JP4123340B2 - Engine intake air amount calculation device - Google Patents

Engine intake air amount calculation device Download PDF

Info

Publication number
JP4123340B2
JP4123340B2 JP2002051737A JP2002051737A JP4123340B2 JP 4123340 B2 JP4123340 B2 JP 4123340B2 JP 2002051737 A JP2002051737 A JP 2002051737A JP 2002051737 A JP2002051737 A JP 2002051737A JP 4123340 B2 JP4123340 B2 JP 4123340B2
Authority
JP
Japan
Prior art keywords
intake
amount
pressure
correlation
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002051737A
Other languages
Japanese (ja)
Other versions
JP2003254149A (en
Inventor
克則 上田
淳 青木
健一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002051737A priority Critical patent/JP4123340B2/en
Publication of JP2003254149A publication Critical patent/JP2003254149A/en
Application granted granted Critical
Publication of JP4123340B2 publication Critical patent/JP4123340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過渡運転時等のエンジンの吸気量や吸気圧(以下、これらを吸気相関量と総称する)の変化を予測するエンジンの吸気量算出装置に関するものである。
【0002】
【関連する背景技術】
吸気管噴射型のガソリンエンジンでは、吸気行程又は排気行程で燃料噴射が実行されるため、実際に筒内に吸入される以前(例えば数行程前)の吸気量に基づいて燃料噴射量を決定しなければならない。又、筒内噴射型であっても、均一予混合燃焼させる場合には吸気行程中に燃料を噴射するため、吸気行程開始までの吸気量に基づいて噴射量を決定しなければならない。従って、定常走行や減速走行から加速等の過渡運転状態に移行した場合には、移行初期において加速前の吸気量に基づき燃料噴射量が決定されてしまうため、筒内に吸入される実際の吸気量に対して燃料量が不足して一時的なリーン状態に陥り、場合によっては失火や不安定な燃焼により加速不良を発生して、ドライバビリティを悪化させてしまう虞がある。
【0003】
上記問題に着目して、スロットルの開度変化に応じて燃料噴射量を増加したり、或いは特公平2−51052号公報に記載の技術のように、スロットル開度変化量に基づいて吸気量を補正したりする対策が実施されている。しかしながら、何れの対策も、スロットル開度変化量に応じて燃料噴射量や吸気量を一義的に補正するに過ぎないため、運転状態が変化すると、実際の吸気量とスロットル開度変化量から予測した吸気量とが一致しなくなるという問題があった。つまり、同一のスロットル開度変化量であっても、マニホールド圧や変化前のスロットル開度位置が異なると吸気量の変化も相違することになるため、結果として吸気量に予測誤差が生じてしまうのである。
【0004】
そこで、例えば特公平8−14262号公報に記載の技術では、スロットルを通過する吸気流速が異なると、スロットル開度を増加させたときの吸気量の増加状態が相違してくることに着目し、スロットル前後の圧力比に基づいて補正係数を算出し、この補正係数とスロットル開度変化量とに基づいて過渡運転時の燃料噴射量を補正している。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報に記載の技術は、吸気量や吸気圧を検出するセンサ自体が有する応答遅れを考慮していないため、この要因による予測誤差を防止できないという問題があった。即ち、吸気量センサや吸気圧センサにはノイズ除去のためのローパスフィルタ等が付加されているため、必然的にセンサ出力に応答遅れが発生し、上記のようにセンサ検出値に基づいて吸気量を予測しても、センサ遅れ相当分の予測誤差が生じるのは避けられなかった。
【0006】
又、本発明者は、加速初期等のようにアクセル操作量の増加に伴ってスロットル開度が急増したときには、吸気量の予測誤差が増大する傾向があることを確認した。この要因は、スロットル開度を検出した時点から吸気量を予測する時点までの間にスロットル開度が大きく変化してしまうためであるが、上記公報に記載の技術では何ら対策を実施していないため、吸気量の予測遅れを生じてしまうという問題があった。
【0007】
一方、本発明者は、エンジンの高負荷運転時において吸気量の予測誤差が増大する傾向があることも確認した。これは、負荷の増加に伴って吸気圧が大気圧に接近すると、スロットル前後差圧が減少してECU(電子制御ユニット)のデジタル誤差の影響を受け易くなり、前後圧に基づいて算出される吸気量にハンチングを生じるためと考えられ、吸気量の予測誤差を増大させる要因となっていた。
【0008】
そこで、請求項1の目的は、センサ遅れに起因する吸気相関量の予測誤差を解消して、所定行程数後の吸気相関量を正確に予測することができるエンジンの吸気量算出装置を提供することにある。
請求項2及び3の目的は、請求項1に加えて、加速初期のスロットル開度の急増に追従した予測処理を実現して、吸気相関量の予測遅れを未然に防止することができるエンジンの吸気量算出装置を提供することにある。
【0009】
請求項4の目的は、請求項1に加えて、高負荷運転時のデジタル誤差による影響を抑制して、吸気相関量の予測精度をより向上させることができるエンジンの吸気量算出装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、スロットルからの吸気状態と相関する吸気相関量を検出する吸気相関量検出手段と、スロットルの開口面積と相関する相関値とスロットルの前後圧力とから吸気圧を推定する吸気圧推定手段と、吸気圧推定手段の出力から所定行程数間の吸気圧変化量を算出する変化量算出手段と、吸気圧推定手段の出力に吸気相関量検出手段の応答遅れ特性と同等の遅れ処理を行う推定吸気圧フィルタ手段と、吸気圧推定手段の出力推定吸気圧フィルタ手段の出力との差から吸気相関量検出手段の応答遅れに相当する応答遅れ量を算出する応答遅れ量算出手段と、吸気相関量検出手段により検出された吸気相関量と変化量算出手段により算出された所定行程数間の吸気圧変化量と応答遅れ量算出手段により算出された応答遅れ量とに基づき、所定行程数後の吸気相関量を予測する吸気相関量予測手段とを備えたものである。
【0013】
従って、スロットルからの吸気状態と相関する吸気相関量、具体的には吸気圧や吸気量等が検出される一方、スロットル開口面積の相関値とスロットル前後圧力とから推定された応答性の高い吸気圧に基づいて所定行程数間の吸気圧変化量が算出されると共に、推定された吸気圧に対して吸気相関量検出手段の応答遅れ特性と同等の遅れ処理が行われて、吸気相関量検出手段の応答遅れ量が推定される。そして、これらの検出された吸気相関量と所定行程数間の吸気圧変化量と応答遅れ量とに基づいて、所定行程数後の吸気相関量が予測される。
【0014】
つまり、所定行程数間の吸気圧変化量のみならず、吸気相関量検出手段の応答遅れ量を考慮した上で、所定行程数後の吸気相関量が予測されるため、加速時等の過渡運転時であっても、吸気相関量検出手段の応答遅れに影響されることなく吸気相関量を正確に予測可能となる。
請求項2の発明は、請求項1において、エンジンの運転状態に基づく目標スロットル開度と実スロットル開度との偏差に基づいて、スロットルを開閉駆動するスロットル制御手段を更に備え、変化量算出手段が、目標スロットル開度と実スロットル開度との偏差が所定値より大きいときに、所定行程数間の吸気相関量の変化量を増加補正するものである。
【0015】
加速初期等において実スロットル開度が急増すると、スロットル開口面積の相関値を算出若しくは検出した時点から所定行程数後の吸気相関量を予測した時点までの間にスロットル開口面積が大きく変化し、吸気相関量の予測遅れの要因となり得るが、所定行程数間の吸気相関量の変化量を増加補正することで、スロットル開口面積の急増に追従した予測処理が可能となる。
【0016】
請求項3の発明は、請求項2において、変化量算出手段が、エンジンの減速時に所定行程数間の吸気圧変化量の増加補正を禁止するものである。
減速時のスロットル開口面積は緩やかに減少することから、所定行程数間の吸気相関量の変化量を増加補正する必要がなくなり、結果として加減速に関わらず常に適切な吸気相関量の変化量が予測処理に適用される。
【0017】
請求項4の発明は、請求項1において、吸気圧推定手段が、推定した吸気圧が大気圧近傍の所定圧力より大きいときに所定圧力を推定した吸気圧とするものである。
従って、高負荷運転時のように推定した吸気圧が大気圧近傍の所定圧力より大きくなるときには、スロットルの前後圧力から算出されるスロットル通過吸気量が制御回路のデジタル誤差の影響を受けてハンチングし易くなるが、このような場合には推定した吸気圧として所定圧力が設定されるため、ハンチングに起因する吸気相関量の著しい予測誤差が抑制される。
【0018】
【発明の実施の形態】
以下、本発明を具体化したエンジンの吸気量算出装置の一実施形態を説明する。本実施形態のエンジンは、マニ圧に基づいて燃料噴射を制御する所謂スピードデンシィティ方式を採用しており、吸気量算出装置は所定行程数後のマニ圧を吸気相関量として予測するものである。
【0019】
図1は本実施形態のエンジンの吸気量算出装置を示す全体構成図であり、エンジン1は吸気管噴射型の4サイクルガソリン機関として構成されている。エンジン1の吸気系はインテークマニホールド2、サージタンク3及び吸気通路4からなり、エアクリーナ5を経て吸気通路4内に導入された吸気は、スロットルバルブ6で流量調整された後にサージタンク3を経てインテークマニホールド2により各気筒に分配され、燃料噴射弁7から噴射された燃料と混合されて、吸気ポート8から各気筒の筒内に吸入される。
【0020】
エンジン1の排気系は排気通路9、図示しない触媒や消音器等からなり、点火プラグ10により点火されて燃焼後の排ガスは排気ポート11から排気通路9を経て排出される。
一方、車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(電子制御ユニット)21が設置されている。ECU21の入力側には、アクセル操作量APSを検出するアクセルセンサ22、車速Vを検出する車速センサ23、スロットル開度TPSを検出するスロットルセンサ24、大気圧P0を検出する大気圧センサ25、マニ圧Psを検出するマニ圧センサ26(吸気相関量検出手段)、機関の回転に伴ってクランク角信号を出力するクランク角センサ27等の各種センサ類が接続され、出力側には上記燃料噴射弁7や点火プラグ10、スロットルバルブ6を開閉駆動するステップモータ28等の各種デバイス類が接続されている。
【0021】
ECU21は、例えばクランク角信号から求めたエンジン回転速度Neやマニ圧Ps等に基づいて点火プラグ10の点火時期を制御する一方、アクセル操作量APSや車速V等から求めた目標スロットル開度TPSobjと実スロットル開度TPSとに基づき、ステップモータ28によりスロットルバルブ6の開度を制御する(スロットル制御手段)。一方、ECU21は、マニ圧Psから算出した燃料噴射量に基づいて燃料噴射弁7の噴射量を制御しており、以下、この燃料噴射制御の詳細を説明する。
【0022】
ECU21は図2に示すマニ圧推定ルーチンを5msec毎に実行し、まず、ステップS2でスロットルセンサ24により検出されたスロットル開度TPS、大気圧センサ25により検出された大気圧P0、マニ圧センサ26により検出されたマニ圧Ps等のセンサ検出値を読み込む。次いで、ステップS4で今回のマニ圧Psの積算処理(Sp=Sp+Ps)を行うと共に、平均化カウンタCをインクリメント(C=C+1)する。続くステップS6ではスロットルバルブ6の基本開口面積S0を次式(0)より算出し、ステップS8でスロットルバルブ6の有効開口面積Sを次式(1)より算出する。
【0023】
S0=f[TPS] ……… (0)
S=(1+aX)×S0 ……… (1)
ここに、aは所定の補正定数、Xは大気圧P0と推定マニ圧Pm(n)との圧力比Pm(n)/P0であり、後述するステップS20で求められる。
続くステップS10では吸気流速Uを次式(2)より算出し、ステップS12でスロットル通過吸気量Qthを次式(3)より算出する。
【0024】
U=f[X] ……… (2)
Qth=S×U ……… (3)
更にステップS14で今回の推定マニ圧Pm(n)を次式(4)より算出すると共に(吸気相関量推定手段、吸気圧推定手段)、推定マニ圧Pm(n)を前回値Pm(n-1)とする。
【0025】
Pm(n)=Pm(n-1)+(Qth−Qe)/Vm ……… (4)
ここに、Vmは吸気管容積、Qeは筒内に吸入される推定吸気量であり、後述するステップS22で求められる。
その後、ステップS16で推定マニ圧Pm(n)が大気圧P0に0.98を乗算した値以上か否かを判定し、NO(否定)のときにはステップS20に移行する。又、判定がYES(肯定)のときにはステップS18で推定マニ圧Pm(n)を大気圧P0に0.98を乗算した値とした後、ステップS20に移行する。
【0026】
ステップS20では上記圧力比Xを次式(5)より算出し、続くステップS22では上記筒内吸入推定吸気量Qeを次式(6)より算出する。
X=Pm(n)/P0 ……… (5)
Qe=K[Ne]×Pm(n)×Vc ……… (6)
ここに、K[Ne]は体積効率係数、Vcは気筒容積である。更にステップS24で推定マニ圧Pm(n)に対して所定の遅れをもった遅れ推定マニ圧Psaを次式(7)より算出した後、ルーチンを終了する(推定吸気圧フィルタ手段)。
【0027】
Psa=K×Psa+(1−K)×Pm(n) ……… (7)
ここに、Kは遅れ補正係数である。
一方、ECU21は図3に示す噴射量設定ルーチンをクランク角センサ27からSGT信号が入力されるタイミング(BTDC5°CA)で実行する。まず、ステップS32で1ストローク間のマニ圧平均値Psave(=Sp/C)を求め、マニ圧Psの積算値Spをクリアすると共に、平均化カウンタCをクリアする。
【0028】
続くステップS34で1ストローク間の遅れ推定マニ圧平均値Psave’を次式(8)より算出すると共に、遅れ推定マニ圧Psaを前回値Psaoldとする。
Psave’=(Psa+Psaold)/2 ……… (8)
更にステップS36で推定マニ圧偏差dPを次式(9)より算出する。
dP=Pm(n)−Pm(n-1) ……… (9)
続くステップS38では、スロットル開度制御で設定されている目標スロットル開度TPSobjと実スロットル開度TPSとの差ΔTPSが正側の所定値ΔTPS0以上か否かを判定する。判定がNOのときにはステップS40で予測ゲインKgainを1.0に設定した後、ステップS44に移行する。又、例えば加速初期のようにアクセル操作に伴って目標スロットル開度TPSobjが急増すると、差ΔTPSが正側に急増してステップS38の判定がYESとなり、この場合のECU21はステップS40で予測ゲインKgainを2.0に設定した後、ステップS44に移行する。
【0029】
ステップS44では2ストローク間の圧力変化量ΔPを次式(10)より算出し(変化量算出手段)、続くステップS46でセンサ応答遅れ量ΔPsを次式(11)より算出する(応答遅れ量算出手段)。
ΔP=Kgain×dP(n)×2・Tsgt/5 ……… (10)
ΔPs=Pm(n)−Psave’ ……… (11)
ここに、Tsgtは1ストローク分の所要時間である。
【0030】
更にステップS48で推定マニ圧Pm(n)が所定値Pm0以上か否かを判定し、NOのときにはステップS50で補正後マニ圧P(n)を次式(12)より算出する(吸気相関量予測手段)。
P(n)=Psave+ΔP+ΔPs ……… (12)
又、ステップS48の判定がYESのときには、ステップS52で補正後マニ圧P(n)としてマニ圧平均値Psaveを設定する。その後、ステップS54で燃料噴射量Qinjを次式(13)より算出した後、ルーチンを終了する。
【0031】
Qinj=Kinj×K(Ne)×P(n) ……… (13)
ここに、Kinjは補正後マニ圧P(n)を燃料量に変換するための係数である。
以上のECU21の制御により、補正後マニ圧Pm(n)は以下のようにして予測される。
図4はスロットルバルブ6が急激に開操作されたときの各実測値及び推定値の変化状況を示すタイムチャートであり、横軸に示す機関の1ストローク毎にECU21により噴射量設定ルーチンが実行される一方、各ストローク間に複数回のマニ圧推定ルーチンが実行されている。
【0032】
マニ圧センサ26により検出されるマニ圧Psは機関のストロークに同期して変動しながらスロットル開度TPSと共に急増し、当該マニ圧Psを平滑化した仮想線上において、機関の吸気遅れに相当する2ストローク後の値(図中の補正後マニ圧P(n)に相当)を求めて、その値を燃料噴射量Qinjの設定に適用することが理想となる。
【0033】
これに対してマニ圧Psを平滑化するためのフィルタ処理として、5msec毎のマニ圧Psの積算値Spに基づいて1ストローク毎にマニ圧平均値Psaveが算出されるが、このときのマニ圧平均値Psaveは必然的にマニ圧Psに対して所定の遅れをもって追従することになる。
一方、スロットルバルブ6の有効開口面積Sから求めたスロットル通過吸気量Qth等に基づき、5msec毎に推定マニ圧Pm(n)が算出され、推定マニ圧Pm(n)に対して上記センサ遅れ特性を模擬した遅れを有する遅れ推定マニ圧Psaが算出され、この遅れ推定マニ圧Psaに基づき、1ストローク毎に遅れ推定マニ圧平均値Psave’が算出される。そして、5msec間の推定マニ圧偏差dPから2ストローク分に相当する圧力変化量ΔPが算出されると共に、センサ遅れに相当するセンサ応答遅れ量ΔPsが算出され、マニ圧平均値Psaveを基準として圧力変化量ΔP及びセンサ応答遅れ量ΔPsだけ経過後の値を補正後マニ圧P(n)として予測し、燃料噴射量Qinjの設定に適用する。
【0034】
以上のように本実施形態では、応答性の良好なスロットル開度TPSから求めた推定マニ圧Pm(n)の変化状況に基づいて2ストローク分の圧力変化量ΔPを算出し、この圧力変化量ΔPを用いて補正後マニ圧P(n)を予測するのみならず、センサ遅れに相当するセンサ応答遅れ量ΔPsを補正後マニ圧P(n)の予測処理に反映させている。よって、加速時等の過渡運転時であってもマニ圧センサ26が有する応答遅れに影響されることなく、補正後マニ圧P(n)を正確に予測して適切な燃料噴射量Qinjを設定できる。その結果、不適切な燃料量に起因する加速不良等の不具合を未然に回避して、極めて良好なドライバビリティを実現することができる。
【0035】
一方、ステップS38で目標スロットル開度TPSobjと実スロットル開度TPSとの差ΔTPSが正側の所定値ΔTPS0以上のときには、ステップS40で予測ゲインKgainを2.0に増加補正しているため、続くステップS46では2ストローク分の圧力変化量ΔPとしてより大きな値が算出される。即ち、ステップS38の判定は加速初期等を想定したものであり、このような状況ではアクセル操作量の増加に伴って実スロットル開度TPSが急増しているため、スロットル開度TPSを読み込んだ時点(図2のステップS2)から補正後マニ圧P(n)を予測した時点(図3のステップS50)までの間にスロットル開度TPSが大きく変化する。これは補正後マニ圧P(n)の予測遅れの要因となり得るが、上記のように圧力変化量ΔPを増加補正することで、スロットル開度TPSの急増に追従した予測処理が可能となり、もって、補正後マニ圧P(n)の予測遅れを未然に防止して、より一層適切な燃料噴射制御を実現することができる。
【0036】
又、加速初期の実スロットル開度TPSの増加状況に比較して、減速時のスロットル開度TPSは緩やかに低下することから、比較的小さな予測ゲインKgainでも十分に補正後マニ圧P(n)の予測処理を追従させることができる上に、必要以上に大きな予測ゲインKgainを適用すると、却って予測精度を低下させる虞もある。減速時には通常の予測ゲインKgain=1.0を適用するため、結果として加減速に関わらず常に適切な予測ゲインKgainを適用して、適切な補正後マニ圧P(n)の予測処理を実現することができる。
【0037】
一方、ステップS16で推定マニ圧Pm(n)が大気圧P0に0.98を乗算した値以上のときには、推定マニ圧Pm(n)を大気圧P0に0.98を乗算した値に制限し、この処理にも拘わらずステップS48で推定マニ圧Pm(n)が所定値Pm0以上と判定される場合には、ステップS50で補正後マニ圧P(n)を予測することなく、ステップS52で補正後マニ圧P(n)としてマニ圧平均値Psaveを設定している。
【0038】
即ち、このように推定マニ圧Pm(n)が大気圧付近のときには、圧力比Pm(n)/P0に基づいて算出されるスロットル通過吸気量QthがECU21のデジタル誤差の影響を受けてハンチングし易くなり、結果としてスロットル通過吸気量Qthを利用した補正後マニ圧P(n)の予測精度が大幅に低下する。そこで、このような場合には補正後マニ圧P(n)としてマニ圧平均値Psaveを設定することで、ハンチングに起因する補正後マニ圧P(n)の著しい誤差を抑制しており、これにより燃料噴射量Qinjを一層適切に制御することができる。
【0039】
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では、マニ圧に基づいて燃料噴射を制御するスピードデンシィティ方式のエンジン1用の吸気量算出装置に具体化したが、エアフローセンサで検出した吸入空気量に基づいて燃料噴射を制御するエンジンに適用してもよい。この場合でも、センサ遅れに相当するセンサ応答遅れ量ΔPsを考慮することで、センサ遅れに影響されることなく吸気相関量としての吸気量を正確に予測することができる。
【0040】
又、上記実施形態では、補正後マニ圧P(n)を燃料噴射制御に利用したが、その用途はこれに限らず、例えば点火時期制御に利用してもよい。この場合には、適切な点火時期制御により過渡運転時のノックを抑制して、良好なトルク特性を実現することができる。
更に、上記実施形態では、マニ圧Psの積算平均によりセンサ遅れが発生する場合を説明したが、センサ遅れの要因はこれに限定されることはなく、例えばマニ圧センサ26に付加されたローパスフィルタ等のハード的な要因でセンサ遅れが発生するときに適用してもよく、この場合でも全く同様の作用効果が得られる。
【0041】
【発明の効果】
以上説明したように請求項1の発明のエンジンの吸気量算出装置によれば、吸気相関量検出手段の応答遅れに起因する吸気相関量の予測誤差を解消して、所定行程数後の吸気相関量を正確に予測することができる。
請求項2及び3の発明のエンジンの吸気量算出装置によれば、請求項1に加えて、加速初期のスロットル開度の急増に追従した予測処理を実現して、吸気相関量の予測遅れを未然に防止することができる。
【0042】
請求項4の発明のエンジンの吸気量算出装置によれば、請求項1に加えて、高負荷運転時のデジタル誤差による影響を抑制して、吸気量の予測精度をより向上させることができる。
【図面の簡単な説明】
【図1】実施形態のエンジンの吸気量算出装置を示す全体構成図である。
【図2】ECUが実行するマニ圧推定ルーチンを示すフローチャートである。
【図3】ECUが実行する噴射量設定ルーチンを示すフローチャートである。
【図4】スロットル開操作時の各実測値及び推定値の変化状況を示すタイムチャートである。
【符号の説明】
1 エンジン
6 スロットルバルブ
21 ECU(変化量算出手段、応答遅れ量算出手段、吸気圧推定手段、推定吸気圧フィルタ手段、吸気相関量推定手段、吸気相関量予測手段、スロットル制御手段)
26 マニ圧センサ(吸気相関量検出手段)
TPS スロットル開度
TPSobj 目標スロットル開度
ΔTPS 差
ΔTPS0 所定値
Ps マニ圧(吸気相関量)
Pm(n) 推定マニ圧(吸気相関量)
P(n) 補正後マニ圧(吸気相関量)
ΔP 圧力変化量
ΔPs センサ応答遅れ量
X 圧力比(前後圧力)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an engine intake air amount calculation device that predicts changes in the intake air amount and intake pressure (hereinafter collectively referred to as intake air correlation amount) of an engine during a transient operation or the like.
[0002]
[Related background]
In an intake pipe injection type gasoline engine, fuel injection is performed in an intake stroke or an exhaust stroke. Therefore, the fuel injection amount is determined based on the intake amount before being actually sucked into the cylinder (for example, several strokes before). There must be. Even in the case of the in-cylinder injection type, in the case of uniform premix combustion, fuel is injected during the intake stroke, so the injection amount must be determined based on the intake amount until the start of the intake stroke. Therefore, when a transition is made from steady running or decelerating running to a transient operation state such as acceleration, the fuel injection amount is determined based on the intake amount before acceleration at the beginning of the transition, so the actual intake air drawn into the cylinder There is a risk that the amount of fuel will be insufficient with respect to the amount, resulting in a temporary lean state, and in some cases misacceleration or unstable combustion will cause an acceleration failure and deteriorate drivability.
[0003]
Focusing on the above problem, the fuel injection amount is increased in accordance with the change in the throttle opening, or the intake air amount is reduced based on the change in the throttle opening as in the technique described in Japanese Patent Publication No. 2-51052. Measures to correct it have been implemented. However, since all the measures only correct the fuel injection amount and the intake air amount in accordance with the amount of change in the throttle opening, if the operating state changes, it is predicted from the actual intake air amount and the amount of change in the throttle opening. There was a problem that the inhaled air intake did not match. That is, even if the amount of change in the throttle opening is the same, if the manifold pressure or the throttle opening position before the change is different, the change in the intake amount will also be different, resulting in a prediction error in the intake amount. It is.
[0004]
Therefore, for example, in the technique described in Japanese Patent Publication No. 8-14262, if the intake air flow velocity passing through the throttle is different, the increase state of the intake air amount when the throttle opening is increased is different, A correction coefficient is calculated based on the pressure ratio before and after the throttle, and the fuel injection amount during transient operation is corrected based on the correction coefficient and the amount of change in throttle opening.
[0005]
[Problems to be solved by the invention]
However, the technique described in the above publication has a problem that a prediction error due to this factor cannot be prevented because the response delay of the sensor for detecting the intake air amount and the intake air pressure is not taken into consideration. That is, since a low-pass filter or the like for noise removal is added to the intake air amount sensor or the intake air pressure sensor, a response delay inevitably occurs in the sensor output, and the intake air amount is based on the sensor detection value as described above. However, it is inevitable that a prediction error corresponding to the sensor delay occurs.
[0006]
Further, the present inventor has confirmed that the prediction error of the intake air amount tends to increase when the throttle opening rapidly increases with the increase of the accelerator operation amount, such as in the early stage of acceleration. This is because the throttle opening greatly changes between the time when the throttle opening is detected and the time when the intake air amount is predicted, but the technique described in the above publication does not take any countermeasures. Therefore, there has been a problem that a delay in prediction of the intake air amount occurs.
[0007]
On the other hand, the present inventor has also confirmed that the prediction error of the intake air amount tends to increase when the engine is operated at a high load. This is calculated based on the front-rear pressure as the intake pressure approaches the atmospheric pressure as the load increases, and the throttle front-rear differential pressure decreases and is easily affected by digital errors in the ECU (electronic control unit). This is thought to be caused by hunting in the intake air amount, which is a factor that increases the prediction error of the intake air amount.
[0008]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an engine intake air amount calculation device that can eliminate the prediction error of the intake air correlation amount due to sensor delay and accurately predict the intake air correlation amount after a predetermined number of strokes. There is.
In addition to claim 1, the object of claims 2 and 3 is to realize a prediction process that follows a sudden increase in throttle opening in the early stage of acceleration, thereby preventing an engine intake delay amount prediction delay. An object of the present invention is to provide an intake air amount calculation device.
[0009]
In addition to claim 1, an object of a fourth aspect of the present invention is to provide an intake air amount calculation device for an engine that can suppress the influence of a digital error during high load operation and further improve the prediction accuracy of the intake air correlation amount. There is.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is directed to an intake correlation amount detecting means for detecting an intake correlation amount that correlates with an intake state from the throttle, a correlation value that correlates with an opening area of the throttle, and a front and rear pressure of the throttle. An intake pressure estimating means for estimating the intake pressure from the output, a change amount calculating means for calculating an intake pressure change amount between a predetermined number of strokes from an output of the intake pressure estimating means, and an output of the intake pressure estimating means A response delay amount corresponding to the response delay of the intake correlation amount detection means is obtained from the difference between the estimated intake pressure filter means performing delay processing equivalent to the response delay characteristic and the output of the intake pressure estimation means and the output of the estimated intake pressure filter means. The response delay amount calculation means to calculate, the intake correlation amount detected by the intake correlation amount detection means and the intake pressure change amount between the predetermined number of strokes calculated by the change amount calculation means and the response delay amount calculation means. Has been based on the response delay amount, those having an intake correlation amount estimating means for estimating the intake air amount of correlation after a predetermined number of strokes.
[0013]
Accordingly, the intake correlation amount that correlates with the intake state from the throttle, specifically, the intake pressure, the intake amount, and the like are detected, while the highly responsive intake estimated from the correlation value of the throttle opening area and the throttle front-rear pressure. The amount of change in intake pressure during a predetermined number of strokes is calculated based on the atmospheric pressure, and a delay process equivalent to the response delay characteristic of the intake correlation amount detection means is performed on the estimated intake pressure to detect the intake correlation amount. The response delay amount of the means is estimated. Then, the intake correlation amount after the predetermined number of strokes is predicted based on the detected intake correlation amount, the intake pressure change amount between the predetermined number of strokes, and the response delay amount.
[0014]
In other words, since not only the amount of change in intake pressure during the number of strokes but also the response delay amount of the intake correlation amount detection means is taken into account, the amount of intake correlation after the number of strokes is predicted. Even at the time, the intake correlation amount can be accurately predicted without being influenced by the response delay of the intake correlation amount detection means.
The invention of claim 2 further comprises throttle control means for opening and closing the throttle based on the deviation between the target throttle opening based on the operating state of the engine and the actual throttle opening. However, when the deviation between the target throttle opening and the actual throttle opening is larger than a predetermined value, the amount of change in the intake correlation amount between the predetermined number of strokes is increased and corrected.
[0015]
If the actual throttle opening suddenly increases at the initial stage of acceleration, etc., the throttle opening area changes greatly between the time when the correlation value of the throttle opening area is calculated or detected and the time when the intake correlation amount after a predetermined number of strokes is predicted. Although it may be a cause of a prediction delay of the correlation amount, by performing an increase correction on the amount of change in the intake correlation amount between the predetermined number of strokes, a prediction process that follows a sudden increase in the throttle opening area becomes possible.
[0016]
According to a third aspect of the present invention, in the second aspect , the change amount calculation means prohibits an increase correction of the intake pressure change amount during a predetermined number of strokes when the engine is decelerated.
Since the throttle opening area during deceleration gradually decreases, there is no need to compensate for an increase in the amount of change in the intake air correlation between the number of strokes.As a result, an appropriate amount of change in the air intake correlation is always maintained regardless of acceleration / deceleration. Applies to prediction processing.
[0017]
According to a fourth aspect of the present invention, in the first aspect, the intake pressure estimating means uses the estimated intake pressure as the estimated intake pressure when the estimated intake pressure is greater than the predetermined pressure near atmospheric pressure.
Therefore, when the intake pressure estimated during high-load operation becomes greater than a predetermined pressure near atmospheric pressure, the throttle passage intake air amount calculated from the throttle front-rear pressure is hunted under the influence of the digital error of the control circuit. In this case, since a predetermined pressure is set as the estimated intake pressure, a significant prediction error in the intake correlation amount due to hunting is suppressed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an intake air amount calculation apparatus for an engine embodying the present invention will be described. The engine of this embodiment employs a so-called speed-density method that controls fuel injection based on the manifold pressure, and the intake air amount calculation device predicts the manifold pressure after a predetermined number of strokes as the intake air correlation amount. .
[0019]
FIG. 1 is an overall configuration diagram showing an intake air amount calculation device for an engine according to the present embodiment. The engine 1 is configured as an intake pipe injection type four-cycle gasoline engine. The intake system of the engine 1 includes an intake manifold 2, a surge tank 3 and an intake passage 4. The intake air introduced into the intake passage 4 via the air cleaner 5 is adjusted in flow rate by the throttle valve 6 and then taken through the surge tank 3. It is distributed to each cylinder by the manifold 2, mixed with the fuel injected from the fuel injection valve 7, and sucked into the cylinder of each cylinder from the intake port 8.
[0020]
The exhaust system of the engine 1 includes an exhaust passage 9, a catalyst, a silencer, and the like (not shown). The exhaust gas after being ignited by a spark plug 10 is discharged from the exhaust port 11 through the exhaust passage 9.
On the other hand, an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storage of a control program, a control map, etc., a central processing unit (CPU), a timer counter, etc. Control unit) 21 is installed. On the input side of the ECU 21, there are an accelerator sensor 22 for detecting the accelerator operation amount APS, a vehicle speed sensor 23 for detecting the vehicle speed V, a throttle sensor 24 for detecting the throttle opening TPS, an atmospheric pressure sensor 25 for detecting the atmospheric pressure P0, a manifold. Various sensors such as a manifold pressure sensor 26 (intake correlation amount detecting means) for detecting the pressure Ps and a crank angle sensor 27 for outputting a crank angle signal as the engine rotates are connected, and the fuel injection valve is connected to the output side. 7, a spark plug 10, and various devices such as a step motor 28 that opens and closes the throttle valve 6 are connected.
[0021]
The ECU 21 controls the ignition timing of the spark plug 10 based on, for example, the engine rotational speed Ne and the manifold pressure Ps obtained from the crank angle signal, while the target throttle opening TPSobj obtained from the accelerator operation amount APS, the vehicle speed V, and the like. Based on the actual throttle opening TPS, the opening of the throttle valve 6 is controlled by the step motor 28 (throttle control means). On the other hand, the ECU 21 controls the injection amount of the fuel injection valve 7 based on the fuel injection amount calculated from the manifold pressure Ps. Hereinafter, details of this fuel injection control will be described.
[0022]
The ECU 21 executes the manifold pressure estimation routine shown in FIG. 2 every 5 msec. First, in step S2, the throttle opening TPS detected by the throttle sensor 24, the atmospheric pressure P0 detected by the atmospheric pressure sensor 25, and the manifold pressure sensor 26 are detected. The sensor detection value such as the manifold pressure Ps detected by the above is read. Next, in step S4, the current manifold pressure Ps is integrated (Sp = Sp + Ps), and the averaging counter C is incremented (C = C + 1). In the following step S6, the basic opening area S0 of the throttle valve 6 is calculated from the following equation (0), and in step S8, the effective opening area S of the throttle valve 6 is calculated from the following equation (1).
[0023]
S0 = f [TPS] (0)
S = (1 + aX) × S0 (1)
Here, a is a predetermined correction constant, and X is a pressure ratio Pm (n) / P0 between the atmospheric pressure P0 and the estimated manifold pressure Pm (n), which is obtained in step S20 described later.
In subsequent step S10, the intake air flow velocity U is calculated from the following equation (2), and in step S12, the throttle passage intake air amount Qth is calculated from the following equation (3).
[0024]
U = f [X] ……… (2)
Qth = S × U ……… (3)
Further, in step S14, the current estimated manifold pressure Pm (n) is calculated from the following equation (4) (intake correlation amount estimating means, intake pressure estimating means), and the estimated manifold pressure Pm (n) is set to the previous value Pm (n− 1).
[0025]
Pm (n) = Pm (n-1) + (Qth-Qe) / Vm (4)
Here, Vm is the intake pipe volume, and Qe is the estimated intake air amount sucked into the cylinder, which is obtained in step S22 described later.
Thereafter, in step S16, it is determined whether or not the estimated manifold pressure Pm (n) is equal to or greater than the value obtained by multiplying the atmospheric pressure P0 by 0.98. If NO (No), the process proceeds to step S20. If the determination is YES (affirmative), the estimated manifold pressure Pm (n) is set to a value obtained by multiplying the atmospheric pressure P0 by 0.98 in step S18, and the process proceeds to step S20.
[0026]
In step S20, the pressure ratio X is calculated from the following equation (5). In the subsequent step S22, the in-cylinder intake estimated intake air amount Qe is calculated from the following equation (6).
X = Pm (n) / P0 (5)
Qe = K [Ne] × Pm (n) × Vc (6)
Here, K [Ne] is a volumetric efficiency coefficient, and Vc is a cylinder volume. Further, in step S24, a delay estimated manifold pressure Psa having a predetermined delay with respect to the estimated manifold pressure Pm (n) is calculated from the following equation (7), and then the routine is terminated (estimated intake pressure filter means).
[0027]
Psa = K × Psa + (1−K) × Pm (n) (7)
Here, K is a delay correction coefficient.
On the other hand, the ECU 21 executes the injection amount setting routine shown in FIG. 3 at the timing (BTDC 5 ° CA) when the SGT signal is input from the crank angle sensor 27. First, in step S32, the manifold pressure average value Psave (= Sp / C) for one stroke is obtained, the integrated value Sp of the manifold pressure Ps is cleared, and the averaging counter C is cleared.
[0028]
In the subsequent step S34, the delay estimated manifold pressure average value Psave 'for one stroke is calculated from the following equation (8), and the delay estimated manifold pressure Psa is set to the previous value Psaold.
Psave '= (Psa + Psaold) / 2 ……… (8)
In step S36, the estimated manifold pressure deviation dP is calculated from the following equation (9).
dP = Pm (n) −Pm (n−1) (9)
In the subsequent step S38, it is determined whether or not the difference ΔTPS between the target throttle opening TPSobj set in the throttle opening control and the actual throttle opening TPS is equal to or greater than a predetermined value ΔTPS0 on the positive side. When the determination is NO, the prediction gain Kgain is set to 1.0 in step S40, and then the process proceeds to step S44. Further, for example, when the target throttle opening TPSobj suddenly increases with the accelerator operation as in the early stage of acceleration, the difference ΔTPS rapidly increases to the positive side, and the determination in step S38 becomes YES. In this case, the ECU 21 determines the predicted gain Kgain in step S40. Is set to 2.0, and then the process proceeds to step S44.
[0029]
In step S44, the pressure change amount ΔP between two strokes is calculated from the following equation (10) (change amount calculating means), and in the subsequent step S46, the sensor response delay amount ΔPs is calculated from the following equation (11) (response delay amount calculation). means).
ΔP = Kgain × dP (n) × 2 · Tsgt / 5 (10)
ΔPs = Pm (n) −Psave ′ (11)
Here, Tsgt is a required time for one stroke.
[0030]
Further, in step S48, it is determined whether or not the estimated manifold pressure Pm (n) is equal to or greater than a predetermined value Pm0. If NO, the corrected manifold pressure P (n) is calculated from the following equation (12) in step S50 (intake correlation amount). Prediction means).
P (n) = Psave + ΔP + ΔPs (12)
When the determination in step S48 is YES, the manifold pressure average value Psave is set as the corrected manifold pressure P (n) in step S52. Thereafter, the fuel injection amount Qinj is calculated from the following equation (13) in step S54, and then the routine is terminated.
[0031]
Qinj = Kinj × K (Ne) × P (n) ……… (13)
Here, Kinj is a coefficient for converting the corrected manifold pressure P (n) into a fuel amount.
Under the control of the ECU 21, the corrected manifold pressure Pm (n) is predicted as follows.
FIG. 4 is a time chart showing a change state of each measured value and estimated value when the throttle valve 6 is suddenly opened. An injection amount setting routine is executed by the ECU 21 for each stroke of the engine shown on the horizontal axis. On the other hand, a plurality of manifold pressure estimation routines are executed between each stroke.
[0032]
The manifold pressure Ps detected by the manifold pressure sensor 26 fluctuates in synchronization with the stroke of the engine, rapidly increases with the throttle opening TPS, and corresponds to an engine intake delay 2 on a virtual line obtained by smoothing the manifold pressure Ps. It is ideal to obtain a post-stroke value (corresponding to the corrected manifold pressure P (n) in the figure) and apply the value to the setting of the fuel injection amount Qinj.
[0033]
On the other hand, as a filter process for smoothing the manifold pressure Ps, the manifold pressure average value Psave is calculated for each stroke based on the integrated value Sp of the manifold pressure Ps every 5 msec. The average value Psave inevitably follows the manifold pressure Ps with a predetermined delay.
On the other hand, the estimated manifold pressure Pm (n) is calculated every 5 msec based on the throttle passage intake air amount Qth obtained from the effective opening area S of the throttle valve 6, and the sensor delay characteristic with respect to the estimated manifold pressure Pm (n). A delay estimated manifold pressure Psa having a delay simulating the above is calculated, and a delay estimated manifold pressure average value Psave ′ is calculated for each stroke based on the delay estimated manifold pressure Psa. Then, a pressure change amount ΔP corresponding to two strokes is calculated from the estimated manifold pressure deviation dP for 5 msec, and a sensor response delay amount ΔPs corresponding to the sensor delay is calculated, and the pressure based on the manifold pressure average value Psave is calculated. A value after elapse of the change amount ΔP and the sensor response delay amount ΔPs is predicted as the corrected manifold pressure P (n) and applied to the setting of the fuel injection amount Qinj.
[0034]
As described above, in this embodiment, the pressure change amount ΔP for two strokes is calculated based on the change state of the estimated manifold pressure Pm (n) obtained from the throttle opening degree TPS with good responsiveness. Not only is the corrected manifold pressure P (n) predicted using ΔP, but also the sensor response delay amount ΔPs corresponding to the sensor delay is reflected in the process of predicting the corrected manifold pressure P (n). Therefore, the corrected manifold pressure P (n) is accurately predicted and the appropriate fuel injection amount Qinj is set without being affected by the response delay of the manifold pressure sensor 26 even during transient operation such as acceleration. it can. As a result, it is possible to avoid problems such as an acceleration failure due to an inappropriate fuel amount and to realize extremely good drivability.
[0035]
On the other hand, when the difference ΔTPS between the target throttle opening TPSobj and the actual throttle opening TPS is equal to or larger than the predetermined positive value ΔTPS0 in step S38, the predicted gain Kgain is increased and corrected to 2.0 in step S40, and so on. In step S46, a larger value is calculated as the pressure change amount ΔP for two strokes. That is, the determination in step S38 is based on the assumption that the acceleration is in the initial stage. In such a situation, the actual throttle opening TPS rapidly increases as the accelerator operation amount increases. The throttle opening TPS greatly changes between the time when (step S2 in FIG. 2) and the corrected manifold pressure P (n) are predicted (step S50 in FIG. 3). This can be a factor in the prediction delay of the corrected manifold pressure P (n). However, by increasing the pressure change amount ΔP as described above, it is possible to perform a prediction process that follows the sudden increase in the throttle opening TPS. Further, it is possible to prevent a prediction delay of the corrected manifold pressure P (n), and to realize more appropriate fuel injection control.
[0036]
Further, since the throttle opening TPS at the time of deceleration gradually decreases as compared with the increase state of the actual throttle opening TPS in the early stage of acceleration, the corrected manifold pressure P (n) is sufficiently corrected even with a relatively small predicted gain Kgain. In addition, if the prediction gain Kgain larger than necessary is applied, there is a risk that the prediction accuracy may be lowered. Since normal prediction gain Kgain = 1.0 is applied at the time of deceleration, an appropriate prediction gain Kgain is always applied regardless of acceleration / deceleration, and an appropriate corrected manifold pressure P (n) prediction process is realized. be able to.
[0037]
On the other hand, when the estimated manifold pressure Pm (n) is not less than the value obtained by multiplying the atmospheric pressure P0 by 0.98 in step S16, the estimated manifold pressure Pm (n) is limited to the value obtained by multiplying the atmospheric pressure P0 by 0.98. In spite of this processing, if it is determined in step S48 that the estimated manifold pressure Pm (n) is equal to or greater than the predetermined value Pm0, the corrected manifold pressure P (n) is not predicted in step S50, but in step S52. The manifold pressure average value Psave is set as the corrected manifold pressure P (n).
[0038]
That is, when the estimated manifold pressure Pm (n) is close to the atmospheric pressure in this way, the throttle passage intake air amount Qth calculated based on the pressure ratio Pm (n) / P0 is hunted under the influence of the digital error of the ECU 21. As a result, the prediction accuracy of the corrected manifold pressure P (n) using the throttle passage intake air amount Qth is greatly reduced. Therefore, in such a case, a significant error in the corrected manifold pressure P (n) due to hunting is suppressed by setting the manifold pressure average value Psave as the corrected manifold pressure P (n). Thus, the fuel injection amount Qinj can be controlled more appropriately.
[0039]
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the intake air amount calculation device for the engine 1 of the speed-density method that controls the fuel injection based on the manifold pressure is embodied. However, the fuel injection is performed based on the intake air amount detected by the air flow sensor. You may apply to the engine to control. Even in this case, by considering the sensor response delay amount ΔPs corresponding to the sensor delay, the intake amount as the intake correlation amount can be accurately predicted without being affected by the sensor delay.
[0040]
In the above embodiment, the corrected manifold pressure P (n) is used for fuel injection control. However, the application is not limited to this, and may be used for ignition timing control, for example. In this case, knocking during transient operation can be suppressed by appropriate ignition timing control, and good torque characteristics can be realized.
Furthermore, in the above embodiment, the case where the sensor delay occurs due to the integrated average of the manifold pressure Ps has been described, but the cause of the sensor delay is not limited to this, and for example, a low-pass filter added to the manifold pressure sensor 26 The present invention may be applied when a sensor delay occurs due to hardware factors such as the above, and in this case, exactly the same effect can be obtained.
[0041]
【The invention's effect】
As described above, according to the engine intake air amount calculation device of the first aspect of the present invention, the prediction error of the intake correlation amount caused by the response delay of the intake correlation amount detection means is eliminated, and the intake correlation after a predetermined number of strokes is eliminated. The quantity can be predicted accurately.
According to the intake air amount calculation device for an engine of the second and third aspects of the invention, in addition to the first aspect, a prediction process following a sudden increase in the throttle opening at the initial stage of acceleration is realized, and a prediction delay of the intake correlation amount is reduced. It can be prevented in advance.
[0042]
According to the engine intake amount calculation apparatus of the invention of claim 4 , in addition to claim 1, it is possible to suppress the influence due to the digital error at the time of high load operation and to further improve the prediction accuracy of the intake amount.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram illustrating an engine intake air amount calculation device according to an embodiment.
FIG. 2 is a flowchart showing a manifold pressure estimation routine executed by an ECU.
FIG. 3 is a flowchart showing an injection amount setting routine executed by the ECU.
FIG. 4 is a time chart showing changes in measured values and estimated values during throttle opening operation.
[Explanation of symbols]
1 Engine 6 Throttle valve 21 ECU (change amount calculation means, response delay amount calculation means, intake pressure estimation means, estimated intake pressure filter means, intake correlation amount estimation means, intake correlation amount prediction means, throttle control means)
26 Manifold pressure sensor (intake correlation amount detection means)
TPS throttle opening TPSobj target throttle opening ΔTPS difference ΔTPS0 predetermined value Ps manifold pressure (intake correlation amount)
Pm (n) Estimated manifold pressure (intake correlation)
P (n) Manifold pressure after correction (intake correlation amount)
ΔP Pressure change ΔPs Sensor response delay X Pressure ratio (front / rear pressure)

Claims (4)

スロットルからの吸気状態と相関する吸気相関量を検出する吸気相関量検出手段と、
上記スロットルの開口面積と相関する相関値とスロットルの前後圧力とから吸気圧を推定する吸気圧推定手段と、
上記吸気圧推定手段の出力から所定行程数間の吸気圧変化量を算出する変化量算出手段と、
上記吸気圧推定手段の出力に上記吸気相関量検出手段の応答遅れ特性と同等の遅れ処理を行う推定吸気圧フィルタ手段と、
上記吸気圧推定手段の出力上記推定吸気圧フィルタ手段の出力との差から上記吸気相関量検出手段の応答遅れに相当する応答遅れ量を算出する応答遅れ量算出手段と、
上記吸気相関量検出手段により検出された吸気相関量と上記変化量算出手段により算出された所定行程数間の吸気圧変化量と上記応答遅れ量算出手段により算出された応答遅れ量とに基づき、所定行程数後の吸気相関量を予測する吸気相関量予測手段と
を備えたことを特徴とするエンジンの吸気量算出装置。
An intake correlation amount detecting means for detecting an intake correlation amount correlated with an intake state from the throttle;
An intake pressure estimating means for estimating an intake pressure from a correlation value correlating with the opening area of the throttle and a front-rear pressure of the throttle;
A change amount calculating means for calculating an intake pressure change amount between a predetermined number of strokes from the output of the intake pressure estimating means;
Estimated intake pressure filter means for performing delay processing equivalent to the response delay characteristic of the intake correlation amount detection means on the output of the intake pressure estimation means;
A response delay amount calculating means for calculating a response delay amount corresponding to a response delay of the intake correlation amount detecting means from the difference between the output of the intake pressure estimating means and the output of the estimated intake pressure filter means;
Based on the intake correlation amount detected by the intake correlation amount detection means, the intake pressure change amount between the predetermined number of strokes calculated by the change amount calculation means, and the response delay amount calculated by the response delay amount calculation means, An intake air amount calculation device for an engine, comprising: an intake air correlation amount prediction means for predicting an intake air correlation amount after a predetermined number of strokes.
上記エンジンの運転状態に基づく目標スロットル開度と実スロットル開度との偏差に基づいて、上記スロットルを開閉駆動するスロットル制御手段を更に備え、上記変化量算出手段は、上記目標スロットル開度と実スロットル開度との偏差が所定値より大きいときに、上記所定行程数間の吸気相関量の変化量を増加補正することを特徴とする請求項1に記載のエンジンの吸気量算出装置。  Throttle control means for opening and closing the throttle based on the deviation between the target throttle opening based on the engine operating state and the actual throttle opening is further provided. 2. The engine intake air amount calculation device according to claim 1, wherein when the deviation from the throttle opening is larger than a predetermined value, the amount of change in the intake air correlation amount between the predetermined strokes is corrected to be increased. 上記変化量算出手段は、上記エンジンの減速時に上記所定行程数間の吸気圧変化量の増加補正を禁止することを特徴とする請求項2に記載のエンジンの吸気量算出装置。  3. The engine intake amount calculation apparatus according to claim 2, wherein the change amount calculation means prohibits an increase correction of an intake pressure change amount during the predetermined number of strokes when the engine decelerates. 上記吸気圧推定手段は、推定した吸気圧が大気圧近傍の所定圧力より大きいときには、該所定圧力を上記推定した吸気圧とすることを特徴とする請求項1に記載のエンジンの吸気量算出装置。  2. The engine intake air amount calculation device according to claim 1, wherein when the estimated intake pressure is larger than a predetermined pressure in the vicinity of atmospheric pressure, the intake pressure estimating means sets the predetermined pressure as the estimated intake pressure. .
JP2002051737A 2002-02-27 2002-02-27 Engine intake air amount calculation device Expired - Fee Related JP4123340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051737A JP4123340B2 (en) 2002-02-27 2002-02-27 Engine intake air amount calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051737A JP4123340B2 (en) 2002-02-27 2002-02-27 Engine intake air amount calculation device

Publications (2)

Publication Number Publication Date
JP2003254149A JP2003254149A (en) 2003-09-10
JP4123340B2 true JP4123340B2 (en) 2008-07-23

Family

ID=28663634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051737A Expired - Fee Related JP4123340B2 (en) 2002-02-27 2002-02-27 Engine intake air amount calculation device

Country Status (1)

Country Link
JP (1) JP4123340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242693A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Control device of internal combustion engine
JP5645022B2 (en) * 2011-05-17 2014-12-24 三菱自動車工業株式会社 Intake control device for internal combustion engine
DE102014226769A1 (en) * 2014-12-22 2016-06-23 Robert Bosch Gmbh Method and apparatus for determining mass flow through a throttle at pulsating pressures
JP6910512B1 (en) * 2020-07-17 2021-07-28 三菱電機株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2003254149A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4292209B2 (en) Engine control apparatus and control method
US7654133B2 (en) Malfunction diagnostic apparatus and malfunction diagnostic method for combustion improvement device
US7356404B2 (en) Knock determination apparatus and method for engines
US6698192B2 (en) Fuel injection control for diesel engine
JP2005201184A (en) Fuel injection control device for internal combustion engine
EP3282114B1 (en) Engine controller and engine control method
JP3323974B2 (en) Control device for internal combustion engine
US7606650B2 (en) In-cylinder pressure detection device and method for internal combustion engine, and engine control unit
US8620563B2 (en) Fuel supply apparatus for internal combustion engine
JP4123340B2 (en) Engine intake air amount calculation device
JP2007127007A (en) Control device for internal combustion engine
JP4025977B2 (en) Engine intake air amount calculation device
JPH10184429A (en) Engine control system
CN113027617B (en) Engine scavenging control device, system, method and computer readable medium
JPH07286551A (en) Misfire detecting device of internal combustion engine
WO2016190092A1 (en) Engine control device
US11193433B2 (en) Engine controller, engine control method, and memory medium
JP4239578B2 (en) Operating state discrimination device for internal combustion engine
WO2022249395A1 (en) Internal combustion engine exhaust reflux control method and control device
JPH09317568A (en) Abnormality detecting device for diesel engine
JP2827491B2 (en) Fuel injection amount control device for internal combustion engine
JP4357388B2 (en) Control method for internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JP2887640B2 (en) Device for detecting combustion state of internal combustion engine
JP2008144605A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees