JP4120685B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP4120685B2
JP4120685B2 JP2006147376A JP2006147376A JP4120685B2 JP 4120685 B2 JP4120685 B2 JP 4120685B2 JP 2006147376 A JP2006147376 A JP 2006147376A JP 2006147376 A JP2006147376 A JP 2006147376A JP 4120685 B2 JP4120685 B2 JP 4120685B2
Authority
JP
Japan
Prior art keywords
discharge electrode
liquid
tip
electrode
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006147376A
Other languages
Japanese (ja)
Other versions
JP2007313460A (en
Inventor
哲也 前川
康一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006147376A priority Critical patent/JP4120685B2/en
Publication of JP2007313460A publication Critical patent/JP2007313460A/en
Application granted granted Critical
Publication of JP4120685B2 publication Critical patent/JP4120685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ナノメータサイズの帯電微粒子ミストを発生するための静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer for generating nanometer-sized charged fine particle mist.

従来から例えば特許文献1により水を静電霧化させてナノメータサイズの帯電微粒子ミストを発生させる静電霧化装置が知られている、この特許文献1に示された放電電極先端に水を供給する手段として放電電極を冷却して表面に水を結露させるようになっている。   Conventionally, for example, Patent Document 1 discloses an electrostatic atomizer that electrostatically atomizes water to generate nanometer-sized charged fine particle mist. Water is supplied to the tip of the discharge electrode shown in Patent Document 1. As a means for this, the discharge electrode is cooled to condense water on the surface.

上記のような従来例において、静電霧化装置によるナノメータサイズの帯電微粒子ミストの発生のメカニズムは、放電電極と対向電極との間にかけられた電圧により放電電極の先端部に供給された水が帯電し、帯電した水にクーロン力が働き、放電電極の先端に供給保持された水の液面が局所的に先端が尖った錐状に盛り上がり(テーラーコーンとなり)、このテーラーコーンの先端部に電荷が集中して高密度化され、高密度された電荷の反発力による液体の***・飛散(レイリー***)を繰り返して静電霧化を行い、ラジカルを有するナノメータサイズの帯電微粒子ミスト(マイナスイオンミスト)を生成させるようになっている。   In the conventional example as described above, the mechanism of generation of nanometer-sized charged fine particle mist by the electrostatic atomizer is such that the water supplied to the tip of the discharge electrode by the voltage applied between the discharge electrode and the counter electrode is When charged, the Coulomb force acts on the charged water, and the surface of the water supplied and held at the tip of the discharge electrode rises locally as a cone with a pointed tip (to become a tailor cone). At the tip of this tailor cone Charges are concentrated and concentrated, and electrostatic atomization is performed by repeatedly dividing and scattering liquids (Rayleigh splitting) due to the repulsive force of the high-density charge, and nanometer-sized charged fine particle mist (radical ions) with radicals. Mist) is generated.

上記ラジカルを有するナノメータサイズの帯電微粒子ミストは脱臭、除菌等の効果を有しているが、この脱臭、除菌等の発現は、ナノメータサイズの帯電微粒子ミスト中に含まれるラジカルが主な効果要因として作用していると考えられる。   The nanometer-sized charged fine particle mist having radicals described above has effects such as deodorization and sterilization. The main effects of this deodorization and sterilization are the radicals contained in the nanometer-size charged fine particle mist. It is thought that it acts as a factor.

ところが、上記従来の静電霧化装置にあっては、放電電極の先端部への水の供給量が一定しない等の理由によりテーラーコーンの先端の角度が安定せず、このため、効率よく且つ安定してラジカルを有するナノメータサイズの帯電微粒子ミストを生成し難いという問題があった。
特開2005−296753号公報
However, in the conventional electrostatic atomizer, the angle of the tip of the tailor cone is not stable because the amount of water supplied to the tip of the discharge electrode is not constant. There has been a problem that it is difficult to stably generate nanometer-sized charged fine particle mist having radicals.
JP 2005-296653 A

本発明は上記の従来の問題点に鑑みて発明したものであって、効率よく且つ安定してラジカルを有するナノメータサイズの帯電微粒子ミストを生成することができる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and provides an electrostatic atomizer capable of generating nanometer-sized charged fine particle mist having radicals efficiently and stably. It is to be an issue.

上記課題を解決するために本発明に係る静電霧化装置は、高電圧印加部1と、高電圧印加部1で発生させた高電圧が印加される放電電極2と、放電電極2と一定の距離を隔てて対向する対向電極3と、放電電極2に霧化させるべき液体を供給する液体供給手段4と、上記一定の距離を隔てて対向する放電電極2と対向電極3との間に流れる電流を検出することで放電電極2に保持される液体の保持状態を検知する検知手段5とを備え、上記液体供給手段4がペルチェユニット9により構成されて、ペルチェユニット9の冷却部7側に放電電極2を接続して放電電極2を冷却することで空気中の水分を結露水として放電電極2に供給するものであり、放電電極2に高電圧を印加させた際に放電電極2に保持される液体のテーラーコーンの先端角度を70°〜95°に制御するためのテーラーコーン先端角度制御手段6を設け、上記テーラーコーン先端角度制御手段6が、検知手段5により得られた液体の保持状態の情報に基づいて、ペルチェユニット9への通電量を制御することで放電電極2に供給する霧化させるべき液体の供給量を制御するものであることを特徴とするものである。 In order to solve the above problems, an electrostatic atomizer according to the present invention includes a high voltage application unit 1, a discharge electrode 2 to which a high voltage generated by the high voltage application unit 1 is applied, and a constant discharge electrode 2. Between the opposing electrode 3 opposed to each other, the liquid supply means 4 for supplying the liquid to be atomized to the discharge electrode 2, and the discharge electrode 2 and the opposed electrode 3 opposed to each other at a certain distance. Detection means 5 for detecting the holding state of the liquid held by the discharge electrode 2 by detecting the flowing current, and the liquid supply means 4 is constituted by a Peltier unit 9, and the cooling unit 7 side of the Peltier unit 9 The discharge electrode 2 is connected to the cooling electrode 2 to cool the discharge electrode 2 to supply moisture in the air to the discharge electrode 2 as condensed water. When a high voltage is applied to the discharge electrode 2, The tip angle of the retained liquid tailor cone The Taylor cone tip angle control means 6 for controlling the 70 ° to 95 ° is provided, the Taylor cone tip angle control means 6, based on the information of the holding state of the liquid obtained by the detecting means 5, the Peltier unit The supply amount of the liquid to be atomized supplied to the discharge electrode 2 is controlled by controlling the energization amount to 9 .

このような構成とすることで、放電電極2に保持される液体Wの保持状態を一定の距離を隔てて対向する放電電極2と対向電極3との間に流れる電流を検出することにより検知し、このようにして検知した液体Wの保持状態の情報に基づいてペルチェユニット9への通電量を制御することで放電電極2に供給する霧化させるべき液体の供給量を制御することにより放電電極2に保持される液体WのテーラーコーンTの先端角度を70°〜95°に制御することができ、効率的且つ安定してラジカルを有するナノメータサイズの帯電微粒子ミストを生成することができる。 With such a configuration, the holding state of the liquid W held by the discharge electrode 2 is detected by detecting the current flowing between the discharge electrode 2 and the counter electrode 3 facing each other at a certain distance. The discharge electrode is controlled by controlling the supply amount of the liquid to be atomized to be supplied to the discharge electrode 2 by controlling the energization amount to the Peltier unit 9 based on the information on the holding state of the liquid W thus detected. The tip angle of the tailor cone T of the liquid W held at 2 can be controlled to 70 ° to 95 °, and nanometer-sized charged fine particle mist having radicals can be generated efficiently and stably .

本発明は、上記のように、一定の距離を隔てて対向する放電電極と対向電極との間に流れる電流を検出することで放電電極に保持される液体の保持状態を検知する検知手段を備え、ペルチェユニットの冷却部側に放電電極を接続して放電電極を冷却することで空気中の水分を結露水として放電電極に供給するものであり、放電電極に高電圧を印加させた際に放電電極に保持される液体のテーラーコーンの先端角度を70°〜95°に制御するためのテーラーコーン先端角度制御手段が、検知手段により得られた液体の保持状態の情報に基づいて、ペルチェユニットへの通電量を制御することで放電電極に供給する霧化させるべき液体の供給量を制御するものであるから、効率よく且つ安定してラジカルを有するナノメータサイズの帯電微粒子ミストを生成することができ、ナノメータサイズの帯電微粒子ミストに含まれるラジカルにより効率よく且つ安定して脱臭、除菌、アレルゲン不活性化効果、農薬分解効果、有機物分解(汚れ除去)等の効果を発現できる。 As described above, the present invention includes detection means for detecting the holding state of the liquid held by the discharge electrode by detecting the current flowing between the discharge electrode and the counter electrode facing each other at a predetermined distance. By connecting the discharge electrode to the cooling part of the Peltier unit and cooling the discharge electrode, moisture in the air is supplied to the discharge electrode as condensed water, and the discharge occurs when a high voltage is applied to the discharge electrode. Taylor cone tip angle control means for controlling the tip angle of the liquid tailor cone held by the electrode to 70 ° to 95 ° is supplied to the Peltier unit based on the information on the liquid holding state obtained by the detection means. Since the amount of liquid to be atomized supplied to the discharge electrode is controlled by controlling the amount of electricity supplied to the discharge electrode, nanometer-sized charged fine particle particles having radicals are efficiently and stably present. It can produce the strikes, and the radicals contained in the nanometer-size charged fine particle mist efficiently and stably have effects such as deodorization, sterilization, allergen inactivation effect, pesticide decomposition effect, and organic matter decomposition (dirt removal). It can be expressed.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の静電霧化装置の概略構成図を示している。本例の静電霧化装置は、高電圧印加部1と、高電圧印加部1で発生させた高電圧が印加される放電電極2と、放電電極2に対向する対向電極3と、放電電極2の先端部に霧化させるべき液体Wを供給する液体供給手段4とを備えて構成してある。   FIG. 1 shows a schematic configuration diagram of the electrostatic atomizer of the present invention. The electrostatic atomizer of this example includes a high voltage application unit 1, a discharge electrode 2 to which a high voltage generated by the high voltage application unit 1 is applied, a counter electrode 3 facing the discharge electrode 2, and a discharge electrode. 2 is provided with a liquid supply means 4 for supplying the liquid W to be atomized to the tip portion.

放電電極2の先端部に霧化させるべき液体Wを供給する液体供給手段4としては、空気中の水分を冷却して結露水として生成することで、該結露水を放電電極2の先端部に供給するようにしたものである。 The liquid supply means 4 for supplying the liquid W to be atomized to the tip of the discharge electrode 2 cools the moisture in the air and generates it as condensed water, so that the condensed water is supplied to the tip of the discharge electrode 2. It is to be supplied .

以下の説明において液体Wを水W又は結露水Wとして説明する。 In the following description, the liquid W is described as water W or condensed water W.

液体供給手段4となる冷却手段は冷却部7と放熱部8とを有するペルチェユニット9により構成してあり、ペルチェユニット9の冷却部7側に放電電極2を接続して放電電極2自体を冷却自在としている。添付図面に示す実施形態では、ペルチェユニット9に連結させてある筐体10の先端に対向電極3を支持させることで、放電電極2と対向電極3とを所定の間隔を隔てて互いに対向する位置に固定してある。   The cooling means to be the liquid supply means 4 is constituted by a Peltier unit 9 having a cooling part 7 and a heat radiating part 8, and the discharge electrode 2 is connected to the cooling part 7 side of the Peltier unit 9 to cool the discharge electrode 2 itself. It is free. In the embodiment shown in the accompanying drawings, the counter electrode 3 is supported at the tip of the casing 10 connected to the Peltier unit 9 so that the discharge electrode 2 and the counter electrode 3 are opposed to each other at a predetermined interval. It is fixed to.

ペルチェユニット9は、一対のペルチェ回路板を互いの回路側が向い合うように対向させ、多数列設してあるBiTe系の熱電素子を両ペルチェ回路板間で挟持するとともに隣接する熱電素子同士を両側の回路で電気的に接続させ、冷却側のペルチェ回路板の絶縁板と冷却用絶縁板とで冷却部7を形成し、放熱側のペルチェ回路板の絶縁板と放熱板又は放熱フィンとで放熱部8を形成したものであり、冷却制御部13によるペルチェ入力リード線11を介して為される熱電素子への通電制御により冷却部7側から放熱部8側に熱が移動するようになっている。   The Peltier unit 9 has a pair of Peltier circuit boards facing each other so that the circuit sides face each other, and sandwiches a number of BiTe-based thermoelectric elements between the two Peltier circuit boards. The cooling part 7 is formed by the insulating plate of the Peltier circuit board on the cooling side and the insulating board for cooling, and heat is radiated by the insulating plate of the Peltier circuit board on the heat dissipation side and the heat dissipation plate or the heat dissipation fin Heat is transferred from the cooling unit 7 side to the heat radiating unit 8 side by energization control to the thermoelectric element performed by the cooling control unit 13 via the Peltier input lead wire 11. Yes.

ペルチェユニット9の冷却部7に接続された放電電極2はアルミニウム、銅、タングステン、チタン、ステンレス等の熱伝導性及び導電性の高い材料を用いて略棒状に形成してあって、ペルチェユニット9により冷されて結露水Wを生成するようになっている。   The discharge electrode 2 connected to the cooling unit 7 of the Peltier unit 9 is formed in a substantially rod shape using a material having high thermal conductivity and conductivity such as aluminum, copper, tungsten, titanium, and stainless steel. The condensed water W is generated by being cooled by the above.

放電電極2の後端部には図1に示すように高電圧印加板12が接続してあり、この高電圧印加板12と対向電極3とは高電圧印加部1にそれぞれ高圧リード線を介して接続してあり、高電圧印加部1から放電電極2と対向電極3との間に高電圧が印加されるようになっている。   A high voltage application plate 12 is connected to the rear end of the discharge electrode 2 as shown in FIG. 1, and the high voltage application plate 12 and the counter electrode 3 are connected to the high voltage application unit 1 via high-voltage leads. The high voltage is applied between the discharge electrode 2 and the counter electrode 3 from the high voltage application unit 1.

上記の構成の静電霧化装置は、熱電素子に対して通電を行うと、各熱電素子内において同一方向への熱の移動が生じ、ペルチェユニット9の冷却部7が冷却される。冷却部7が冷却されることで冷却部7に接続した放電電極2が冷却され、放電電極2の周囲の空気が冷却されることで、空気中の水分が結露等により液化されて放電電極2の先端部に結露水Wが生成される。   In the electrostatic atomizer having the above-described configuration, when the thermoelectric elements are energized, heat is transferred in the same direction in each thermoelectric element, and the cooling unit 7 of the Peltier unit 9 is cooled. When the cooling unit 7 is cooled, the discharge electrode 2 connected to the cooling unit 7 is cooled, and the air around the discharge electrode 2 is cooled, so that moisture in the air is liquefied due to condensation or the like, and the discharge electrode 2 Condensed water W is generated at the tip of the water.

このように、ペルチェユニット9の冷却部7に放電電極2を接続して直接放電電極2を冷却して空気中の水分を結露させることで結露水Wを生成させるので、装置のコンパクト化が図れ、また、従来のように水を補給する手間が必要でなく、更に、空気中の水分を結露させるので水道水のように不純物を含むことがなくて付着物除去の手間が不要となる。   As described above, the discharge electrode 2 is connected to the cooling unit 7 of the Peltier unit 9 to directly cool the discharge electrode 2 to condense moisture in the air, thereby generating condensed water W. Therefore, the apparatus can be made compact. In addition, there is no need to replenish water as in the prior art, and furthermore, since moisture in the air is condensed, impurities such as tap water are not included, and the trouble of removing deposits becomes unnecessary.

上記のようにして放電電極2を冷却して放電電極2の先端部に結露水Wが保持された状態で、高電圧印加部1により放電電極2の先端部側がマイナス電極となって電荷が集中するように該放電電極2と対向電極3との間に5kV程度の高電圧を印加すると、放電電極2の先端部に保持される水Wが帯電し、帯電した水にクーロン力が働き、該水Wの液面が局所的に円錐形状(テイラーコーン)に盛り上がり、円錐形状となった水Wの先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして水が***・飛散(レーリー***)して静電霧化を行い、ラジカルを有するナノメータサイズの帯電微粒子ミスト(マイナスイオンミスト)を発生させる。   In the state where the discharge electrode 2 is cooled and the condensed water W is held at the tip of the discharge electrode 2 as described above, the tip of the discharge electrode 2 becomes a negative electrode by the high voltage application unit 1 and the charge is concentrated. Thus, when a high voltage of about 5 kV is applied between the discharge electrode 2 and the counter electrode 3, the water W held at the tip of the discharge electrode 2 is charged, and the Coulomb force acts on the charged water, The surface of the water W locally rises to a conical shape (Taylor cone), the charge concentrates on the tip of the water W that has a conical shape, the charge density becomes high, and the repulsive force of the high-density charge repels. In this way, water splits and scatters (Rayleigh splitting) to perform electrostatic atomization to generate nanometer-sized charged fine particle mist (negative ion mist) having radicals.

ここで、本発明においては、制御部20に放電電極2に保持される液体Wの保持状態を検知する検知手段5及びテーラーコーン先端角度制御手段6を有しており、上記検知手段5によって放電電極2への液体Wの保持状態を検知し、この検知手段5による放電電極2への液体Wの保持状態の検知情報に基づいて、制御部20に設けたテーラーコーン先端角度制御手段6により放電電極2に高電圧を印加させた際に放電電極2に保持される液体WのテーラーコーンTの先端角度を70°〜95°に制御するようになっている。   Here, in the present invention, the control unit 20 has the detection means 5 for detecting the holding state of the liquid W held by the discharge electrode 2 and the tailor cone tip angle control means 6. The holding state of the liquid W in the electrode 2 is detected, and discharge is performed by the tailor cone tip angle control means 6 provided in the control unit 20 based on the detection information of the holding state of the liquid W in the discharge electrode 2 by the detecting means 5. The tip angle of the tailor cone T of the liquid W held by the discharge electrode 2 when a high voltage is applied to the electrode 2 is controlled to 70 ° to 95 °.

放電電極2に保持される液体Wの保持状態を検知する検知手段5としては、放電電極2と対向電極3間に流れる微小な電流を検出する手段(電流計21)や、あるいは放電電極2の先端に対向するように筐体10に設けた開口部23を介してビデオカメラ22を配置して画像により情報を得る手段を挙げることができるが、本発明においては、放電電極2と対向電極3間に流れる微小な電流を検出する手段(電流計21)を用いている。また、放電電極2を冷却してその表面に水Wを結露させる本発明においては、放電電極2の近傍の空気の温湿度を検知する手段(温度センサ15、湿度センサ16)を付加することが望ましい。 As the detecting means 5 for detecting the holding state of the liquid W held by the discharge electrode 2, a means (ammeter 21) for detecting a minute current flowing between the discharge electrode 2 and the counter electrode 3, or the discharge electrode 2 A means for obtaining information by an image by disposing the video camera 22 through an opening 23 provided in the housing 10 so as to face the tip can be given. In the present invention, the discharge electrode 2 and the counter electrode 3 can be mentioned. Means (ammeter 21) for detecting a minute current flowing between them is used. In the present invention in which the discharge electrode 2 is cooled and water W is condensed on the surface thereof, means (temperature sensor 15 and humidity sensor 16) for detecting the temperature and humidity of the air in the vicinity of the discharge electrode 2 may be added. desirable.

下記の表1は先端径の異なる2種類の放電電極2における印加電圧に対するラジカル発生量の変化を示しており、先端径の異なる2種類の電極1、電極2にそれぞれ6μA、9μAの電流を流した時に電圧を変化させた場合におけるテーラーコーンTの先端角度の測定結果を示し、また、図2はこの場合における上記先端径の異なる2種類の放電電極2における印加電圧に対するラジカル発生量の変化を示すグラフである。   Table 1 below shows changes in radical generation amount with respect to applied voltage in two types of discharge electrodes 2 having different tip diameters, and currents of 6 μA and 9 μA were applied to the two types of electrodes 1 and 2 having different tip diameters, respectively. FIG. 2 shows the measurement result of the tip angle of the tailor cone T when the voltage is changed when the voltage is changed, and FIG. 2 shows the change in radical generation amount with respect to the applied voltage in the two types of discharge electrodes 2 having different tip diameters in this case. It is a graph to show.

表1及び図2から明らかなように、ラジカル発生量はテーラーコーンTの先端角度が70°〜95°の間で極大点をとる。先端角度70°より小さい場合には、放電電極2の先端の水Wの量が多い状態となり、エネルギーの伝達効率が悪くなってラジカルを含む帯電微粒子ミストの発生量が減少すると推察される。また、先端角度が95°以上の場合には、先端がボール状となる状態が不定期的に見られ、この状態になると電界の集中が悪くなってラジカルを含む帯電微粒子ミストの発生量が減少すると推察される。よってテーラーコーンTの先端角度を70°〜95°となるように制御することでラジカルを含む帯電微粒子ミストを効率よく且つ安定して発生させることが可能となる。   As is apparent from Table 1 and FIG. 2, the radical generation amount takes a maximum point when the tip angle of the tailor cone T is between 70 ° and 95 °. When the tip angle is smaller than 70 °, it is presumed that the amount of water W at the tip of the discharge electrode 2 is large, the energy transmission efficiency is deteriorated, and the generation amount of charged fine particle mist containing radicals is reduced. In addition, when the tip angle is 95 ° or more, a state in which the tip becomes a ball shape is irregularly observed. In this state, the concentration of the electric field is worsened and the generation amount of charged fine particle mist containing radicals is reduced. I guess that. Therefore, by controlling the tip angle of the tailor cone T to be 70 ° to 95 °, it is possible to efficiently and stably generate charged fine particle mist containing radicals.

上記のようにテーラーコーンTの先端角度を70°〜95°に制御するためのテーラーコーン先端角度制御手段6は、検知手段5により検知した液体Wの保持状態に基づいて、放電電極2の先端部への霧化させるべき結露水Wの供給量を制御する手段により構成してある。 The tailor cone tip angle control means 6 for controlling the tip angle of the tailor cone T to 70 ° to 95 ° as described above is based on the holding state of the liquid W detected by the detection means 5. It is comprised by the means which controls the supply amount of the dew condensation water W which should be atomized to a part .

図1には本発明の一実施形態が示してあり、放電電極2と、放電電極2と対向する対向電極3との距離が一定の場合において、検知手段5である電流計21で放電電極2と対向電極3間に流れる電流を検出することにより検知された放電電極2の先端部における水Wの保持状態の情報に基づいて、放電電極2の先端部への水Wの供給量を制御するものであり、図1においては冷却制御部13によるペルチェユニット9の熱電素子への通電量を制御することで、ペルチェユニット9の冷却性能を調整し、これにより放電電極2の表面における結露量、つまり、放電電極2の先端部への水Wの供給量を調整するようになっている。すなわち、本実施形態においては、図1(b)に示すように、検知手段5によりテーラーコーンTの先端角度が70°未満の場合は、テーラーコーン先端角度制御手段6により冷却制御部13によるペルチェユニット9の熱電素子への通電量をダウンさせて冷却性能をダウンさせることでテーラーコーンTの先端角度を70°〜95°となるように制御し、また、テーラーコーンTの先端角度が95°を越える場合は、テーラーコーン先端角度制御手段6により冷却制御部13によるペルチェユニット9の熱電素子への通電量をアップさせて冷却性能を向上させることでテーラーコーンTの先端角度を70°〜95°となるように制御するものである。これにより、放電電極2の先端部への水Wの供給量の調整により簡単にラジカルを含む帯電微粒子ミストを効率よく且つ安定して発生させることが可能となる。 FIG. 1 shows an embodiment of the present invention. When the distance between the discharge electrode 2 and the counter electrode 3 facing the discharge electrode 2 is constant , the ammeter 21 as the detection means 5 is used to discharge the discharge electrode 2. The amount of water W supplied to the tip of the discharge electrode 2 is controlled based on the information on the state of water W retained at the tip of the discharge electrode 2 detected by detecting the current flowing between the counter electrode 3 and the counter electrode 3. In FIG. 1 , the cooling performance of the Peltier unit 9 is adjusted by controlling the amount of current supplied to the thermoelectric element of the Peltier unit 9 by the cooling control unit 13, and thereby the amount of condensation on the surface of the discharge electrode 2. That is, the supply amount of water W to the tip of the discharge electrode 2 is adjusted. That is, in this embodiment, as shown in FIG. 1B , when the tip angle of the tailor cone T is less than 70 ° by the detection means 5, the tail cone cone angle control means 6 causes the Peltier to be controlled by the cooling control unit 13. The tip angle of the tailor cone T is controlled to be 70 ° to 95 ° by lowering the amount of current supplied to the thermoelectric element of the unit 9 to lower the cooling performance, and the tip angle of the tailor cone T is 95 °. Is exceeded, the tail angle of the tailor cone T is increased from 70 ° to 95 by increasing the amount of current supplied to the thermoelectric element of the Peltier unit 9 by the cooling control unit 13 by the tailor cone tip angle control means 6. It is controlled so that it becomes °. This makes it possible to easily and stably generate charged fine particle mist containing radicals by adjusting the amount of water W supplied to the tip of the discharge electrode 2.

また、上記実施形態において、オゾン量に制限がある空間で使用する場合、図3のようにオゾン量を検知するオゾン量検知手段14を付加し、印加する水の供給量を制御するようにしてもよく、この場合はオゾン量が制限された範囲の中で、ラジカルを含む帯電微粒子ミストを効率よく且つ安定して発生させることが可能となる。すなわち、図3(b)に示すように、検知手段5によりテーラーコーンTの先端角度が70°未満の場合で且つオゾン量検知手段14で検知したオゾン量が大の場合、冷却性能をダウンさせ、テーラーコーンTの先端角度が70°未満の場合でオゾン量検知手段14で検知したオゾン量が小の場合、印加電圧をアップさせることで、テーラーコーンTの先端角度を70°〜95°となるように制御する。また、テーラーコーンTの先端角度が95°を越える場合で且つオゾン量が大の場合、印加電圧をダウンさせ、テーラーコーンTの先端角度が95°を越える場合でオゾン量が小の場合、冷却性能をアップさせることで、テーラーコーンTの先端角度を70°〜95°となるように制御する。これにより、印加電圧の制御により簡単にラジカルを含む帯電微粒子ミストを効率よく且つ安定して発生させることが可能となり、また、オゾン量も最適化できる。 Further, in the above embodiment, when used in a space where the ozone amount is limited, an ozone amount detecting means 14 for detecting the ozone amount is added as shown in FIG. 3 to control the supply amount of water to be applied. In this case, charged fine particle mist containing radicals can be generated efficiently and stably within a range in which the amount of ozone is limited. That is, as shown in FIG. 3B , when the tip angle of the tailor cone T is less than 70 ° by the detection means 5 and the ozone amount detected by the ozone amount detection means 14 is large, the cooling performance is lowered. When the tip angle of the tailor cone T is less than 70 ° and the amount of ozone detected by the ozone amount detector 14 is small, the tip angle of the tailor cone T is set to 70 ° to 95 ° by increasing the applied voltage. Control to be. When the tip angle of the tailor cone T exceeds 95 ° and the amount of ozone is large, the applied voltage is reduced, and when the tip angle of the tailor cone T exceeds 95 ° and the amount of ozone is small, cooling is performed. The tip angle of the tailor cone T is controlled to be 70 ° to 95 ° by improving the performance. This makes it possible to easily and stably generate charged fine particle mist containing radicals by controlling the applied voltage, and to optimize the amount of ozone .

本発明の一実施形態を示し、(a)は概略全体構成図であり、(b)はテーラーコーンの先端角度が70°未満の場合と、95°を越える場合に70°〜95°となるように制御する例を示す概略説明図である。1 shows an embodiment of the present invention, (a) is a schematic overall configuration diagram, (b) is 70 ° to 95 ° when the tip angle of the tailor cone is less than 70 ° and exceeds 95 °. It is a schematic explanatory drawing which shows the example controlled in this way. 先端径の異なる2種類の放電電極における印加電圧に対するラジカル発生量の変化を示すグラフである。It is a graph which shows the change of the radical generation amount with respect to the applied voltage in two types of discharge electrodes from which a tip diameter differs. 本発明の他の実施形態を示し、(a)は概略全体構成図であり、(b)はテーラーコーンの先端角度が70°未満の場合と、95°を越える場合に70°〜95°となるように制御する例を示す概略説明図である。 Fig. 4 shows another embodiment of the present invention, in which (a) is a schematic overall configuration diagram, and (b) is 70 ° to 95 ° when the tip angle of the tailor cone is less than 70 ° and more than 95 °. It is a schematic explanatory drawing which shows the example controlled to become .

符号の説明Explanation of symbols

1 高電圧印加部
2 放電電極
3 対向電極
4 液体供給手段
5 検知手段
6 テーラーコーン先端角度制御手段
W 液体
DESCRIPTION OF SYMBOLS 1 High voltage application part 2 Discharge electrode 3 Counter electrode 4 Liquid supply means 5 Detection means 6 Tailor cone tip angle control means W Liquid

Claims (1)

高電圧印加部と、高電圧印加部で発生させた高電圧が印加される放電電極と、放電電極と一定の距離を隔てて対向する対向電極と、放電電極に霧化させるべき液体を供給する液体供給手段と、上記一定の距離を隔てて対向する放電電極と対向電極との間に流れる電流を検出することで放電電極に保持される液体の保持状態を検知する検知手段とを備え、上記液体供給手段がペルチェユニットにより構成されて、ペルチェユニットの冷却部側に放電電極を接続して放電電極を冷却することで空気中の水分を結露水として放電電極に供給するものであり、放電電極に高電圧を印加させた際に放電電極に保持される液体のテーラーコーンの先端角度を70°〜95°に制御するためのテーラーコーン先端角度制御手段を設け、上記テーラーコーン先端角度制御手段が、検知手段により得られた液体の保持状態の情報に基づいて、ペルチェユニットへの通電量を制御することで放電電極に供給する霧化させるべき液体の供給量を制御するものであることを特徴とする静電霧化装置。 A high voltage application unit, a discharge electrode to which a high voltage generated by the high voltage application unit is applied, a counter electrode facing the discharge electrode at a certain distance, and a liquid to be atomized are supplied to the discharge electrode comprising a liquid supply means, and a detection means which detects the holding state of the liquid held in the discharge electrodes by detecting a current flowing between the discharge electrodes and the counter electrode face each other with the predetermined distance, the The liquid supply means is constituted by a Peltier unit, and the discharge electrode is connected to the cooling part side of the Peltier unit and the discharge electrode is cooled to supply moisture in the air to the discharge electrode as condensed water. Tailor cone tip angle control means for controlling the tip angle of the tailor cone of the liquid held by the discharge electrode when a high voltage is applied to 70 to 95 ° is provided, The angle control means controls the supply amount of the liquid to be atomized supplied to the discharge electrode by controlling the energization amount to the Peltier unit based on the information on the liquid holding state obtained by the detection means. There is an electrostatic atomizing device.
JP2006147376A 2006-05-26 2006-05-26 Electrostatic atomizer Active JP4120685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147376A JP4120685B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147376A JP4120685B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007313460A JP2007313460A (en) 2007-12-06
JP4120685B2 true JP4120685B2 (en) 2008-07-16

Family

ID=38847805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147376A Active JP4120685B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4120685B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172557A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Electrostatic atomizer
JP5537057B2 (en) * 2009-03-27 2014-07-02 株式会社東芝 refrigerator
JP2010279861A (en) * 2009-06-02 2010-12-16 Daikin Ind Ltd Electrostatic sprayer
JP5606022B2 (en) * 2009-08-03 2014-10-15 三菱電機株式会社 Electrostatic spraying equipment
WO2011024766A1 (en) * 2009-08-26 2011-03-03 パナソニック電工 株式会社 Discharge device and electrostatic atomization device comprising same
JP5555590B2 (en) * 2010-09-30 2014-07-23 パナソニックヘルスケア株式会社 Sterilizer
JP6090637B2 (en) 2013-03-11 2017-03-08 パナソニックIpマネジメント株式会社 Active ingredient generator
JP7301244B1 (en) 2022-06-01 2023-06-30 三菱電機株式会社 Electrostatic mist generator and method for generating electrified mist

Also Published As

Publication number Publication date
JP2007313460A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4120685B2 (en) Electrostatic atomizer
JP4449859B2 (en) Electrostatic atomizer
JP4900207B2 (en) Electrostatic atomizer
JP6090637B2 (en) Active ingredient generator
JP4442444B2 (en) Electrostatic atomizer
US20140209710A1 (en) Electrostatic atomizing device
JP5221942B2 (en) Electrostatic atomizer and dryer
JP4956396B2 (en) Electrostatic atomizer
WO2013080686A1 (en) Electrostatic atomizing device
JP2007289871A (en) Electrostatic atomizer
JP2009090282A (en) Electrostatically atomizing device
JP2008155144A (en) Electrostatic atomizing device
JP5508207B2 (en) Electrostatic atomizer
JP4581990B2 (en) Electrostatic atomizer
JP4379536B2 (en) Electrostatic atomizer
JP4645528B2 (en) Electrostatic atomizer
JP4321660B2 (en) Electrostatic atomizer
JP4956368B2 (en) Electrostatic atomizer
CN109123981B (en) Charged particle generating device and hair care device
JP4900208B2 (en) Electrostatic atomizer
Wang et al. The enhancement ratio of corresponding convection heat transfer coefficient using electrospray evaporative cooling system
JP2013075266A (en) Electrostatic atomiser
JP2009125725A (en) Electrostatic atomization apparatus
JP2008200670A (en) Electrostatic atomizing device
JP2010089088A (en) Electrostatic atomizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071015

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4120685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6