JP4119217B2 - Microfluidic device, fluid processing device, and fluid processing method - Google Patents

Microfluidic device, fluid processing device, and fluid processing method Download PDF

Info

Publication number
JP4119217B2
JP4119217B2 JP2002297274A JP2002297274A JP4119217B2 JP 4119217 B2 JP4119217 B2 JP 4119217B2 JP 2002297274 A JP2002297274 A JP 2002297274A JP 2002297274 A JP2002297274 A JP 2002297274A JP 4119217 B2 JP4119217 B2 JP 4119217B2
Authority
JP
Japan
Prior art keywords
flow path
temperature
microfluidic device
path portion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297274A
Other languages
Japanese (ja)
Other versions
JP2004130219A (en
Inventor
孝典 穴澤
敦司 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2002297274A priority Critical patent/JP4119217B2/en
Publication of JP2004130219A publication Critical patent/JP2004130219A/en
Application granted granted Critical
Publication of JP4119217B2 publication Critical patent/JP4119217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ流体素子の内部に形成された毛細管状の流路内で流体を移送させることにより、該流体に温度履歴を受けさせることができるマイクロ流体素子、ならびにこれを用いた流体処理デバイスおよび流体処理方法に関する。
【0002】
【従来の技術】
マイクロ流体素子は、マイクロ・フルイディック・デバイス、マイクロ・ファブリケイテッド・デバイス、ラブ・オン・チップ、又はマイクロ・トータル・アナリティカル・システム(μ−TAS)とも呼ばれ、毛細管状の流路を有するとともに、該流路に流体を流入させて流出するまでの経路内で、流体を加熱又は冷却する機構、希釈又は濃縮する機構、化学反応させる機構、流動の流速や流動の分岐などの流動状態を制御する機構、混合、溶解、分離などを制御する機構、電気的、光学的な測定をする機構等が設けられたものが知られている。
【0003】
このような機構を備えたマイクロ流体素子は、化学、生化学などの微小反応素子(マイクロ・リアクター);集積型DNA分析素子;微小電気泳動素子;微小クロマトグラフィー素子などの微小分析素子;質量スペクトルや液体クロマトグラフィーなどの分析試料調製用微小素子;抽出、膜分離、透析などの物理化学的処理素子;マイクロアレイ製造用スポッタなどとして使用できる。
【0004】
【特許文献1】
特開2002−018271号公報
【0005】
マイクロ流体素子を使用して流体の温度を変化させる方法として、例えば上記特許文献1には、板状の部材の内部に、該部材の表面に平行な一面内で蛇行する形状の流路が形成されたマイクロ流体素子を用いるとともに、前記流路が存在する面内に温度が互いに異なる3つの領域を設け、前記流路に流される流体が、上記3つの領域を順次通過することによって、流体の温度が変化するように構成されたマイクロ流体素子が開示されている。
この方法は、流路内を移送される流体の温度を変化させるために、流路内の温度を経時的に変化させる方法と異なって、マイクロ流体素子自身の温度を各領域毎に設定された所定の温度に保持することにより、流路中を流れる流体に所望の温度変化を生じさせることができる方法である。この方法は、特に、流路を流れる流体の熱容量が、マイクロ流体素子の熱容量や加温用のヒートブロックの熱容量に比べて極めて小さいために、流体を急速に昇温させたり降温させることが可能であり、これによって処理を高速化できる点で好ましい。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の従来の方法では、該部材の表面に平行な面内において温度が互いに異なる領域を複数設ける構成が必要なので、マイクロ流体素子が微小である場合は温度差が大きい領域を設けることが困難であり、流路が立体的に集積化されている場合には、流路の各部分に所望の温度分布を設けることが困難であった。換言すれば、流路内を移送される流体に、一定の温度差の温度変化を生じさせることが要求される場合、マイクロ流体素子を微小化したり、同じ面積のマイクロ流体素子中に多数の流路を設けることには限界があった。
【0007】
本発明は、このような事情に鑑みて、微小なマイクロ流体素子や高度に集積した流路を有するマイクロ流体素子であっても、流体に大きな温度変化を受けさせることが可能なマイクロ流体素子、流体処理デバイス、および流体処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決する方法について鋭意検討した結果、板状のマイクロ流体素子の表裏面を異なる温度に設定して厚さ方向に温度分布を持たせ、該マイクロ流体素子の内部の、表面近くに形成された流路部分と、裏面近くに形成された流路部分が直列に接続された流路に流体を流すことによって、上記課題を解決できることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、板状又はシート状の部材の内部に毛細管状の流路を有しており、前記流路が、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部および第二流路部を備えてなるマイクロ流体素子を用い、該マイクロ流体素子の厚さ方向の両端面の温度を互いに異なる温度に制御しつつ、前記流路内で流体を移送させることを特徴とする流体の処理方法を提供する。
本発明の流体の処理方法によれば、マイクロ流体素子の厚さ方向の両端面(表面および裏面ともいう)の温度を互いに異なる温度に制御することにより、マイクロ流体素子の厚さ方向において温度分布を形成することができる。そして、マイクロ流体素子の内部に形成された流路は、厚さ方向における位置が異なる第一流路部と第二流路部を有しているので、該流路内を移送される流体は、厚さ方向の異なる位置を経由することになり、それぞれの位置における温度分布に応じた温度変化を受ける。
したがって、微小なマイクロ流体素子であっても、また流路が立体的に集積化されていても、厚さ方向の両端面の温度差を大きくすることによって、温度差が大きい温度分布を容易に形成できるので、これにより流体に大きな温度変化を受けさせることが可能となる。
【0010】
また本発明は、板状又はシート状の部材の内部に毛細管状の流路を有しており、前記流路が、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部および第二流路部を備えてなるマイクロ流体素子と、
該マイクロ流体素子の厚さ方向の両端面の温度を互いに異なる温度に制御する温度制御機構を備えてなることを特徴とする流体処理デバイスを提供する。
本発明の流体処理デバイスによれば、本発明の流体処理方法を用いて流体に大きな温度変化を受けさせることができ、マイクロ流体素子の微小化や流路の集積化を達成することができる。
【0011】
また本発明は、板状又はシート状の部材の内部に毛細管状の流路を有しており、該流路には、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部および第二流路部が、前記流路に沿って交互に存在しており、該第一流路部の数と第二流路部の数がそれぞれ15〜50であるマイクロ流体素子を提供する。
本発明のマイクロ流体素子は、本発明の流体処理方法および流体処理デバイスを実現するのに好適に用いられ、微小なマイクロ流体素子や高度に集積した流路を有するマイクロ流体素子であっても、流体に大きな温度変化を受けさせることを可能とする。また、第一流路部および第二流路部がそれぞれ15〜50設けられているので、特に、このマイクロ流体素子を用いてポリメラーゼ連鎖反応(PCR)を好適に行うことができる。
【0012】
【発明の実施の形態】
本発明の流体の処理方法、流体処理デバイス、およびマイクロ流体素子は、化学や生化学の反応、溶解、析出、分離、蒸発などの物理化学的処理、温度による解離量の違いなどの測定や分析、などの流体処理を行うのに好適であり、特に、ポリメラーゼ連鎖反応(PCR)を行うのに好適である。
ここで、PCRは、同じ構造のデオキシリボ核酸(DNA、以下DNAという。)の数を増す反応であり、具体的には反応溶液(増幅すべき種DNA、プライマーと称される増幅の起点を設定するためのDNA断片、ポリメラーゼ、および基質を含有する緩衝液溶液)を融解温度(85〜95℃)、結合温度(35〜45℃)、および伸張温度(65〜80℃)を順次経由させるサイクルを繰り返すことにより、DNAを増幅させる生化学反応である。
本発明の流体の処理方法において、前記マイクロ流体素子には、前記第一流路部および前記第二流路部が前記流路に沿って交互に存在しており、該第一流路部の数と第二流路部の数がそれぞれ15〜50であることが好ましい。
かかる構成とすれば、特にポリメラーゼ連鎖反応(PCR)を行うのに好適である。
本発明の流体処理方法において、前記流体としてポリメラーゼ連鎖反応用の反応溶液を好ましく用いることができる。
【0013】
本発明の流体処理デバイスにおいて、前記温度制御機構として、前記部材の厚さ方向の一方の端面に温度調節された固体を接触させる手段、および他方の端面に温度調節された気体を接触させる手段を有することが好ましい。
温度調節された固体を接触させる手段は装置構成が簡単であり、気体を接触させる手段は部材の内部を観察できるという利点を有する。また、高温側に用いる熱媒体を固体とし、低温側を気体とすることによって、低温側に於ける熱の除去が容易となる。
【0014】
本発明のマイクロ流体素子において、前記部材の厚さ方向における熱伝導係数が10(Js-1-1-1)以下であることが好ましい。
本発明において、部材の厚さ方向において熱伝導係数が一様でなくてもよく、第一面から第二面への全体としての熱伝導係数が上記範囲であればよい。上記熱伝導係数が10(Js-1-1-1)を超えると、マイクロ流体素子の厚さ方向の両端面の温度差を大きくするのが困難となる。
【0015】
本発明のマイクロ流体素子は、それぞれ厚さ方向の一方の端面に凹溝が形成された第一の部材と第二の部材が、前記凹溝が形成された面が内側となるように対向配置されて一体化されている構成とすることができる。
また、前記第一の部材と前記第二の部材の間に、前記第一の部材の凹溝と前記第二の部材の凹溝とを連通させる貫通孔を有する第三の部材が介在していてもよい。
このような積層構造を有するマイクロ流体素子は、製造が容易であるという利点を有する。
【0016】
【実施例】
以下、図面を参照しながら本発明を詳しく説明する。
図1〜3は本発明のマイクロ流体素子の第一の実施例を示したもので、図1は平面図、図2は断面図、図3は分解斜視図である。
本実施例のマイクロ流体素子は、板状又はシート状の部材1の表面に、流入口6と流出口7が設けられるとともに、該部材1の内部に流入口6から流出口7に至る、毛細管状の流路2(以下、「毛細管状の流路」を、単に「流路」と称する)が形成されて概略構成されている。以下、マイクロ流体素子の部材の表面の横方向および縦方向をそれぞれX方向、Y方向とし、厚さ方向をZ方向とする。
流路2は、Z方向における位置が異なる第一流路部3および第二流路部4を有しており、第一流路部3と第二流路部4は連通部5を介して交互に連続している。
【0017】
部材1の形状は、板状又はシート状であるが、ここで言う板状とは、比較的剛直な物を言い、シート状とは柔軟な物を言う、シート状にはフィルム状、リボン状、ベルト状、薄片状などを含むものとする。但し、以下、本明細書に於いては、説明の簡略化のために、上述の「シート状」も含めて「板状」と称する。
ここでの板状とは、幅と長さに比して厚さが薄い形状を意味し、表面、すなわち厚さ方向の端面に細かい凹凸を有していてもよいし、表面が曲面であってもよく、曲げられた板状であってもよい。また、部材1は、少なくとも内部に流路2が設けられている部分が板状であればよく、板状以外の形状の部分を有していてもよい。しかしながら、部材1は、全体が板状であることが、製造が容易で好ましい。
【0018】
部材1の厚さは任意であるが、10μm〜10mmが好ましく、100μm〜5mmがさらに好ましく、300μm〜3mmが最も好ましい。厚さがこの範囲より薄いと、製造や取り扱いが困難となる上、第一流路部3と第二流路部4それぞれの内部における温度分布が大きくなってしまい、流路2内を移送される流体が受ける熱履歴が不安定になるので好ましくない。一方、部材1の厚さが上記の範囲を超えると、マイクロ流体素子が微小であることの特長が失われがちとなる。部材1の厚さは一定でなくて良いが、一定であることが温度制御を正確に行うためには好ましい。
【0019】
第一流路部3および第二流路部4は、いずれもX方向に平行な帯状で、Y方向における位置および幅はそれぞれ一定であり、Z方向における位置および高さもそれぞれ一定である。
図2に示すように、部材1のZ方向の両端面(表面および裏面ともいう)の一方を第一面8、他方を第二面9としたとき、第一流路部3は、第一面8と第二面9のうち、第一面8により近い位置に形成されており、第二流路部4は第二面9により近い位置に形成されている。また図2におけるZ方向を上下方向とし第一面側を上側とすると、第一流路部3の下面と第二流路部4の上面とが同一面に存在している。また、上側から見て第一流路部3の端部と第二流路部4の端部とは重なり合っており、この重なった部分が連通部5となっている。これら第一流路部3および第二流路部4によって構成される流路2は、上側から見たときにX方向に沿う帯状であり、該流路2の両端部はそれぞれ流入口6および流出口7に連通している。
【0020】
流路2は、第一流路部3と第二流路部4をそれぞれ1以上有する。第一流路部3と第二流路部4の数、長さ、順序は、マイクロ流体素子の用途目的によって設計できる。例えば、マイクロ流体素子がポリメラーゼ連鎖反応(PCR)に使用されることを目的としたものである場合には、第一流路部3、第二流路部4がそれぞれ15〜50、交互に設けられていることが好ましい。PCRを行う場合、第一流路部3および第二流路部4の数が15未満であるとDNAの生成量が少なくなり、50を超えると副反応の増加により純度が低下する。
勿論、流路2は、第一流路部3、第二流路部4以外の流路部分を有していてもよい。
複数の第一流路部3のX方向における長さや断面積、および複数の第二流路部4のX方向における長さや断面積は、それぞれ一定であってもよく、互いに異なっていてもよい。例えば、PCRにおける最初の融解工程と結合工程の時間が、2回目以降の融解工程および結合工程より長くなるように、最初の融解工程と結合工程にそれぞれ対応する第一流路部3および第二流路部4を、他の第一流路部3および第二流路部4より長くすることも好ましい。または、最初の融解工程と結合工程にそれぞれ対応する第一流路部3および第二流路部4の断面積を、他の第一流路部3および第二流路部4の断面積より大きくしてもよい。
しかし、一般的には、複数の第一流路部3のX方向における長さや断面積、および複数の第二流路部4のX方向における長さや断面積をそれぞれ均一とすると、流体に所定条件の温度変化を生じさせる工程を、繰り返し再現性良く行うことができるので好ましい。
【0021】
第一流路部3の第一面8からの距離(「深さ」と称する場合もある)は特に限定されないが、0.5μm〜300μmが好ましく、1μm〜200μmがさらに好ましく3μm〜100μmが最も好ましい。第一流路部3の深さは、強度的に問題がない範囲で小さいことが、熱伝導が良好になって第一面8と第一流路部3との温度差が小さくなり、温度制御の精度が向上するため好ましい。但し、後述のように、第一面8と第一流路部3の間に介在する部材が金属のような熱良導体である場合には該距離の自由度は上記範囲より大きくなる。
一方、第一流路部3の第二面9からの距離は、大きいほど第一面8と第一流路部3との温度差が小さくなるので、温度制御の精度が向上するため好ましい。
ここで、第一の流路部3の第一面8からの距離とは、これらの間を隔てる距離を言い、本実施例のように第一の流路部3が第一面8に平行に形成されている場合には、第一の流路部3の上側の壁面と第一面8との距離を言うものとする。同様に、第一の流路部3の第二面9からの距離とは、第一の流路部3の下側の壁面と第二面9との距離を言う。
【0022】
第一流路部3および第二流路部4の断面(本明細書において、流路の断面は横断面、即ち、流線に直角な方向の断面を言い、本実施例ではX方向に対して垂直な断面である)の形状は幅が広く高さが低い扁平な矩形に形成されているが、これに限らず適宜変更可能である。例えば、三角形、矩形、台形、五角形、六角形などの多角形;円;楕円;半円等であり得る。なおこれらの形状の内、多角形などの角のある形状は、角の丸まったものを含む。第一流路部3および第二流路部4の断面形状は、Y方向における幅が広く、Z方向における高さが低い形状であることが、流体の温度制御の精度を向上させるうえで好ましい。上記Y方向における幅とZ方向における高さの比、すなわち(幅/高さ)の値は1〜100が好ましく、1〜30が更に好ましく、1〜10が最も好ましい。該比が上記の範囲未満では温度調節の精度に劣るものとなりがちであり、上記の範囲を超えると製造が困難となる。第一流路部3および第二流路部4の断面積も任意であるが、1μm2〜10mm2 が好ましく、100μm2〜1mm2が更に好ましい。該断面積が上記範囲より小であると液体の流通が困難となり、上記範囲より大であると、マイクロ流体素子としての特長が減じると共に、流体の温度を急速に変化させることができるという本発明の特長が減じる。
【0023】
部材1の素材は、例えば、ガラス、水晶等の結晶、シリコンなどの半導体、セラミック、炭素、有機重合体(ポリジメチルシロキサンのように、無機元素を含有するものであってもよい。以下単に「重合体」と称する)、又はこれらの発泡体などであることが好ましい。
本発明において、部材1の第一面8および第二面9の一方から他方への熱伝導係数が10(Js-1-1-1)以下であることが好ましく、1(Js-1-1-1)以下であることがより好ましい。この範囲を超えると、部材1の第一面8と第二面9との間の温度差を大きくすることが困難であるうえ、熱貫流量が大となるためエネルギー消費が大となって好ましくない。熱伝導係数の下限は自ずと限界は有ろうが、小さいことそれ自体による不都合はないため、下限を設けることを要しない。
部材1の厚さ方向において、熱伝導係数は一様でなくてもよい。したがって、部材1の全体を同じ素材で形成してもよく、異種の素材を組み合わせてもよい。
部材1の全体を同じ素材で形成する場合には、熱伝導係数が10(Js-1-1-1)以下の素材が好ましく、1(Js-1-1-1)以下の素材がさらに好ましい。このような熱伝導係数が小さい素材としては、重合体が特に好ましい。また、発泡体とすれば、さらに熱伝導係数を大きく下げることが出来る。金属を使用すると熱伝導係数が高すぎる傾向がある。
【0024】
なお、後述する第2ないし第4の実施例のように第一流路部12,42,62を成す層と第二流路部13,43,63を成す層の間に他の層26,46,66a,66b,66c、が存在する場合には、部材1を複数種の素材を組み合わせて構成することができる。この場合、厚さ方向において第一流路部と第二流路部との間は熱伝導係数が低い素材で形成し、第一流路部の周辺および該第一流路部と第一面8との間、ならびに第二流路部の周辺および該第二流路部と第二面9との間は熱伝導係数が高い素材で形成して、第一面8から第二面9、または第二面9から第一面8への熱伝導係数が全体として10(Js-1-1-1)以下となるように構成するのが好ましい。
ただし、本実施例では、第一流路部3と第二流路部4との間に介在層が無いので、部材1の全体を同じ素材で構成するか、熱伝導係数が類似している複数種の素材を組み合わせて部材1を構成することが好ましい。
【0025】
本実施例のマイクロ流体素子は、流入口6および流出口7となる貫通孔が形成された第一層11と、第一流路部3となる貫通孔が形成された第二層12と、第二流路部4となる貫通孔が形成された第三層13と、貫通孔を有しない第四層14とがこの順に積層されて一体化された構成を有する。
このような積層構造を有するマイクロ流体素子は製造が容易であるという利点を有する。
本実施例における第一層11と第二層12とで、本発明の、厚さ方向の一方の端面に凹溝が形成された第一の部材が構成され、第三層13と第四層14とで、本発明の、厚さ方向の一方の端面に凹溝が形成された第二の部材が構成されている。
【0026】
本実施例のマイクロ流体素子を製造する方法は特に限定されず、例えば、(i)エネルギー線硬化性樹脂を一時的な支持体へ塗工し、(ii)該塗膜へ紫外線を照射して該塗膜を不完全硬化させて第一層11となし、(iii)該半硬化した第一層11の上に第二層12となるエネルギー線硬化性樹脂を塗工し、(iv)該第二層12塗膜へ紫外線をパターン露光して露光部を不完全硬化させ、(v)非露光部の未硬化樹脂を洗浄除去することによって第二層12に所定パターンの貫通孔を形成して、第一層11と第二層12の積層体の表面に第二層12の貫通孔からなる凹溝(第一流路部3)を有する第一部材と成し、(vi)これと同様の操作によって、第三層13と第四層14の積層体から成る第二の部材を形成し、(vii)これらを凹溝を内側にして積層した状態で紫外線を照射して、不完全硬化塗膜を硬化させると共に各層を互いに接着し、(viii)一時的な支持体を剥離する手法を用いることができる。
その他の方法として、例えば、前記第一の部材と第二の部材をそれぞれ射出成型法、フォトリソグラフィー、溶融レプリカ法などで成形してそれを貼り合わせても良いし、光硬化性樹脂を用いたマイクロ光造形法で一挙に成形してよい。
【0027】
図4〜6は本発明のマイクロ流体素子の第二の実施例を示したもので、図4は平面図、図5は断面図、図6は分解斜視図である。これらの図において図1〜3と同じ構成要素には同一の符号を付して説明を省略する。
本実施例が前記第一の実施例と大きく異なる点は、第一流路部3と第二流路部4とが、Z方向に延びる連絡流路25を介して連通されている点である。
すなわち、本実施例における部材21が前記部材1と異なる点は、前記第一の実施例における第二層12と第三層13との間に、連絡通路25となる四角穴状の貫通孔が形成された介在層26が積層一体化されている点である。この部材21を上側から見たときに、1つの第一流路部3の流出口側の端部が、前記四角穴状の貫通孔および第二流路部4の流入口側の端部と重なっており、この重なった部分がZ方向に延びる連絡流路25を形成している。これら第一流路部3、連絡流路25および第二流路部4によって構成される流路22は、上側から見たときにX方向に沿う帯状であり、該流路22の両端部はそれぞれ流入口6および流出口7に連通している。
【0028】
なお、本実施例における第一層11と第二層12とで、本発明の、厚さ方向の一方の端面に凹溝(第一流路部3)が形成された第一の部材が構成され、第三層13と第四層14とで、本発明の、厚さ方向の一方の端面に凹溝(第二流路部4)が形成された第二の部材が構成され、介在層26で本発明の貫通孔(連絡流路25)を有する第三の部材が構成されている。
【0029】
本実施例のマイクロ流体素子を製造する方法は特に限定されないが、例えば、(i)エネルギー線硬化性樹脂を一時的な支持体へ塗工し、(ii)該塗膜へ紫外線をパターン露光して照射部を不完全硬化させ、(iii)非照射部の未硬化樹脂を洗浄除去することによって所定パターンの貫通孔を形成し、(iv)これを他の層へ積層した状態で紫外線を再照射して、不完全硬化塗膜を硬化させると共に他の層と接着し、(v)一時的な支持体を剥離する手法を用いることができる。また該(i)から(v)までの一連の操作を繰り返せば、複数の層が積層された構造のマイクロ流体素子を容易に好適に製造することができる。例えば、本実施例の場青には、第一層11、第二層12、介在層26、第三層13、第四層14の順で積層して製造することができる。又、この製造方法によって、本発明の第三及び第四の実施例で述べるマイクロ流体素子も製造することができる。
【0030】
図7および8は本発明のマイクロ流体素子の第三の実施例を示したもので、図7は断面図、図8は分解斜視図である。これらの図において図1〜3と同じ構成要素には同一の符号を付して説明を省略する。
本実施例が前記第一の実施例と大きく異なる点は、第二流路部34の流入側の端部が、X方向に延びる連絡流路35を介して第一の流路部33と連通されており、第二流路部34の流出側の端部が、Z方向に延びる連絡流路36を介して第一の流路部33と連通されている点である。
すなわち、本実施例における部材41は、流入口6および流出口7となる貫通孔が形成された第一層11と、第一流路部33となる帯状の貫通孔が形成された第二層42と、連絡流路35となる帯状の貫通孔および連絡流路36となる四角穴状の貫通孔が形成された介在層46と、第二流路部34となる帯状の貫通孔が形成された第三層43と、貫通孔を有しない第四層14とがこの順に積層されて一体化された構成を有する。
【0031】
この部材41を上側から見たときに、第一流路部33の流出口側の端部が、連絡流路35の流入口側の端部と重なっており、連絡流路35の流出口側の端部が、第二流路部34の流入口側の端部と重なっている。また第二流路部34の流出口側の端部が連絡流路36となる四角穴状の貫通孔、および第一流路部33の流入口側の端部と重なっている。これら第一流路部33、連絡流路35、第二流路部34および連絡流路36によって構成される流路32は、上側から見たときにX方向に沿う帯状であり、該流路32の両端部はそれぞれ流入口6および流出口7に連通している。
【0032】
なお、本実施例における第一層11と第二層42とで、本発明の、厚さ方向の一方の端面に凹溝(第一流路部33)が形成された第一の部材が構成され、第三層43と第四層14とで、本発明の、厚さ方向の一方の端面に凹溝(第二流路部34)が形成された第二の部材が構成され、介在層46で本発明の貫通孔(連絡流路35,36)を有する第三の部材が構成されている。
【0033】
図9および10は本発明のマイクロ流体素子の第四の実施例を示したもので、図9は断面図、図10は分解斜視図である。これらの図において図1〜3と同じ構成要素には同一の符号を付して説明を省略する。
本実施例が前記第一の実施例と大きく異なる点は、第二流路部54の流入口側の端部が、Z方向に延びる連絡流路55a、X方向に延びる連絡流路55b、およびZ方向に延びる連絡流路55cからなるクランク状の連絡流路55を介して第一の流路部53の流出口側の端部と連通されており、第二流路部34の流出口側の端部が、Z方向に延びる連絡流路56を介して第一の流路部53流入口側の端部と連通されている点である。連絡流路56は、それぞれZ方向に延びる連絡流路56a,56b,56cが接続されて構成されている。
【0034】
すなわち、本実施例における部材61は、流入口6および流出口7となる貫通孔が形成された第一層11と、第一流路部53となる帯状の貫通孔が形成された第二層62と、連絡流路55aとなる四角穴状の貫通孔および連絡流路56aとなる四角穴状の貫通孔が形成された第一介在層66aと、連絡流路55bとなる帯状の貫通孔および連絡流路56bとなる四角穴状の貫通孔が形成された第二介在層66bと、連絡流路55cとなる四角穴状の貫通孔および連絡流路56cとなる四角穴状の貫通孔が形成された第三介在層66cと、第二流路部54となる帯状の貫通孔が形成された第三層63と、貫通孔を有しない第四層14とがこの順に積層されて一体化された構成を有する。
【0035】
この部材61を上側から見たときに、第一流路部53の流出口側の端部と、第一介在層66aの四角穴状の連絡流路55aと、第二介在層66bの連絡流路55bの流入口側の端部とが重なっており、該連絡流路55bの流出口側の端部と、第三介在層66cの四角穴状の連絡流路55cと、第二流路部54の流入口側の端部とが重なっている。また第二流路部54の流出口側の端部と、第三介在層66cの四角穴状の連絡流路56cと、第二介在層66bの四角穴状の連絡流路56bと、第一介在層66aの四角穴状の連絡流路56aと、第一流路部53の流入口側の端部とが重なっている。これら第一流路部53、連絡流路55a,55b,55c、第二流路部54、および連絡流路56a,56b,56cによって構成される流路52は、上側から見たときにX方向に沿う帯状であり、該流路52の両端部はそれぞれ流入口6および流出口7に連通している。
【0036】
なお、本実施例における第一層11と第二層62とで、本発明の、厚さ方向の一方の端面に凹溝(第一流路部53)が形成された第一の部材が構成され、第三層63と第四層14とで、本発明の、厚さ方向の一方の端面に凹溝(第二流路部54)が形成された第二の部材が構成され、第一ないし第三介在層66a,66b,66cで、本発明の、貫通孔(連絡流路55,56)を有する第三の部材が構成されている。
【0037】
図11は本発明のマイクロ流体素子の第五の実施例を示した断面図である。
本実施例が前記第一の実施例と大きく異なる点は、X方向に延びる流路72の第一面8からの距離(深さ)が、流入口6側から流出口7側に向かう方向において漸次増加しており、該流路72が第一面8に対して傾斜している点である。
本実施例では、斜めの流路72のうち、第一面8に近い部分が第一流路部73であり、第二面9に近い部分が第二流路部74であり、これらの中間が連絡流路75となっている。これらの境目は明確ではない。図中符号71は部材を示す。
なお、流路72が深さ方向に傾斜する代わりに多数の段から成る階段状であっても良い。
本実施例で述べたマイクロ流体素子は、例えば、光硬化性樹脂を用いたマイクロ光造形法で製造することができる。
【0038】
上記の第一ないし第四の実施例では、第一流路部、第二流路部、および連絡流路がX−Y平面に平行に設けられているので、精度良く温度調節を行ううえで好ましく、製造も容易であるが、1つの流路内にZ方向の位置が異なる部分が複数存在していればよく、上記第五の実施例のように、第一流路部73、第二流路部74連絡流路75の少なくとも1つが、X−Y平面に対して斜めになっていてもよい。
【0039】
これらの各実施例のうち、上記の第一の実施例では、第一流路部3と第二流路部4とが連絡流路を介さずに連通されているので、流体の温度を、第一流路部3の温度から第二流路部4の温度へ、比較的短時間で移行させることができる。一方、第二ないし第五の実施例のように、第一流路部と第二流路部との間に連絡流路が設けられている場合には、該連絡流路内は、第一流路部および第二流路部のいずれとも異なる温度分布を有するので、流体は連絡流路内を移送する際に、該連絡流路内の温度分布に応じた温度変化を受ける。例えば第三および第四の実施例のように、Z方向に延びる連絡流路を設けると、流体の温度は、第一流路部の温度から第二流路部の温度へ、比較的短時間で移行するが、X方向に延びる連絡流路では、流体は第一流路部と第二流路部の中間の一定温度に一定時間保持されるので、流体に3段階の温度履歴を与えることができる。このとき、X方向に伸びる連絡流路の第一面からの距離と第二面からの距離の比を調節することにより、該連絡流路における温度を調節することが出来る。また第五の実施例のように、連絡流路がX−Y平面に対して斜めに形成すると、流体を徐々に昇温又は降温させることができる。
連絡流路の形状、長さ、断面積は、これらを調節することによって、連絡流路内における昇温速度や降温速度、温度、及び該温度における滞留時間を調節できる。
【0040】
なお、上記各実施例のマイクロ流体素子において、流入口6と流出口7には、配管接続のためのフィッティングが固定されていてもよいし、配管が接続固定されていてもよい。流入口6及び/又は流出口7が部材外に開口又は連絡している場合には、その位置は任意であり、上記各実施例のように第一面8に形成してもよく、第二面9または部材の側面に形成することもできる。ただし、流入口6および流出口7が、第一面8及び/又は第二面9の温度を制御するための機構で閉塞されないように構成することが好ましい。また、流入口6及び/又は流出口7が第一面8に開口しておらず、部材内部に形成された他の機能部分、例えば貯液槽、ポンプ機構、バルブ機構、膜分離機構などに連通するように開口していてもよい。
【0041】
上記各実施例のマイクロ流体素子において、部材の内部で流路が分岐していて、流入口6および流出口7がそれぞれ複数であってもよい。流入口6の数と流出口7の数が異なっていてもよい。
また、部材は、それぞれ独立した複数の流路を有していてもよい。独立した複数の流路は、構造が同一でもよく異なっていてもよい。例えば、PCR用に使用されるマイクロ流体素子の場合、1つの部材内に3〜100本の同一構造の流路を互いに平行に設けることが好ましい。該同一構造の複数の流路は、Z方向における位置が互いに同一であることが好ましい。
また、上側から見た流路の形状も、直線状に限らず、マイクロ流体素子の用途、目的に応じて任意の形状とすることができる。
【0042】
次に本発明の流体処理デバイスの実施例について説明する。ここでは、ポリメラーゼ連鎖反応(PCR)を行うのに好適な流体処理デバイスを例に挙げて説明する。
本実施例の流体処理デバイスは、図9に示す第四の実施例のように、X方向に延びる連絡流路55bを有するマイクロ流体素子を好適に用いてなり、該マイクロ流体素子に、第一面8および第二面9の温度を互いに異なる温度に制御する温度制御機構が設けられている。本実施例で用いられるマイクロ流体素子はPCRに用いられるので、1つの流路52において、第一流路部53と第二流路部54とが連絡流路55、56を介して交互にそれぞれ15〜50個存在していることが好ましい。また、このような流路52が3〜100本、Y方向に間隔をおいて互いに平行に形成されていることがより好ましい。
【0043】
温度制御機構は、第一面8と第二面9に、それぞれ異なる温度のヒートブロックを接触させる機構であってもよく、ヒートブロックを、液体被膜を介して接触させると温度ムラが減少されるので好ましい。また温度調節された液体や気体(熱風や冷風)を第一面8および第二面9に接触させる機構であってもよく、赤外線加熱を行う機構であってもよい。または、これらの機構を組み合わせてもよい。特に気体を接触させる機構は、マイクロ流体素子の部材61が透明であれば内部を観察できるという利点を有する。
特に、第一面8および第二面9のうち、高温側となる面に固体状のヒートブロックを接触させ、低温側を気流と接触させる機構は、装置が単純であるうえ、部材61が透明であれば、低温側から内部を観察でき、さらに、低温側の熱の除去(放散)が容易であるのでより好ましい。低温側に放熱フィンを接触させ、該放熱フィンを気流冷却することも好ましい。
【0044】
本実施例の流体処理デバイスを用いて本実施例の流体処理方法を実施するには、まず第一面8と第二面9を所定の温度に制御する。本実施例では、ポリメラーゼ連鎖反応(PCR)を好適に行うために、第一流路部53内の流体の温度(以下「第一流路部内の流体の温度」を「第一流路部の温度」と称する。第二流路部および連絡流路についても同様である。)を、PCRにおける結合温度である35〜45℃の範囲内に設定するのが好ましい。また、X方向に延びる連絡流路55bの温度を、伸長温度である65〜80℃の範囲内に設定し、第二流路部54の温度を融解温度である85〜95℃となるように設定することが好ましい。
【0045】
流路52が形成されている部材61が、単一の素材で形成されている場合や、ほぼ同じ熱伝導係数を有する複数の素材で形成されている場合には、部材61の第一面8から第二面9に至る深さ方向(Z方向)の温度分布は、ほぼ、第一面8の温度と第二面9の温度を結ぶ直線状となる。従って、第一流路部53及び第二流路部54を流れる流体の温度を所望の温度に調節するには、上記各流路部の深さを考慮して、第一面8と第二面9の温度を制御すればよい。一方、連絡流路55bを流れる流体の温度を所望の温度に調節するには、第一面8と第二面9の温度を考慮して、連絡流路55bの第一面からの距離と第二面からの距離の比を設定すればよい。該距離の比を設定するには、第一介在層66aと第三介在層66cの厚みを調節すればよい。
一方、部材61が熱伝導係数の異なる複数の素材の複合体として形成されている場合には、各部分の熱抵抗から、化学工学的に周知の方法によって部材61の第一面8から第二面9に至る深さ方向(Z方向)の温度分布を算出することができる。
【0046】
そして、マイクロ流体素子の第一面8を低温側とし、第二面9を高温側として所定の温度に制御された状態で、流入口6から流体を供給すると、該流体は、第一流路部53、連絡流路55、第二流路部54、および連絡流路56を順に通って流路52内を移送される間に、各部位の温度分布に応じた温度変化を生じる。本実施例ではPCRを行うので、マイクロ流体素子に流す流体として、公知のポリメラーゼ連鎖反応用反応溶液、即ち、例えば種DNA、3’側プライマー、5’側プライマー、ポリメラーゼ、及び基質として4種類のヌクレオチドモノマーの混合溶液を好適に使用することができる。
また、本実施例において、流体は、流路52を移送される間に、第一流路部53に於ける結合温度帯を通過した後、連絡流路55における伸長温度帯、第二流路部54における融解温度帯を順に通過して再び結合温度帯へ戻るという一連の温度履歴を1サイクルとして、第一流路部53および第二流路部54の数に応じて、15〜50サイクルの温度履歴を受ける。
【0047】
本実施例の流体処理方法は、マイクロ流体素子を用いる方法であり、マイクロ流体素子の流路壁を構成する部材61の熱容量に比べて、流路に流す流体の熱容量が小さくなるように構成できるため、これにより流体を高速で昇温させたり降温させたりすることが可能である。また、流路径を微小にできるため、流路内は拡散支配となって、流路壁に温度分布があっても流路断面内における流体の温度分布を小さくすることが可能である。そのため、流路を流れる流体の温度は、通常、流路を囲む流路壁の平均温度となる。しかしながら、流速が大きい場合や、発熱反応、吸熱反応などの場合には、流体の温度は流路壁の平均温度からずれる場合もある。このような場合には、第一面8及び第二面9の温度を補正すればよい。
【0048】
なお、本実施例ではPCRを行うのに好適な例について説明したが、これに限らず、本発明に係るマイクロ流体素子を用いて各種の反応、分析、その他の処理を行うことができる。
また、第一面8と第二面9の温度は上記実施例の範囲に限らず、互いに異なる温度であれば任意であり、室温以上であっても室温以下でってあってもよい。第一面8や第二面9の温度はそれぞれ、経時的に一定であってもよく、経時的に変化してもよい。特に温度を経時的に一定とする方が、操作が簡単であるので好ましい。
また、第一面8および第二面9の面内において、温度が均一であってもよく、該面内に温度が異なる複数の領域を設けてもよい。また、第一面8および第二面9の各面全体を温度調節する必要はなく、例えば流入口6や流出口7付近など、温度調節しない部分があっても良い。
【0049】
以下、具体例を示して、さらに詳しく説明する。
[実施例1]
図9に示すように、第一流路部53と第二流路部54が、第二流路部54の流入口側ではクランク状の連絡流路55を介して、また第二流路部54の流出口側ではZ方向に延びる連絡流路56を介してそれぞれ連通された構成を有するマイクロ流体素子を製造した。
すなわち、まず、シート状の一時的な支持体(厚さ30μmのポリプロピレン製シート、以下同様)上に、紫外線硬化型樹脂を塗布し、紫外線を照射して流動性が喪失された程度に不完全硬化(以下、半硬化という)させて、第四層14となる塗膜を形成した。
【0050】
これとは別に、シート状の一時的な支持体上に、紫外線硬化型樹脂を塗布して第三層63となる塗膜を形成し、この塗膜に対して、第二流路部54となる領域に対応する遮光部を有するマスクを介して紫外線を照射し、半硬化させた。この後、未硬化の部分、すなわち第二流路部54となる部分の樹脂を溶剤を用いて洗浄除去することによって、該塗膜に第二流路部54となる貫通孔を形成した。このようにして第二流路部54が形成された半硬化状態の塗膜を、前記、第四層14となる半硬化状態の塗膜上に積層した。そして一時的な支持体を介して紫外線を照射し、これらの塗膜を硬化させることによって両者を接着一体化した後、第三層63上の一時的な支持体を剥離除去した。
【0051】
次いで、別の一時的な支持体上に、紫外線硬化型樹脂を塗布して第三介在層66cとなる塗膜を形成し、この塗膜に対して、連絡流路55c、56cとなる領域に対応する遮光部を有するマスクを介して紫外線を照射し、半硬化させた。この後、未硬化の部分、すなわち連絡流路55c、56cとなる部分の樹脂を溶剤を用いて洗浄除去することによって、該塗膜に連絡流路55c、56cとなる四角穴状の貫通孔を形成した。このようにして連絡流路55c、56cが形成された半硬化状態の塗膜を、上記で硬化された第三層63上に積層した。そして一時的な支持体を介して紫外線を照射し、半硬化状態の塗膜を完全に硬化させることによって接着一体化した後、第三介在層66c上の一時的な支持体を剥離除去した。
【0052】
次いで、別の一時的な支持体上に、紫外線硬化型樹脂を塗布して第二介在層66bとなる塗膜を形成し、この塗膜に対して、連絡流路55b、56bとなる領域に対応する遮光部を有するマスクを介して紫外線を照射し、半硬化させた。この後、未硬化の部分、すなわち連絡流路55b、56bとなる部分の樹脂を溶剤を用いて洗浄除去することによって、該塗膜に連絡流路55bとなる帯状の貫通孔、および連絡流路56bとなる四角穴状の貫通孔を形成した。このようにして連絡流路55b、56bが形成された半硬化状態の塗膜を、上記で硬化された第三介在層66c上に積層した。そして一時的な支持体を介して紫外線を照射し、半硬化状態の塗膜を完全に硬化させることによって接着一体化した後、第二介在層66b上の一時的な支持体を剥離除去した。
【0053】
次いで、別の一時的な支持体上に、同様の手順で、連絡流路55aおよび連絡流路56aとなる四角穴状の貫通孔を有する、第一介在層66aとなる半硬化状態の塗膜を形成した。そして、この半硬化状態の塗膜を、上記で形成された第二介在層66b上に積層し、紫外線を照射して接着一体化した後、第一介在層66a上の一時的な支持体を剥離除去した。
【0054】
次いで、別の一時的な支持体上に、同様の手順で、第一流路部53となる貫通孔を有する、第二層62となる半硬化状態の塗膜を形成した。そして、この半硬化状態の塗膜を、上記で形成された第一介在層66a上に積層し、紫外線を照射して接着一体化した後、第二層62上の一時的な支持体を剥離除去した。
【0055】
次いで、別の一時的な支持体上に、同様の手順で、流入口6および流出口7となる円形の貫通孔を有する、第一層11となる半硬化状態の塗膜を形成した。そして、この半硬化状態の塗膜を、上記で形成された第二層62上に積層し、紫外線を照射して接着一体化した後、第一層11上の一時的な支持体を剥離除去するとともに、前記第四層14上の一時的な支持体も剥離除去した。
さらに、流入口6及び流出口7にルアーフィッティング(図示せず)を接着し、ワンタッチで配管と接続できるようにして、マイクロ流体素子を得た。
【0056】
本例において、マイクロ流体素子の部材61を構成している各層の大きさは、それぞれ長さ75mm×幅25mmである。
第一面8を成す第一層11は、厚さ0.1mmであり、流入口部6及び流出口部7は、X方向の両端部からそれぞれ4mm入ったY方向の中央に形成されており、それぞれ直径1mmの円形となっている。
第二層62は厚さ0.1mmであり、上記流入部6となる貫通孔の、部材61の側面側の先端を端とし、長さ1.2mm、幅0.3mmの、第一流路部53となる帯状の貫通孔が、1.8mmの間隔をあけて23個一列に並んで形成されている。
【0057】
第一介在層66aは厚さ0.2mmであり、各第一流路部53の両端部とそれぞれ重なる位置に、連絡流路55a、56aとなる、長さ0.2mm、幅0.3mmの四角穴状の貫通孔が合計44個、一列に並んで形成されている。ただし、流入口6に連通している第一流路部53の流入口側の端部、および流出口7に連通している第一流路部53の流出口側の端部には、連絡流路55a、56aは設けられていない。
【0058】
第二介在層66bは厚さ0.1mmであり、長さ1.2mm、幅0.3mmの、連絡流路55bとなる帯状の貫通孔が、その流入口側の端部が前記第一介在層66aの連絡流路55aと重なり合うように、22個、一列に並んで形成されている。また、連絡流路56bとなる長さ0.2mm、幅0.3mmの四角穴状の貫通孔が、前記第一介在層66aの連絡流路56aと重なり合うように、22個、一列に並んで形成されている。
【0059】
第三介在層66cは厚さ0.2mmであり、前記第二介在層66bの帯状の連絡流路55bの流出口側の端部、および四角穴状の連絡流路56bとそれぞれ重なり合うように、連絡流路55a、56aとなる、長さ0.2mm、幅0.3mmの四角穴状の貫通孔が合計44個、一列に並んで形成されている。
第三層63は厚さ0.1mmであり、長さ1.2mm、幅0.3mmの、第二流路部54となる帯状の貫通孔が、その両端部が前記第三介在層66aの連絡流路55cおよび56cとそれぞれ重なり合うように、22個一列に並んで形成されている。
第四層14は厚さ0.1mmであり、貫通孔は形成されていない。
【0060】
[使用試験]
〔PCR用反応溶液の調製〕
鋳型プラスミドDNA:4.0μl、ポリメラーゼ[宝酒造株式会社製「TaKaRa Ex Taq TM」]:2.0μl、緩衝液[宝酒造株式会社製「10X ExTaq TM Buffer」]:8.0μl、基質 [宝酒造株式会社製「dNTP Mixture (2.5mM each)」]:6.4μl、プライマー[宝酒造株式会社製「Fluorescein-Labeled Primer M4 (1pmol/μl)」]:20μl、プライマー[宝酒造株式会社製「Fluorescein-Labeled Primer RV-M (1pmol/μl)」]:20μl、及び滅菌蒸留水:19.6μlを混合して、反応溶液を調製した。
【0061】
〔PCR試験1〕
上記実施例1で製造したマイクロ流体素子の第一面8及び第二面9に、それぞれ30℃、98℃に温度調節したアルミニウム製ヒートブロックを、ミネラルオイル(和光純薬工業製)1滴を介して接触させた。流入口6にPCR反応溶液10mm3を注入し、その上に上記ミネラルオイル5mm3を注入した後、ルアーフィッティングに塩化ビニル製チューブを接続して、マイクロシリンジポンプから上記ミネラルオイルを滞留時間10分となる流速で40分間流した。流出口7から流出した反応溶液を採取し、電気泳動分析にかけたところ、DNAが増幅されていることが確認された。
【0062】
〔PCR試験2〕
前記PCR試験1において、マイクロ流体素子の第一面8に30℃のヒートブロックを接触させる代わりに、25℃の室温の空気をファンを用いて当てたこと以外はPCR試験1と同様の試験を行った。
結果は,PCR試験1と同様であった。
【0063】
【発明の効果】
本発明によれば、微小なマイクロ流体素子や流路を高度に集積化したマイクロ流体素子においても、該マイクロ流体素子中の毛細管状の流路を流れる流体に速やかに大きな温度差のある温度変化を容易に受けさせることができる。
【図面の簡単な説明】
【図1】本発明のマイクロ流体素子の第一の実施例を模式的に示した平面図である。
【図2】本発明のマイクロ流体素子の第一の実施例を模式的に示した断面図である。
【図3】本発明のマイクロ流体素子の第一の実施例を模式的に示した分解斜視図である。
【図4】本発明のマイクロ流体素子の第二の実施例を模式的に示した平面図である。
【図5】本発明のマイクロ流体素子の第二の実施例を模式的に示した断面図である。
【図6】本発明のマイクロ流体素子の第二の実施例を模式的に示した分解斜視図である。
【図7】本発明のマイクロ流体素子の第三の実施例を模式的に示した断面図である。
【図8】本発明のマイクロ流体素子の第三の実施例を模式的に示した分解斜視図である。
【図9】本発明のマイクロ流体素子の第四の実施例を模式的に示した断面図である。
【図10】本発明のマイクロ流体素子の第四の実施例を模式的に示した分解斜視図である。
【図11】本発明のマイクロ流体素子の第五の実施例を模式的に示した断面図である。
【符号の説明】
1,21,41,61,71…部材、
2,22,32,52,72…流路、
3,33,53、73…第一流路部、
4,34,54,74…第二流路部、
5…連通部、6…流入口、7…流出口、8…第一面、9…第二面、
25,35,36,55,55a,55b,55c,56,56a,56b,56c,75…連絡流路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microfluidic device capable of causing a fluid to receive a temperature history by transferring the fluid in a capillary channel formed inside the microfluidic device, and a fluid processing device using the microfluidic device. And a fluid processing method.
[0002]
[Prior art]
Microfluidic devices, also called microfluidic devices, microfabricated devices, lab-on-chips, or micro total analytical systems (μ-TAS), pass through capillary channels. And a fluid state such as a mechanism for heating or cooling the fluid, a mechanism for diluting or concentrating, a mechanism for causing a chemical reaction, a flow rate of flow or a branch of flow in the path from the flow of the fluid into the flow path to the flow of the flow There are known devices that are provided with a mechanism for controlling, a mechanism for controlling mixing, dissolution, separation, and the like, a mechanism for performing electrical and optical measurements, and the like.
[0003]
The microfluidic device having such a mechanism includes a microreaction element (microreactor) such as chemistry and biochemistry; an integrated DNA analysis element; a microelectrophoresis element; a microanalysis element such as a microchromatography element; And micro-elements for analytical sample preparation such as liquid chromatography; physicochemical processing elements such as extraction, membrane separation and dialysis; and spotters for microarray production.
[0004]
[Patent Document 1]
JP 2002-018271 A
[0005]
As a method for changing the temperature of a fluid using a microfluidic device, for example, in Patent Document 1, a flow path having a shape meandering in a plane parallel to the surface of the member is formed in the plate-like member. In addition to using the microfluidic device, three regions having different temperatures are provided in a plane where the flow channel exists, and the fluid flowing through the flow channel sequentially passes through the three regions, thereby A microfluidic device configured to change temperature is disclosed.
In this method, in order to change the temperature of the fluid transferred in the flow path, the temperature of the microfluidic device itself is set for each region, unlike the method of changing the temperature in the flow path with time. By maintaining the temperature at a predetermined temperature, a desired temperature change can be caused in the fluid flowing through the flow path. In particular, the heat capacity of the fluid flowing through the flow path is extremely small compared to the heat capacity of the microfluidic device and the heat capacity of the heating block for heating, so that the temperature of the fluid can be increased or decreased rapidly. This is preferable in that the processing speed can be increased.
[0006]
[Problems to be solved by the invention]
However, the above-described conventional method requires a configuration in which a plurality of regions having different temperatures are provided in a plane parallel to the surface of the member. Therefore, when the microfluidic device is very small, a region having a large temperature difference may be provided. When the flow paths are three-dimensionally integrated, it is difficult to provide a desired temperature distribution in each part of the flow paths. In other words, when it is required to cause a temperature change of a certain temperature difference in the fluid transferred in the flow path, the microfluidic device is miniaturized, or a large number of flow in the microfluidic device of the same area. There was a limit to providing a road.
[0007]
In view of such circumstances, the present invention is a microfluidic device capable of subjecting a fluid to a large temperature change even if it is a microfluidic device or a microfluidic device having a highly integrated flow path, An object is to provide a fluid treatment device and a fluid treatment method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on a method for solving the above problems, the present inventors set the front and back surfaces of the plate-like microfluidic device at different temperatures to have a temperature distribution in the thickness direction, and the inside of the microfluidic device. The present invention is completed by finding that the above problem can be solved by flowing a fluid through a flow path in which a flow path portion formed near the front surface and a flow path portion formed near the back surface are connected in series. It came to.
[0009]
That is, the present invention has a capillary channel inside a plate-like or sheet-like member, and the channels are formed at different positions in the thickness direction of the member and communicate with each other. Using a microfluidic device comprising a first flow path part and a second flow path part, the fluid is transferred in the flow path while controlling the temperature of both end faces in the thickness direction of the microfluidic element to different temperatures. A fluid processing method is provided.
According to the fluid processing method of the present invention, the temperature distribution in the thickness direction of the microfluidic device is controlled by controlling the temperature of both end faces (also referred to as front and back surfaces) in the thickness direction of the microfluidic device to different temperatures. Can be formed. And since the flow path formed inside the microfluidic device has the first flow path part and the second flow path part whose positions in the thickness direction are different, the fluid transferred in the flow path is It passes through different positions in the thickness direction and receives a temperature change according to the temperature distribution at each position.
Therefore, even if the microfluidic device is small or the flow paths are three-dimensionally integrated, a temperature distribution with a large temperature difference can be easily achieved by increasing the temperature difference between both end faces in the thickness direction. This allows the fluid to undergo a large temperature change.
[0010]
Further, the present invention has a capillary channel inside the plate-shaped or sheet-shaped member, and the channel is formed in a position different from each other in the thickness direction of the member. A microfluidic device comprising one channel portion and a second channel portion;
Provided is a fluid processing device comprising a temperature control mechanism for controlling the temperature of both end faces in the thickness direction of the microfluidic device to different temperatures.
According to the fluid treatment device of the present invention, the fluid can be subjected to a large temperature change by using the fluid treatment method of the present invention, and the microfluidic device can be miniaturized and the flow path can be integrated.
[0011]
Further, the present invention has a capillary channel inside a plate-shaped or sheet-shaped member, and the channel is formed at different positions in the thickness direction of the member and communicates with each other. The microfluidic device in which the first flow path portions and the second flow path portions are alternately present along the flow paths, and the number of the first flow path portions and the number of the second flow path portions are 15 to 50, respectively. I will provide a.
The microfluidic device of the present invention is suitably used to realize the fluid processing method and the fluid processing device of the present invention, and even if the microfluidic device has a microfluidic device or a highly integrated flow path, It enables a fluid to undergo a large temperature change. Moreover, since the first flow path part and the second flow path part are respectively provided in 15 to 50, the polymerase chain reaction (PCR) can be suitably performed using this microfluidic device.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The fluid processing method, fluid processing device, and microfluidic element of the present invention are used for measurement and analysis of chemical and biochemical reactions, physicochemical processes such as dissolution, precipitation, separation, and evaporation, and differences in the amount of dissociation depending on temperature. In particular, it is suitable for performing a polymerase chain reaction (PCR).
Here, PCR is a reaction that increases the number of deoxyribonucleic acids (DNA, hereinafter referred to as DNA) having the same structure. Specifically, a reaction solution (species DNA to be amplified, a starting point of amplification called primer) is set. A cycle in which a DNA fragment, a polymerase, and a buffer solution containing a substrate are sequentially passed through a melting temperature (85 to 95 ° C.), a binding temperature (35 to 45 ° C.), and an extension temperature (65 to 80 ° C.). Is a biochemical reaction that amplifies DNA by repeating the above.
In the fluid processing method of the present invention, in the microfluidic device, the first channel portion and the second channel portion are alternately present along the channel, and the number of the first channel portions It is preferable that the number of 2nd flow-path parts is 15-50, respectively.
Such a configuration is particularly suitable for performing polymerase chain reaction (PCR).
In the fluid processing method of the present invention, a reaction solution for polymerase chain reaction can be preferably used as the fluid.
[0013]
In the fluid treatment device of the present invention, as the temperature control mechanism, means for bringing the temperature-adjusted solid into contact with one end face in the thickness direction of the member, and means for bringing the temperature-adjusted gas into contact with the other end face It is preferable to have.
The means for contacting the temperature-controlled solid has a simple apparatus configuration, and the means for contacting the gas has the advantage that the inside of the member can be observed. In addition, the heat medium used on the high temperature side is solid and the low temperature side is gas, so that the heat can be easily removed on the low temperature side.
[0014]
In the microfluidic device of the present invention, the thermal conductivity coefficient in the thickness direction of the member is 10 (Js -1 m -1 K -1 It is preferable that
In the present invention, the thermal conductivity coefficient may not be uniform in the thickness direction of the member, and the overall thermal conductivity coefficient from the first surface to the second surface may be in the above range. The thermal conductivity coefficient is 10 (Js -1 m -1 K -1 ) Exceeding, it becomes difficult to increase the temperature difference between both end faces in the thickness direction of the microfluidic device.
[0015]
In the microfluidic device of the present invention, the first member and the second member each having a concave groove formed on one end surface in the thickness direction are opposed to each other so that the surface on which the concave groove is formed is on the inside. And can be configured to be integrated.
In addition, a third member having a through hole that communicates the groove of the first member and the groove of the second member is interposed between the first member and the second member. May be.
The microfluidic device having such a laminated structure has an advantage that it is easy to manufacture.
[0016]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
1 to 3 show a first embodiment of the microfluidic device of the present invention. FIG. 1 is a plan view, FIG. 2 is a sectional view, and FIG. 3 is an exploded perspective view.
In the microfluidic device of this embodiment, an inlet 6 and an outlet 7 are provided on the surface of a plate-like or sheet-like member 1, and a capillary tube that extends from the inlet 6 to the outlet 7 inside the member 1. A generally shaped flow path 2 (hereinafter, “capillary flow path” is simply referred to as “flow path”) is formed. Hereinafter, the horizontal direction and the vertical direction of the surface of the member of the microfluidic device are respectively the X direction and the Y direction, and the thickness direction is the Z direction.
The flow path 2 has a first flow path section 3 and a second flow path section 4 having different positions in the Z direction, and the first flow path section 3 and the second flow path section 4 are alternately arranged via the communication section 5. It is continuous.
[0017]
The shape of the member 1 is plate-like or sheet-like, but the plate-like here means a relatively rigid thing, the sheet-like means a flexible thing, the sheet-like is film-like, ribbon-like , Including belts, flakes, etc. However, in the present specification, for the sake of simplification of description, the “sheet shape” including the above “sheet shape” is referred to.
The plate shape here means a shape having a small thickness compared to the width and length, and may have fine irregularities on the surface, that is, the end face in the thickness direction, or the surface is a curved surface. It may be a bent plate shape. Moreover, the member 1 should just have a plate-shaped part in which the flow path 2 is provided at least inside, and may have a part of shapes other than plate shape. However, the member 1 is preferably plate-shaped as a whole because it is easy to manufacture.
[0018]
Although the thickness of the member 1 is arbitrary, 10 micrometers-10 mm are preferable, 100 micrometers-5 mm are more preferable, 300 micrometers-3 mm are the most preferable. If the thickness is less than this range, manufacturing and handling become difficult, and the temperature distribution in each of the first flow path portion 3 and the second flow path portion 4 becomes large, so that the inside of the flow path 2 is transferred. This is not preferable because the thermal history received by the fluid becomes unstable. On the other hand, when the thickness of the member 1 exceeds the above range, the feature that the microfluidic device is minute tends to be lost. Although the thickness of the member 1 does not need to be constant, it is preferable that the thickness is constant for accurate temperature control.
[0019]
The first flow path part 3 and the second flow path part 4 are both strips parallel to the X direction, the position and width in the Y direction are constant, and the position and height in the Z direction are also constant.
As shown in FIG. 2, when one of both end surfaces (also referred to as front and back surfaces) in the Z direction of the member 1 is the first surface 8 and the other is the second surface 9, the first flow path portion 3 is the first surface 8 and the second surface 9 are formed at a position closer to the first surface 8, and the second flow path portion 4 is formed at a position closer to the second surface 9. Further, assuming that the Z direction in FIG. 2 is the vertical direction and the first surface side is the upper side, the lower surface of the first flow path portion 3 and the upper surface of the second flow path portion 4 exist on the same plane. Further, the end portion of the first flow path portion 3 and the end portion of the second flow path portion 4 overlap with each other when viewed from above, and this overlapped portion is the communication portion 5. The flow path 2 constituted by the first flow path section 3 and the second flow path section 4 has a strip shape along the X direction when viewed from the upper side, and both ends of the flow path 2 have an inlet 6 and a flow path, respectively. It communicates with the outlet 7.
[0020]
The flow path 2 has one or more first flow path portions 3 and second flow path portions 4. The number, length, and order of the first flow path portion 3 and the second flow path portion 4 can be designed according to the application purpose of the microfluidic device. For example, when the microfluidic device is intended for use in polymerase chain reaction (PCR), the first flow path portion 3 and the second flow path portion 4 are alternately provided in 15 to 50, respectively. It is preferable. When performing PCR, if the number of the first flow path portions 3 and the second flow path portions 4 is less than 15, the amount of DNA produced decreases, and if it exceeds 50, the purity decreases due to an increase in side reactions.
Of course, the channel 2 may have a channel portion other than the first channel portion 3 and the second channel portion 4.
The length and cross-sectional area in the X direction of the plurality of first flow path portions 3 and the length and cross-sectional area in the X direction of the plurality of second flow path portions 4 may be constant or different from each other. For example, the first flow path unit 3 and the second flow corresponding to the first melting step and the coupling step are set so that the time of the first melting step and the coupling step in PCR is longer than that of the second and subsequent melting steps and the coupling step. It is also preferable to make the path part 4 longer than the other first flow path part 3 and the second flow path part 4. Alternatively, the cross-sectional areas of the first flow path part 3 and the second flow path part 4 corresponding to the first melting step and the bonding process are made larger than the cross-sectional areas of the other first flow path part 3 and the second flow path part 4 respectively. May be.
However, in general, when the lengths and cross-sectional areas in the X direction of the plurality of first flow path portions 3 and the lengths and cross-sectional areas in the X direction of the plurality of second flow path portions 4 are made uniform, the fluid has predetermined conditions. This step of causing the temperature change is preferable because it can be repeated with good reproducibility.
[0021]
The distance from the first surface 8 of the first flow path portion 3 (sometimes referred to as “depth”) is not particularly limited, but is preferably 0.5 μm to 300 μm, more preferably 1 μm to 200 μm, and most preferably 3 μm to 100 μm. . If the depth of the first flow path portion 3 is small as long as there is no problem in strength, the heat conduction becomes good and the temperature difference between the first surface 8 and the first flow path portion 3 becomes small. This is preferable because accuracy is improved. However, as will be described later, when the member interposed between the first surface 8 and the first flow path portion 3 is a good thermal conductor such as metal, the degree of freedom of the distance is larger than the above range.
On the other hand, the larger the distance from the second surface 9 of the first flow path portion 3, the smaller the temperature difference between the first surface 8 and the first flow path portion 3, which is preferable because the accuracy of temperature control is improved.
Here, the distance from the first surface 8 of the first flow path portion 3 means a distance separating them, and the first flow path portion 3 is parallel to the first surface 8 as in this embodiment. In this case, the distance between the upper wall surface of the first flow path portion 3 and the first surface 8 is referred to. Similarly, the distance from the second surface 9 of the first flow path portion 3 refers to the distance between the lower wall surface of the first flow path portion 3 and the second surface 9.
[0022]
Cross sections of the first flow path section 3 and the second flow path section 4 (in the present specification, the cross section of the flow path refers to a cross section, that is, a cross section in a direction perpendicular to the streamline. The shape (which is a vertical cross section) is formed in a flat rectangle having a wide width and a low height, but is not limited thereto, and can be changed as appropriate. For example, it may be a polygon such as a triangle, rectangle, trapezoid, pentagon, hexagon, etc .; a circle; an ellipse; a semicircle. Of these shapes, shapes with corners such as polygons include those with rounded corners. The cross-sectional shapes of the first flow path portion 3 and the second flow path portion 4 are preferably wide in the Y direction and low in the Z direction in order to improve the accuracy of fluid temperature control. The ratio of the width in the Y direction to the height in the Z direction, that is, the value of (width / height) is preferably 1 to 100, more preferably 1 to 30, and most preferably 1 to 10. If the ratio is less than the above range, the accuracy of temperature control tends to be inferior, and if it exceeds the above range, production becomes difficult. The cross-sectional areas of the first flow path part 3 and the second flow path part 4 are also arbitrary, but 1 μm 2 -10mm 2 Preferably 100 μm 2 ~ 1mm 2 Is more preferable. If the cross-sectional area is smaller than the above range, it is difficult to circulate the liquid. If the cross sectional area is larger than the above range, the characteristics as a microfluidic device are reduced and the temperature of the fluid can be rapidly changed. The feature of is reduced.
[0023]
The material of the member 1 may include, for example, a crystal such as glass or crystal, a semiconductor such as silicon, ceramic, carbon, or an organic polymer (such as polydimethylsiloxane, which contains an inorganic element. The polymer is preferably referred to as “polymer”), or a foam thereof.
In the present invention, the thermal conductivity coefficient from one of the first surface 8 and the second surface 9 of the member 1 to the other is 10 (Js -1 m -1 K -1 ) Or less, preferably 1 (Js -1 m -1 K -1 It is more preferable that If this range is exceeded, it is difficult to increase the temperature difference between the first surface 8 and the second surface 9 of the member 1, and the heat flow rate is increased, which increases energy consumption. Absent. Although the lower limit of the thermal conductivity coefficient is naturally limited, it is not necessary to provide a lower limit because there is no inconvenience due to its smallness.
In the thickness direction of the member 1, the heat conduction coefficient may not be uniform. Therefore, the entire member 1 may be formed of the same material, or different materials may be combined.
When the entire member 1 is formed of the same material, the thermal conductivity coefficient is 10 (Js -1 m -1 K -1 ) The following materials are preferred and 1 (Js -1 m -1 K -1 ) The following materials are more preferable. As such a material having a small thermal conductivity coefficient, a polymer is particularly preferable. In addition, if a foam is used, the thermal conductivity coefficient can be further greatly reduced. When metal is used, the thermal conductivity coefficient tends to be too high.
[0024]
As in the second to fourth embodiments described later, the other layers 26, 46 are disposed between the layer forming the first flow path portions 12, 42, 62 and the layer forming the second flow path portions 13, 43, 63. , 66a, 66b, 66c, the member 1 can be configured by combining a plurality of types of materials. In this case, the first flow path part and the second flow path part in the thickness direction are formed of a material having a low thermal conductivity coefficient, and the periphery of the first flow path part and the first flow path part and the first surface 8 are formed. And the periphery of the second flow path portion and between the second flow path portion and the second surface 9 are formed of a material having a high thermal conductivity coefficient. The thermal conductivity coefficient from the surface 9 to the first surface 8 is 10 (Js -1 m -1 K -1 ) It is preferable to configure so as to be as follows.
However, in this embodiment, since there is no intervening layer between the first flow path portion 3 and the second flow path portion 4, the entire member 1 is made of the same material or a plurality of heat conduction coefficients are similar. It is preferable to configure the member 1 by combining various kinds of materials.
[0025]
The microfluidic device of the present embodiment includes a first layer 11 in which through holes to be the inlet 6 and the outlet 7 are formed, a second layer 12 in which the through holes to be the first flow path portion 3 are formed, The third layer 13 in which the through-hole serving as the two flow path portions 4 is formed and the fourth layer 14 having no through-hole are stacked and integrated in this order.
The microfluidic device having such a laminated structure has an advantage that it is easy to manufacture.
In the present embodiment, the first layer 11 and the second layer 12 constitute the first member of the present invention in which a groove is formed on one end surface in the thickness direction, and the third layer 13 and the fourth layer. 14, the second member of the present invention in which a concave groove is formed on one end face in the thickness direction is configured.
[0026]
The method for producing the microfluidic device of this example is not particularly limited. For example, (i) an energy ray curable resin is applied to a temporary support, and (ii) the coating film is irradiated with ultraviolet rays. The coating film is incompletely cured to form the first layer 11; (iii) an energy ray curable resin to be the second layer 12 is applied on the semi-cured first layer 11; UV exposure is applied to the second layer 12 coating film to incompletely cure the exposed portion, and (v) through holes of a predetermined pattern are formed in the second layer 12 by washing and removing the uncured resin in the non-exposed portion. A first member having a groove (first flow path portion 3) formed of a through hole of the second layer 12 on the surface of the laminate of the first layer 11 and the second layer 12, and (vi) the same as this By the above operation, a second member composed of a laminate of the third layer 13 and the fourth layer 14 is formed, and (vii) these are laminated with the concave groove inside. (Viii) A method in which the layers are bonded to each other and (viii) the temporary support is peeled off can be used.
As other methods, for example, the first member and the second member may be molded by an injection molding method, photolithography, a melt replica method, etc. and bonded together, or a photocurable resin is used. You may form at once by the micro stereolithography.
[0027]
4 to 6 show a second embodiment of the microfluidic device of the present invention. FIG. 4 is a plan view, FIG. 5 is a sectional view, and FIG. 6 is an exploded perspective view. In these drawings, the same components as those in FIGS.
The present embodiment is greatly different from the first embodiment in that the first flow path portion 3 and the second flow path portion 4 are communicated with each other via a communication flow path 25 extending in the Z direction.
That is, the member 21 in this embodiment is different from the member 1 in that a square hole-shaped through hole serving as a communication passage 25 is provided between the second layer 12 and the third layer 13 in the first embodiment. The formed intervening layer 26 is laminated and integrated. When the member 21 is viewed from the upper side, the end portion on the outlet side of one first flow path portion 3 overlaps the end portion on the inlet side of the square hole-shaped through hole and the second flow path portion 4. The overlapping portion forms a communication channel 25 extending in the Z direction. The flow path 22 constituted by the first flow path section 3, the communication flow path 25, and the second flow path section 4 has a strip shape along the X direction when viewed from above, and both end portions of the flow path 22 are respectively It communicates with the inlet 6 and the outlet 7.
[0028]
The first layer 11 and the second layer 12 in the present embodiment constitute a first member in which a concave groove (first flow path portion 3) is formed on one end surface in the thickness direction of the present invention. The third layer 13 and the fourth layer 14 constitute a second member in which a concave groove (second flow path portion 4) is formed on one end face in the thickness direction of the present invention. The third member having the through hole (communication flow path 25) of the present invention is configured.
[0029]
The method for producing the microfluidic device of this example is not particularly limited. For example, (i) the energy ray curable resin is applied to a temporary support, and (ii) the coating film is exposed to ultraviolet rays. (Iii) forming a through-hole with a predetermined pattern by washing and removing the uncured resin in the non-irradiated part, and (iv) re-exposing the ultraviolet rays in a state where this is laminated on another layer. Irradiation can be used to cure the incompletely cured coating and adhere to other layers, and (v) peel off the temporary support. If the series of operations from (i) to (v) are repeated, a microfluidic device having a structure in which a plurality of layers are laminated can be easily and suitably manufactured. For example, the first layer 11, the second layer 12, the intervening layer 26, the third layer 13, and the fourth layer 14 can be laminated in order in the field blue of this embodiment. In addition, the microfluidic device described in the third and fourth embodiments of the present invention can also be manufactured by this manufacturing method.
[0030]
7 and 8 show a third embodiment of the microfluidic device of the present invention. FIG. 7 is a sectional view and FIG. 8 is an exploded perspective view. In these drawings, the same components as those in FIGS.
This embodiment differs greatly from the first embodiment in that the end on the inflow side of the second flow path portion 34 communicates with the first flow path portion 33 via a communication flow path 35 extending in the X direction. The end of the second flow path portion 34 on the outflow side is in communication with the first flow path portion 33 via a communication flow path 36 extending in the Z direction.
That is, the member 41 in the present embodiment includes a first layer 11 in which through holes to be the inlet 6 and the outlet 7 are formed, and a second layer 42 in which strip-shaped through holes to be the first flow path portion 33 are formed. And an intervening layer 46 in which a band-shaped through-hole serving as the communication channel 35 and a square-shaped through-hole serving as the communication channel 36 are formed, and a band-shaped through-hole serving as the second channel portion 34 is formed. The third layer 43 and the fourth layer 14 having no through hole are laminated and integrated in this order.
[0031]
When the member 41 is viewed from the upper side, the end on the outlet side of the first flow path portion 33 overlaps with the end on the inlet side of the communication flow path 35, and The end portion overlaps the end portion on the inlet side of the second flow path portion 34. Further, the end on the outlet side of the second flow path portion 34 overlaps with the square hole-shaped through hole that becomes the communication flow path 36 and the end on the inlet side of the first flow path portion 33. The flow path 32 constituted by the first flow path section 33, the communication flow path 35, the second flow path section 34, and the communication flow path 36 has a strip shape along the X direction when viewed from above. The both ends of each communicate with the inlet 6 and the outlet 7, respectively.
[0032]
The first layer 11 and the second layer 42 in this embodiment constitute a first member in which a concave groove (first flow path portion 33) is formed on one end face in the thickness direction of the present invention. The third layer 43 and the fourth layer 14 constitute a second member in which a concave groove (second flow path portion 34) is formed on one end face in the thickness direction of the present invention. Thus, the third member having the through hole (communication flow path 35, 36) of the present invention is formed.
[0033]
9 and 10 show a fourth embodiment of the microfluidic device of the present invention. FIG. 9 is a sectional view and FIG. 10 is an exploded perspective view. In these drawings, the same components as those in FIGS.
This embodiment is greatly different from the first embodiment in that the end on the inlet side of the second flow path portion 54 has a communication flow path 55a extending in the Z direction, a communication flow path 55b extending in the X direction, and It communicates with the end portion on the outlet side of the first flow path portion 53 via the crank-shaped communication flow path 55 formed of the communication flow path 55c extending in the Z direction, and the outlet side of the second flow path portion 34 Is connected to the end portion on the inlet side of the first flow path portion 53 via a communication flow path 56 extending in the Z direction. The communication channel 56 is configured by connecting communication channels 56a, 56b, and 56c that extend in the Z direction.
[0034]
That is, the member 61 in the present embodiment includes the first layer 11 in which the through holes serving as the inlet 6 and the outlet 7 are formed, and the second layer 62 in which the band-shaped through holes serving as the first flow path portion 53 are formed. A first intervening layer 66a in which a square hole-shaped through hole serving as the communication flow channel 55a and a square hole-shaped through hole serving as the communication flow channel 56a are formed; a belt-shaped through hole serving as the communication flow channel 55b; A second intervening layer 66b in which a square hole-shaped through hole serving as the flow path 56b is formed, a square hole-shaped through hole serving as the communication flow path 55c, and a square hole-shaped through hole serving as the communication flow path 56c are formed. The third intervening layer 66c, the third layer 63 formed with a band-shaped through hole serving as the second flow path portion 54, and the fourth layer 14 having no through hole are laminated and integrated in this order. It has a configuration.
[0035]
When this member 61 is viewed from the upper side, the end portion on the outlet side of the first flow path portion 53, the communication flow path 55a in the shape of a square hole in the first intervening layer 66a, and the communication flow path in the second intervening layer 66b The end portion on the inlet side of 55b overlaps, the end portion on the outlet side of the communication channel 55b, the communication channel 55c having a square hole shape in the third intervening layer 66c, and the second channel portion 54. It overlaps with the end of the inflow side. Further, the end on the outlet side of the second flow path portion 54, the square hole-shaped communication flow path 56c of the third intervening layer 66c, the square hole-shaped communication flow path 56b of the second intervening layer 66b, the first The square channel communication channel 56a of the intervening layer 66a and the end of the first channel unit 53 on the inlet side overlap each other. The flow path 52 constituted by the first flow path portion 53, the communication flow paths 55a, 55b, 55c, the second flow path portion 54, and the communication flow paths 56a, 56b, 56c is in the X direction when viewed from above. The both ends of the flow path 52 communicate with the inlet 6 and the outlet 7, respectively.
[0036]
The first layer 11 and the second layer 62 in the present embodiment constitute a first member in which a concave groove (first flow path portion 53) is formed on one end surface in the thickness direction of the present invention. The third layer 63 and the fourth layer 14 constitute a second member having a concave groove (second flow path portion 54) formed on one end face in the thickness direction of the present invention. The third intervening layers 66a, 66b, 66c constitute a third member having a through hole (communication flow paths 55, 56) of the present invention.
[0037]
FIG. 11 is a cross-sectional view showing a fifth embodiment of the microfluidic device of the present invention.
This embodiment differs greatly from the first embodiment in that the distance (depth) from the first surface 8 of the flow path 72 extending in the X direction is in the direction from the inlet 6 side toward the outlet 7 side. The channel gradually increases, and the flow path 72 is inclined with respect to the first surface 8.
In this embodiment, the portion near the first surface 8 of the oblique flow path 72 is the first flow path portion 73, the portion close to the second surface 9 is the second flow path portion 74, and the middle of these is A communication channel 75 is formed. These boundaries are not clear. Reference numeral 71 in the figure indicates a member.
Note that the flow path 72 may have a stepped shape including a number of steps instead of inclining in the depth direction.
The microfluidic device described in the present embodiment can be manufactured, for example, by a micro stereolithography using a photocurable resin.
[0038]
In the above first to fourth embodiments, the first flow path portion, the second flow path portion, and the communication flow path are provided in parallel to the XY plane, which is preferable for accurately adjusting the temperature. Although it is easy to manufacture, it is sufficient that a plurality of portions having different positions in the Z direction exist in one flow path, and the first flow path portion 73, the second flow path, and the like as in the fifth embodiment. At least one of the part 74 communication channels 75 may be inclined with respect to the XY plane.
[0039]
Among these embodiments, in the first embodiment described above, the first flow path portion 3 and the second flow path portion 4 are communicated with each other without a communication flow path. The temperature can be shifted from the temperature of the one flow path portion 3 to the temperature of the second flow path portion 4 in a relatively short time. On the other hand, when a communication channel is provided between the first channel part and the second channel part as in the second to fifth embodiments, the inside of the communication channel is the first channel. Therefore, when the fluid is transferred through the communication channel, the fluid undergoes a temperature change according to the temperature distribution in the communication channel. For example, as in the third and fourth embodiments, when a communication channel extending in the Z direction is provided, the temperature of the fluid changes from the temperature of the first channel to the temperature of the second channel in a relatively short time. However, in the communication channel extending in the X direction, the fluid is held at a constant temperature between the first channel portion and the second channel portion for a certain period of time, so that a three-stage temperature history can be given to the fluid. . At this time, the temperature in the communication channel can be adjusted by adjusting the ratio of the distance from the first surface to the second surface of the communication channel extending in the X direction. Further, as in the fifth embodiment, when the communication channel is formed obliquely with respect to the XY plane, the temperature of the fluid can be gradually increased or decreased.
The shape, length, and cross-sectional area of the communication channel can be adjusted to adjust the rate of temperature rise and fall, the temperature, and the residence time at the temperature in the communication channel.
[0040]
In the microfluidic device of each of the above embodiments, a fitting for pipe connection may be fixed to the inflow port 6 and the outflow port 7, or a pipe may be connected and fixed. When the inflow port 6 and / or the outflow port 7 are opened or connected to the outside of the member, the position thereof is arbitrary, and the second surface 8 may be formed on the first surface 8 as in each of the above embodiments. It can also be formed on the side 9 or the side of the member. However, it is preferable that the inlet 6 and the outlet 7 are configured not to be blocked by a mechanism for controlling the temperature of the first surface 8 and / or the second surface 9. In addition, the inlet 6 and / or the outlet 7 are not opened in the first surface 8, and other functional parts formed inside the member, such as a liquid storage tank, a pump mechanism, a valve mechanism, a membrane separation mechanism, etc. You may open so that it may communicate.
[0041]
In the microfluidic device of each of the above embodiments, the flow path may be branched inside the member, and a plurality of inlets 6 and outlets 7 may be provided. The number of inlets 6 and the number of outlets 7 may be different.
Further, the member may have a plurality of independent flow paths. The plurality of independent flow paths may have the same structure or different structures. For example, in the case of a microfluidic device used for PCR, it is preferable to provide 3 to 100 channels having the same structure in parallel in one member. The plurality of flow paths having the same structure are preferably located at the same position in the Z direction.
Further, the shape of the flow channel viewed from the upper side is not limited to a linear shape, and may be an arbitrary shape according to the use and purpose of the microfluidic device.
[0042]
Next, examples of the fluid treatment device of the present invention will be described. Here, a fluid processing device suitable for performing the polymerase chain reaction (PCR) will be described as an example.
As in the fourth embodiment shown in FIG. 9, the fluid treatment device of this embodiment suitably uses a microfluidic device having a communication channel 55b extending in the X direction. A temperature control mechanism for controlling the temperatures of the surface 8 and the second surface 9 to different temperatures is provided. Since the microfluidic device used in the present embodiment is used for PCR, in the single flow channel 52, the first flow channel portion 53 and the second flow channel portion 54 are alternately 15 through the communication flow channels 55 and 56, respectively. It is preferable that ~ 50 are present. Further, it is more preferable that 3 to 100 such flow paths 52 are formed in parallel to each other with an interval in the Y direction.
[0043]
The temperature control mechanism may be a mechanism in which heat blocks having different temperatures are brought into contact with the first surface 8 and the second surface 9, respectively. When the heat blocks are brought into contact with each other via a liquid film, temperature unevenness is reduced. Therefore, it is preferable. Further, a mechanism for bringing a temperature-controlled liquid or gas (hot air or cold air) into contact with the first surface 8 and the second surface 9 or a mechanism for performing infrared heating may be used. Alternatively, these mechanisms may be combined. In particular, the mechanism for contacting the gas has an advantage that the inside can be observed if the member 61 of the microfluidic device is transparent.
In particular, the mechanism in which the solid heat block is brought into contact with the surface on the high temperature side of the first surface 8 and the second surface 9 and the low temperature side is brought into contact with the airflow is simple and the member 61 is transparent. If so, it is more preferable because the inside can be observed from the low temperature side, and the removal (dissipation) of the heat on the low temperature side is easy. It is also preferable to bring a radiation fin into contact with the low temperature side and cool the radiation fin with airflow.
[0044]
In order to implement the fluid processing method of the present embodiment using the fluid processing device of the present embodiment, first, the first surface 8 and the second surface 9 are controlled to a predetermined temperature. In this embodiment, in order to suitably perform the polymerase chain reaction (PCR), the temperature of the fluid in the first flow path portion 53 (hereinafter, “the temperature of the fluid in the first flow path portion” is referred to as “the temperature of the first flow path portion”). The same applies to the second channel portion and the communication channel.) Is preferably set within the range of 35 to 45 ° C., which is the binding temperature in PCR. Further, the temperature of the communication channel 55b extending in the X direction is set within the range of 65 to 80 ° C. that is the extension temperature, and the temperature of the second channel portion 54 is 85 to 95 ° C. that is the melting temperature. It is preferable to set.
[0045]
When the member 61 in which the flow path 52 is formed is formed of a single material, or is formed of a plurality of materials having substantially the same thermal conductivity coefficient, the first surface 8 of the member 61 The temperature distribution in the depth direction (Z direction) from the first surface 9 to the second surface 9 is substantially a straight line connecting the temperature of the first surface 8 and the temperature of the second surface 9. Therefore, in order to adjust the temperature of the fluid flowing through the first flow path portion 53 and the second flow path portion 54 to a desired temperature, the first surface 8 and the second surface are considered in consideration of the depth of each flow path portion. The temperature of 9 may be controlled. On the other hand, in order to adjust the temperature of the fluid flowing in the communication channel 55b to a desired temperature, the distance from the first surface of the communication channel 55b and the first surface are considered in consideration of the temperatures of the first surface 8 and the second surface 9. What is necessary is just to set the ratio of the distance from two surfaces. In order to set the ratio of the distances, the thickness of the first intervening layer 66a and the third intervening layer 66c may be adjusted.
On the other hand, in the case where the member 61 is formed as a composite of a plurality of materials having different thermal conductivity coefficients, the first surface 8 to the second surface of the member 61 are determined from the thermal resistance of each part by a well-known method in chemical engineering. The temperature distribution in the depth direction (Z direction) reaching the surface 9 can be calculated.
[0046]
Then, when the fluid is supplied from the inflow port 6 in a state where the first surface 8 of the microfluidic device is controlled at a predetermined temperature with the first surface 8 being the low temperature side and the second surface 9 being the high temperature side, the fluid is 53, a temperature change corresponding to the temperature distribution of each part is generated while being transferred through the flow path 52 through the communication flow path 55, the second flow path portion 54, and the communication flow path 56 in order. Since PCR is performed in this example, as a fluid flowing through the microfluidic device, a known reaction solution for polymerase chain reaction, that is, for example, four types of species DNA, 3′-side primer, 5′-side primer, polymerase, and substrate are used. A mixed solution of nucleotide monomers can be preferably used.
In the present embodiment, the fluid passes through the combined temperature zone in the first channel portion 53 while being transferred through the channel 52, and then the extension temperature zone in the communication channel 55, the second channel portion. A series of temperature histories of sequentially passing through the melting temperature zone at 54 and returning to the bonding temperature zone is taken as one cycle, and the temperature of 15 to 50 cycles depending on the number of first flow path portions 53 and second flow path portions 54 Receive history.
[0047]
The fluid treatment method of this embodiment is a method using a microfluidic device, and can be configured such that the heat capacity of the fluid flowing through the flow path is smaller than the heat capacity of the member 61 constituting the flow path wall of the microfluidic element. Therefore, it is possible to raise or lower the temperature of the fluid at a high speed. Further, since the channel diameter can be made minute, the inside of the channel is dominated by diffusion, and the temperature distribution of the fluid in the channel cross section can be reduced even if the channel wall has a temperature distribution. Therefore, the temperature of the fluid flowing through the flow path is usually the average temperature of the flow path walls surrounding the flow path. However, when the flow rate is high, or when the reaction is exothermic or endothermic, the temperature of the fluid may deviate from the average temperature of the flow path wall. In such a case, the temperature of the first surface 8 and the second surface 9 may be corrected.
[0048]
In addition, although the present Example demonstrated the example suitable for performing PCR, it is not restricted to this, Various reaction, analysis, and other processes can be performed using the microfluidic device which concerns on this invention.
Moreover, the temperature of the 1st surface 8 and the 2nd surface 9 is not restricted to the range of the said Example, As long as it is mutually different temperature, it is arbitrary and may be room temperature or less or room temperature or less. The temperatures of the first surface 8 and the second surface 9 may be constant over time or may change over time. In particular, it is preferable to keep the temperature constant over time because the operation is simple.
Further, the temperature may be uniform within the first surface 8 and the second surface 9, or a plurality of regions having different temperatures may be provided within the surface. Further, it is not necessary to adjust the temperature of each of the first surface 8 and the second surface 9, and there may be a portion where the temperature is not adjusted, such as the vicinity of the inlet 6 and the outlet 7.
[0049]
Hereinafter, a specific example is shown and it demonstrates in detail.
[Example 1]
As shown in FIG. 9, the first flow path portion 53 and the second flow path portion 54 are connected to each other on the inlet side of the second flow path portion 54 via a crank-shaped connecting flow path 55 and the second flow path portion 54. A microfluidic device having a configuration in which each was communicated with each other via a communication channel 56 extending in the Z direction on the outflow side was manufactured.
That is, first, an ultraviolet curable resin is applied onto a sheet-like temporary support (30 μm thick polypropylene sheet, the same applies hereinafter), and the fluidity is lost to the extent that the fluidity is lost by irradiating ultraviolet rays. Curing (hereinafter referred to as semi-curing) was performed to form a coating film to be the fourth layer 14.
[0050]
Separately, a coating film to be the third layer 63 is formed on a sheet-like temporary support by applying an ultraviolet curable resin, and the second flow path portion 54 and the coating film are formed on the coating film. The film was semi-cured by irradiating with ultraviolet rays through a mask having a light shielding portion corresponding to the region to be formed. Thereafter, the uncured portion, that is, the portion of the resin that becomes the second flow path portion 54 is removed by washing with a solvent, thereby forming a through-hole that becomes the second flow path portion 54 in the coating film. Thus, the semi-cured coating film in which the second flow path portion 54 was formed was laminated on the semi-cured coating film to be the fourth layer 14. And after irradiating ultraviolet rays through a temporary support body and hardening these coating films, both were bonded and integrated, and then the temporary support body on the third layer 63 was peeled and removed.
[0051]
Next, on another temporary support, an ultraviolet curable resin is applied to form a coating film that becomes the third intervening layer 66c, and in the region that becomes the communication channels 55c and 56c with respect to this coating film. The film was irradiated with ultraviolet rays through a mask having a corresponding light-shielding portion to be semi-cured. Thereafter, the resin in the uncured portion, that is, the portion that becomes the communication flow paths 55c and 56c, is removed by washing with a solvent, so that the through-holes of the square holes that become the communication flow paths 55c and 56c are formed in the coating film. Formed. The semi-cured coating film in which the communication channels 55c and 56c were thus formed was laminated on the third layer 63 cured as described above. Then, after irradiating ultraviolet rays through the temporary support and completely curing the semi-cured coating film, the temporary support on the third intervening layer 66c was peeled and removed.
[0052]
Next, on another temporary support, an ultraviolet curable resin is applied to form a coating film that becomes the second intervening layer 66b, and in the region that becomes the communication channels 55b and 56b, this coating film is formed. The film was irradiated with ultraviolet rays through a mask having a corresponding light-shielding portion to be semi-cured. Thereafter, the uncured portions, that is, the portions of the communication channels 55b and 56b are washed away with a solvent to remove the resin from the belt-shaped through-holes that serve as the communication channels 55b, and the communication channels. A through hole having a square hole shape 56b was formed. The semi-cured coating film in which the communication channels 55b and 56b were thus formed was laminated on the third intervening layer 66c cured as described above. Then, after irradiating ultraviolet rays through a temporary support and completely curing the semi-cured coating film, the temporary support on the second intervening layer 66b was peeled and removed.
[0053]
Next, a semi-cured coating film serving as the first intervening layer 66a having a square hole-like through hole serving as the communication channel 55a and the communication channel 56a on another temporary support in the same procedure. Formed. And after laminating | stacking this semi-hardened coating film on the 2nd intervening layer 66b formed above and irradiating an ultraviolet-ray and carrying out adhesion integration, the temporary support body on the 1st intervening layer 66a is attached. Stripped and removed.
[0054]
Next, on another temporary support, a semi-cured coating film serving as the second layer 62 having a through hole serving as the first flow path portion 53 was formed in the same procedure. Then, this semi-cured coating film is laminated on the first intervening layer 66a formed as described above, and after being irradiated and integrated with ultraviolet rays, the temporary support on the second layer 62 is peeled off. Removed.
[0055]
Next, a semi-cured coating film serving as the first layer 11 having circular through-holes serving as the inlet 6 and the outlet 7 was formed on another temporary support in the same procedure. And after laminating this semi-cured coating film on the second layer 62 formed above and irradiating it with UV rays, the temporary support on the first layer 11 is peeled and removed. At the same time, the temporary support on the fourth layer 14 was also removed.
Furthermore, a luer fitting (not shown) was bonded to the inflow port 6 and the outflow port 7 so that the microfluidic device could be connected to the pipe with one touch.
[0056]
In this example, the size of each layer constituting the microfluidic member 61 is 75 mm long × 25 mm wide.
The first layer 11 forming the first surface 8 has a thickness of 0.1 mm, and the inflow port portion 6 and the outflow port portion 7 are formed at the center in the Y direction 4 mm from both ends in the X direction. , Each has a circular shape with a diameter of 1 mm.
The second layer 62 has a thickness of 0.1 mm, a first flow path portion having a length of 1.2 mm and a width of 0.3 mm, with the end of the through hole serving as the inflow portion 6 on the side surface side of the member 61 as an end. Twenty-three strip-shaped through-holes 53 are formed in a row with an interval of 1.8 mm.
[0057]
The first intervening layer 66a has a thickness of 0.2 mm, and is a square having a length of 0.2 mm and a width of 0.3 mm, which becomes the communication channels 55a and 56a at positions overlapping with both ends of each first channel portion 53, respectively. A total of 44 hole-shaped through-holes are formed in a line. However, the end on the inflow side of the first flow path portion 53 communicating with the inflow port 6 and the end on the outflow side of the first flow path portion 53 communicating with the outflow port 7 are connected to the communication flow path. 55a and 56a are not provided.
[0058]
The second intervening layer 66b has a thickness of 0.1 mm, a length of 1.2 mm, a width of 0.3 mm, and a band-shaped through-hole serving as the communication channel 55 b, and the end on the inlet side is the first intervening layer. Twenty-two lines are formed in a row so as to overlap the communication channel 55a of the layer 66a. Further, 22 through holes of 0.2 mm in length and 0.3 mm in width serving as the communication channel 56b are arranged in a row so as to overlap the communication channel 56a of the first intervening layer 66a. Is formed.
[0059]
The third intervening layer 66c has a thickness of 0.2 mm, and overlaps with the end portion on the outlet side of the strip-shaped communication channel 55b of the second intervening layer 66b and the rectangular communication channel 56b, respectively. A total of 44 square-hole-shaped through-holes having a length of 0.2 mm and a width of 0.3 mm, which form the communication channels 55a and 56a, are formed in a line.
The third layer 63 has a thickness of 0.1 mm, a length of 1.2 mm, a width of 0.3 mm, and a band-shaped through-hole serving as the second flow path portion 54, and both end portions of the third intervening layer 66 a. Twenty-two are formed in a row so as to overlap with the communication flow paths 55c and 56c, respectively.
The fourth layer 14 has a thickness of 0.1 mm, and no through hole is formed.
[0060]
[Use test]
[Preparation of PCR reaction solution]
Template plasmid DNA: 4.0 μl, polymerase [Takara Ra Taq TM manufactured by Takara Shuzo Co., Ltd.]: 2.0 μl, buffer [“10X ExTaq TM Buffer” manufactured by Takara Shuzo Co., Ltd.]: 8.0 μl, substrate [dNTP manufactured by Takara Shuzo Co., Ltd. Mixture (2.5 mM each) ”]: 6.4 μl, primer [Takara Shuzo“ Fluorescein-Labeled Primer M4 (1 pmol / μl) ”]: 20 μl, primer [Takara Shuzo“ Fluorescein-Labeled Primer RV-M (1 pmol) / μl) ”]: 20 μl and sterile distilled water: 19.6 μl were mixed to prepare a reaction solution.
[0061]
[PCR test 1]
On the first surface 8 and the second surface 9 of the microfluidic device manufactured in Example 1 above, an aluminum heat block whose temperature was adjusted to 30 ° C. and 98 ° C., respectively, and one drop of mineral oil (manufactured by Wako Pure Chemical Industries, Ltd.) Contact. PCR reaction solution 10 mm at the inlet 6 Three The above mineral oil 5mm Three Then, a vinyl chloride tube was connected to the luer fitting, and the mineral oil was allowed to flow from the microsyringe pump for 40 minutes at a flow rate of a residence time of 10 minutes. When the reaction solution flowing out from the outlet 7 was collected and subjected to electrophoresis analysis, it was confirmed that DNA was amplified.
[0062]
[PCR test 2]
In the PCR test 1, a test similar to the PCR test 1 was performed except that air at room temperature of 25 ° C. was applied using a fan instead of bringing the heat block at 30 ° C. into contact with the first surface 8 of the microfluidic device. went.
The result was similar to PCR test 1.
[0063]
【The invention's effect】
According to the present invention, even in a microfluidic device in which minute microfluidic devices and flow paths are highly integrated, a temperature change that has a large temperature difference immediately in the fluid flowing through the capillary channel in the microfluidic device. Can be easily received.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a first embodiment of a microfluidic device of the present invention.
FIG. 2 is a cross-sectional view schematically showing a first embodiment of the microfluidic device of the present invention.
FIG. 3 is an exploded perspective view schematically showing a first embodiment of the microfluidic device of the present invention.
FIG. 4 is a plan view schematically showing a second embodiment of the microfluidic device of the present invention.
FIG. 5 is a cross-sectional view schematically showing a second embodiment of the microfluidic device of the present invention.
FIG. 6 is an exploded perspective view schematically showing a second embodiment of the microfluidic device of the present invention.
FIG. 7 is a cross-sectional view schematically showing a third embodiment of the microfluidic device of the present invention.
FIG. 8 is an exploded perspective view schematically showing a third embodiment of the microfluidic device of the present invention.
FIG. 9 is a cross-sectional view schematically showing a fourth embodiment of the microfluidic device of the present invention.
FIG. 10 is an exploded perspective view schematically showing a fourth embodiment of the microfluidic device of the present invention.
FIG. 11 is a cross-sectional view schematically showing a fifth embodiment of the microfluidic device of the present invention.
[Explanation of symbols]
1, 21, 41, 61, 71 ... members,
2, 22, 32, 52, 72 ... flow path,
3, 33, 53, 73 ... first flow path part,
4, 34, 54, 74 ... second flow path part,
5 ... Communication part, 6 ... Inlet, 7 ... Outlet, 8 ... First side, 9 ... Second side,
25, 35, 36, 55, 55a, 55b, 55c, 56, 56a, 56b, 56c, 75...

Claims (10)

板状又はシート状の部材(1,21,41,61,71)の内部に毛細管状の流路(2,22,32,52,72)を有しており、前記流路が、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部(3,33,53,73)および第二流路部(4,34,54,74)を備えてなるマイクロ流体素子を用い、該マイクロ流体素子の厚さ方向の両端面(8,9)の温度を互いに異なる温度に制御しつつ、前記流路内で流体を移送させることを特徴とする流体の処理方法。  A plate-like or sheet-like member (1, 21, 41, 61, 71) has a capillary channel (2, 22, 32, 52, 72) inside, and the channel is the member A microfluid having a first flow path portion (3, 33, 53, 73) and a second flow path portion (4, 34, 54, 74) that are formed at different positions in the thickness direction of the first flow path and communicate with each other. A fluid processing method, wherein an element is used and fluid is transferred in the flow path while controlling the temperature of both end faces (8, 9) in the thickness direction of the microfluidic element to different temperatures. 前記マイクロ流体素子において、前記第一流路部(3,33,53,73)および前記第二流路部(4,34,54,74)が前記流路(2,22,32,52,72)に沿って交互に存在しており、該第一流路部の数と第二流路部の数がそれぞれ15〜50である請求項1記載の流体の処理方法。  In the microfluidic device, the first flow path portion (3, 33, 53, 73) and the second flow path portion (4, 34, 54, 74) are the flow paths (2, 22, 32, 52, 72). The fluid processing method according to claim 1, wherein the number of the first flow path portions and the number of the second flow path portions are 15 to 50, respectively. 前記流体がポリメラーゼ連鎖反応用の反応溶液である請求項1または2のいずれか1項に記載の流体の処理方法。  The fluid processing method according to claim 1, wherein the fluid is a reaction solution for a polymerase chain reaction. 板状又はシート状の部材(1,21,41,61,71)の内部に毛細管状の流路(2,22,32,52,72)を有しており、前記流路が、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部(3,33,53,73)および第二流路部(4,34,54,74)を備えてなるマイクロ流体素子と、
該マイクロ流体素子の厚さ方向の両端面(8,9)の温度を互いに異なる温度に制御する温度制御機構を備えてなることを特徴とする流体処理デバイス。
A plate-like or sheet-like member (1, 21, 41, 61, 71) has a capillary channel (2, 22, 32, 52, 72) inside, and the channel is the member A microfluid having a first flow path portion (3, 33, 53, 73) and a second flow path portion (4, 34, 54, 74) that are formed at different positions in the thickness direction of the first flow path and communicate with each other. Elements,
A fluid processing device comprising a temperature control mechanism for controlling the temperatures of both end faces (8, 9) in the thickness direction of the microfluidic device to different temperatures.
前記温度制御機構として、前記部材(1,21,41,61,71)の厚さ方向の一方の端面(8または9)に温度調節された固体を接触させる手段、および他方の端面(8または9)に温度調節された気体を接触させる手段を有する請求項4記載の流体処理デバイス。  As the temperature control mechanism, means for bringing the temperature-adjusted solid into contact with one end face (8 or 9) in the thickness direction of the member (1, 21, 41, 61, 71), and the other end face (8 or 5. The fluid treatment device according to claim 4, further comprising means for bringing a temperature-controlled gas into contact with 9). 請求項4又は5記載の流体処理デバイスに用いられるマイクロ流体素子であって、
板状又はシート状の部材(1,21,41,61,71)の内部に毛細管状の流路(2,22,32,52,72)を有しており、該流路には、前記部材の厚さ方向において互いに異なる位置に形成された、互いに連通する第一流路部(3,33,53,73)および第二流路部(4,34,54,74)が、前記流路に沿って交互に存在しており、該第一流路部の数と第二流路部の数がそれぞれ15〜50であることを特徴とするマイクロ流体素子。
A microfluidic device used in the fluid treatment device according to claim 4 or 5,
A plate-like or sheet-like member (1, 21, 41, 61, 71) has a capillary channel (2, 22, 32, 52, 72) inside the channel, The first flow path portion (3, 33, 53, 73) and the second flow path portion (4, 34, 54, 74), which are formed at different positions in the thickness direction of the member and communicate with each other, And the number of the first flow path portions and the number of the second flow path portions are 15 to 50, respectively.
前記部材(1,21,41,61,71)の厚さ方向における熱伝導係数が10(Js−1−1−1)以下である請求項6記載のマイクロ流体素子。It said member thermal conductivity in the thickness direction of the (1,21,41,61,71) is 10 (Js -1 m -1 K -1 ) or less microfluidic device of claim 6, wherein. それぞれ厚さ方向の一方の端面に凹溝(3,4,33,34,53,54)が形成された第一の部材(11と12,11と42,11と62)と第二の部材(13と14,43と14,63と14)が、前記凹溝が形成された面が内側となるように対向配置されて一体化されている請求項6または7のいずれか1項に記載のマイクロ流体素子。  A first member (11 and 12, 11 and 42, 11 and 62) and a second member each having a groove (3,4, 33, 34, 53, 54) formed on one end face in the thickness direction. 8. (13 and 14, 43 and 14, 63 and 14) are integrated so as to be opposed to each other so that the surface on which the groove is formed is on the inside. Microfluidic device. 前記第一の部材(11と12,11と42,11と62)と前記第二の部材(13と14,43と14,63と14)の間に、前記第一の部材の凹溝(3,33,53)と前記第二の部材の凹溝(4,34,54)とを連通させる貫通孔(25,35,36,55,56)を有する第三の部材(26,46,66aと66bと66c)が介在している請求項8記載のマイクロ流体素子。  Between the first member (11 and 12, 11 and 42, 11 and 62) and the second member (13 and 14, 43 and 14, 63 and 14), a groove ( 3, 33, 53) and a third member (26, 46, 46) having a through hole (25, 35, 36, 55, 56) for communicating the concave groove (4, 34, 54) of the second member. The microfluidic device according to claim 8, wherein 66a, 66b and 66c) are interposed. ポリメラーゼ連鎖反応用に使用される請求項6〜9のいずれか1項に記載のマイクロ流体素子。  The microfluidic device according to any one of claims 6 to 9, which is used for polymerase chain reaction.
JP2002297274A 2002-10-10 2002-10-10 Microfluidic device, fluid processing device, and fluid processing method Expired - Fee Related JP4119217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297274A JP4119217B2 (en) 2002-10-10 2002-10-10 Microfluidic device, fluid processing device, and fluid processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297274A JP4119217B2 (en) 2002-10-10 2002-10-10 Microfluidic device, fluid processing device, and fluid processing method

Publications (2)

Publication Number Publication Date
JP2004130219A JP2004130219A (en) 2004-04-30
JP4119217B2 true JP4119217B2 (en) 2008-07-16

Family

ID=32287020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297274A Expired - Fee Related JP4119217B2 (en) 2002-10-10 2002-10-10 Microfluidic device, fluid processing device, and fluid processing method

Country Status (1)

Country Link
JP (1) JP4119217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060515B2 (en) 2013-06-28 2018-08-28 Festo Ag & Co. Kg Linear drive and method for the production thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411421B2 (en) * 2004-04-22 2010-02-10 独立行政法人産業技術総合研究所 Microstructure manufacturing method
EP1759120A4 (en) * 2004-05-10 2012-06-27 Aerospace Corp Microfluidic devices with separable actuation and fluid-bearing modules
DE102004033317A1 (en) * 2004-07-09 2006-02-09 Roche Diagnostics Gmbh Analytical test element
US7645423B2 (en) * 2004-08-20 2010-01-12 International Business Machines Corporation Optical micro plugs for multichannel and multilayer pharmaceutical device
JP2006115741A (en) * 2004-10-20 2006-05-11 Sumitomo Precision Prod Co Ltd Nucleic acid-amplifying substrate
JP2006115742A (en) * 2004-10-20 2006-05-11 Sumitomo Precision Prod Co Ltd Method and device for amplifying nucleic acid, and system for detecting nucleic acid
JP4613099B2 (en) * 2005-06-03 2011-01-12 シャープ株式会社 Electrochemical detector
WO2008113182A1 (en) * 2007-03-21 2008-09-25 Angstrom Power Incorporated Fluid manifold and method therefor
US8133629B2 (en) 2007-03-21 2012-03-13 SOCIéTé BIC Fluidic distribution system and related methods
JP5205922B2 (en) * 2007-11-07 2013-06-05 セイコーエプソン株式会社 Biological material detection chip and method for manufacturing biological material detection chip
WO2010001636A1 (en) * 2008-07-01 2010-01-07 日本碍子株式会社 Dna array
EP3026010A4 (en) 2013-07-24 2017-04-12 JSR Corporation Microfluidic device and process for producing same, and photosensitive resin composition for forming flow path
EP3085661B1 (en) 2015-04-21 2017-12-27 JSR Corporation Method of producing microfluidic device
US10871440B2 (en) 2017-12-23 2020-12-22 Lumacyte, LLC Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics
US11041797B2 (en) 2017-12-23 2021-06-22 Lumacyte, LLC Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics
CN111819153A (en) * 2017-12-23 2020-10-23 路玛赛特有限责任公司 Microfluidic chip device for optical force measurement and cell imaging using microfluidic chip configuration and dynamics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060515B2 (en) 2013-06-28 2018-08-28 Festo Ag & Co. Kg Linear drive and method for the production thereof

Also Published As

Publication number Publication date
JP2004130219A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4119217B2 (en) Microfluidic device, fluid processing device, and fluid processing method
US9023639B2 (en) Apparatus for amplifying nucleic acids
AU2001269929B2 (en) Methods and devices for enhancing bonded substrate yields and regulating temperature
Sun et al. Polymeric microfluidic system for DNA analysis
US9316331B2 (en) Multilevel microfluidic systems and methods
US8672532B2 (en) Microfluidic methods
US8393356B2 (en) Device for controlling fluid motion into micro/nanochannels by means of surface acoustic waves
TWI508772B (en) Micro fluid device
AU2001269929A1 (en) Methods and devices for enhancing bonded substrate yields and regulating temperature
Yu et al. 3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer
WO1997012063A1 (en) Miniature reaction chamber and devices incorporating same
US20170341075A1 (en) Methods and Apparatus for Coated Flowcells
US7652370B2 (en) Plastic microfabricated structure for biochip, microfabricated thermal device, microfabricated reactor, microfabricated reactor array, and micro array using the same
CN109847817B (en) Micro-fluidic chip and preparation method thereof
JP4595457B2 (en) Microfluidic device having a polymerase chain reaction channel
TWI296608B (en) Microscale heating module
GR20170100305A (en) Microfluidic reactors and process for their production
KR100644807B1 (en) Micro heating system using plastic substrate and method for manufacturing the same
Reichert et al. Micro flow-through thermocycler with simple meandering channel with symmetric temperature zones for disposable PCR-devices in microscope slide format
KR100779083B1 (en) Plastic micro heating system, lap-on-a-chip using the same micro heating system, and method of fabricating the same micro heating system
Kong et al. Fabrications of a continuous-flow PCR-chip using dry film resist
Chung et al. A novel DNA amplification chip of polymer-substrate
Lee A New Polymer Lab-on-a-Chip for Polymerase Chain Reaction (PCR) using Non-contact Infrared Thermocycles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees