JP4118285B2 - Solder ball mounting apparatus and solder ball mounting method - Google Patents

Solder ball mounting apparatus and solder ball mounting method Download PDF

Info

Publication number
JP4118285B2
JP4118285B2 JP2005190498A JP2005190498A JP4118285B2 JP 4118285 B2 JP4118285 B2 JP 4118285B2 JP 2005190498 A JP2005190498 A JP 2005190498A JP 2005190498 A JP2005190498 A JP 2005190498A JP 4118285 B2 JP4118285 B2 JP 4118285B2
Authority
JP
Japan
Prior art keywords
solder
ball
connection pad
cylindrical member
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005190498A
Other languages
Japanese (ja)
Other versions
JP2006074001A (en
Inventor
洋一郎 川村
茂樹 澤
克彦 丹野
勇雄 土屋
義之 馬渕
治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005190498A priority Critical patent/JP4118285B2/en
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to CN2005800002716A priority patent/CN1826844B/en
Priority to KR1020067018620A priority patent/KR100798662B1/en
Priority to EP05766192A priority patent/EP1776004A4/en
Priority to CN2011103612487A priority patent/CN102413643A/en
Priority to PCT/JP2005/013504 priority patent/WO2006013742A1/en
Priority to TW094126333A priority patent/TW200623992A/en
Priority to US11/371,083 priority patent/US7475803B2/en
Publication of JP2006074001A publication Critical patent/JP2006074001A/en
Application granted granted Critical
Publication of JP4118285B2 publication Critical patent/JP4118285B2/en
Priority to US12/328,347 priority patent/US7866529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半田バンプとなる半田ボールをプリント配線板に搭載するための半田ボール搭載装置及び半田ボール搭載方法に関するものである。 The present invention relates to a solder ball mounting apparatus and a solder ball mounting method for mounting solder balls to be solder bumps on a printed wiring board.

パッケージ基板とICチップとの電気接続のために半田バンプが用いられている。半田バンプは、以下の工程により形成されている。
(1)パッケージ基板に形成された接続パッドにフラックスを印刷する工程。
(2)フラックスの印刷された接続パッドに、半田ボールを搭載する工程。
(3)リフローを行い半田ボールから半田バンプを形成する工程。
Solder bumps are used for electrical connection between the package substrate and the IC chip. The solder bump is formed by the following process.
(1) A step of printing flux on connection pads formed on the package substrate.
(2) A step of mounting solder balls on connection pads on which flux is printed.
(3) A step of reflowing to form solder bumps from the solder balls.

上述した半田ボールを接続パッドに搭載する工程では、例えば、特許文献1に示されている印刷技術が用いられている。この印刷技術では、図13(A)に示すようにプリント配線板30上に接続パッド75と対向した位置に開口116aの設けられたボール整列用マスク116を載置し、スキージ124で半田ボール78sを接続パッド75上に落下させていた。
特開2001−267731号
In the process of mounting the solder balls on the connection pads described above, for example, the printing technique disclosed in Patent Document 1 is used. In this printing technique, as shown in FIG. 13A, a ball alignment mask 116 provided with an opening 116a is placed on the printed wiring board 30 at a position facing the connection pad 75, and a squeegee 124 is used for solder ball 78s. Was dropped on the connection pad 75.
JP 2001-267331 A

ICの高集積化に伴い、パッケージ基板の半田バンプは更に小径化、狭ピッチ化が求められている。このため、半田ボールは直径200μmΦ未満の砂粒よりも小径となり、上述したボール整列用マスクとスキージを併用する方法では、半田バンプの高さのばらつきがでて品質が低下していた。 As ICs are highly integrated, the solder bumps on the package substrate are required to be further reduced in diameter and pitch. For this reason, the solder balls have a smaller diameter than sand grains having a diameter of less than 200 μmΦ, and the method of using the above-described ball alignment mask and squeegee together causes variations in the height of the solder bumps, resulting in a reduction in quality.

即ち、半田ボールが小径化すると、表面積に対する重量比が小さくなり、分子間力による半田ボールの吸着現象が生じる。従来技術では、凝集しやすい半田ボールをスキージを接触させて送るため、半田ボールを傷つけ一部に欠けが生じる。半田ボールの一部が欠けると、各接続パッド上で半田バンプの体積が異なるようになるので、上述したように半田バンプの高さにばらつきが生じる。体積の小さい半田バンプが存在すると、その半田バンプに熱応力が集中するために、接続信頼性が低下する。 That is, when the diameter of the solder ball is reduced, the weight ratio with respect to the surface area is reduced, and the phenomenon of adsorption of the solder ball due to intermolecular force occurs. In the prior art, solder balls that tend to agglomerate are sent in contact with the squeegee, so that the solder balls are damaged and some of them are chipped. If a part of the solder ball is missing, the volume of the solder bump differs on each connection pad, so that the height of the solder bump varies as described above. If there is a solder bump having a small volume, thermal stress concentrates on the solder bump, resulting in a decrease in connection reliability.

また、プリント配線板の表面は平坦ではない。特に、ビルドアップ多層配線板では表面の凹凸が大きい。プリント配線板にボール整列用マスクを載置すると、プリント配線板の凹凸に沿って、ボール整列用マスクにも窪んだ部分ができる。直径200μmΦ未満の半田ボールを扱う際には、図13(B)に示すように窪んだ部分ができたボール整列用マスク116上では、スキージ124が窪みに追従できずに半田ボール78sを上から押すようになって潰してしまい、搬送できなくなる。この対策のためにスキージを柔らかい材質で構成したとしても、図13(C)に示すように、スキージ124の先端部分が曲がり、その部分に半田ボール78sが入り込み潰れてしまう。このようにスキージを用いる方法では、直径200μmΦ未満の半田ボールを接続パッド上に正常な半田ボリュームで搭載することが困難になった。 Further, the surface of the printed wiring board is not flat. In particular, the build-up multilayer wiring board has large surface irregularities. When the ball alignment mask is placed on the printed wiring board, a recessed portion is formed in the ball alignment mask along the unevenness of the printed wiring board. When a solder ball having a diameter of less than 200 μmΦ is handled, the squeegee 124 cannot follow the depression on the ball alignment mask 116 having a depression as shown in FIG. It will be crushed as it is pushed, making it impossible to transport. Even if the squeegee is made of a soft material for this measure, as shown in FIG. 13C, the tip portion of the squeegee 124 is bent, and the solder ball 78s enters and is crushed. Thus, with the method using a squeegee, it has become difficult to mount a solder ball having a diameter of less than 200 μmΦ on the connection pad with a normal solder volume.

本発明の目的は、直径200μm未満の半田ボールを接続パッドへ確実に搭載することができる半田ボール搭載装置及び半田ボール搭載方法を提供することにある。 An object of the present invention is to provide a solder ball mounting apparatus and a solder ball mounting method capable of reliably mounting a solder ball having a diameter of less than 200 μm on a connection pad.

上記目的を達成するため、請求項1の発明は、半田バンプとなる半田ボールをプリント配線板の接続パッド領域の各接続パッドに搭載する半田ボール搭載装置であって、
プリント配線板の接続パッドに対応する複数の開口を備えるボール整列用マスクと、
ボール整列用マスクの上方に位置し、開口部から空気を吸引することで開口部直下に半田ボールを集合させる筒部材と、
前記筒部材を水平方向に移動させる移動機構であって、該筒部材を移動させることで前記ボール整列用マスクの上に集合させた半田ボールを移動させ、ボール整列用マスクの開口を介して、半田ボールをプリント配線板の接続パッドへ落下させる移動機構と、を備え、前記筒部材の開口部が略矩形であって、
当該開口部の筒部材移動方向に平行な辺の長さを、前記接続パッド領域の筒部材移動方向に平行な辺の長さに対して1.1〜4倍とし、
前記開口部の筒部材移動方向に垂直な辺の長さを、前記接続パッド領域の筒部材移動方向に垂直な辺の長さに対して1.1〜4倍としたことを技術的特徴とする。
In order to achieve the above object, the invention of claim 1 is a solder ball mounting device for mounting a solder ball to be a solder bump on each connection pad in a connection pad region of a printed wiring board,
A ball alignment mask having a plurality of openings corresponding to connection pads of the printed wiring board;
A cylindrical member that is located above the ball alignment mask and collects solder balls directly under the opening by sucking air from the opening;
A moving mechanism for moving the cylindrical member in a horizontal direction, and moving the solder ball assembled on the ball alignment mask by moving the cylindrical member, through the opening of the ball alignment mask, A movement mechanism for dropping the solder ball onto the connection pad of the printed wiring board, and the opening of the cylindrical member is substantially rectangular,
The length of the side parallel to the cylindrical member moving direction of the opening is 1.1 to 4 times the length of the side parallel to the cylindrical member moving direction of the connection pad region,
A technical feature is that the length of the side of the opening perpendicular to the direction of movement of the cylindrical member is 1.1 to 4 times the length of the side of the connection pad region perpendicular to the direction of movement of the cylindrical member. To do.

請求項4の発明は、プリント配線板の接続パッド領域の接続パッドに対応する複数の開口を備えるボール整列用マスクを用い、半田バンプとなる半田ボールをプリント配線板の接続パッドに搭載するための半田ボール搭載方法であって、
開口部が略矩形であって、当該開口部の筒部材移動方向に平行な辺の長さを、前記接続パッド領域の筒部材移動方向に平行な辺の長さに対して1.1〜4倍とし、前記開口部の筒部材移動方向に垂直な辺の長さを、前記接続パッド領域の筒部材移動方向に垂直な辺の長さに対して1.1〜4倍とした筒部材を、ボール整列用マスクの上方に位置させ、該筒部材で空気を吸引することで、当該筒部材直下のボール整列用マスク上に半田ボールを集合させ、
前記筒部材を水平方向に移動させることで、前記ボール整列用マスクの上に集合させた半田ボールを移動させ、ボール整列用マスクの開口を介して、半田ボールをプリント配線板の接続パッドへ落下させることを技術的特徴とする。
According to a fourth aspect of the present invention, there is provided a ball alignment mask having a plurality of openings corresponding to connection pads in a connection pad region of a printed wiring board, and mounting solder balls serving as solder bumps on the connection pads of the printed wiring board. A solder ball mounting method,
The opening has a substantially rectangular shape, and the length of the side parallel to the cylindrical member moving direction of the opening is 1.1 to 4 with respect to the length of the side parallel to the cylindrical member moving direction of the connection pad region. A cylindrical member in which the length of the side perpendicular to the cylindrical member moving direction of the opening is 1.1 to 4 times the length of the side perpendicular to the cylindrical member moving direction of the connection pad region The solder balls are gathered on the ball alignment mask directly below the cylindrical member by being positioned above the ball alignment mask and sucking air with the cylindrical member.
By moving the cylindrical member in the horizontal direction, the solder balls assembled on the ball alignment mask are moved, and the solder balls are dropped onto the connection pads of the printed wiring board through the openings of the ball alignment mask. Is a technical feature.

請求項1の半田ボール搭載装置及び請求項4の半田ボール搭載方法によれば、ボール整列用マスクの上方に筒部材を位置させ、該筒部材の開口部から空気を吸引することで半田ボールを集合させ、筒部材を水平方向に移動させることで、集合させた半田ボールをボール整列用マスクの上を移動させ、ボール整列用マスクの開口を介して、半田ボールをプリント配線板の接続パッドへ落下させる。このため、微細な半田ボールを確実にプリント配線板の全ての接続パッドに搭載させることができる。また、半田ボールを非接触で移動させるため、スキージを用いる場合とは異なり、半田ボールに傷を付けることなく接続パッドに搭載でき、半田バンプの高さを均一にすることができる。更に、ビルドアップ多層配線板の様に、表面に起伏の多いプリント配線板でも半田ボールを接続パッドに適切に載置させることができる。また、非接触のため、半田ボールの凝集が起こり難いので、接続パッド上に確実に1個の半田ボールを搭載できる。 According to the solder ball mounting apparatus of claim 1 and the solder ball mounting method of claim 4, the cylindrical member is positioned above the ball alignment mask, and the solder ball is sucked by sucking air from the opening of the cylindrical member. By assembling and moving the cylindrical member in the horizontal direction, the assembled solder balls are moved over the ball alignment mask, and the solder balls are moved to the connection pads of the printed wiring board through the openings of the ball alignment mask. Drop it. For this reason, a fine solder ball can be reliably mounted on all the connection pads of the printed wiring board. Further, since the solder ball is moved in a non-contact manner, unlike the case of using a squeegee, it can be mounted on the connection pad without damaging the solder ball, and the height of the solder bump can be made uniform. Furthermore, a solder ball can be appropriately placed on a connection pad even on a printed wiring board having a large undulation on the surface, such as a build-up multilayer wiring board. In addition, since the solder balls do not aggregate due to non-contact, one solder ball can be reliably mounted on the connection pad.

また、筒部材の開口部を略矩形としてあるため、半田ボールを略矩形状に集合させ、略矩形形状の接続パッド領域内の接続パッドに半田ボールを効率的に搭載することができる。ここで、筒部材の開口部の筒部材移動方向に平行な辺の長さを、接続パッド領域の筒部材移動方向に平行な辺の長さに対して1.1〜4倍とし、開口部の筒部材移動方向に垂直な辺の長さを、接続パッド領域の筒部材移動方向に垂直な辺の長さに対して1.1〜4倍としてあるので、プリント配線板の接続パッド領域に半田ボールを集めることができる。ここで、1.1倍未満となると、接続パッド領域の外周部の接続パッドに半田ボールを搭載できなくなる。4倍を越えると、筒部材の中央部に半田ボールが集まらず、接続パッド領域の中心部の接続パッドに半田ボールを搭載できなくなる。 Further, since the opening of the cylindrical member is substantially rectangular, the solder balls can be assembled into a substantially rectangular shape, and the solder balls can be efficiently mounted on the connection pads in the connection pad region having a substantially rectangular shape. Here, the length of the side parallel to the cylindrical member moving direction of the opening of the cylindrical member is 1.1 to 4 times the length of the side parallel to the cylindrical member moving direction of the connection pad region. The length of the side perpendicular to the cylinder member movement direction is 1.1 to 4 times the length of the side perpendicular to the cylinder movement direction of the connection pad area. Solder balls can be collected. Here, when it is less than 1.1 times, it becomes impossible to mount solder balls on the connection pads in the outer peripheral portion of the connection pad region. If it exceeds four times, the solder balls are not collected at the center of the cylindrical member, and the solder balls cannot be mounted on the connection pads at the center of the connection pad region.

請求項2の半田ボール搭載装置によれば、(開口部の筒部材移動方向に平行な辺の長さ)/(接続パッド領域の筒部材移動方向に平行な辺の長さ)を、(開口部の筒部材移動方向に垂直な辺の長さ)/(接続パッド領域の筒部材移動方向に垂直な辺の長さ)よりも大きくしてある。このため、略矩形形状の接続パッド領域に対して、筒部材の移動方向に長くなるように半田ボールを集めることができ、略矩形形状の接続パッド領域内の接続パッドに半田ボールを効率的に搭載することができる。 According to the solder ball mounting device of claim 2, (the length of the side parallel to the cylindrical member moving direction of the opening) / (the length of the side parallel to the cylindrical member moving direction of the connection pad region) The length of the side perpendicular to the cylindrical member moving direction) / (the length of the side perpendicular to the cylindrical moving direction of the connection pad region). For this reason, the solder balls can be collected so as to be long in the moving direction of the cylindrical member with respect to the substantially rectangular connection pad region, and the solder balls can be efficiently attached to the connection pads in the substantially rectangular connection pad region. Can be installed.

請求項3の半田ボール搭載装置では、筒部材とボール整列用マスクとの間の風速を5〜35m/secにしてあるため、接続パッド領域上に適切に半田ボールを集め、接続パッドに半田ボールを効率的に搭載することができる。ここで、風速が5m/sec未満では、筒部材の外周部に半田ボールが集中するため、接続パッド領域の中心部に位置する接続パッド領域上に半田ボールを搭載することが難しくなる。一方、風速が35m/secを越えると、筒部材の中心部に半田ボールが集中するため、接続パッド領域の外周部に位置する接続パッド領域上に半田ボールを搭載することが難しくなる。ここで、接続パッド領域は、図8中の75Aの領域であって、最外層に位置する接続パッドを含み、その面積が最小となる矩形領域を言う。なお、図9(C)に示すように接続パッド75が矩形状に配置されていない場合、最外周の接続パッドを含み接続パッド領域75Aの矩形面積が最小となるように接続パッド領域を設定する。 In the solder ball mounting apparatus according to claim 3, since the wind speed between the cylindrical member and the ball alignment mask is 5 to 35 m / sec, the solder balls are appropriately collected on the connection pad region, and the solder balls are collected on the connection pads. Can be mounted efficiently. Here, when the wind speed is less than 5 m / sec, the solder balls are concentrated on the outer peripheral portion of the cylindrical member, so that it is difficult to mount the solder balls on the connection pad region located at the center of the connection pad region. On the other hand, when the wind speed exceeds 35 m / sec, the solder balls are concentrated at the center of the cylindrical member, so that it is difficult to mount the solder balls on the connection pad area located at the outer periphery of the connection pad area. Here, the connection pad region is a region of 75A in FIG. 8 and includes a connection pad located in the outermost layer, and is a rectangular region having the smallest area. When the connection pad 75 is not arranged in a rectangular shape as shown in FIG. 9C, the connection pad region is set so that the rectangular area of the connection pad region 75A including the outermost connection pad is minimized. .

先ず、本発明の実施例に係る半田ボール搭載方法及び搭載装置を用いて製造する多層プリント配線板10の構成について、図6及び図7を参照して説明する。図6は、該多層プリント配線板10の断面図を、図7は、図6に示す多層プリント配線板10にICチップ90を取り付け、ドータボード94へ載置した状態を示している。図6に示すように多層プリント配線板10では、コア基板30の両面に導体回路34が形成されている。コア基板30の上面と裏面とはスルーホール36を介して接続されている。 First, the structure of the multilayer printed wiring board 10 manufactured using the solder ball mounting method and mounting apparatus according to the embodiment of the present invention will be described with reference to FIGS. 6 shows a cross-sectional view of the multilayer printed wiring board 10 and FIG. 7 shows a state in which the IC chip 90 is attached to the multilayer printed wiring board 10 shown in FIG. As shown in FIG. 6, in the multilayer printed wiring board 10, conductor circuits 34 are formed on both surfaces of the core substrate 30. The top surface and the back surface of the core substrate 30 are connected via a through hole 36.

更に、コア基板30の導体回路34の上に層間樹脂絶縁層50を介して導体回路層を形成する導体回路58が形成されている。導体回路58は、バイアホール60を介して導体回路34と接続されている。導体回路58の上に層間樹脂絶縁層150を介して導体回路158が形成されている。導体回路158は、層間樹脂絶縁層150に形成されたバイアホール160を介して導体回路58に接続されている。 Furthermore, a conductor circuit 58 for forming a conductor circuit layer is formed on the conductor circuit 34 of the core substrate 30 via an interlayer resin insulating layer 50. The conductor circuit 58 is connected to the conductor circuit 34 via the via hole 60. A conductor circuit 158 is formed on the conductor circuit 58 via an interlayer resin insulation layer 150. Conductor circuit 158 is connected to conductor circuit 58 via via hole 160 formed in interlayer resin insulation layer 150.

バイアホール160、導体回路158の上層にはソルダーレジスト層70が形成されており、該ソルダーレジスト層70の開口71にニッケルめっき層72及び金めっき層74を設けることで、接続パッド75が形成されている。上面の接続パッド75上には半田バンプ78Uが、下面の接続パッド75上にはBGA(ボールグリッドアレー)78Dが形成されている。 A solder resist layer 70 is formed above the via hole 160 and the conductor circuit 158. By providing the nickel plating layer 72 and the gold plating layer 74 in the opening 71 of the solder resist layer 70, the connection pad 75 is formed. ing. A solder bump 78U is formed on the upper connection pad 75, and a BGA (ball grid array) 78D is formed on the lower connection pad 75.

図7中に示すように、多層プリント配線板10の上面側の半田バンプ78Uは、ICチップ90のランド92へ接続される。一方、下側のBGA78Dは、ドータボード94のランド96へ接続されている。  As shown in FIG. 7, the solder bumps 78 </ b> U on the upper surface side of the multilayer printed wiring board 10 are connected to the lands 92 of the IC chip 90. On the other hand, the lower BGA 78D is connected to the land 96 of the daughter board 94.

図8は、多数個取り用の多層プリント配線板10Aの平面図である。多層プリント配線板10Aは、マトリクス状に接続パッド75が配列された接続パッド領域75Aを備える個々の多層プリント配線板10を、図中の一点鎖線で切断することで切り分ける。図5は、多数個取り用の多層プリント配線板10Aに半田バンプを形成する工程の説明図であり、図8中のY1−Y1断面図に相当する。図5(A)に示すように表面のソルダーレジスト層70の開口71に接続パッド75を形成した多層プリント配線板10Aの表面にフラックス80を印刷する。図5(B)に示すように多層プリント配線板10Aの上側の接続パッド75上に後述する半田ボール搭載装置を用いて微少な半田ボール78s(例えば日立金属社製、タムラ社製、直径40μm以上、200μm未満)を搭載する。ファイン化対応のため直径200μmΦ未満の半田ボールが望ましい。直径40μmΦ未満では半田ボールが軽すぎるため接続パッド上に落下しない。一方、直径200μmΦ以上になると逆に重すぎるため筒部材内に半田ボールを集合させることができず、半田ボールが載っていない接続パッドが存在するようになる。本発明では、直径40μmΦ以上直径200μmΦ未満の半田ボールを使う意義が高い。この範囲ではファイン化に有利である。また、吸着ヘッドで半田ボールを吸着して接続パッド上に半田ボールを搭載する方法では、半田ボールが小さいので吸着するのが困難になるため、実施例の方法の優位性が明らかになる。 FIG. 8 is a plan view of a multilayer printed wiring board 10A for multi-piece production. The multilayer printed wiring board 10A is separated by cutting the individual multilayer printed wiring board 10 including the connection pad regions 75A in which the connection pads 75 are arranged in a matrix shape, by cutting along a dashed line in the drawing. FIG. 5 is an explanatory diagram of a process of forming solder bumps on the multi-layer printed wiring board 10A for multi-piece taking, and corresponds to a cross-sectional view taken along line Y1-Y1 in FIG. As shown in FIG. 5A, the flux 80 is printed on the surface of the multilayer printed wiring board 10A in which the connection pads 75 are formed in the openings 71 of the solder resist layer 70 on the surface. As shown in FIG. 5B, a small solder ball 78s (for example, manufactured by Hitachi Metals, Tamura, diameter 40 μm or more is used on the upper connection pad 75 of the multilayer printed wiring board 10A by using a solder ball mounting device described later. , Less than 200 μm). Solder balls with a diameter of less than 200 μm are desirable for finer processing. If the diameter is less than 40 μmΦ, the solder ball is too light and does not fall on the connection pad. On the other hand, if the diameter is 200 μmΦ or more, the solder balls cannot be assembled in the cylindrical member because they are too heavy, and there are connection pads on which the solder balls are not placed. In the present invention, it is highly significant to use solder balls having a diameter of 40 μmΦ or more and less than 200 μmΦ. In this range, it is advantageous for refinement. Further, in the method in which the solder ball is sucked by the suction head and the solder ball is mounted on the connection pad, since the solder ball is small and difficult to be sucked, the superiority of the method of the embodiment becomes clear.

その後、図5(C)に示すように多層プリント配線板10Aの下側の接続パッド75上に、従来技術(例えば、特許1975429号)に係る吸着ヘッドで通常径(直径250μmΦ)の半田ボール78Lを吸着して載置する。その後、リフロー炉で過熱し、図6に示すように多層プリント配線板10Aの上側に60μm以上200μm未満のピッチで半田バンプ78Uを、例えば500〜30000個(接続パッド数に相当)、下側に2mmピッチでBGA78Dを、例えば250個形成する。特に接続パッド数が2000〜30000以上になると、接続パッド領域が大きくなるため、本発明の方法を適用する意義が高い。これは、非接触のためバンプの高さが安定し、高さの低い半田バンプが発生し難いので、接続信頼性の高いプリント配線板にすることができる。なお、60μmピッチ未満となると、そのピッチに適した半田ボールを製造するのが困難になる。200μmピッチ以上になると、本方法においても何ら問題なく製造できるが、従来技術の方法でも製造可能である。更に、図7に示すように、多数個取り用の多層プリント配線板10Aを個片の多層プリント配線板10に切り分けてから、リフローにより半田バンプ78Uを介してICチップ90を搭載させた後、ICチップ90を搭載した多層プリント配線板10を、BGA78Dを介してドータボード94へ取り付ける。 Thereafter, as shown in FIG. 5C, a solder ball 78L having a normal diameter (diameter: 250 μmΦ) is formed on the connection pad 75 on the lower side of the multilayer printed wiring board 10A by a suction head according to a conventional technique (for example, Japanese Patent No. 1975429). Is adsorbed and placed. Thereafter, it is heated in a reflow furnace, and as shown in FIG. 6, for example, 500 to 30,000 solder bumps 78U (corresponding to the number of connection pads) are formed on the upper side of the multilayer printed wiring board 10A at a pitch of 60 μm or more and less than 200 μm on the lower side. For example, 250 BGAs 78D are formed at a pitch of 2 mm. In particular, when the number of connection pads is 2000 to 30000 or more, the connection pad area becomes large, and therefore, the significance of applying the method of the present invention is high. This is because the bump height is stable due to non-contact, and solder bumps with low height are unlikely to be generated, so that a printed wiring board with high connection reliability can be obtained. When the pitch is less than 60 μm, it becomes difficult to manufacture solder balls suitable for the pitch. When the pitch is 200 μm or more, the present method can be produced without any problem, but it can also be produced by a conventional method. Further, as shown in FIG. 7, after the multi-layer multilayer printed wiring board 10A is cut into individual multilayer printed wiring boards 10, the IC chip 90 is mounted via the solder bumps 78U by reflow. The multilayer printed wiring board 10 on which the IC chip 90 is mounted is attached to the daughter board 94 via the BGA 78D.

図5(B)を参照して上述した多層プリント配線板の接続パッド上に微少(直径200μmΦ未満)な半田ボール78sを搭載する半田ボール搭載装置について、図1を参照して説明する。
図1(A)は、本発明の一実施例に係る半田ボール搭載装置の構成を示す構成図であり、図1(B)は、図1(A)の半田ボール搭載装置を矢印B側から見た矢視図である。
With reference to FIG. 5, a solder ball mounting apparatus for mounting a small (less than 200 μm diameter) solder ball 78s on the connection pad of the multilayer printed wiring board described above with reference to FIG.
FIG. 1A is a configuration diagram showing a configuration of a solder ball mounting device according to an embodiment of the present invention, and FIG. 1B is a diagram illustrating the solder ball mounting device of FIG. FIG.

半田ボール搭載装置20は、多層プリント配線板10Aを位置決め保持するXYθ吸引テーブル14と、該XYθ吸引テーブル14を昇降する上下移動軸12と、多層プリント配線板の接続パッド75に対応する開口を備えるボール整列用マスク16と、ボール整列用マスク16上を移動する半田ボールを誘導する搭載筒(筒部材)24と、搭載筒24に負圧を与える吸引ボックス26と、余剰の半田ボールを回収するための吸着ボール除去筒61と、該吸着ボール除去筒61に負圧を与える吸引ボックス66と、回収した半田ボールを保持する吸着ボール除去吸引装置68と、ボール整列用マスク16をクランプするマスククランプ44と、搭載筒24及び吸着ボール除去筒61をX方向へ送るX方向移動軸40と、X方向移動軸40を支持する移動軸支持ガイド42と、多層プリント配線板10を撮像するためのアライメントカメラ46と、搭載筒24下にある半田ボールの残量を検出する残量検出センサ18と、残量検出センサ18により検出された残量に基づき半田ボールを搭載筒24側へ供給する半田ボール供給装置22と、を備える。図1に示す半田ボール搭載装置20では、搭載筒24及び吸着ボール除去筒61をX方向へ送るX方向移動軸40のみ示したが、Y方向へ送る移動機構を備えることも可能である。 The solder ball mounting device 20 includes an XYθ suction table 14 that positions and holds the multilayer printed wiring board 10A, a vertical movement shaft 12 that raises and lowers the XYθ suction table 14, and an opening that corresponds to the connection pad 75 of the multilayer printed wiring board. A ball alignment mask 16, a mounting cylinder (cylinder member) 24 for guiding a solder ball moving on the ball alignment mask 16, a suction box 26 for applying a negative pressure to the mounting cylinder 24, and excess solder balls are collected. A suction ball removing cylinder 61, a suction box 66 for applying a negative pressure to the suction ball removing cylinder 61, a suction ball removing suction device 68 for holding the collected solder balls, and a mask clamp for clamping the ball alignment mask 16 44, an X direction moving shaft 40 for sending the mounting cylinder 24 and the suction ball removing cylinder 61 in the X direction, and an X direction moving shaft 40 are supported. A moving shaft support guide 42, an alignment camera 46 for imaging the multilayer printed wiring board 10, a remaining amount detection sensor 18 for detecting the remaining amount of solder balls under the mounting cylinder 24, and a remaining amount detection sensor 18. A solder ball supply device 22 for supplying the solder balls to the mounting cylinder 24 based on the detected remaining amount. In the solder ball mounting apparatus 20 shown in FIG. 1, only the X-direction moving shaft 40 for sending the mounting cylinder 24 and the suction ball removing cylinder 61 in the X direction is shown, but a moving mechanism for sending in the Y direction can also be provided.

図9(A)は、図8中の多層プリント配線板10Aの接続パッド領域75Aと搭載筒24とを拡大して示す説明図である。
搭載筒24は、下端開口部24A(図2(B)参照)が矩形に形成してある。このため、半田ボールを略矩形状に集合させ、略矩形形状の接続パッド領域75A内の接続パッド75に半田ボールを効率的に搭載することができる。ここで、当該開口部の搭載筒移動方向(X方向)に平行な辺(内壁の長さ)24Xの長さaxを、接続パッド領域75Aの搭載筒移動方向に平行な辺75Xの長さxに対してa(1.1〜4)倍に設定してある。一方、開口部の搭載筒移動方向に垂直(Y方向)な辺(内壁長さ)24Yの長さbyを、接続パッド領域75Aの搭載筒移動方向に垂直な辺75Yの長さyに対してb(1.1〜4)倍に設定してある。このため、プリント配線板の接続パッド領域75A上(接続パッド領域上に位置するボール整列用マスク上)に半田ボールを集めることができる。ここで、1.1倍未満となると、図10(A)に示すように半田ボール群(半田ボールの集合体)78Gが内側に集まり過ぎ、接続パッド領域75Aの外周部の接続パッド75に半田ボールを搭載できなくなる。4倍を越えると、図10(B)に示すように搭載筒24の中央部に半田ボールが集まらず、接続パッド領域75Aの中心部の接続パッド75に半田ボールを搭載できなくなる。ここで、図9(C)に示すように接続パッド75が矩形状に配置されていない場合のx、yは、最外周の接続パッドを含み接続パッド領域75Aの矩形面積が最小となるように設定する。
FIG. 9A is an explanatory view showing, in an enlarged manner, the connection pad region 75A and the mounting cylinder 24 of the multilayer printed wiring board 10A in FIG.
The mounting cylinder 24 has a lower end opening 24A (see FIG. 2B) formed in a rectangular shape. Therefore, the solder balls can be assembled into a substantially rectangular shape, and the solder balls can be efficiently mounted on the connection pads 75 in the connection pad region 75A having a substantially rectangular shape. Here, the length ax of the side (inner wall length) 24X parallel to the mounting cylinder movement direction (X direction) of the opening is defined as the length x of the side 75X parallel to the mounting cylinder movement direction of the connection pad region 75A. Is set to a (1.1 to 4) times. On the other hand, the length by of the side (inner wall length) 24Y perpendicular to the mounting tube movement direction of the opening (Y direction) is set to the length y of the side 75Y of the connection pad region 75A perpendicular to the mounting tube movement direction. It is set to b (1.1-4) times. For this reason, it is possible to collect the solder balls on the connection pad area 75A of the printed wiring board (on the ball alignment mask positioned on the connection pad area). Here, when the ratio is less than 1.1 times, as shown in FIG. 10A, the solder ball group (aggregate of solder balls) 78G gathers too much on the inner side, and the solder is applied to the connection pads 75 in the outer peripheral portion of the connection pad region 75A. The ball cannot be mounted. If it exceeds four times, as shown in FIG. 10 (B), the solder balls are not collected at the center of the mounting cylinder 24, and the solder balls cannot be mounted on the connection pads 75 at the center of the connection pad region 75A. Here, as shown in FIG. 9C, when the connection pads 75 are not arranged in a rectangular shape, x and y include the outermost connection pads so that the rectangular area of the connection pad region 75A is minimized. Set.

また、実施例では、(搭載筒24の開口部の筒部材移動方向(X方向)に平行な辺24Xの長さ)/(接続パッド領域75Aの搭載筒移動方向に平行な辺75Xの長さ)=aを、(開口部の搭載筒移動方向に垂直な辺24Yの長さ)/(接続パッド領域75Aの搭載筒移動方向に垂直な辺75Yの長さ)=bよりも大きくしてある(a>b)。このため、図9(B)に示すように略矩形形状の接続パッド領域75Aに対して、搭載筒24の移動方向(X方向)に長くなるように半田ボール群78Gを形成することができ、搭載筒24をX方向へ移動させた際に、矩形形状の接続パッド領域75A内の接続パッド75に半田ボールを効率的に搭載することができる。 In the embodiment, (the length of the side 24X parallel to the cylinder member moving direction (X direction) of the opening of the mounting cylinder 24) / (the length of the side 75X parallel to the mounting cylinder moving direction of the connection pad region 75A). ) = A is larger than (length of side 24Y perpendicular to mounting cylinder movement direction of opening) / (length of side 75Y perpendicular to mounting cylinder movement direction of connection pad region 75A) = b (A> b). Therefore, as shown in FIG. 9B, the solder ball group 78G can be formed so as to be long in the moving direction (X direction) of the mounting cylinder 24 with respect to the connection pad region 75A having a substantially rectangular shape. When the mounting cylinder 24 is moved in the X direction, solder balls can be efficiently mounted on the connection pads 75 in the rectangular connection pad region 75A.

図8の平面図に示すように多数個取り用の多層プリント配線板10Aの上に、半田ボール搭載装置20の搭載筒24及び吸着ボール除去筒61は、個々の接続パッド領域75Aに対応させてY方向へ複数並べてある。なお、ここでは、1の接続パッド領域75Aに1の搭載筒24を対応させたが、搭載筒24を複数の接続パッド領域75Aに対応した大きさにしてもよい。ここで、Y方向は便宜的であり、X方向に並べても良い。XYθ吸引テーブル14は、半田ボールの搭載される多層プリント配線板10を位置決め、吸着、保持、補正する。アライメントカメラ46は、XYθ吸引テーブル14上の多層プリント配線板10のアライメントマークを検出し、検出された位置に基づき、多層プリント配線板10とボール整列用マスク16との位置が調整される。残量検出センサ18は光学的な手法により半田ボールの残量を検出する。 As shown in the plan view of FIG. 8, the mounting cylinder 24 and the suction ball removing cylinder 61 of the solder ball mounting apparatus 20 are arranged on the multi-layer printed wiring board 10A for multi-cavity so as to correspond to each connection pad area 75A. A plurality are arranged in the Y direction. Here, one mounting cylinder 24 corresponds to one connection pad area 75A, but the mounting cylinder 24 may be sized to correspond to a plurality of connection pad areas 75A. Here, the Y direction is convenient and may be arranged in the X direction. The XYθ suction table 14 positions, sucks, holds, and corrects the multilayer printed wiring board 10 on which the solder balls are mounted. The alignment camera 46 detects the alignment mark of the multilayer printed wiring board 10 on the XYθ suction table 14, and the positions of the multilayer printed wiring board 10 and the ball alignment mask 16 are adjusted based on the detected position. The remaining amount detection sensor 18 detects the remaining amount of solder balls by an optical method.

引き続き、半田ボール搭載装置20による半田ボールの搭載工程について図2〜図4を参照して説明する。
(1)多層プリント配線板の位置認識、補正
図2(A)に示すように多数個取り用の多層プリント配線板10Aのアライメントマーク34Mをアライメントカメラ46により認識し、ボール整列用マスク16に対して多層プリント配線板10Aの位置をXYθ吸引テーブル14によって補正する。即ち、ボール整列用マスク16の開口16aがそれぞれ多層プリント配線板10Aの接続パッド75に対応するように位置調整する。
Next, a solder ball mounting process by the solder ball mounting apparatus 20 will be described with reference to FIGS.
(1) Position Recognition and Correction of Multilayer Printed Wiring Board As shown in FIG. 2 (A), the alignment mark 34M of the multi-layer printed wiring board 10A for picking multiple pieces is recognized by the alignment camera 46, and the ball alignment mask 16 is detected. Then, the position of the multilayer printed wiring board 10A is corrected by the XYθ suction table 14. That is, the positions of the openings 16a of the ball alignment mask 16 are adjusted so as to correspond to the connection pads 75 of the multilayer printed wiring board 10A.

(2)半田ボール供給
図2(B)に示すように半田ボール供給装置22から半田ボール78sを搭載筒24側へ定量供給する。なお、予め搭載筒内に供給しておいても良い。
(2) Solder Ball Supply As shown in FIG. 2B, the solder ball 78s is quantitatively supplied from the solder ball supply device 22 to the mounting cylinder 24 side. In addition, you may supply in a mounting cylinder previously.

(3)半田ボール搭載
図3(A)に示すように、ボール整列用マスク16の上方に、該ボール整列用マスクとの所定のクリアランス(例えば、ボール径の0.5〜4倍)を保ち搭載筒24を位置させ、吸引部24bから空気を吸引することで、搭載筒とプリント配線板間の隙間の流速を5m/sec〜35m/secにして、当該搭載筒24の開口部24A直下のボール整列用マスク16上に半田ボール78sを集合させた。
(3) Solder ball mounting As shown in FIG. 3A, a predetermined clearance (for example, 0.5 to 4 times the ball diameter) with the ball alignment mask is maintained above the ball alignment mask 16. By positioning the mounting cylinder 24 and sucking air from the suction part 24b, the flow velocity of the gap between the mounting cylinder and the printed wiring board is set to 5 m / sec to 35 m / sec, and the mounting cylinder 24 is directly below the opening 24A. Solder balls 78 s were assembled on the ball alignment mask 16.

その後、図3(B)、図4(A)及び図8に示すように、図1(B)及び図1(A)に示す多層プリント配線板10AのY軸沿って並べられた搭載筒24を、X方向移動軸40を介してX軸に沿って水平方向へ送る。これにより、ボール整列用マスク16の上に集合させた半田ボール78sを搭載筒24の移送に伴い移動させ、ボール整列用マスク16の開口16aを介して、半田ボール78sを多層プリント配線板10Aの接続パッド75へ落下、搭載させて行く。これにより、半田ボール78sが多層プリント配線板10A側の全接続パッド上に順次整列される。 Thereafter, as shown in FIGS. 3B, 4A, and 8, the mounting cylinders 24 arranged along the Y axis of the multilayer printed wiring board 10A shown in FIGS. 1B and 1A. Is sent in the horizontal direction along the X-axis via the X-direction moving shaft 40. As a result, the solder balls 78s assembled on the ball alignment mask 16 are moved along with the transfer of the mounting cylinder 24, and the solder balls 78s are moved through the openings 16a of the ball alignment mask 16 to the multilayer printed wiring board 10A. Drop and mount on the connection pad 75. Thereby, the solder balls 78s are sequentially aligned on all the connection pads on the multilayer printed wiring board 10A side.

(4)付着半田ボール除去
図4(B)に示すように、搭載筒24により余剰の半田ボール78sをボール整列用マスク16上に開口16aの無い位置まで誘導した後、吸着ボール除去筒61により吸引除去する。
(4) Removal of Adhering Solder Balls As shown in FIG. 4B, after the surplus solder balls 78s are guided to the position without the openings 16a on the ball alignment mask 16 by the mounting cylinder 24, the suction ball removing cylinder 61 is used. Remove by suction.

(5)基板取り出し
XYθ吸引テーブル14から多層プリント配線板10Aを取り外す。
(5) Removing the multilayer printed wiring board 10A from the XYθ suction table 14 for removing the board.

本実施例の半田ボール搭載方法、半田ボール搭載装置20によれば、ボール整列用マスク16の上方に搭載筒24を位置させ、該搭載筒24の吸引部24B(図2(B)参照)から空気を吸引することで半田ボール78sを集合させ、搭載筒24を水平方向に移動させることで、集合させた半田ボール78sをボール整列用マスク16の上を移動させ、ボール整列用マスク16の開口16aを介して、半田ボール78sを多層プリント配線板10Aの接続パッド75へ落下させる。このため、微細な半田ボール78sを確実に多層プリント配線板10Aの全ての接続パッド75に搭載させることができる。また、半田ボール78sを非接触で移動させるため、スキージを用いる場合とは異なり、半田ボールを傷を付けることなく接続パッド75に搭載でき、半田バンプ78Uの高さを均一にすることができる。このため、IC等の電子部品の実装性、実装後のヒートサイクル試験、高温・高湿試験等の耐環境試験に優れる。更に、製品の平面度に依存しないので、表面に起伏の多いプリント配線板でも半田ボールを接続パッドに適切に載置させることができる。また、微少な半田ボールを確実に接続パッド上に載置することができるので、接続パッドピッチが60〜150μmピッチでソルダーレジストの開口径が40〜100μmのプリント配線板においても全てのバンプにおいてバンプ高さが安定した半田バンプとすることができる。 According to the solder ball mounting method and the solder ball mounting apparatus 20 of the present embodiment, the mounting cylinder 24 is positioned above the ball alignment mask 16, and the suction portion 24B (see FIG. 2B) of the mounting cylinder 24 is used. The solder balls 78s are gathered by sucking air, and the mounting cylinder 24 is moved in the horizontal direction, so that the gathered solder balls 78s are moved on the ball alignment mask 16, and the opening of the ball alignment mask 16 is opened. The solder balls 78s are dropped onto the connection pads 75 of the multilayer printed wiring board 10A through 16a. For this reason, the fine solder balls 78s can be surely mounted on all the connection pads 75 of the multilayer printed wiring board 10A. Further, since the solder ball 78s is moved in a non-contact manner, unlike the case of using a squeegee, the solder ball can be mounted on the connection pad 75 without scratching, and the height of the solder bump 78U can be made uniform. For this reason, it is excellent in environmental resistance tests such as mountability of electronic components such as IC, heat cycle test after mounting, and high temperature / high humidity test. Furthermore, since it does not depend on the flatness of the product, it is possible to appropriately place the solder balls on the connection pads even on a printed wiring board having many undulations on the surface. In addition, since a small solder ball can be surely placed on a connection pad, even in a printed wiring board having a connection pad pitch of 60 to 150 μm and a solder resist opening diameter of 40 to 100 μm, all bumps are bumps. A solder bump having a stable height can be obtained.

更に、吸引力により半田ボールを誘導するため、半田ボールの凝集、付着を防止することができる。更に、搭載筒24の数を調整することで、種々の大きさのワーク(ワークシートサイズの多層プリント配線板)に対応することができるので、多品種、少量生産にも柔軟に適用することが可能である。 Further, since the solder balls are guided by the suction force, the solder balls can be prevented from aggregating and adhering. Furthermore, by adjusting the number of mounting cylinders 24, it is possible to cope with workpieces of various sizes (worksheet-sized multilayer printed wiring boards), so that it can be flexibly applied to various types and small-scale production. Is possible.

本実施例の半田ボール搭載装置では、図1(B)に示すように搭載筒24をワーク(ワークシートサイズの多層プリント配線板)の幅に対応させてY方向へ複数並べてあるため、複数の搭載筒24を、列方向に対して垂直方向(X方向)へ送るだけで、半田ボールを確実に多層プリント配線板10Aの全ての接続パッド75に搭載させることができる。 In the solder ball mounting apparatus of the present embodiment, as shown in FIG. 1B, a plurality of mounting cylinders 24 are arranged in the Y direction corresponding to the width of the work (multilayer printed wiring board having a work sheet size). By only sending the mounting cylinder 24 in the direction perpendicular to the row direction (X direction), the solder balls can be reliably mounted on all the connection pads 75 of the multilayer printed wiring board 10A.

更に、吸着ボール除去筒61によりボール整列用マスク16上に残った半田ボール78sを回収できるので、余剰の半田ボールが残り、故障等の障害の原因となることがない。 Further, since the solder ball 78s remaining on the ball alignment mask 16 can be collected by the suction ball removing cylinder 61, an excessive solder ball remains and does not cause a failure such as a failure.

[実施例]
(1)プリント配線板の作製
出発材料として両面銅張積層板(例えば、日立化成工業株式会社製 MCL−E−67)を用い、この基板に周知の方法でスルーホール導体及び導体回路を形成した。その後、周知の方法(例えば、2000年6月20日 日刊工業新聞社発行の「ビルドアップ多層プリント配線板」(高木清著)で層間絶縁層と導体回路層とを交互に積層し、最外層の導体回路層において、ICへ電気的に接続するための接続パッド群を形成した。接続パッド群は、120μmΦの接続パッドを接続パッド領域(70mm2 :10mm×7mm)内に2000個形成し、その大半が150μmピッチで格子状に配置されている。ここで、バイアホールから成る接続パッド(バイアホールの直上に半田バンプを形成)は、フィルドビアが好ましく、その凹み量、凸量(図14参照)は、導体回路158の導体厚さに対し−5〜5μmの範囲が望ましい。フィルドビアの凹み量が5μm(−5μm)を越えると、半田ボールとフィルドビアからなる接続パッドの接点が少なくなるので、半田バンプとするとき濡れ性が悪くなり、半田内にボイドを巻き込んだり、未搭載(ミッシングバンプ)になりやすい。一方、5μmを越えると導体回路158の厚みが厚くなるので、ファイン化に向かない。
その上に市販のソルダーレジストを形成し(膜厚20μm)、接続パッドを露出させるため、接続パッド上のソルダーレジストに、写真法で90μmΦの開口を形成した。
[Example]
(1) Preparation of printed wiring board A double-sided copper-clad laminate (for example, MCL-E-67 manufactured by Hitachi Chemical Co., Ltd.) was used as a starting material, and through-hole conductors and conductor circuits were formed on this substrate by a well-known method. . Thereafter, interlayer insulation layers and conductor circuit layers are alternately laminated by a well-known method (for example, “Build-Up Multilayer Printed Wiring Board” published by Nikkan Kogyo Shimbun on June 20, 2000). In the conductor circuit layer, a connection pad group for electrical connection to the IC was formed, and the connection pad group was formed with 2000 connection pads of 120 μmΦ in the connection pad region (70 mm 2 : 10 mm × 7 mm), Most of them are arranged in a grid pattern with a pitch of 150 μm, and the via pads (the solder bumps are formed immediately above the via holes) are preferably filled vias, and the dents and protrusions (see FIG. 14). ) Is preferably in the range of −5 to 5 μm with respect to the conductor thickness of the conductor circuit 158. When the recessed amount of the filled via exceeds 5 μm (−5 μm), Since there are fewer contacts on the connection pad, the wettability becomes worse when solder bumps are formed, and voids tend to get caught in solder or not mounted (missing bumps), while the thickness of the conductor circuit 158 exceeds 5 μm. Since it becomes thicker, it is not suitable for making finer.
A commercially available solder resist was formed thereon (film thickness 20 μm), and an opening of 90 μmφ was formed in the solder resist on the connection pad by photographic method in order to expose the connection pad.

(2)半田ボール搭載
(1)で作製したプリント配線板の表面(IC実装面)に市販のロジン系フラックスを塗布した。その後上述した本願発明の半田ボール搭載装置の吸着テーブルに搭載し、プリント配線板およびボール整列用マスクのアライメントマークをCCDカメラを用いて認識し、プリント配線板とボール整列用マスクを位置合わせした。ここで、ボール整列用マスクは、プリント配線板の接続パッドに対応した位置に110μmΦの開口を有するNi製のメタルマスクを用いた。メタルマスクの厚みは、半田ボールの1/4〜3/4が好ましい。ここでは、Ni製のメタルマスクを用いたが、SUS製やポリイミド製のボール整列用マスクを用いることも可能である。尚、ボール整列用マスクに形成する開口径は、使用するボールの径に対して1.1〜1.5倍が好ましい。次に、接続パッド領域に対応した大きさ(接続パッドが形成されている領域に対して1.1〜4倍)で、高さ200mmのSUS製の搭載筒を半田ボール径の0.5〜4倍のクリアランスを保ってメタルマスク(ボール整列用マスク)上に位置させ、その周囲近辺のボール整列用マスク上にボール直径80μmΦのSn63Pb37半田ボール(日立金属社製)を載せた。実施例では、半田ボールにSn/Pb半田を用いたが、SnとAg、Cu、In、Bi、Zn等の群から選ばれるPbフリー半田であってもよい。
(2) Solder ball mounting (1) A commercially available rosin flux was applied to the surface (IC mounting surface) of the printed wiring board. Thereafter, the printed circuit board was mounted on the suction table of the solder ball mounting apparatus of the present invention described above, the alignment marks of the printed wiring board and the ball alignment mask were recognized using a CCD camera, and the printed wiring board and the ball alignment mask were aligned. Here, as the ball alignment mask, a Ni metal mask having an opening of 110 μmφ at a position corresponding to the connection pad of the printed wiring board was used. The thickness of the metal mask is preferably 1/4 to 3/4 of the solder ball. Although a Ni metal mask is used here, a ball alignment mask made of SUS or polyimide can also be used. The opening diameter formed in the ball alignment mask is preferably 1.1 to 1.5 times the diameter of the ball used. Next, a mounting tube made of SUS having a size corresponding to the connection pad area (1.1 to 4 times the area where the connection pad is formed) and a height of 200 mm is 0.5 to 0.5 times the solder ball diameter. A Sn63Pb37 solder ball (manufactured by Hitachi Metals Co., Ltd.) having a ball diameter of 80 μm was placed on the ball alignment mask in the vicinity of the periphery of the metal mask (ball alignment mask) while maintaining a 4-fold clearance. In the embodiment, Sn / Pb solder is used for the solder balls, but Pb-free solder selected from the group consisting of Sn and Ag, Cu, In, Bi, Zn, or the like may be used.

そして、搭載筒上部の吸引部(5〜20mmΦ)24B(図2(B)参照)より空気を吸引し、次関係式を満たすことで、半田ボールを搭載筒内のボール整列用マスク上に集合させた。
「搭載筒とボール整列用マスク間の隙間の流速>搭載筒内の風速、かつ、半田ボールの自然落下速度>搭載筒内の風速(吸引部の風速は除く)」
上述の関係式を満足させるため、以下の主パラメーターを調整した。
パラメーター(1):搭載筒上部の吸引部からの吸引量(2L/min〜500L/min)
パラメーター(2):搭載筒とボール整列用マスク間の隙間(半田ボール径の0.5〜2.5倍)
パラメーター(3):搭載筒の下端開口部24(A)の面積(図2(B)、図9参照)
Then, air is sucked from the suction portion (5 to 20 mmΦ) 24B (see FIG. 2B) at the top of the mounting cylinder, and the solder balls are gathered on the ball alignment mask in the mounting cylinder by satisfying the following relational expression. I let you.
“Flow velocity in the gap between the mounting cylinder and ball alignment mask> Wind speed in the mounting cylinder and the natural falling speed of the solder ball> Wind speed in the mounting cylinder (excluding the wind speed of the suction part)”
In order to satisfy the above relational expression, the following main parameters were adjusted.
Parameter (1): Suction amount from the suction part at the top of the mounting cylinder (2L / min to 500L / min)
Parameter (2): Gap between the mounting cylinder and the ball alignment mask (0.5 to 2.5 times the solder ball diameter)
Parameter (3): Area of the lower end opening 24 (A) of the mounting cylinder (see FIGS. 2B and 9)

ここで、搭載筒とボール整列用マスク間の風速を5〜35m/sec、搭載筒内の風速は、0.1m/sec〜2m/secとすることができる。また、搭載筒の大きさ(図9参照)は、接続パッド領域(電子部品搭載領域)を等倍に拡大した大きさにする必要はない。接続パッド領域に対する搭載筒の拡大倍率は、移動方向側が大きいほうが好ましい。このように、搭載筒が移動方向に対して大きくなると、図9(B)を参照して上述したように半田ボールが移動方向に対して幅広に存在することとなるため、複数の半田ボールがボール整列用マスクの開口部に落下するチャンスが発生するので、半田ボールの搭載率が向上する。 Here, the wind speed between the mounting cylinder and the ball alignment mask can be 5 to 35 m / sec, and the wind speed in the mounting cylinder can be 0.1 m / sec to 2 m / sec. Further, the size of the mounting cylinder (see FIG. 9) does not have to be a size obtained by enlarging the connection pad region (electronic component mounting region) at the same magnification. The enlargement magnification of the mounting cylinder relative to the connection pad area is preferably larger on the moving direction side. As described above, when the mounting cylinder becomes larger in the moving direction, the solder balls exist wider in the moving direction as described above with reference to FIG. Since a chance of dropping to the opening of the ball alignment mask occurs, the solder ball mounting rate is improved.

その後、搭載筒を移動速度20mm/secで送って半田ボールを移動させ、ボール整列用マスクの開口部から半田ボールを落下させて接続パッド上に半田ボールを搭載した。次に、ボール整列用マスクの余分な半田ボールを除去したのち、半田ボール整列用マスクとプリント配線板を半田ボール搭載装置から別個に取り外した。最後に、前記で作製したプリント配線板を230度に設定してあるリフローに投入して半田ボール付きプリント配線板とした。 Thereafter, the mounting ball was sent at a moving speed of 20 mm / sec to move the solder ball, and the solder ball was dropped from the opening of the ball alignment mask to mount the solder ball on the connection pad. Next, after removing excess solder balls from the ball alignment mask, the solder ball alignment mask and the printed wiring board were separately removed from the solder ball mounting apparatus. Finally, the printed wiring board produced above was put into a reflow set at 230 degrees to obtain a printed wiring board with solder balls.

[実施例1]
実施例1は実施例に準じて作成し、半田ボールは直径80μmΦのものを用いた。なお、パッド数は、2000から4000に変更した。その結果、接続パッド領域が130(75X=13mm、75Y=10mm、図9(A)参照)mmとなった。また、ボール搭載において、上述した主パラメーターを以下のように調整した。
(1) 吸引量=25L/min(吸引部の径:6.5mmΦ)
(2) 隙間=0.2〜0.3mm
(3) 開口面積=1170mm(24X=39:a=3、24Y=30:b=3)
この結果、搭載筒とボール整列用マスク間の風速が11〜17m/secであり、搭載筒内の風速が0.65m/sec以下となった。また、吸引部から1個も半田ボールが吸引されることがなかったので、搭載筒内の風速は半田ボールの自然落下速度未満(半田ボールの自然落下速度未満>搭載筒内の風速)あることも確認できた。
[Example 1]
Example 1 was prepared according to the example, and solder balls having a diameter of 80 μmΦ were used. The number of pads was changed from 2000 to 4000. As a result, the connection pad area was 130 (75X = 13 mm, 75Y = 10 mm, see FIG. 9A) mm 2 . Moreover, in the ball mounting, the main parameters described above were adjusted as follows.
(1) Suction amount = 25 L / min (suction part diameter: 6.5 mmΦ)
(2) Gap = 0.2-0.3mm
(3) Opening area = 1170 mm 2 (24X = 39: a = 3, 24Y = 30: b = 3)
As a result, the wind speed between the mounting cylinder and the ball alignment mask was 11 to 17 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. In addition, since no solder ball was sucked from the suction part, the wind speed in the mounting cylinder must be less than the natural falling speed of the solder ball (less than the natural falling speed of the solder ball> the wind speed in the mounting cylinder). Was also confirmed.

[実施例2]
実施例2は、実施例1において、a,bをa=b=1.1とした。パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 2]
In Example 2, a and b were set to a = b = 1.1 in Example 1. Parameter (1) was adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask was set to 11 to 17 m / sec, and the wind speed in the mounting cylinder was set to 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例3]
実施例3は、実施例1において、a,bをa=b=4とした。パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 3]
In Example 3, a and b were set to a = b = 4 in Example 1. Parameter (1) was adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask was set to 11 to 17 m / sec, and the wind speed in the mounting cylinder was set to 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例4]
実施例4は、実施例1においてa,bをa=3、b=1.1とした。また、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を5〜10m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 4]
In Example 4, a and b were set to a = 3 and b = 1.1 in Example 1. In addition, parameter (1) was adjusted within the range of the example so that the wind speed between the mounting cylinder and the ball alignment mask was 5 to 10 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例5]
実施例5は、実施例1においてa,bをa=4、b=1.1とした。また、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を20〜25m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 5]
In Example 5, a and b in Example 1 were set to a = 4 and b = 1.1. In addition, parameter (1) was adjusted within the range of the example so that the wind speed between the mounting cylinder and the ball alignment mask was 20 to 25 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例6]
実施例6は、実施例1においてa,bをa=4、b=3とした。また、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を30〜35m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 6]
In Example 6, a and b in Example 1 were set to a = 4 and b = 3. In addition, parameter (1) was adjusted within the range of the example so that the wind speed between the mounting cylinder and the ball alignment mask was 30 to 35 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例7]
実施例7は、実施例1において、a=2、b=1.1とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 7]
In Example 7, a = 2 and b = 1.1 in Example 1, and parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m. / sec, the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例8]
実施例8は、実施例1において、a=3、b=1.1とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自無落下速度>搭載筒内の風速であることも確認できた。
[Example 8]
In Example 8, a = 3 and b = 1.1 in Example 1, parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m. / sec, the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the self-falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例9]
実施例9は、実施例1において、a=4、b=1.1とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 9]
In Example 9, a = 4 and b = 1.1 in Example 1, parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m. / sec, the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例10]
実施例10は、実施例1において、a=4、b=3とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Example 10]
In Example 10, a = 4 and b = 3 in Example 1, parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m / sec. The wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例1]
参考例1は、実施例1において、a,bをa=b=1とした。パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 1]
In Reference Example 1, a and b were set to a = b = 1 in Example 1. The parameter (1) was adjusted within the range of the example, so that the wind speed between the mounting cylinder and the ball alignment mask was 11 to 17 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例2]
参考例2は、実施例1において、a,bをa=b=5とした。パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 2]
In Reference Example 2, a and b were set to a = b = 5 in Example 1. Parameter (1) was adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask was set to 11 to 17 m / sec, and the wind speed in the mounting cylinder was set to 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例3]
参考例3は、実施例1においてa,bをa=b=3とした。また、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を5m/sec未満、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 3]
In Reference Example 3, a and b were set to a = b = 3 in Example 1. In addition, parameter (1) was adjusted within the range of the example so that the wind speed between the mounting cylinder and the ball alignment mask was less than 5 m / sec, and the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例4]
参考例4は、実施例1においてa,bをa=b=3とした。また、パラメ一夕ー(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を40〜45m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 4]
In Reference Example 4, a and b were set to a = b = 3 in Example 1. Further, the parameter (1) is adjusted within the range of the embodiment so that the wind speed between the mounting cylinder and the ball alignment mask is 40 to 45 m / sec, and the wind speed in the mounting cylinder is 0.65 m / sec or less. did. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例5]
参考例5は、実施例1において、a=1、b=1.1とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 5]
In Reference Example 5, a = 1 and b = 1.1 in Example 1, parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m. / sec, the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[参考例6]
参考例6は、実施例1において、a=5、b=1.1とし、パラメーター(1)を実施例の範囲内で調整して、搭載筒とボール整列用マスク間の風速を11〜17m/sec、搭載筒内の風速を0.65m/sec以下とした。また、吸引部から1個も半田ボールが吸引されることがなかったので、半田ボールの自然落下速度>搭載筒内の風速であることも確認できた。
[Reference Example 6]
In Reference Example 6, a = 5 and b = 1.1 in Example 1, parameter (1) is adjusted within the range of the example, and the wind speed between the mounting cylinder and the ball alignment mask is 11 to 17 m. / sec, the wind speed in the mounting cylinder was 0.65 m / sec or less. Further, since no solder balls were sucked from the suction portion, it was confirmed that the natural falling speed of the solder balls> the wind speed in the mounting cylinder.

[実施例11〜20、参考例7〜12]
実施例1〜10,参考例1〜6において、使用した半田ボールを40μmΦとした。その変更に伴い、ソルダーレジストの膜厚を10μm、ソルダーレジストの開口を45μmΦ、ボール整列用マスクの開口を50μmΦとした。また、搭載用筒内の風速を0.1m/secに調整した。それ以外は、各実施例、各参考例に準じ作製した。
[Examples 11 to 20, Reference Examples 7 to 12]
In Examples 1 to 10 and Reference Examples 1 to 6, the solder balls used were 40 μmΦ. With this change, the film thickness of the solder resist was 10 μm, the opening of the solder resist was 45 μmΦ, and the opening of the ball alignment mask was 50 μmΦ. The wind speed in the mounting cylinder was adjusted to 0.1 m / sec. Other than that, it produced according to each Example and each reference example.

[実施例21〜30、参考例13〜18]
実施例1〜10,参考例1〜6において、使用した半田ボールを150μmΦとした。その変更に伴い、接続パッドを200μmΦ、ソルダーレジストの開口を170μmΦ、ボール整列用マスクの開口を200μmΦとした。また、接続パッドは、大半を250μmピッチで、接続パッド数を減らして接続パッド領域を130mm以内に形成した。それ以外は各実施例、各参考例に準じ作成した。
[Examples 21-30, Reference Examples 13-18]
In Examples 1 to 10 and Reference Examples 1 to 6, the solder balls used were 150 μmΦ. Along with this change, the connection pad was 200 μmΦ, the solder resist opening was 170 μmΦ, and the ball alignment mask opening was 200 μmΦ. The connection pads were mostly formed at a pitch of 250 μm, the number of connection pads was reduced, and the connection pad area was formed within 130 mm 2 . Other than that, it created according to each Example and each reference example.

[実施例31〜40、参考例19〜24]
実施例1〜10,参考例1〜6において、使用した半田ボールを180μmΦとした。その変更に伴い、接続パッドを250μmΦ、ソルダーレジストの開口を220μmΦ、ボール整列用マスクの開口を250μmΦとした。また、接続パッドは、大半を300μmピッチで、接続パッド数を減らして接続パッド領域を130mm以内に形成した。それ以外は各実施例に準じ作成した。
[Examples 31 to 40, Reference Examples 19 to 24]
In Examples 1 to 10 and Reference Examples 1 to 6, the solder balls used were 180 μmΦ. Along with this change, the connection pad was 250 μmΦ, the solder resist opening was 220 μmΦ, and the ball alignment mask opening was 250 μmΦ. The connection pads were mostly formed at a pitch of 300 μm and the number of connection pads was reduced to form a connection pad area within 130 mm 2 . Other than that, it created according to each Example.

[比較例1]
実施例1において、半田ボール搭載方法を変更し、80μmΦの半田ボールを、従来技術の如くボール整列用スキージを用いてプリント配線板に搭載した。
[Comparative Example 1]
In Example 1, the solder ball mounting method was changed, and 80 μmφ solder balls were mounted on a printed wiring board using a ball alignment squeegee as in the prior art.

[比較例2]
実施例11において、半田ボール搭載方法を変更し、40μmΦの半田ボールを、従来技術の如くボール整列用スキージを用いてプリント配線板に搭載した。
[Comparative Example 2]
In Example 11, the solder ball mounting method was changed, and 40 μmφ solder balls were mounted on a printed wiring board using a ball alignment squeegee as in the prior art.

[比較例3]
実施例21において、半田ボール搭載方法を変更し、150μmΦの半田ボールを、従来技術の如くボール整列用スキージを用いてプリント配線板に搭載した。
[Comparative Example 3]
In Example 21, the solder ball mounting method was changed, and 150 μmφ solder balls were mounted on a printed wiring board using a ball alignment squeegee as in the prior art.

[比較例4]
実施例31において、半田ボール搭載方法を変更し、180μmΦの半田ボールを、従来技術の如くボール整列用スキージを用いてプリント配線板に搭載した。
[Comparative Example 4]
In Example 31, the solder ball mounting method was changed, and 180 μmφ solder balls were mounted on a printed wiring board using a ball alignment squeegee as in the prior art.

[比較例5]
比較例5では、実施例1において、半田ボールの代わりに半田ペーストを用いて半田バンプを形成した。
[Comparative Example 5]
In Comparative Example 5, solder bumps were formed using solder paste instead of solder balls in Example 1.

(評価試験)
各実施例、参考例及び比較例の半田ボール付きプリント配線板を100個作成し、各プリント配線板の全接続パッド上の半田バンプの有無を確認した(×10倍の顕微鏡)。そして、全接続パッドに半田バンプが形成されていたプリント配線板を良品とし、半田バンプが形成されていない接続パッドがあったプリント配線板は不良とした。良品のプリント配線板数を数えて、収率とした(良品のプリント配線板数/100×100%)。この結果を図11及び図12中の図表に示す。
(Evaluation test)
100 printed wiring boards with solder balls of each example, reference example and comparative example were prepared, and the presence or absence of solder bumps on all connection pads of each printed wiring board was confirmed (× 10 magnification microscope). A printed wiring board having solder bumps formed on all connection pads was regarded as a good product, and a printed wiring board having connection pads not formed with solder bumps was regarded as defective. The number of non-defective printed wiring boards was counted and used as the yield (number of non-defective printed wiring boards / 100 × 100%). The results are shown in the charts in FIGS.

a及びbを1.1〜4倍とすることで収率を高め得ることが分かった。また、aをbよりも大きくすることで、収率を更に高め得ることが明らかになった。一方、搭載筒とボール整列用マスクとの間の風速を5〜35m/secに調整することで、接続パッドに半田ボールを効率的に搭載できることができることが分かった。 It turned out that a yield can be raised by making a and b 1.1 to 4 times. It was also found that the yield can be further increased by making a larger than b. On the other hand, it was found that the solder balls can be efficiently mounted on the connection pads by adjusting the wind speed between the mounting cylinder and the ball alignment mask to 5 to 35 m / sec.

比較例の収率と本発明の収率を比較すると、半田ボール40〜150μmΦのとき、本発明の意義が高いことが分かる。 Comparing the yield of the comparative example and the yield of the present invention, it can be seen that the present invention is highly significant when the solder balls are 40 to 150 μmΦ.

実施例1と比較例5の半田バンプの高さ(ソルダーレジストから突出している高さ)をビーコ社製WYKO「NT2000」で500測定し、そのバラツキ(σ)を算出した。その結果は以下の通りであった。
σ
実施例1 1.26
比較例5 2.84
The height of the solder bump of Example 1 and Comparative Example 5 (height protruding from the solder resist) was measured with a WYKO “NT2000” manufactured by Beco Co., Ltd., and the variation (σ) was calculated. The results were as follows.
σ
Example 1 1.26
Comparative Example 5 2.84

また、実施例1と比較例5のプリント配線板にICを実装し、ICとプリント配線板間にアンダーフィルを充填してIC搭載プリント配線板とした。その後、IC搭載プリント配線板の裏面(IC実装面とは反対側)からICを介して再びIC搭載プリント配線板の裏面に繋がっている特定回路の接続抵抗を測定し初期値とした。初期値測定後、85℃×80%の雰囲気中に15hr放置したのち、−55℃×5分⇔125℃×5分を1サイクルとするヒートサイクル試験を1000回継続して行い、再度接続抵抗を測定して接続信頼性を調べた。なお、接続抵抗の変化量は、((ヒートサイクル後の接続抵抗値−初期値の接続抵抗値)/初期値の接続抵抗値)×100で表され、その値が±10%以内なら合格、それを越えると不良である。結果は、実施例1が「合格」、比較例5が「不良」であった。 Further, an IC was mounted on the printed wiring boards of Example 1 and Comparative Example 5, and an underfill was filled between the IC and the printed wiring board to obtain an IC-mounted printed wiring board. Thereafter, the connection resistance of a specific circuit connected to the back surface of the IC-mounted printed wiring board from the back surface (the side opposite to the IC mounting surface) of the IC-mounted printed wiring board was measured again as an initial value. After the initial value measurement, the sample was left in an atmosphere of 85 ° C. × 80% for 15 hours, and then a heat cycle test with one cycle of −55 ° C. × 5 minutes to 125 ° C. × 5 minutes was repeated 1000 times, and the connection resistance was measured again. We measured the connection reliability. The amount of change in connection resistance is represented by ((connection resistance value after heat cycle−initial connection resistance value) / initial connection resistance value) × 100, and if the value is within ± 10%, it is acceptable. Beyond that, it is bad. As a result, Example 1 was “pass” and Comparative Example 5 was “bad”.

図1(A)は、本発明の一実施例に係る半田ボール搭載装置の構成を示す構成図であり、図1(B)は、図1(A)の半田ボール搭載装置を矢印B側から見た矢視図である。FIG. 1A is a configuration diagram showing a configuration of a solder ball mounting device according to an embodiment of the present invention, and FIG. 1B is a diagram illustrating the solder ball mounting device of FIG. FIG. 図2(A)は多層プリント配線板の位置決めの説明図であり、図2(B)は搭載筒への半田ボールの供給の説明図である。FIG. 2A is an explanatory diagram of positioning of the multilayer printed wiring board, and FIG. 2B is an explanatory diagram of supply of solder balls to the mounting cylinder. 図3(A)は搭載筒による半田ボールの集合の説明図であり、図3(B)は搭載筒による半田ボールの集合、誘導の説明図である。FIG. 3A is an explanatory diagram of a set of solder balls by a mounting cylinder, and FIG. 3B is an explanatory diagram of a set of solder balls by a mounting cylinder and guidance. 図4(A)は半田ボールの接続パッドへの落下の説明図であり、図B(B)は吸着ボール除去筒による半田ボールの除去の説明図である。FIG. 4A is an explanatory view of the dropping of the solder ball onto the connection pad, and FIG. BB is an explanatory view of the removal of the solder ball by the suction ball removing cylinder. 図5(A)、図5(B)、図5(C)は多層プリント配線板の製造工程の説明図である。5 (A), 5 (B), and 5 (C) are explanatory diagrams of the manufacturing process of the multilayer printed wiring board. 多層プリント配線板の断面図である。It is sectional drawing of a multilayer printed wiring board. 図6に示す多層プリント配線板にICチップを取り付け、ドータボードへ載置した状態を示す断面図である。It is sectional drawing which shows the state which attached the IC chip to the multilayer printed wiring board shown in FIG. 6, and mounted in the daughter board. 多数個取り用の多層プリント配線板の平面図である。It is a top view of the multilayer printed wiring board for multi-piece taking. 図9(A)は、接続パッド領域と搭載筒との対応を示す説明図であり、図9(B)は、搭載筒により集合された半田ボール群の説明図であり、図9(C)は接続パッド領域の別例の平面図である。FIG. 9A is an explanatory view showing the correspondence between the connection pad region and the mounting cylinder, and FIG. 9B is an explanatory view of a solder ball group assembled by the mounting cylinder, and FIG. FIG. 10 is a plan view of another example of the connection pad region. 図10(A)は、a、bが1.1未満の搭載筒と半田ボール群との対応を示す説明図であり、図10(B)は、a、bが4超の搭載筒と半田ボール群との対応を示す説明図である。FIG. 10A is an explanatory view showing the correspondence between a mounting cylinder in which a and b are less than 1.1 and a solder ball group, and FIG. 10B is a mounting cylinder and solder in which a and b are more than 4. It is explanatory drawing which shows a response | compatibility with a ball group. 実施例、参考例及び比較例の評価結果を示す図表である。It is a graph which shows the evaluation result of an Example, a reference example, and a comparative example. 実施例、参考例及び比較例の評価結果を示す図表である。It is a graph which shows the evaluation result of an Example, a reference example, and a comparative example. 図13(A)、図13(B)、図13(C)は、従来技術のボール整列用マスクを用いる半田ボールの搭載を示す模式図である。FIGS. 13A, 13B, and 13C are schematic views showing mounting of solder balls using a conventional ball alignment mask. フィルドビアの凹凸量の説明図である。It is explanatory drawing of the uneven | corrugated amount of a filled via.

符号の説明Explanation of symbols

10 プリント配線板
16 ボール整列用マスク
16a 開口
20 半田ボール搭載装置
22 半田ボール供給装置
24 搭載筒(筒部材)
24A 開口部
24X、24Y 辺
42 移動軸支持ガイド
61 吸着ボール除去筒
68 吸着ボール除去吸引装置
75 接続パッド
75A 接続パッド領域
75X、75Y 辺
78s 半田ボール
78G 半田ボール群
DESCRIPTION OF SYMBOLS 10 Printed wiring board 16 Ball alignment mask 16a Opening 20 Solder ball mounting apparatus 22 Solder ball supply apparatus 24 Mounting cylinder (cylinder member)
24A Opening 24X, 24Y Side 42 Moving shaft support guide 61 Suction ball removal cylinder 68 Suction ball removal suction device 75 Connection pad 75A Connection pad area 75X, 75Y Side 78s Solder ball 78G Solder ball group

Claims (4)

半田バンプとなる半田ボールをプリント配線板の接続パッド領域の各接続パッドに搭載する半田ボール搭載装置であって、
プリント配線板の接続パッドに対応する複数の開口を備えるボール整列用マスクと、
ボール整列用マスクの上方に位置し、開口部から空気を吸引することで開口部直下に半田ボールを集合させる筒部材と、
前記筒部材を水平方向に移動させる移動機構であって、該筒部材を移動させることで前記ボール整列用マスクの上に集合させた半田ボールを移動させ、ボール整列用マスクの開口を介して、半田ボールをプリント配線板の接続パッドへ落下させる移動機構と、を備え、前記筒部材の開口部が略矩形であって、
当該開口部の筒部材移動方向に平行な辺の長さを、前記接続パッド領域の筒部材移動方向に平行な辺の長さに対して1.1〜4倍とし、
前記開口部の筒部材移動方向に垂直な辺の長さを、前記接続パッド領域の筒部材移動方向に垂直な辺の長さに対して1.1〜4倍としたことを特徴とする半田ボール搭載装置。
A solder ball mounting device for mounting a solder ball to be a solder bump on each connection pad in a connection pad area of a printed wiring board,
A ball alignment mask having a plurality of openings corresponding to connection pads of the printed wiring board;
A cylindrical member that is located above the ball alignment mask and collects solder balls directly under the opening by sucking air from the opening;
A moving mechanism for moving the cylindrical member in a horizontal direction, and moving the solder ball assembled on the ball alignment mask by moving the cylindrical member, through the opening of the ball alignment mask, A movement mechanism for dropping the solder ball onto the connection pad of the printed wiring board, and the opening of the cylindrical member is substantially rectangular,
The length of the side parallel to the cylindrical member moving direction of the opening is 1.1 to 4 times the length of the side parallel to the cylindrical member moving direction of the connection pad region,
Solder characterized in that the length of the side of the opening perpendicular to the direction of movement of the cylindrical member is 1.1 to 4 times the length of the side of the connection pad region perpendicular to the direction of movement of the cylindrical member. Ball mounting device.
前記開口部の筒部材移動方向に平行な辺の長さ/前記接続パッド領域の筒部材移動方向に平行な辺の長さが、前記開口部の筒部材移動方向に垂直な辺の長さ/前記接続パッド領域の筒部材移動方向に垂直な辺の長さよりも大きくしたことを特徴とする請求項1に記載の半田ボール搭載装置。 The length of the side of the opening parallel to the cylinder member movement direction / the length of the side of the connection pad area parallel to the cylinder member movement direction is the length of the side of the opening perpendicular to the cylinder member movement direction / 2. The solder ball mounting device according to claim 1, wherein the length of the side perpendicular to the moving direction of the cylindrical member of the connection pad region is larger. 前記筒部材とボール整列用マスクとの間の風速を5〜35m/secにしたことを特徴とする請求項1又は請求項2の半田ボール搭載装置。 3. The solder ball mounting device according to claim 1, wherein a wind speed between the cylindrical member and the ball alignment mask is 5 to 35 m / sec. プリント配線板の接続パッド領域の接続パッドに対応する複数の開口を備えるボール整列用マスクを用い、半田バンプとなる半田ボールをプリント配線板の接続パッドに搭載するための半田ボール搭載方法であって、
開口部が略矩形であって、当該開口部の筒部材移動方向に平行な辺の長さを、前記接続パッド領域の筒部材移動方向に平行な辺の長さに対して1.1〜4倍とし、前記開口部の筒部材移動方向に垂直な辺の長さを、前記接続パッド領域の筒部材移動方向に垂直な辺の長さに対して1.1〜4倍とした筒部材を、ボール整列用マスクの上方に位置させ、該筒部材で空気を吸引することで、当該筒部材直下のボール整列用マスク上に半田ボールを集合させ、
前記筒部材を水平方向に移動させることで、前記ボール整列用マスクの上に集合させた半田ボールを移動させ、ボール整列用マスクの開口を介して、半田ボールをプリント配線板の接続パッドへ落下させることを特徴とする半田ボール搭載方法。
A solder ball mounting method for mounting a solder ball to be a solder bump on a connection pad of a printed wiring board using a ball alignment mask having a plurality of openings corresponding to the connection pads in the connection pad area of the printed wiring board ,
The opening has a substantially rectangular shape, and the length of the side parallel to the cylindrical member moving direction of the opening is 1.1 to 4 with respect to the length of the side parallel to the cylindrical member moving direction of the connection pad region. A cylindrical member in which the length of the side perpendicular to the cylindrical member moving direction of the opening is 1.1 to 4 times the length of the side perpendicular to the cylindrical member moving direction of the connection pad region The solder balls are gathered on the ball alignment mask directly below the cylindrical member by being positioned above the ball alignment mask and sucking air with the cylindrical member.
By moving the cylindrical member in the horizontal direction, the solder balls assembled on the ball alignment mask are moved, and the solder balls are dropped onto the connection pads of the printed wiring board through the openings of the ball alignment mask. A solder ball mounting method characterized by comprising:
JP2005190498A 2004-08-04 2005-06-29 Solder ball mounting apparatus and solder ball mounting method Expired - Fee Related JP4118285B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005190498A JP4118285B2 (en) 2004-08-04 2005-06-29 Solder ball mounting apparatus and solder ball mounting method
KR1020067018620A KR100798662B1 (en) 2004-08-04 2005-07-22 Method and device for mounting solder ball
EP05766192A EP1776004A4 (en) 2004-08-04 2005-07-22 Method and device for mounting solder ball
CN2011103612487A CN102413643A (en) 2004-08-04 2005-07-22 Solder ball loading method and solder ball loading unit background of the invention
CN2005800002716A CN1826844B (en) 2004-08-04 2005-07-22 Solder ball loading method and solder ball loading unit
PCT/JP2005/013504 WO2006013742A1 (en) 2004-08-04 2005-07-22 Method and device for mounting solder ball
TW094126333A TW200623992A (en) 2004-08-04 2005-08-03 Method and device for mounting solder ball
US11/371,083 US7475803B2 (en) 2004-08-04 2006-03-09 Solder ball loading method and solder ball loading unit background of the invention
US12/328,347 US7866529B2 (en) 2004-08-04 2008-12-04 Solder ball loading method and solder ball loading unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004227875 2004-08-04
JP2005190498A JP4118285B2 (en) 2004-08-04 2005-06-29 Solder ball mounting apparatus and solder ball mounting method

Publications (2)

Publication Number Publication Date
JP2006074001A JP2006074001A (en) 2006-03-16
JP4118285B2 true JP4118285B2 (en) 2008-07-16

Family

ID=36154233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190498A Expired - Fee Related JP4118285B2 (en) 2004-08-04 2005-06-29 Solder ball mounting apparatus and solder ball mounting method

Country Status (1)

Country Link
JP (1) JP4118285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7472473B2 (en) * 2006-04-26 2009-01-06 Ibiden Co., Ltd. Solder ball loading apparatus

Also Published As

Publication number Publication date
JP2006074001A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4647007B2 (en) Solder ball mounting device
JP5021472B2 (en) Method for manufacturing printed wiring board
KR100905685B1 (en) Printed wiring board
KR100798662B1 (en) Method and device for mounting solder ball
WO2009144846A1 (en) Solder ball mounting method
JP5056491B2 (en) Solder ball mounting device
JP4118283B2 (en) Solder ball mounting method and solder ball mounting apparatus
JP4592762B2 (en) Solder ball mounting method and solder ball mounting apparatus
JP4118286B2 (en) Solder ball mounting method
JP4118285B2 (en) Solder ball mounting apparatus and solder ball mounting method
JP4118284B2 (en) Solder ball mounting apparatus and solder ball mounting method
JP2015012056A (en) Solder ball mounting method
JP2014049567A (en) Solder ball mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080326

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees