JP4120897B2 - Infrared transmitting glass ceramics - Google Patents

Infrared transmitting glass ceramics Download PDF

Info

Publication number
JP4120897B2
JP4120897B2 JP27959297A JP27959297A JP4120897B2 JP 4120897 B2 JP4120897 B2 JP 4120897B2 JP 27959297 A JP27959297 A JP 27959297A JP 27959297 A JP27959297 A JP 27959297A JP 4120897 B2 JP4120897 B2 JP 4120897B2
Authority
JP
Japan
Prior art keywords
glass
infrared transmitting
transmitting glass
becomes
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27959297A
Other languages
Japanese (ja)
Other versions
JPH11100229A (en
Inventor
成俊 嶋谷
明彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP27959297A priority Critical patent/JP4120897B2/en
Publication of JPH11100229A publication Critical patent/JPH11100229A/en
Application granted granted Critical
Publication of JP4120897B2 publication Critical patent/JP4120897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents

Description

【0001】
【産業上の利用分野】
本発明は赤外線透過ガラスセラミックスに関し、特にスムーストップ型の調理器用トッププレートとして用いられる赤外線透過ガラスセラミックスに関するものである。
【0002】
【従来の技術】
調理器のトッププレートには、赤外線透過率が高いこと、美観を損ねないように内部の発熱手段が透視し難いこと、機械的強度や化学的耐久性が高いこと、耐熱衝撃性が高いこと等が要求され、従来より濃褐色で赤外線透過率の高い低膨張のLi2 O−Al23 −SiO2 系ガラスセラミックスが使用されている。この種の材料として、例えば特公昭60−54896号にV25 を添加したLi2 O−Al23 −SiO2 系の赤外線透過ガラスセラミックスが開示されている。
【0003】
ところでこの種のガラスセラミックスは、1400℃を超える高温溶融を必要とする。このためガラス中に添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生することができるAs23 が使用されている。
【0004】
【発明が解決しようとする課題】
バッチ溶融において、原料中のAs23 は400〜500℃でAs25 に酸化された後、1200〜1800℃で再びAs23 に還元され、酸素ガスを放出する。この酸素ガスがガラス中の泡に拡散することにより、泡の拡大、浮上促進が起こり、泡が除去される。As23 は、この作用により、ガラスの清澄剤として広く使用されており、特に高温溶融が必要なLi2 O−Al23 −SiO2 系ガラスセラミックスの清澄剤として非常に有効である。ところがAs23 は毒性が強く、ガラスの製造工程や廃ガラスの処理時等で環境を汚染する可能性がある。
【0005】
本発明の目的は、環境を汚染するおそれがなく、調理器のトッププレートとして好適な赤外線透過ガラスセラミックスを提供することである。
【0006】
【課題を解決するための手段】
As23 以外の清澄剤としては、SnO2 、Sb23 、CeO2 、各種の塩化物、及び各種の硫化物があるが、中でもSnO2 や塩化物は1400℃を超える温度域で清澄効果を発揮するため、高温溶融を要するガラスの清澄剤に適している。しかしSnO2 を添加すると、その強い還元作用のため、バナジウムの発色が強められ、ガラスセラミックスの色調が濃くなりすぎる。また調理器のトッププレートとして使用する場合、赤外域の透過率が減少し、加熱効率が低下する。
【0007】
本発明者等は種々の実験を行った結果、バナジウムの発色はSnO2 の他にもTiO2 の影響を受けるため、SnO2 により増強されたバナジウムの発色はTiO2 の減量により補正し得ること、TiO2 の減量による結晶性の低下はZrO2 の添加で補正し得ることを見いだし、本発明として提案するものである。
【0008】
即ち、本発明の赤外線透過ガラスセラミックスは、重量百分率でSiO2 60〜72%、Al23 14〜28%、Li2O 2.5〜5.5%、MgO 0.1〜3%、ZnO 0.1〜3%、CaO 0〜3%、BaO 0〜5%、Na2O 0.1〜1%、K2O 0〜1%、TiO2 0.5〜3%、ZrO2 0.5〜5%、P25 0〜3%、V25 0.03〜0.%、SnO2 0.1〜2%、Cl 0〜1%の組成を有し、主結晶としてβ−石英固溶体を析出してなることを特徴とする。
【0009】
【作用】
本発明の赤外線透過ガラスセラミックスは、清澄剤としてSnO2 を0.1〜2%(好ましくは0.3〜1.8%)、Clを0〜1%(好ましくは0.01〜1%)含有する。SnO2 は1400℃以上の高温度域で、Snイオンの価数変化による化学反応(SnO2 [4価]→SnO[2価])によって清澄ガスである多量の酸素ガスを放出する。一方、Clは塩化物としてガラス原料に添加され、ガラス融液中Clイオンの形で存在する。このClイオンは、酸素ガスと同様、ガラスの温度が高くなるとともに泡に拡散し、泡の拡大、浮上促進を起こす。本発明においては、SnO2 を単独で用いてもよいが、より高い清澄性を得るためにClを共存させることが望ましい。
【0010】
本発明のガラスセラミックスは、β−石英固溶体を主結晶とするLi2 O−Al23 −SiO2 系ガラスセラミックスである。Li2 O−Al23 −SiO2 系ガラスセラミックスは、β−石英固溶体やβ−スポジュメンを析出し、高い機械的強度や化学的耐久性を示すものであるが、β−スポジュメンの析出量が多くなるとガラスセラミックスが白濁して外観上問題があるだけでなく、熱膨張係数が高くなり、また赤外線透過率が低下して好ましくない。このため本発明ではβ−石英固溶体を主結晶とすることを特徴とする。
【0011】
以下、組成範囲を上記のように限定した理由を述べる。
【0012】
SiO2 が60%より少ないと熱膨張係数が大きくなりすぎる。一方、72%より多いとガラス溶融が困難になる。SiO2 の好適な範囲は61〜70%である。
【0013】
Al23 が14%より少ないと化学的耐久性が低下し、またガラスが失透し易くなる。一方、28%より多いとガラスの粘度が大きくなりすぎてガラス溶融が困難になる。Al23 の好適な範囲は16〜25%である。
【0014】
Li2 Oが2.5%より少ないと結晶物が白濁し易くなり、また熱膨張係数が大きくなりすぎる。一方、5.5%より多い場合も白濁し易くなり、またガラスが失透し易くなる。Li2 Oの好適な範囲は3〜5%である。
【0015】
MgO及びZnOがそれぞれ0.1%より少ないと結晶性が低くなり、結晶化が困難になる。一方、それぞれ3%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。MgO及びZnOの好適な範囲は何れも0.2〜2.5%である。
【0016】
CaOが3%及びBaOが5%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。CaO及びBaOの好適な範囲は、0〜2%及び0〜4%である。
【0017】
Na2 Oが0.1%より少ないと結晶性が低くなり、1%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。Na2 Oの好適な範囲は0.1〜0.8%である。
【0018】
2 Oが1%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。K2 Oの好適な範囲は0〜0.8%である。
【0019】
TiO2が0.5%より少ないと結晶性が低く小さくなり、%を超えるとガラスが失透し易くなり、またV25の発色が強くなりすぎて色調が濃くなり、赤外線の透過率が低下する。TiO2の好適な範囲は1〜3%である。
【0020】
ZrO2 が0.5%より少ないとTiO2 の減量による結晶性の低下を補うことができなくなり、5%より多いとガラスが失透し易くなる。ZrO2 の好適な範囲は0.5〜4.5%である。
【0021】
25 が3%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。P25 の好適な範囲は0〜2.5%である。
【0022】
25が0.03%より少ないと色調が薄くなり、可視光での透過率が高くなりすぎる。一方、0.%より多いと色調が濃くなりすぎ、赤外線透過率が低くなりすぎる
【0023】
SnO2 が0.1%より少ないと清澄効果がなく、2%より多いと色調が濃くなりすぎる。またガラス溶融が困難になったり、失透し易くなる。SnO2 の好適な範囲は0.3〜1.8%である。
【0024】
Clが1%より多いと化学的耐久性が低下する。Clの好適な範囲は0.01〜1%である。
【0025】
上記組成を有するガラスセラミックスは、板厚3mmで、波長500nmにおいて5%以下の可視光の透過率、波長1500nmにおいて70%以上の赤外線透過率を有する。また本発明のガラスセラミックスは、30〜750℃の範囲において−5〜30×10-7/℃の平均線熱膨張係数を示す。
【0026】
本発明の赤外線透過ガラスセラミックスは、以下のようにして製造することができる。
【0027】
まず重量百分率でSiO2 60〜72%、Al23 14〜28%、Li2O 2.5〜5.5%、MgO 0.1〜3%、ZnO 0.1〜3%、CaO 0〜3%、BaO 0〜5%、Na2O 0.1〜1%、K2O 0〜1%、TiO2 0.5〜3%、ZrO2 0.5〜5%、P25 0〜3%、V25 0.03〜0.%の組成となるようにガラス原料を調合する。このとき清澄剤としてSnO2を0.1〜2%及び塩化物をCl換算で0〜5%添加する。
【0028】
次に調合したガラス原料を1550〜1700℃で4〜20時間溶融した後、成形する。
【0029】
続いてガラス成形体を700〜800℃で2〜4時間保持して核形成を行い、さらに800〜900℃で1〜3時間熱処理して結晶化させることにより、上記組成を有する赤外線透過ガラスセラミックスを得ることができる。
【0030】
なお得られたガラスセラミックスは、切断、研磨等の後加工を施したり、表面に絵付け等を施して、トッププレート等の用途に供される。
【0031】
【実施例】
以下、実施例に基づいて本発明の赤外線透過ガラスセラミックスを説明する。
【0032】
表1〜3は本発明の実施例(試料No.1、4及び8)及び参考例(試料No.2、3、5〜7、9〜12)を示している。
【0033】
【表1】

Figure 0004120897
【0034】
【表2】
Figure 0004120897
【0035】
【表3】
Figure 0004120897
【0036】
各試料は次のようにして調製した。
【0037】
まず表の組成を有するガラスとなるように原料を調合し、均一に混合した後、白金坩堝を用いて電気炉で1550〜1650℃で8〜20時間溶融した。次いで溶融したガラスをカーボン定盤上に流しだし、ステンレスローラーを用いて5mmの厚さに成形し、さらに徐冷炉を用いて室温まで冷却した。このガラス成形体を電気炉に入れ、300℃/hの速度で室温から780℃まで昇温し、2時間保持して核形成を行った。続いて80℃/hの速度で850℃まで昇温し、1時間保持して結晶化を行った後、炉冷した。
【0038】
このようにして得られた実施例の各試料は、濃褐色から黒色で白濁のない外観を呈し、光沢のある平滑な表面を有していた。X線回折装置による測定の結果、何れの試料も主結晶としてβ−石英固溶体を析出していることが分かった。また25×30mmの大きさの光学研磨を施した3mm厚の試料片を作成し、分光光度計を用いて500nm及び1500nmの波長における透過率を測定した。その結果、何れの試料も500nmの波長において3.1%以下、1500nmの波長において85.0%以上の高い赤外線透過率が得られた。さらに試料を50mm×5mmφの無垢棒に加工し、30〜750℃の温度域での平均線熱膨張係数を測定したところ、1〜12×10-7/℃であった。
【0039】
次に清澄性の評価を行った。評価は、1550〜1650℃で4〜8時間溶融し、ロール成型して試料を作製した後、試料中の単位重量当たりの泡数を計数することによって行った。その結果、実施例であるNo.1、4及び8の各試料は、清澄剤としてAs23を用いた参考例とほぼ同等の清澄性を示した。
【0040】
【発明の効果】
以上説明したように、本発明の赤外線透過ガラスセラミックスは、清澄剤としてAs23 を用いる必要がないために、環境を汚染するおそれがない。また赤外線透過率が高く、可視光の透過率が低い。しかも機械的強度、化学的耐久性、耐熱衝撃性等の特性に優れるため、特にスムーストップ型の調理器のトッププレートとして好適である。[0001]
[Industrial application fields]
The present invention relates to an infrared transmitting glass ceramic, and more particularly to an infrared transmitting glass ceramic used as a top plate for a smooth stop type cooking device.
[0002]
[Prior art]
The top plate of the cooker has a high infrared transmittance, the internal heating means are difficult to see through so as not to impair the beauty, the mechanical strength and chemical durability are high, the thermal shock resistance is high, etc. Low-expansion Li 2 O—Al 2 O 3 —SiO 2 glass ceramics having a dark brown color and high infrared transmittance are conventionally used. As this type of material, for example, Japanese Patent Publication No. 60-54896 discloses Li 2 O—Al 2 O 3 —SiO 2 based infrared transmitting glass ceramics to which V 2 O 5 is added.
[0003]
By the way, this type of glass ceramics requires high temperature melting exceeding 1400 ° C. For this reason, As 2 O 3 which can generate a large amount of clarification gas at the time of melting at high temperature is used as the clarifier added to the glass.
[0004]
[Problems to be solved by the invention]
In batch melting, As 2 O 3 in the raw material is oxidized to As 2 O 5 at 400 to 500 ° C. and then reduced again to As 2 O 3 at 1200 to 1800 ° C. to release oxygen gas. When this oxygen gas diffuses into the bubbles in the glass, expansion of the bubbles and promotion of levitation occur, and the bubbles are removed. As 2 O 3 is widely used as a glass refining agent due to this action, and is particularly effective as a refining agent for Li 2 O—Al 2 O 3 —SiO 2 glass ceramics that require high temperature melting. . However, As 2 O 3 is highly toxic and may contaminate the environment during the glass manufacturing process or waste glass processing.
[0005]
An object of the present invention is to provide an infrared transmitting glass ceramic that is suitable as a top plate of a cooking device without causing a possibility of polluting the environment.
[0006]
[Means for Solving the Problems]
As clarifiers other than As 2 O 3, there are SnO 2 , Sb 2 O 3 , CeO 2 , various chlorides, and various sulfides, among which SnO 2 and chlorides are in a temperature range exceeding 1400 ° C. In order to exert a fining effect, it is suitable as a glass fining agent that requires high-temperature melting. However, when SnO 2 is added, due to its strong reducing action, the color development of vanadium is strengthened, and the color tone of the glass ceramic becomes too dark. Moreover, when using as a top plate of a cooking appliance, the transmittance | permeability of an infrared region reduces and heating efficiency falls.
[0007]
As a result of various experiments conducted by the present inventors, since the color development of vanadium is affected by TiO 2 in addition to SnO 2 , the color development of vanadium enhanced by SnO 2 can be corrected by reducing the amount of TiO 2. The present inventors have found that the decrease in crystallinity due to the decrease in the amount of TiO 2 can be corrected by the addition of ZrO 2 and is proposed as the present invention.
[0008]
That is, the infrared transmitting glass ceramics of the present invention, SiO 2 60 to 72% by weight percentage, Al 2 O 3 14~28%, Li 2 O 2.5~5.5%, 0.1~3% MgO, ZnO 0.1-3%, CaO 0-3%, BaO 0-5%, Na 2 O 0.1-1%, K 2 O 0-1%, TiO 2 0.5-3%, ZrO 2 0 .5~5%, P 2 O 5 0~3 %, V 2 O 5 0.03~0. It has a composition of 1 %, SnO 2 0.1-2%, Cl 0-1%, and is characterized by depositing β-quartz solid solution as the main crystal.
[0009]
[Action]
In the infrared transmitting glass ceramics of the present invention, SnO 2 is 0.1 to 2 % (preferably 0.3 to 1.8%) and Cl is 0 to 1% (preferably 0.01 to 1%) as a fining agent. contains. SnO 2 releases a large amount of oxygen gas, which is a clarified gas, in a high temperature range of 1400 ° C. or higher by a chemical reaction (SnO 2 [tetravalent] → SnO [divalent]) due to a valence change of Sn ions. On the other hand, Cl is added to the glass raw material as a chloride and exists in the form of Cl ions in the glass melt. Like the oxygen gas, this Cl ion diffuses into the bubbles as the temperature of the glass increases, and causes the bubbles to expand and promote levitation. In the present invention, SnO 2 may be used alone, but it is desirable to coexist with Cl in order to obtain higher clarity.
[0010]
The glass ceramic of the present invention is a Li 2 O—Al 2 O 3 —SiO 2 glass ceramic having a β-quartz solid solution as a main crystal. Li 2 O—Al 2 O 3 —SiO 2 glass ceramic precipitates β-quartz solid solution and β-spodumene and exhibits high mechanical strength and chemical durability. If the amount is increased, the glass ceramics become cloudy and not only has a problem in appearance, but also has a high thermal expansion coefficient and a low infrared transmittance, which is not preferable. Therefore, the present invention is characterized in that the β-quartz solid solution is the main crystal.
[0011]
Hereinafter, the reason why the composition range is limited as described above will be described.
[0012]
When SiO 2 is less than 60%, the thermal expansion coefficient becomes too large. On the other hand, if it exceeds 72%, glass melting becomes difficult. A preferred range of SiO 2 is 61 to 70%.
[0013]
When Al 2 O 3 is less than 14%, the chemical durability is lowered and the glass is easily devitrified. On the other hand, if it exceeds 28%, the viscosity of the glass becomes too high and glass melting becomes difficult. A preferred range for Al 2 O 3 is 16-25%.
[0014]
If the Li 2 O content is less than 2.5%, the crystalline material tends to become cloudy and the thermal expansion coefficient becomes too large. On the other hand, when it is more than 5.5%, it tends to become cloudy and the glass tends to devitrify. The preferred range for Li 2 O is 3-5%.
[0015]
When MgO and ZnO are each less than 0.1%, the crystallinity is lowered and crystallization becomes difficult. On the other hand, if the content is more than 3%, the crystalline material becomes cloudy and the thermal expansion coefficient becomes too large. A preferable range of MgO and ZnO is 0.2 to 2.5%.
[0016]
If the CaO content is more than 3% and the BaO content is more than 5%, the crystal becomes cloudy and the thermal expansion coefficient becomes too large. The preferred ranges for CaO and BaO are 0-2% and 0-4%.
[0017]
When Na 2 O is less than 0.1%, the crystallinity is low, and when it is more than 1%, the crystal is clouded and the thermal expansion coefficient is too large. A preferred range for Na 2 O is 0.1-0.8%.
[0018]
If K 2 O is more than 1%, the crystal becomes cloudy and the coefficient of thermal expansion becomes too large. A preferable range of K 2 O is 0 to 0.8%.
[0019]
When TiO 2 is less than 0.5%, the crystallinity is low and small. When it exceeds 3 %, the glass tends to be devitrified, and the color of V 2 O 5 becomes too strong and the color tone becomes dark, and infrared rays are transmitted. The rate drops. The preferred range for TiO 2 is 1-3%.
[0020]
If the ZrO 2 content is less than 0.5%, the decrease in crystallinity due to the decrease in TiO 2 cannot be compensated, and if it exceeds 5%, the glass tends to devitrify. A preferred range for ZrO 2 is 0.5-4.5%.
[0021]
If the P 2 O 5 content is more than 3%, the crystal becomes cloudy and the thermal expansion coefficient becomes too large. A preferred range for P 2 O 5 is 0-2.5%.
[0022]
When V 2 O 5 is less than 0.03%, the color tone becomes light and the transmittance with visible light becomes too high. On the other hand, 0. If it exceeds 1 %, the color tone becomes too dark and the infrared transmittance becomes too low .
[0023]
When SnO 2 is less than 0.1%, there is no clarification effect, and when it is more than 2%, the color tone becomes too dark. Moreover, it becomes difficult to melt the glass, and it tends to be devitrified. The preferred range for SnO 2 is 0.3-1.8%.
[0024]
If the Cl content exceeds 1%, the chemical durability is lowered. A preferred range for Cl is 0.01 to 1%.
[0025]
The glass ceramic having the above composition has a plate thickness of 3 mm, a visible light transmittance of 5% or less at a wavelength of 500 nm, and an infrared transmittance of 70% or more at a wavelength of 1500 nm. Moreover, the glass ceramic of this invention shows the average coefficient of linear thermal expansion of -5-30 * 10 < -7 > / (degreeC) in the range of 30-750 degreeC.
[0026]
The infrared transmitting glass ceramics of the present invention can be manufactured as follows.
[0027]
First SiO 2 60 to 72% by weight percentage, Al 2 O 3 14~28%, Li 2 O 2.5~5.5%, 0.1~3% MgO, 0.1~3% ZnO, CaO 0 ~3%, BaO 0~5%, Na 2 O 0.1~1%, K 2 O 0~1%, TiO 2 0.5~3%, ZrO 2 0.5~5%, P 2 O 5 0~3%, V 2 O 5 0.03~0 . A glass raw material is prepared so as to have a composition of 1 %. At this time, 0.1 to 2 % of SnO 2 and 0 to 5% of chloride in terms of Cl are added as fining agents.
[0028]
Next, the prepared glass material is melted at 1550 to 1700 ° C. for 4 to 20 hours and then molded.
[0029]
Subsequently, the glass molded body is held at 700 to 800 ° C. for 2 to 4 hours for nucleation, and further heat treated at 800 to 900 ° C. for 1 to 3 hours to crystallize, so that the infrared transmitting glass ceramic having the above composition is obtained. Can be obtained.
[0030]
The obtained glass ceramic is subjected to post-processing such as cutting and polishing, or is subjected to painting or the like on the surface for use in a top plate or the like.
[0031]
【Example】
Hereinafter, the infrared transmitting glass ceramics of the present invention will be described based on examples.
[0032]
Tables 1 to 3 show examples of the present invention (sample Nos . 1 , 4, and 8 ) and reference examples (samples No. 2 , 3, 5 to 7, and 9 to 12).
[0033]
[Table 1]
Figure 0004120897
[0034]
[Table 2]
Figure 0004120897
[0035]
[Table 3]
Figure 0004120897
[0036]
Each sample was prepared as follows.
[0037]
First, the raw materials were prepared so as to be a glass having the composition shown in the table, mixed uniformly, and then melted at 1550 to 1650 ° C. for 8 to 20 hours in an electric furnace using a platinum crucible. Next, the molten glass was poured onto a carbon surface plate, formed into a thickness of 5 mm using a stainless roller, and further cooled to room temperature using a slow cooling furnace. The glass molded body was placed in an electric furnace, heated from room temperature to 780 ° C. at a rate of 300 ° C./h, and held for 2 hours for nucleation. Subsequently, the temperature was raised to 850 ° C. at a rate of 80 ° C./h, maintained for 1 hour for crystallization, and then cooled in the furnace.
[0038]
Each sample of the example thus obtained had a dark brown to black appearance with no cloudiness and had a glossy and smooth surface. As a result of measurement by an X-ray diffractometer, it was found that all samples had β-quartz solid solution precipitated as the main crystal. Moreover, a 3 mm-thick sample piece subjected to optical polishing having a size of 25 × 30 mm was prepared, and transmittances at wavelengths of 500 nm and 1500 nm were measured using a spectrophotometer. As a result, all the samples were 3.1% or less at a wavelength of 500 nm and 85 . 0% or more high have infrared transmittance were obtained. Furthermore, when the sample was processed into a solid bar of 50 mm × 5 mmφ and the average linear thermal expansion coefficient in the temperature range of 30 to 750 ° C. was measured, it was 1 to 12 × 10 −7 / ° C.
[0039]
Next, the clarity was evaluated. The evaluation was performed by melting at 1550 to 1650 ° C. for 4 to 8 hours, roll forming to prepare a sample, and then counting the number of bubbles per unit weight in the sample. As a result, No. which is an example. Each of the samples 1, 4 and 8 showed the clarification almost equivalent to the reference example using As 2 O 3 as a clarifier.
[0040]
【The invention's effect】
As described above, the infrared transmitting glass ceramic of the present invention does not need to use As 2 O 3 as a refining agent, and therefore does not have a possibility of polluting the environment. Further, the infrared transmittance is high and the visible light transmittance is low. Moreover, since it is excellent in properties such as mechanical strength, chemical durability, and thermal shock resistance, it is particularly suitable as a top plate of a smooth stop type cooking device.

Claims (2)

重量百分率でSiO2 60〜72%、Al23 14〜28%、Li2O 2.5〜5.5%、MgO 0.1〜3%、ZnO 0.1〜3%、CaO 0〜3%、BaO 0〜5%、Na2O 0.1〜1%、K2O 0〜1%、TiO2 0.5〜3%、ZrO2 0.5〜5%、P25 0〜3%、V25 0.03〜0.%、SnO2 0.1〜2%、Cl 0〜1%の組成を有し、主結晶としてβ−石英固溶体を析出してなることを特徴とする赤外線透過ガラスセラミックス。SiO 2 60 to 72% by weight percentage, Al 2 O 3 14~28%, Li 2 O 2.5~5.5%, 0.1~3% MgO, 0.1~3% ZnO, CaO 0~ 3%, BaO 0 to 5%, Na 2 O 0.1 to 1%, K 2 O 0 to 1%, TiO 2 0.5 to 3%, ZrO 2 0.5 to 5%, P 2 O 5 0 ~3%, V 2 O 5 0.03~0 . 1. An infrared transmitting glass ceramic having a composition of 1 %, SnO 2 0.1 to 2 %, Cl 0 to 1 %, and having a β-quartz solid solution precipitated as a main crystal. 調理器のトッププレートとして用いられることを特徴とする請求項1の赤外線透過ガラスセラミックス。The infrared transmitting glass-ceramic according to claim 1, wherein the infrared transmitting glass ceramic is used as a top plate of a cooking device.
JP27959297A 1997-09-25 1997-09-25 Infrared transmitting glass ceramics Expired - Fee Related JP4120897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27959297A JP4120897B2 (en) 1997-09-25 1997-09-25 Infrared transmitting glass ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27959297A JP4120897B2 (en) 1997-09-25 1997-09-25 Infrared transmitting glass ceramics

Publications (2)

Publication Number Publication Date
JPH11100229A JPH11100229A (en) 1999-04-13
JP4120897B2 true JP4120897B2 (en) 2008-07-16

Family

ID=17613143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27959297A Expired - Fee Related JP4120897B2 (en) 1997-09-25 1997-09-25 Infrared transmitting glass ceramics

Country Status (1)

Country Link
JP (1) JP4120897B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089327A1 (en) * 2010-01-21 2011-07-28 Eurokera S.N.C. Display unit including a plate made of glass-ceramic
WO2018211216A1 (en) 2017-05-18 2018-11-22 Eurokera S.N.C. Method for manufacturing a lithium aluminosilicate glass product for glass-ceramic products

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342036A (en) * 2000-03-31 2001-12-11 Ngk Insulators Ltd Glass material, crystallized glass product and method of manufacturing crystallized glass material
ATE431812T1 (en) 2000-08-24 2009-06-15 Schott Ag TRANSPARENT GLASS CERAMIC THAT CAN BE COLORED DARK WITH THE ADDITIVE OF VANADIUM OXIDE
FR2863607B1 (en) 2003-12-11 2006-09-29 Snc Eurokera VITROCERAMICS WITH MODIFIED SURFACE AND THEIR PREPARATION
FR2864071A1 (en) * 2003-12-17 2005-06-24 Snc Eurokera Improved vitroceramic from a glass precursor with transparent, translucent or opaque aspects for cooking plates and other fire resistant applications
FR2887870B1 (en) 2005-06-30 2007-10-05 Snc Eurokera Soc En Nom Collec PREPARATION OF BETA-QUARTZ AND / OR BETA-SPODUMENE VITROCERAMICS, ARTICLES IN SUCH VITROCERAMICS; VITROCERAMICS, ARCTICLES IN SAID VITROCERAMIC AND PRECURSOR GLASSES
JP4976058B2 (en) * 2006-06-06 2012-07-18 株式会社オハラ Crystallized glass and method for producing crystallized glass
US7456121B2 (en) 2006-06-23 2008-11-25 Eurokera Glass-ceramic materials, precursor glass thereof and process-for making the same
KR101433213B1 (en) * 2006-10-27 2014-08-22 유로케라 에스.엔.씨. Method for refining a lithium alumino-silicate glass and glass ceramic thus obtained
JP2008239472A (en) * 2007-02-28 2008-10-09 Nippon Electric Glass Co Ltd Colored plate glass building material and fixed structure thereof
JP5053948B2 (en) * 2007-12-21 2012-10-24 株式会社オハラ Crystallized glass
DE102008050263C5 (en) * 2008-10-07 2020-01-02 Schott Ag Transparent, colored cooking surface with improved colored display ability and method for producing such a cooking surface
US20110283738A1 (en) * 2009-02-05 2011-11-24 Tai Fujisawa Crystallized glass and top plate for cooking device comprising same
DE102009011850B3 (en) * 2009-03-05 2010-11-25 Schott Ag Process for the environmentally friendly melting and refining of a glass melt for a starting glass of a lithium-aluminum-silicate (LAS) glass ceramic and their use
DE102009013127B9 (en) 2009-03-13 2015-04-16 Schott Ag Transparent, colored cooking surface and method for indicating an operating state of such
DE202009018536U1 (en) 2009-03-13 2012-03-21 Schott Ag Transparent, colored cooking surface
FR2946039A1 (en) 2009-05-29 2010-12-03 Eurokera VITRO CERAMIC PLATE
DE102010002188B4 (en) * 2010-02-22 2018-11-08 Schott Ag Transparent LAS glass ceramic produced with alternative environmentally friendly refining agents
EP2364957A1 (en) 2010-02-26 2011-09-14 Corning Incorporated Glass ceramics with bulk scattering properties and methods of making them
EP2650264B1 (en) * 2010-05-31 2018-06-27 Nippon Electric Glass Co., Ltd. Production method for a li2o-al2o3-sio2 based crystallised glass
DE202010014361U1 (en) 2010-07-23 2010-12-30 Schott Ag Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding
DE102010032113B9 (en) * 2010-07-23 2017-06-22 Schott Ag Transparent or transparent colored lithium aluminum silicate glass-ceramic with adjustable thermal expansion and its use
US8722554B2 (en) 2010-08-03 2014-05-13 Eurokera Aluminosilicate glasses with improved fining behaviour
FR2963617B1 (en) 2010-08-03 2015-06-05 Eurokera GLASSES OF LITHIUM ALUMINOSILICATE (PRECURSORS OF VITROCERAMIC); BETA-QUARTZ AND / OR BETA-SPODUMENE VITROCERAMICS; ARTICLES THEREOF VITROCERAMIC; METHODS OF OBTAINING
FR2975391A1 (en) 2011-05-16 2012-11-23 Eurokera QUARTZ-BETA VITROCERAMICS WITH CONTROLLED TRANSMISSION CURVE; ARTICLES IN VITROCERAMIC LENSES, PRECURSORIC GLASSES.
DE102011050867A1 (en) 2011-06-06 2012-12-06 Schott Ag High-strength colored. smooth glass ceramic as a cooking surface on both sides
JP5377607B2 (en) * 2011-09-26 2013-12-25 ショット アクチエンゲゼルシャフト Transparent glass ceramic that can be darkened by using vanadium oxide
JP5728413B2 (en) * 2012-03-02 2015-06-03 日立アプライアンス株式会社 Induction heating cooker
DE102012105576B4 (en) 2012-06-26 2016-12-15 Schott Ag Glass ceramic and process for its production and glass ceramic hob
FR3025793B1 (en) * 2014-09-12 2016-12-02 Eurokera VITRO CERAMIC PLATE
US10473829B2 (en) 2016-01-18 2019-11-12 Corning Incorporated Enclosures having an improved tactile surface
DE102018110855A1 (en) 2017-12-22 2018-06-28 Schott Ag Glass-ceramic with reduced lithium content
DE202018102534U1 (en) 2017-12-22 2018-05-15 Schott Ag Transparent, colored lithium aluminum silicate glass-ceramic
DE102018110910A1 (en) 2017-12-22 2018-06-21 Schott Ag Furnishings and fittings for kitchens or laboratories with lighting elements
DE102018110897A1 (en) 2017-12-22 2018-06-21 Schott Ag Furnishings and equipment for kitchens or laboratories with display devices
DE102018110909A1 (en) 2017-12-22 2018-06-21 Schott Ag Cover plate with neutral color coating
WO2021251246A1 (en) 2020-06-10 2021-12-16 Agc株式会社 Glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089327A1 (en) * 2010-01-21 2011-07-28 Eurokera S.N.C. Display unit including a plate made of glass-ceramic
US10415788B2 (en) 2010-01-21 2019-09-17 Eurokera S.N.C. Display assembly comprising a glass-ceramic plate
WO2018211216A1 (en) 2017-05-18 2018-11-22 Eurokera S.N.C. Method for manufacturing a lithium aluminosilicate glass product for glass-ceramic products
US11548809B2 (en) 2017-05-18 2023-01-10 Eurokera S.N.C. Method of manufacturing a lithium aluminosilicate glass product for a glass-ceramic product

Also Published As

Publication number Publication date
JPH11100229A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP4120897B2 (en) Infrared transmitting glass ceramics
JP4000500B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass
JP3997593B2 (en) Li2O-Al2O3-SiO2 based crystallized glass
JPH11100230A (en) Infrared ray transmitting glass ceramics
JP3767260B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass
JP6152537B2 (en) Transparent, colorless, low titania beta, quartz, glass and ceramic materials
JP6134990B2 (en) Glass, glass-ceramic, article and manufacturing method
JP5484074B2 (en) Bismuth-containing glass, glass / ceramic, article, and production method
JP4669149B2 (en) Flat float glass
CN101437769B (en) Beta-spodumene glass-ceramic materials and process for making the same
JP5878280B2 (en) Method for refining lithium aluminosilicate glass and glass-ceramic obtained
JPH11228181A (en) Li2-al2o3-sio2 based glass ceramics
WO2013179894A1 (en) Li2o-al2o3-sio2-based crystallized glass and method for producing same
JP2006199538A (en) Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JPH11100231A (en) Infrared transmissive glass ceramics
JP2002154840A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JPS63162545A (en) Translucent crystalline glass
JP2005053711A (en) Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
JP2013087022A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JPH09188538A (en) Crystallized glass of lithium oxide-aluminum oxide-silicon oxide
JP7121348B2 (en) LAS-based crystallizable glass, LAS-based crystallized glass, and method for producing the same
JP5733621B2 (en) Method for producing Li2O-Al2O3-SiO2 crystallized glass
JPH0380128A (en) Crystallized glass for building material
Nakane et al. Li 2 O-Al 2 O 3-SiO 2 based crystallized glass and production method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees