 (en) Fuel injection valve
JP6508477B2 (en) Injection valve
JP6318278B2 (en) Fuel injection valve
JP2017106338A (en) Injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees