JP4116891B2 - Catalyst for reduction reaction, production method thereof, and selective hydrogenation method - Google Patents

Catalyst for reduction reaction, production method thereof, and selective hydrogenation method Download PDF

Info

Publication number
JP4116891B2
JP4116891B2 JP2003026134A JP2003026134A JP4116891B2 JP 4116891 B2 JP4116891 B2 JP 4116891B2 JP 2003026134 A JP2003026134 A JP 2003026134A JP 2003026134 A JP2003026134 A JP 2003026134A JP 4116891 B2 JP4116891 B2 JP 4116891B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
double bond
transition element
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003026134A
Other languages
Japanese (ja)
Other versions
JP2004237148A (en
Inventor
昌次郎 牧
治樹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003026134A priority Critical patent/JP4116891B2/en
Publication of JP2004237148A publication Critical patent/JP2004237148A/en
Application granted granted Critical
Publication of JP4116891B2 publication Critical patent/JP4116891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Indole Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パラジウム等の遷移元素からなる触媒物質を担持させた還元反応用触媒及びその製造方法、並びに選択的水素添加方法に関する。
【0002】
【従来の技術】
従来、化学品や医薬品等の有機化合物を合成する際、あるいは石油の還元脱硫を行う際に、水素化(還元)触媒が使用されている。この触媒としては、主にパラジウムブラック(Pd微粉末)やPd−C(粉状活性炭にPd微粉末を添着させたもの)等の粉体が用いられ、反応対象物(反応基質)を溶媒に溶解させた溶液に粉末の触媒を投入して反応を進行させている。
一方、還元触媒は、水素添加反応と加水素分解反応のいずれにも作用し、これらの反応条件が同一であるために、このうち一方の反応のみを反応基質に対して選択的に行わせることは難しい。そこで、本発明者らは、ベンジルオキシアルケンの選択的水素添加方法として、電解による方法を報告している(例えば、特許文献1、2参照)。この方法では、陰極として用いるパラジウム薄膜で反応系を2槽に区切り、そのうち1槽で水を電気分解して水素を発生させる。水素は、水素吸蔵金属であるパラジウム薄膜に吸蔵され、反対面から他の槽中に透過する。この槽の反応液には反応基質であるベンジルオキシアルケンが溶解しており、ここで、反応基質中のアルケンの不飽和基のみが選択的に水素添加され、一方で加水素分解反応(例えばベンジルオキシアルケンからのベンジル基の脱離等)が抑制された水素添加反応が進行する。
【0003】
【特許文献1】
特開2002−145818号公報
【特許文献2】
特開2001−316315号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記した粉末触媒の場合、反応後の溶液から触媒を濾過して回収する作業を要し、又、触媒の耐久性も低く、さらには、触媒が粉末であるために発火性が高いという問題があった。
一方、上記した選択的水素添加方法の場合、電気分解のための各種装置(電源、電解セル等)を必要とし、実用的でないという問題があった。
【0005】
本発明は上記の課題を解決するためになされたものであり、取り扱い性、安全性、耐久性に優れ、又、水素添加反応を選択的に行うことができる還元反応用触媒及びその製造方法、並びに選択的水素添加方法の提供を目的とする。
【0006】
【課題を解決するための手段】
上記した目的を達成するために、本発明の還元反応用触媒は、合成繊維からなる不織布(但し、グラフト重合された合成繊維を除く)である担体に遷移元素イオンを含む溶液を含浸後、該担体を室温で水素ガス中に保持して前記遷移元素イオンを還元することにより得られ、複数の不飽和結合を有する反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする。
【0008】
又、前記遷移元素は、パラジウムであることが好ましい。
【0009】
本発明の還元反応用触媒の製造方法は、合成繊維からなる不織布(但し、グラフト重合された合成繊維を除く)である担体に遷移元素イオンを含む溶液を含浸させる工程と、含浸後の担体を室温で水素ガス中に保持して前記遷移元素イオンを還元する工程とを有し、複数の不飽和結合を有する反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする。
【0011】
又、本発明の還元触媒の製造方法において、前記遷移元素は、パラジウムであることが好ましい。
【0012】
本発明の選択的水素添加方法は、前記還元反応用触媒を、複数の不飽和結合を有する反応対象物を含む溶液中に水素ガスの存在下で浸漬し、該反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明に係る還元反応用触媒及びその製造方法、並びに選択的水素添加方法の実施の形態について説明する。
【0014】
図1は、本発明の還元反応用触媒の構成を模式的に示す断面図である。この図において、還元触媒10は、シート状の担体2に遷移元素からなる触媒物質4が担持されて構成されている。この実施形態では、担体2は合成樹脂の不織布からなり、多数の樹脂繊維2aが網目状に絡み合い、各繊維間に空隙が形成されている。そして、担体2の内部の各繊維の表面全体に触媒物質(パラジウムブラック)4が担持されており、担体2の内部の空隙にも触媒物質が存在している。なお、本発明において、パラジウムブラックとは、微粉末ではないが、従来のパラジウムブラック(黒色微粉末パラジウム)と同様に黒色であり同様な触媒活性を有するものをいう。
【0015】
上記パラジウムブラックは、担体の表面にアモルファス状で粒状に析出し、その粒径は通常0.1〜3μm、好ましくは0.3〜2μmである。
【0016】
担体2は、遷移元素イオンを含む溶液が含浸しやすいよう、不織布を用いることができる。又、担体の形状も特定限定されず、シート状、チューブ状、塊状、棒状、球状とすることができるが、取り扱いが容易で表面積の大きいシート状が好ましい特に、後述するように触媒反応を有機溶媒中で進行させる場合には、溶媒との親和性のよい合成樹脂を用いると空隙に溶液が侵入しやすくなり、反応が促進されるので好ましい。合成樹脂としては、ポリプロピレン、ポリエチレン、ポリイミド等を用いることができる。空隙の大きさ、密度等も特に限定ない。
【0017】
触媒物質4は、詳しくは後述するが、担体に遷移元素イオンを含む溶液を含浸させた後、還元することにより担体に担持される。又、触媒物質4は遷移元素からなる還元触媒であって、水素添加反応の触媒作用を有するものである。触媒物質4としては、3A〜7A族、8族及び1B族の元素を用いることができるが、好ましくは、パラジウム、白金、ロジウム、イリジウム、ルテニウム、レニウム等を用いるとよく、さらに好ましくはパラジウムを用いるとよい。特に、上記したパラジウムブラックとするのが好ましい。触媒物質の担体への担持量は特に限定されず、対象となる反応に応じて選択できるが、通常1×10−3〜1×10mg/cm、好ましくは1×10−1〜1×10mg/cm、より好ましくは0.5〜5mg/cmである。
【0018】
このように、本発明の還元反応用触媒は、多数の空隙を有する担体の内部に遷移元素イオンを含む溶液を含浸させることにより、担体の内部に触媒物質(遷移元素)が担持されるので、有効表面積の大きく反応性に優れた触媒となる。その結果として、従来の粉末触媒に比べて反応に必要な触媒物質の量を低減することもできる。又、触媒物質は担体の空隙内に存在するので、担体の最表面に触媒物質を大量に担持させる必要がない。つまり、担体の最表面のみに触媒物質を担持させると、外部との接触等によって触媒物質が脱落し易くなる。特に、触媒の表面積を増大させるためにデンドライト(針)状に触媒物質を析出させると、触媒物質が容易に脱落して触媒性能が低下し、触媒の耐久性に劣ることになる。本発明では、担体の内部にある空隙の周りに触媒物質が担持されており、この部分は外部と接触しずらいので、触媒物質の脱落等が生じにくく耐久性が向上する。又、バルクの担体に触媒物質が固定(担持)されているので、反応後に触媒を反応系から分離しやすく、従来の粉状触媒に比べて取り扱いも容易になる。
【0019】
このように、本発明の還元反応用触媒は触媒物質の脱落が生じにくいものであるが、触媒物質が脱落したとしてもそれを生成物に混入させないようにすることもできる。つまり、図2に示すように、還元触媒10を捕集布20で包み込むことで、脱落した触媒物質を捕集布20内に留めておくことができる。捕集布20としては例えば網、不織布等を用いることができ、還元触媒10の担体として不織布を用いた場合には、それより目の細かい(空隙の径が小さい)不織布等を用いることができる。
【0020】
次に、本実施形態の還元反応用触媒の製造方法について図3を参照して説明する。まず、上記した多数の空隙を有する担体に、遷移元素イオンを含む溶液(例えば塩化パラジウム溶液)を滴下して含浸させる(図3(a))。含浸方法としては、上記した滴下の他、例えば担体を溶液に浸漬してもよい。
【0021】
上記溶液における溶媒としては、例えば水、メタノール、テトラヒドロフラン、アセトニトリル、酢酸、ジメチルスルホキシド、N,N−ジメチルホルムアミド、ヘキサメチルホスホアミド等の水溶性有機溶媒、あるいは無水酢酸、酢酸エチル、塩化メチレン、ベンゼン、プロピレンカーボネート、ニトロメタン、ヘキサメチルホスホアミド等の非水溶性有機溶媒を挙げることができ、これらを単独又は二種類以上組み合わせて用いることができる。
【0022】
遷移元素イオンとしては、通常は二価、三価、四価のものが挙げられる。例えばPdイオンの場合、溶媒に溶解しやすい塩化パラジウム、硫酸パラジウム、硝酸パラジウム等のパラジウム塩に起因する二価のものを好適に用いることができる。又、遷移元素イオンを含む溶液は、通常水素イオン濃度が0.3〜5mol/L、好ましくは酸濃度が1〜2mol/Lの酸溶液に遷移元素の塩(上記パラジウム塩等)を溶解させると、容易に調整できる。
【0023】
溶液中の遷移元素イオンの濃度は、通常1×10−6mol/L〜過飽和状態まで、好ましくは1×10−4mol/L〜1×10−1mol/Lとすることができる。
【0024】
次いで、含浸後の担体を密閉室内に吊り下げ、室内に水素ガスを導入した後で室を密閉し、水素ガス中に担体を保持する(図3(b))。保持時間は担体の形状等にもよるが、通常数分〜数時間程度でよい。これにより、含浸した溶液中の遷移元素イオン(例えばPdイオン)が遷移元素(例えばPd)に還元されて担体表面に析出し、還元触媒が得られる(図3(c))。室内の水素ガスの圧力としては、通常1.013×10〜1.013×10Pa、好ましくは1.013×10〜1.013×10Pa、さらに好ましくは1.013×10〜2.026×10Paとすることができる。
【0025】
次に、室内の水素ガスを不活性ガス(Ar等)で置換する(図3(d))。そして、得られた還元触媒を室外に取り出し、適宜洗浄を行う。洗浄は、例えば触媒を水洗した後、有機溶媒(メタノール等)で洗浄して行うことができる。さらに、適宜触媒を減圧乾燥させてもよい。このようにして還元触媒が製造される(図3(e))。
【0026】
このように、本発明の製造方法によれば、担体が多数の空隙を有していて液体を吸収しやすいため、担体の内部に遷移元素イオンを含む溶液を含浸させることができ、担体の内部に触媒物質(遷移元素)が担持されるので、有効表面積の大きく反応性に優れた触媒を製造することができる。
【0027】
又、本発明の製造方法によれば、担体に上記溶液を含浸させて水素ガス中に保持するだけで触媒を製造することができるので、製造が簡便となる。又、担持量の調整は、溶液の濃度や含浸量を調整するだけでよいので、担持量の調整を簡便かつ正確に行うことができる。
【0028】
次に、本発明の還元反応用触媒を用いて、選択的水素添加を行う方法について説明する。本発明の方法は、反応対象物を含む溶液中に水素ガスの存在下で還元反応用触媒を浸漬するものである。そして、反応が終了すれば、溶液から還元反応用触媒を取り出して適宜洗浄乾燥すれば、使用によって触媒活性が低下しないので、触媒として繰り返し使用することができる。本発明の方法によれば、溶液中に水素ガスを導入して還元触媒を浸漬するだけでよく、従来のような特別な電解装置を必要としない。
【0029】
ここで、選択的水素添加とは、不飽和結合を有する反応対象物に水素添加をする際に、所定の水素添加以外の望まない反応を生じさせないか、又は抑制させることをいう。又、選択的水素添加、反応対象物が複数の不飽和結合を有する場合に、所定位置の水素添加を選択的に生じさせるものである(以下、「タイプ2」と称する)。
【0032】
又、上記タイプ2の反応に用いる反応対象物としては、a)炭素−炭素1置換二重結合、炭素−炭素2置換二重結合から選ばれた少なくとも1つを有する化合物例示することができる。
【0033】
本発明の方法において、反応対象物が液体であればそのまま用いることができるが、反応対象物を溶媒に溶かしてもよい。この溶媒としては、反応温度で液体であれば何でもよく、脂肪族炭化水素類、芳香族炭化水素類、アルコール類、フェノール類、等の種々の有機溶媒を用いることができる。これら溶媒は、反応基質の種類、反応温度あるいは目的とする反応時間等によって適宜選択され、単独でも二種以上を組み合わせて用いてもよい。なお、反応基質の水素添加反応が優先されるように、水素添加反応を起こす不飽和結合を有する化合物からなる溶媒でないことが好ましい。特に好ましくは、芳香族炭化水素類、アルキル置換芳香族炭化水素類、ハロゲン置換芳香族炭化水素類、アルコキシ置換芳香族炭化水素類等の非プロトン性の芳香族炭化水素類を用いると、加水素分解反応をほぼ完全に生じさせずに水素添加反応を生じさせることができる。
【0034】
本発明の方法において、還元触媒の量としては、担体を除く正味の触媒物質の量が反応基質(反応対象物)に対し、1×10−5〜100重量%、好ましくは1×10−2〜100重量%、より好ましくは5×10−1〜5重量%とすることができる。
【0035】
本発明の方法において、反応系に存在させる水素ガスの圧力は、1.013×10〜1.013×10Pa、好ましくは5.065×10〜1.013×10Pa、より好ましくは1.013×10〜2.026×10Paとすることができる。
【0036】
本発明の方法において、反応温度は、−200〜1000℃、好ましくは0〜100℃、より好ましくは10〜30℃とすることができる。
【0037】
本発明の方法において、反応時間は、1分〜1000時間、好ましくは30分〜240時間、より好ましくは30分〜72時間とすることができる。
【0038】
なお、本発明の還元触媒を用いれば、上記した反応の他、従来の黒色粉末状パラジウムブラックを用いたのと同様の接触還元操作を行うことにより、ニトロ化合物を還元して対応するアミンを製造したり、ニトリルを還元して対応する第一アミンを製造することもできる。
【0039】
次に、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0040】
【実施例】
A.選択的水素添加の比較実験
実施例1、比較例1〜4
1.還元触媒の作製
ポリプロピレン製の不織布(ダイワボウ社製、型版RPX−101、目付49.7g/m、厚み1.2mm)を5×2cmに切り出し(重さ5.0mg)、さらに折り畳んで縦横2.5×1cm、厚み0.5cmとした。そして、塩化パラジウム150mgを1mol/Lの塩酸10mLに溶解し、濃度8.5×10−2mol/Lとした塩化パラジウム塩酸溶液0.11mLを、この不織布に滴下して含浸させた。次に、含浸後の不織布を密閉室に吊るし、0.1MPa(常圧)の水素ガスを導入し、室温で180分放置して不織布にパラジウムを担持させた。担持後の不織布を水及びアセトンで充分に洗浄し、乾燥して溶媒を完全に取り除いて還元触媒を作製した。触媒担持量は1.0mg(担体を含む全体の重量は約6.0mg)であった。これを実施例1とした。
【0041】
比較として、粉末のパラジウムブラック(和光純薬工業株式会社製)を用意した。これを比較例1とする。又、粉末のPd−C(粉状活性炭にPd微粉末を添着させたもの、川研ファインケミカル株式会社製、Pd担持量5%、Pd活性0.2%)を用意した。これを比較例2とする。さらに、塩化パラジウムを蟻酸により還元する公知の方法で粉末のパラジウムブラックを得た。これを比較例3とする。又、パラジウム箔を比較例4とする。
【0045】
3.選択的水素添加反応(タイプ2:所定位置の不飽和結合の選択的水素添加)
上記したタイプ2の選択的水素添加反応として、水素添加し得る二重結合を2つ有する化合物2
【化3】

Figure 0004116891
を用意した。ここで、式Aは反応基質、式Bは末端の二重結合が水素添加された部分水素化生成物、式Cはさらにエステルに結合している3置換二重結合部も水素添加された望まない生成物、を示す。そして、この化合物について、上記タイプ2の反応と同様に実施例1、比較例1〜4の触媒を用い、この化合物を溶媒に7.0×10 −3 mol/Lとなるよう溶解して得た溶液に、2% w/w(反応基質100gに対し触媒2g)となるよう、触媒を浸漬し、水素雰囲気で所定時間攪拌して反応させた。反応後、溶液から触媒を取り出し、溶媒留去後の残渣(生成物)の重量を測定し、さらに残渣をNMR(核磁気共鳴法)測定して生成物の構造を特定した。なお、比較例1〜4については、触媒量を4% w/wとした。
得られた結果を表2に示す。
【0046】
【表2】
Figure 0004116891
【0047】
表2から明らかなように、実施例1の場合、反応が4時間経過した時点で1置換二重結合部の選択的水素添加を100%の収率で行うことができたとともに、反応開始から24時間経過しても3置換二重結合部の水素添加が生じず、1置換二重結合への水素添加の選択性がより優れたものとなった。一方、比較例1〜3の場合、反応が1時間経過した時点で、1置換二重結合部のみならず3置換二重結合部の水素添加も進行してしまい、3置換二重結合部を還元することなく1置換二重結合部のみ部分水素添加を行うことができなかった。又、比較例4の場合は、触媒反応が全く生じなかった。以上のことから、本発明の還元触媒を用いると所定位置への選択的水素添加を高収率で行えるとともに、望まない位置での水素添加が進行しないことが明らかである。
【0063】
3.選択的水素添加反応(タイプ2:所定位置の不飽和結合の選択的水素添加)
上記したタイプ2の選択的水素添加反応として、水素添加し得る二重結合を2つ以上有する種々の化合物を用意した。
【0064】
(1)実施例27〜37
前記化合物2を用意した。ここで、式A、B、Cは前記化合物2において説明した反応基質及び生成物である。又、反応基質を溶解させるための溶媒は以下の表5のとおりである。
得られた結果を表5に示す。ここで、表中の数字は式A〜Cの各化合物の反応液中での存在割合を示し、hrは反応時間を示す。
【0065】
【表5】
Figure 0004116891
【0066】
表5から明らかなように、各実施例27〜37の場合、1置換二重結合部の選択的水素添加を所定の収率で行うことができた。特に、実施例27、28の場合、反応が4時間経過した時点で1置換二重結合部の選択的水素添加を100%の収率で行うことができるとともに、反応後24時間経過しても3置換二重結合部の水素添加が生じず、1置換二重結合部への水素添加の反応選択性がより優れたものとなった。
【0067】
(2)実施例38〜47、比較例8
上記したタイプ2の選択的水素添加反応として、水素添加し得る二重結合を2つ有する化合物12
【化13】
Figure 0004116891
を用意した。ここで、式Aは反応基質、式Bはエステルに結合している2置換二重結合部が水素添加された部分水素化生成物、式Cはさらに側鎖3置換二重結合部も水素添加された望まない生成物、を示す。又、反応基質を溶解させるための溶媒は以下の表6のとおりである。
得られた結果を表6に示す。ここで、表中の数字は式A〜Cの各化合物の反応液中での存在割合を示し、hrは反応時間を示す。
【0068】
【表6】
Figure 0004116891
【0069】
表6から明らかなように、各実施例38〜47の場合、エステルに結合している2置換二重結合部の選択的水素添加を所定の収率で行うことができた。特に、実施例38、39の場合、反応が24時間経過した時点で2置換二重結合部の選択的水素添加を100%の収率で行うことができるとともに、反応後48時間経過しても側鎖3置換二重結合部の水素添加が生じず、2置換二重結合部への水素添加の反応選択性がより優れたものとなった。一方、比較例8の場合、B式の生成物は得られず、望まないC式の生成物が生じた。
【0070】
(3)実施例24
化合物13
【化14】
Figure 0004116891
を用意した。溶媒はトルエンを用いた。ここで、左式の化合物は反応基質であり、右式の左側化合物は目的とする生成物(白抜矢印の位置,1置換二重結合部を水素添加する)、右式の右側化合物は望まない生成物(白抜矢印の2ヶ所の位置,1置換二重結合部および3置換二重結合部を水素添加する)である。この実施例では、反応後4時間で1置換二重結合部の選択的水素添加を100%の収率で行うことができ、さらに反応後24時間経過しても3置換二重結合部の水素添加が生じなかった。
【0071】
(4)実施例25
化合物14
【化15】
Figure 0004116891
を用意した。溶媒はトルエンを用いた。ここで、左式の化合物は反応基質であり、右式の化合物は目的とする生成物(白抜矢印の位置,1置換二重結合部を水素添加する)である。この実施例では、反応後4時間で1置換二重結合部の選択的水素添加を100%の収率で行うことができ、さらに反応後24時間経過しても3置換二重結合部の水素添加が生じなかった。
【0072】
(5)実施例26
化合物15
【化16】
Figure 0004116891
を用意した。溶媒はトルエンを用いた。ここで、左式の化合物は反応基質であり、右式の左側化合物は目的とする生成物(白抜矢印の位置,(1置換二重結合部を水素添加する)、右式の右側化合物は望まない生成物(白抜矢印の2ヶ所の位置,1置換二重結合部および3置換二重結合部を水素添加する)である。この実施例では、反応後4時間で1置換二重結合部の選択的水素添加を100%の収率で行うことができ、さらに反応後24時間経過しても3置換二重結合部の水素添加が生じなかった。
【0073】
(6)実施例27
化合物16
【化17】
Figure 0004116891
を用意した。溶媒はトルエンを用いた。ここで、左式の化合物は反応基質であり、右式の化合物は目的とする生成物(白抜矢印の位置,2置換二重結合部を水素添加する)である。この実施例では、反応後4時間で2置換二重結合部の選択的水素添加を26%の収率で行うことができ、反応後8時間では52%の収率となり、反応後24時間では100%の収率となった。さらに反応後48時間経過しても3置換二重結合部の水素添加が生じなかった。又、反応中、3置換二重結合部の水素添加は全く生じなかった。
【0075】
(8)実施例29
前記化合物2を用意した。溶媒はメタノールを用い、この実施例のみ反応温度を−30℃(243K)とした。ここで、式A〜Cは前記化合物2において説明したとおりである。得られた結果を表7に示す。ここで、表中の数字は式A〜Cの各化合物の反応液中での存在割合を示し、hrは反応時間を示す。
【0076】
【表7】
Figure 0004116891
【0077】
表7から明らかなように、この実施例では、1置換二重結合部の選択的水素添加を所定の収率で行うことができた。特に、反応後30分では1置換二重結合部の水素添加のみ生じ、3置換二重結合部の水素添加は全く生じなかった。
【0078】
C.触媒の耐久性評価
1.実験条件
上記実施例1と同じ還元触媒を用い、化合物18
【化19】
Figure 0004116891
を反応基質とする触媒反応を行った。ここで、左式の化合物は反応基質であり、右式の化合物は目的とする生成物(白抜き矢印の末端二重結合部を水素添加する)である。反応基質12.5gをトルエン500mLに溶解し、実施例1の触媒(触媒物質の担持量が4mg)を浸漬し、水素雰囲気ですべての反応基質の末端二重結合部が完全に水素添加されるまで溶液を攪拌して反応させた。
【0079】
次に、化合物2をトルエン溶媒中の濃度が7.0×10−3mol/Lとなるよう溶解した溶液に、2% w/wとなるように上記触媒を浸漬し、水素雰囲気で4時間攪拌して反応させた。反応後、溶液から触媒を取り出し、溶媒留去後の残渣(生成物)の重量を測定し、さらに残渣をNMR(核磁気共鳴法)測定して生成物の構造を特定した。その結果、化合物2における式Bの生成物(末端の1置換二重結合が水素添加された部分水素化生成物)が100%の収率で得られた。この収率は、未使用の還元触媒を用いた場合の値と同じであり、本発明の還元触媒4mgが84mmol(12.5g)の反応基質に触媒作用してもなお活性を維持していることを示している。このとき、turnoverと称される触媒の耐久性指標を求めると、2.1×10mol/g以上(触媒1g当り、反応基質を2.1×10mol以上反応させることができる値)となった。
【0080】
【発明の効果】
以上の説明で明らかなように、本発明の還元触媒は、触媒物質が担体の空隙の周りに担持されているので、触媒の有効表面積が増大し、反応性に優れている。その結果として、従来の粉末触媒に比べて反応に必要な触媒物質の量を低減することもできる。又、触媒物質は担体の空隙内に存在し、外部と接触しずらいため、触媒物質の物理的接触による脱落等が生じにくく耐久性が向上する。又、反応後に触媒を反応系から分離しやすく、従来の粉状触媒に比べて取り扱いも容易になる。
【0081】
本発明の製造方法によれば、担体が液体を吸収しやすいため、担体の内部に遷移元素イオンを含む溶液を確実に含浸させることができ、担体の内部に触媒物質が担持され有効表面積の大きく反応性に優れた触媒を製造することができる。又、担体に上記溶液を含浸させて水素ガス中に保持するだけで触媒を製造することができる。さらに、担持量の調整は、溶液の濃度や含浸量を調整するだけでよいので、担持量の調整を簡便かつ正確に行うことができる。
【0082】
本発明の選択的水素添加方法によれば、不飽和結合を有する反応対象物を含む溶液中に水素ガスの存在下で還元触媒を浸漬するだけで、水素添加反応を選択的に行うことができる。
【図面の簡単な説明】
【図1】 本発明の還元触媒の構成を模式的に示す断面図である。
【図2】 還元触媒を捕集布で包んだ状態を示す図である。
【図3】 本発明の還元触媒の製造方法を示す工程図である。
【符号の説明】
2 担体
2a 樹脂繊維
4 触媒物質(遷移元素)
10 還元触媒[0001]
BACKGROUND OF THE INVENTION
  The present invention is a reduction in which a catalytic material composed of a transition element such as palladium is supported.For reactionThe present invention relates to a catalyst, a production method thereof, and a selective hydrogenation method.
[0002]
[Prior art]
Conventionally, hydrogenation (reduction) catalysts have been used when synthesizing organic compounds such as chemicals and pharmaceuticals, or when performing reductive desulfurization of petroleum. As this catalyst, powders such as palladium black (Pd fine powder) and Pd-C (powdered activated carbon added with Pd fine powder) are mainly used, and the reaction object (reaction substrate) is used as a solvent. A powdered catalyst is added to the dissolved solution to proceed the reaction.
On the other hand, the reduction catalyst acts on both the hydrogenation reaction and the hydrogenolysis reaction, and since these reaction conditions are the same, only one of these reactions can be selectively performed on the reaction substrate. Is difficult. Therefore, the present inventors have reported a method by electrolysis as a selective hydrogenation method of benzyloxyalkene (for example, see Patent Documents 1 and 2). In this method, the reaction system is divided into two tanks with a palladium thin film used as a cathode, and water is electrolyzed in one tank to generate hydrogen. Hydrogen is stored in the palladium thin film which is a hydrogen storage metal and permeates into the other tank from the opposite surface. The reaction solution in this tank dissolves the reaction substrate benzyloxyalkene, where only the unsaturated group of the alkene in the reaction substrate is selectively hydrogenated, while the hydrogenolysis reaction (for example benzyl). The hydrogenation reaction in which the elimination of the benzyl group from the oxyalkene and the like is suppressed proceeds.
[0003]
[Patent Document 1]
JP 2002-145818 A
[Patent Document 2]
JP 2001-316315 A
[0004]
[Problems to be solved by the invention]
However, in the case of the above-mentioned powder catalyst, it is necessary to filter and recover the catalyst from the solution after the reaction, and the durability of the catalyst is low, and furthermore, the catalyst is powder, so that it is highly ignitable. There was a problem.
On the other hand, in the case of the selective hydrogenation method described above, various devices for electrolysis (power supply, electrolysis cell, etc.) are required, which is not practical.
[0005]
  The present invention has been made in order to solve the above problems, and is excellent in handling, safety, durability, and reduction capable of selectively performing a hydrogenation reaction.For reactionAn object is to provide a catalyst, a production method thereof, and a selective hydrogenation method.
[0006]
[Means for Solving the Problems]
  In order to achieve the above object, the reduction of the present inventionFor reactionThe catalystNon-woven fabric made of synthetic fibers (excluding graft-polymerized synthetic fibers)After impregnating the carrier with a solution containing transition element ions,At room temperatureObtained by reducing the transition element ions held in hydrogen gas., Selectively hydrogenating a 1-substituted or 2-substituted double bond of a reaction object having a plurality of unsaturated bondsIt is characterized by that.
[0008]
The transition element is preferably palladium.
[0009]
  Reduction of the present inventionFor reactionThe method for producing the catalyst is as follows:Non-woven fabric made of synthetic fibers (excluding graft-polymerized synthetic fibers)A step of impregnating the carrier with a solution containing transition element ions, and a carrier after the impregnation.At room temperatureHolding in hydrogen gas and reducing the transition element ions,Selective hydrogenation of 1-substituted or 2-substituted double bonds of reaction objects having multiple unsaturated bondsIt is characterized by doing.
[0011]
In the method for producing a reduction catalyst of the present invention, the transition element is preferably palladium.
[0012]
  The selective hydrogenation method of the present invention comprises the reductionFor reactionCatalyst,pluralImmersion in the presence of hydrogen gas in a solution containing a reaction object having an unsaturated bondAnd selectively hydrogenating the 1-substituted or 2-substituted double bond of the reaction productIt is characterized by doing.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, reduction according to the present inventionFor reactionEmbodiments of the catalyst, its production method, and the selective hydrogenation method will be described.
[0014]
  FIG. 1 shows the reduction of the present invention.For reactionIt is sectional drawing which shows the structure of a catalyst typically. In this figure, the reduction catalyst 10 is configured by carrying a catalyst substance 4 made of a transition element on a sheet-like carrier 2. In this embodiment, the carrier 2 is made of a synthetic resin non-woven fabric, a large number of resin fibers 2a are entangled in a mesh shape, and voids are formed between the fibers. The catalyst material (palladium black) 4 is supported on the entire surface of each fiber inside the carrier 2, and the catalyst material is also present in the voids inside the carrier 2. In the present invention, palladium black is not a fine powder, but it is black and has the same catalytic activity as conventional palladium black (black fine powder palladium).
[0015]
The palladium black is deposited in an amorphous and granular form on the surface of the carrier, and its particle size is usually 0.1 to 3 μm, preferably 0.3 to 2 μm.
[0016]
  The carrier 2 is easily impregnated with a solution containing transition element ions., Non-wovenCan be used. Further, the shape of the carrier is not particularly limited, and can be a sheet shape, a tube shape, a lump shape, a rod shape, or a spherical shape, but a sheet shape that is easy to handle and has a large surface area is preferable..In particular, when the catalytic reaction proceeds in an organic solvent as will be described later, it is preferable to use a synthetic resin having a good affinity with the solvent because the solution easily enters the voids and promotes the reaction. As the synthetic resin, polypropylene, polyethylene, polyimide, or the like can be used. There are no particular limitations on the size and density of the voids.
[0017]
As will be described in detail later, the catalyst material 4 is supported on the support by impregnating the support with a solution containing transition element ions and then reducing. The catalyst material 4 is a reduction catalyst made of a transition element and has a catalytic action for hydrogenation reaction. As the catalyst material 4, elements of groups 3A to 7A, 8 and 1B can be used, but preferably palladium, platinum, rhodium, iridium, ruthenium, rhenium, etc. are used, and more preferably palladium is used. Use it. In particular, the above-described palladium black is preferable. The amount of the catalyst substance supported on the carrier is not particularly limited and can be selected according to the target reaction.-3~ 1x103mg / cm3, Preferably 1 × 10-1~ 1x102mg / cm3, More preferably 0.5-5 mg / cm3It is.
[0018]
  Thus, the reduction of the present inventionFor reactionThe catalyst has a large effective surface area and excellent reactivity because the catalyst substance (transition element) is supported inside the carrier by impregnating the inside of the carrier having a large number of voids with a solution containing transition element ions. It becomes. As a result, the amount of catalyst material required for the reaction can be reduced as compared with conventional powder catalysts. Further, since the catalyst material is present in the voids of the support, it is not necessary to load a large amount of the catalyst material on the outermost surface of the support. That is, when the catalyst material is supported only on the outermost surface of the carrier, the catalyst material is easily dropped due to contact with the outside. In particular, if the catalyst material is deposited in the shape of a dendrite (needle) in order to increase the surface area of the catalyst, the catalyst material will easily fall off, resulting in poor catalyst performance and poor catalyst durability. In the present invention, the catalyst material is supported around the voids inside the carrier, and this portion is difficult to contact with the outside, so that the catalyst material is less likely to fall off and the durability is improved. In addition, since the catalyst substance is fixed (supported) on the bulk carrier, the catalyst can be easily separated from the reaction system after the reaction, and the handling becomes easier as compared with the conventional powdery catalyst.
[0019]
  Thus, the reduction of the present inventionFor reactionThe catalyst is less likely to cause the catalyst material to fall off, but even if the catalyst material falls off, it can be prevented from being mixed into the product. That is, as shown in FIG. 2, by wrapping the reduction catalyst 10 with the collection cloth 20, the dropped catalyst substance can be kept in the collection cloth 20. As the collection cloth 20, for example, a net, a non-woven fabric, or the like can be used. When a non-woven fabric is used as the carrier of the reduction catalyst 10, a non-woven fabric with a finer diameter (smaller void diameter) can be used. .
[0020]
  Next, the reduction of this embodimentFor reactionA method for producing the catalyst will be described with reference to FIG. First, a solution containing transition element ions (for example, palladium chloride solution) is dropped and impregnated into the above-described carrier having a large number of voids (FIG. 3A). As the impregnation method, in addition to the above-described dropping, for example, a carrier may be immersed in the solution.
[0021]
Examples of the solvent in the above solution include water-soluble organic solvents such as water, methanol, tetrahydrofuran, acetonitrile, acetic acid, dimethyl sulfoxide, N, N-dimethylformamide, and hexamethylphosphoamide, or acetic anhydride, ethyl acetate, methylene chloride, and benzene. , Propylene carbonate, nitromethane, hexamethylphosphoamide and the like water-insoluble organic solvents, and these can be used alone or in combination of two or more.
[0022]
Examples of transition element ions usually include divalent, trivalent, and tetravalent ions. For example, in the case of Pd ions, divalent ones resulting from palladium salts such as palladium chloride, palladium sulfate, palladium nitrate and the like that are easily dissolved in a solvent can be suitably used. The solution containing transition element ions usually dissolves the salt of the transition element (such as the above palladium salt) in an acid solution having a hydrogen ion concentration of 0.3 to 5 mol / L, preferably an acid concentration of 1 to 2 mol / L. And can be adjusted easily.
[0023]
The concentration of transition element ions in the solution is usually 1 × 10-6mol / L to supersaturated state, preferably 1 × 10-4mol / L to 1 × 10-1mol / L.
[0024]
Next, the impregnated carrier is suspended in a sealed chamber, hydrogen gas is introduced into the chamber, the chamber is sealed, and the carrier is held in the hydrogen gas (FIG. 3B). Although the holding time depends on the shape of the carrier and the like, it is usually from several minutes to several hours. As a result, transition element ions (for example, Pd ions) in the impregnated solution become transition elements (for example, Pd ions).0) To be deposited on the surface of the carrier to obtain a reduction catalyst (FIG. 3 (c)). The pressure of hydrogen gas in the room is usually 1.013 × 102~ 1.013 × 108Pa, preferably 1.013 × 105~ 1.013 × 106Pa, more preferably 1.013 × 105~ 2.026 × 105Pa can be used.
[0025]
Next, the hydrogen gas in the room is replaced with an inert gas (Ar or the like) (FIG. 3D). Then, the obtained reduction catalyst is taken out of the room and washed appropriately. The washing can be performed, for example, by washing the catalyst with water and then washing with an organic solvent (such as methanol). Furthermore, the catalyst may be dried under reduced pressure as appropriate. Thus, a reduction catalyst is manufactured (FIG. 3 (e)).
[0026]
As described above, according to the production method of the present invention, since the carrier has a large number of voids and easily absorbs the liquid, the inside of the carrier can be impregnated with the solution containing transition element ions. Since the catalyst substance (transition element) is supported on the catalyst, a catalyst having a large effective surface area and excellent reactivity can be produced.
[0027]
In addition, according to the production method of the present invention, the catalyst can be produced simply by impregnating the above-mentioned solution into a carrier and holding it in hydrogen gas, so that the production becomes simple. Moreover, since the adjustment of the carrying amount only needs to be carried out by adjusting the concentration and impregnation amount of the solution, the carrying amount can be adjusted easily and accurately.
[0028]
  Next, the reduction of the present inventionFor reactionA method for performing selective hydrogenation using a catalyst will be described. The method of the present invention is a reduction in the presence of hydrogen gas in a solution containing a reaction object.For reactionThe catalyst is immersed. When the reaction is complete, the solution is reduced.For reactionIf the catalyst is taken out and washed and dried as appropriate, the catalyst activity does not decrease by use, so that it can be used repeatedly as a catalyst. According to the method of the present invention, it is only necessary to introduce hydrogen gas into the solution and immerse the reduction catalyst, and no special electrolysis apparatus as in the prior art is required.
[0029]
  Here, the selective hydrogenation means that an unwanted reaction other than a predetermined hydrogenation is not caused or suppressed when hydrogenating a reaction target having an unsaturated bond. Selective hydrogenationIsIn the case where the reaction object has a plurality of unsaturated bonds, hydrogenation at a predetermined position is selectively caused (hereinafter referred to as “type 2”).
[0032]
  Moreover, the reaction object used for the above type 2 reaction includes a) a carbon-carbon 1-substituted double bond and a carbon-carbon 2-substituted double bond.FromCompound having at least one selectedTheIt can be illustrated.
[0033]
In the method of the present invention, if the reaction object is a liquid, it can be used as it is, but the reaction object may be dissolved in a solvent. Any solvent can be used as long as it is liquid at the reaction temperature, and various organic solvents such as aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, and phenols can be used. These solvents are appropriately selected depending on the type of reaction substrate, reaction temperature, target reaction time, and the like, and may be used alone or in combination of two or more. In order to give priority to the hydrogenation reaction of the reaction substrate, the solvent is preferably not a solvent composed of a compound having an unsaturated bond that causes the hydrogenation reaction. Particularly preferably, when aprotic aromatic hydrocarbons such as aromatic hydrocarbons, alkyl-substituted aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, alkoxy-substituted aromatic hydrocarbons are used, hydrogenation is performed. The hydrogenation reaction can occur without causing the decomposition reaction almost completely.
[0034]
In the method of the present invention, as the amount of the reduction catalyst, the amount of the net catalyst material excluding the carrier is 1 × 10 5 with respect to the reaction substrate (reaction target).-5~ 100% by weight, preferably 1 x 10-2To 100% by weight, more preferably 5 × 10-1It can be made into 5 weight%.
[0035]
In the method of the present invention, the hydrogen gas pressure present in the reaction system is 1.013 × 10 6.4~ 1.013 × 109Pa, preferably 5.065 × 104~ 1.013 × 106Pa, more preferably 1.013 × 105~ 2.026 × 105Pa can be used.
[0036]
In the method of the present invention, the reaction temperature can be -200 to 1000 ° C, preferably 0 to 100 ° C, more preferably 10 to 30 ° C.
[0037]
In the method of the present invention, the reaction time can be 1 minute to 1000 hours, preferably 30 minutes to 240 hours, more preferably 30 minutes to 72 hours.
[0038]
If the reduction catalyst of the present invention is used, a corresponding amine is produced by reducing the nitro compound by performing the same catalytic reduction operation as that using the conventional black powdery palladium black in addition to the above reaction. Or the nitrile can be reduced to produce the corresponding primary amine.
[0039]
Next, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these.
[0040]
【Example】
A. Comparative experiment of selective hydrogenation
Example 1 and Comparative Examples 1 to 4
1. Preparation of reduction catalyst
Nonwoven fabric made of polypropylene (Daiwabo Co., Ltd., template RPX-101, basis weight 49.7 g / m2, Thickness 1.2 mm) was cut into 5 × 2 cm (weight 5.0 mg) and further folded to 2.5 × 1 cm in length and width and 0.5 cm in thickness. Then, 150 mg of palladium chloride was dissolved in 10 mL of 1 mol / L hydrochloric acid, and the concentration was 8.5 × 10.-20.11 mL of a mol / L palladium chloride hydrochloric acid solution was dropped into the nonwoven fabric and impregnated. Next, the impregnated non-woven fabric was suspended in a sealed chamber, hydrogen gas of 0.1 MPa (normal pressure) was introduced, and allowed to stand at room temperature for 180 minutes to support palladium on the non-woven fabric. The supported nonwoven fabric was thoroughly washed with water and acetone, dried to completely remove the solvent, thereby producing a reduction catalyst. The amount of the catalyst supported was 1.0 mg (the total weight including the support was about 6.0 mg). This was designated Example 1.
[0041]
For comparison, powdered palladium black (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared. This is referred to as Comparative Example 1. Also, powdered Pd-C (powdered activated carbon with Pd fine powder impregnated, manufactured by Kawaken Fine Chemical Co., Ltd., 5% Pd loading, 0.2% Pd activity) was prepared. This is referred to as Comparative Example 2. Further, powdered palladium black was obtained by a known method of reducing palladium chloride with formic acid. This is referred to as Comparative Example 3. Further, a palladium foil is referred to as Comparative Example 4.
[0045]
  3. Selective hydrogenation reaction (Type 2: Selective hydrogenation of unsaturated bond at a predetermined position)
  Compound 2 having two double bonds capable of hydrogenation as the selective hydrogenation reaction of type 2 described above
[Chemical Formula 3]
Figure 0004116891
Prepared. Here, Formula A is a reaction substrate, Formula B is a partially hydrogenated product in which a terminal double bond is hydrogenated, and Formula C is a hydrogen atom in which a trisubstituted double bond bonded to an ester is also hydrogenated. No product. And about this compound, using the catalyst of Example 1 and Comparative Examples 1-4 similarly to reaction of the said type 2,7.0 × 10 in this compound as a solvent -3 The catalyst was immersed in a solution obtained by dissolution so as to have a mol / L of 2% w / w (2 g of catalyst with respect to 100 g of reaction substrate), and stirred for a predetermined time in a hydrogen atmosphere to react. After the reaction, the catalyst was taken out from the solution, the weight of the residue (product) after evaporation of the solvent was measured, and the residue was measured by NMR (nuclear magnetic resonance method) to identify the structure of the product. In addition, about Comparative Examples 1-4, the catalyst amount was 4% w / w.
  The obtained results are shown in Table 2.
[0046]
[Table 2]
Figure 0004116891
[0047]
As is clear from Table 2, in the case of Example 1, when the reaction was performed for 4 hours, selective hydrogenation of the 1-substituted double bond portion could be performed in a yield of 100%, and from the start of the reaction. Even after 24 hours, hydrogenation of the 3-substituted double bond did not occur, and the selectivity of hydrogenation to the 1-substituted double bond became more excellent. On the other hand, in the case of Comparative Examples 1 to 3, when the reaction has passed for 1 hour, hydrogenation of not only the 1-substituted double bond portion but also the 3-substituted double bond portion has progressed. Partial hydrogenation could not be performed only on the 1-substituted double bond part without reduction. In the case of Comparative Example 4, no catalytic reaction occurred. From the above, it is clear that when the reduction catalyst of the present invention is used, selective hydrogenation at a predetermined position can be performed in a high yield and hydrogenation at an undesired position does not proceed.
[0063]
3. Selective hydrogenation reaction (Type 2: Selective hydrogenation of unsaturated bond at a predetermined position)
As the type 2 selective hydrogenation reaction, various compounds having two or more double bonds capable of hydrogenation were prepared.
[0064]
(1) Examples 27-37
The compound 2 was prepared. Here, the formulas A, B, and C are the reaction substrates and products described in the compound 2. Further, the solvents for dissolving the reaction substrate are as shown in Table 5 below.
The results obtained are shown in Table 5. Here, the numbers in the table indicate the abundance ratios of the compounds of formulas A to C in the reaction solution, and hr indicates the reaction time.
[0065]
[Table 5]
Figure 0004116891
[0066]
As is clear from Table 5, in each of Examples 27 to 37, selective hydrogenation of the 1-substituted double bond portion could be performed in a predetermined yield. In particular, in the case of Examples 27 and 28, the selective hydrogenation of the 1-substituted double bond portion can be performed at a yield of 100% when the reaction has passed for 4 hours, and even after 24 hours have passed after the reaction. Hydrogenation of the 3-substituted double bond portion did not occur, and the reaction selectivity of hydrogenation to the 1-substituted double bond portion became more excellent.
[0067]
(2) Examples 38 to 47, Comparative Example 8
Compound 12 having two double bonds capable of hydrogenation as the selective hydrogenation reaction of type 2 described above
Embedded image
Figure 0004116891
Prepared. Here, Formula A is a reaction substrate, Formula B is a partially hydrogenated product in which a disubstituted double bond bonded to an ester is hydrogenated, Formula C is further hydrogenated in a side chain trisubstituted double bond. Undesired product produced. In addition, the solvents for dissolving the reaction substrate are as shown in Table 6 below.
The results obtained are shown in Table 6. Here, the numbers in the table indicate the abundance ratios of the compounds of formulas A to C in the reaction solution, and hr indicates the reaction time.
[0068]
[Table 6]
Figure 0004116891
[0069]
As is clear from Table 6, in each of Examples 38 to 47, the selective hydrogenation of the disubstituted double bond bonded to the ester could be carried out in a predetermined yield. In particular, in the case of Examples 38 and 39, the selective hydrogenation of the 2-substituted double bond portion can be performed at a yield of 100% when the reaction has passed for 24 hours, and even after 48 hours have passed after the reaction. Hydrogenation of the side chain 3-substituted double bond portion did not occur, and the reaction selectivity of hydrogenation to the 2-substituted double bond portion became more excellent. On the other hand, in the case of Comparative Example 8, a product of formula B was not obtained, and an undesired product of formula C was produced.
[0070]
  (3) Examples124
  Compound 13
Embedded image
Figure 0004116891
Prepared. Toluene was used as the solvent. Here, the compound of the left formula is a reaction substrate, the left compound of the right formula is the target product (position of the white arrow, the 1-substituted double bond is hydrogenated), and the right compound of the right formula is desired. Product (2 positions of white arrows, 1-substituted double bond and 3-substituted double bond hydrogenated). In this example, the selective hydrogenation of the 1-substituted double bond can be performed in 100% yield 4 hours after the reaction, and the hydrogen of the 3-substituted double bond can be obtained even after 24 hours after the reaction. No addition occurred.
[0071]
  (4) Examples125
  Compound 14
Embedded image
Figure 0004116891
Prepared. Toluene was used as the solvent. Here, the compound of the left formula is the reaction substrate, and the compound of the right formula is the target product (the position of the white arrow, hydrogenating the 1-substituted double bond). In this example, the selective hydrogenation of the 1-substituted double bond can be performed in 100% yield 4 hours after the reaction, and the hydrogen of the 3-substituted double bond can be obtained even after 24 hours after the reaction. No addition occurred.
[0072]
  (5) Examples126
  Compound 15
Embedded image
Figure 0004116891
Prepared. Toluene was used as the solvent. Here, the compound of the left formula is a reaction substrate, the left compound of the right formula is the target product (the position of the white arrow, (hydrogenating one substituted double bond), and the right compound of the right formula is Undesired product (2 positions of white arrows, 1-substituted double bond and 3-substituted double bond hydrogenated) In this example, 1-substituted double bond 4 hours after the reaction The selective hydrogenation of a part could be carried out at a yield of 100%, and further, no hydrogenation of the trisubstituted double bond part occurred even after 24 hours had passed after the reaction.
[0073]
  (6) Examples127
  Compound 16
Embedded image
Figure 0004116891
Prepared. Toluene was used as the solvent. Here, the compound of the left formula is the reaction substrate, and the compound of the right formula is the target product (the position of the white arrow, hydrogenating the 2-substituted double bond). In this example, the selective hydrogenation of the 2-substituted double bond can be performed in a yield of 26% in 4 hours after the reaction, the yield is 52% in 8 hours after the reaction, and in 24 hours after the reaction. The yield was 100%. Furthermore, hydrogenation of the 3-substituted double bond did not occur even after 48 hours from the reaction. During the reaction, hydrogenation of the trisubstituted double bond portion did not occur at all.
[0075]
  (8) Examples129
  The compound 2 was prepared. Methanol was used as the solvent, and only in this example, the reaction temperature was −30 ° C. (243 K). Here, Formulas A to C are as described in Compound 2 above. The results obtained are shown in Table 7. Here, the numbers in the table indicate the abundance ratios of the compounds of formulas A to C in the reaction solution, and hr indicates the reaction time.
[0076]
[Table 7]
Figure 0004116891
[0077]
As is apparent from Table 7, in this example, the selective hydrogenation of the monosubstituted double bond portion could be performed in a predetermined yield. In particular, 30 minutes after the reaction, only hydrogenation of the 1-substituted double bond portion occurred, and no hydrogenation of the 3-substituted double bond portion occurred.
[0078]
C. Catalyst durability evaluation
1. Experimental conditions
Using the same reduction catalyst as in Example 1 above, Compound 18
Embedded image
Figure 0004116891
A catalytic reaction was carried out using as a reaction substrate. Here, the compound of the left formula is a reaction substrate, and the compound of the right formula is a target product (hydrogenating the terminal double bond portion of the white arrow). 12.5 g of the reaction substrate is dissolved in 500 mL of toluene, the catalyst of Example 1 (the amount of the catalyst substance supported is 4 mg) is immersed, and the terminal double bonds of all the reaction substrates are completely hydrogenated in a hydrogen atmosphere. The solution was allowed to react until stirred.
[0079]
Next, the concentration of Compound 2 in the toluene solvent is 7.0 × 10-3The catalyst was immersed in the solution dissolved so as to be mol / L so as to be 2% w / w, and the reaction was performed by stirring in a hydrogen atmosphere for 4 hours. After the reaction, the catalyst was taken out from the solution, the weight of the residue (product) after evaporation of the solvent was measured, and the residue was measured by NMR (nuclear magnetic resonance method) to identify the structure of the product. As a result, the product of formula B in compound 2 (partially hydrogenated product in which the terminal monosubstituted double bond was hydrogenated) was obtained in a yield of 100%. This yield is the same as that when an unused reduction catalyst is used, and the activity is still maintained even when 4 mg of the reduction catalyst of the present invention catalyzes 84 mmol (12.5 g) of the reaction substrate. It is shown that. At this time, when the durability index of the catalyst called turnover is obtained, 2.1 × 102mol / g or more (2.1 × 10 reaction substrate per gram of catalyst)2It was a value capable of reacting more than mol).
[0080]
【The invention's effect】
As is apparent from the above description, the reduction catalyst of the present invention is excellent in reactivity because the catalytic material is supported around the voids of the carrier, so that the effective surface area of the catalyst is increased. As a result, the amount of catalyst material required for the reaction can be reduced as compared with conventional powder catalysts. Further, since the catalyst substance is present in the voids of the carrier and is difficult to come into contact with the outside, the catalyst substance is unlikely to fall off due to physical contact, and durability is improved. In addition, the catalyst can be easily separated from the reaction system after the reaction, and handling becomes easier as compared with the conventional powdery catalyst.
[0081]
According to the production method of the present invention, since the carrier easily absorbs the liquid, the solution containing the transition element ions can be surely impregnated inside the carrier, and the catalyst substance is carried inside the carrier and the effective surface area is increased. A catalyst having excellent reactivity can be produced. In addition, the catalyst can be produced simply by impregnating the support with the above solution and holding it in hydrogen gas. Further, the adjustment of the supported amount can be performed simply and accurately because the concentration of the solution and the amount of impregnation need only be adjusted.
[0082]
According to the selective hydrogenation method of the present invention, the hydrogenation reaction can be selectively performed only by immersing the reduction catalyst in the presence of hydrogen gas in a solution containing a reaction target having an unsaturated bond. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing the configuration of a reduction catalyst of the present invention.
FIG. 2 is a diagram showing a state in which a reduction catalyst is wrapped with a collection cloth.
FIG. 3 is a process diagram showing a method for producing a reduction catalyst of the present invention.
[Explanation of symbols]
2 Carrier
2a Resin fiber
4 Catalytic substances (transition elements)
10 Reduction catalyst

Claims (5)

合成繊維からなる不織布(但し、グラフト重合された合成繊維を除く)である担体に遷移元素イオンを含む溶液を含浸後、該担体を室温で水素ガス中に保持して前記遷移元素イオンを還元することにより得られ、複数の不飽和結合を有する反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする還元反応用触媒。After impregnating a support that is a nonwoven fabric made of synthetic fibers (excluding graft-polymerized synthetic fibers) with a solution containing transition element ions, the support is held in hydrogen gas at room temperature to reduce the transition element ions. The catalyst for reduction reaction obtained by selectively hydrogenating the 1-substitution double bond part or the 2-substitution double bond part of the reaction object which is obtained by this and has a several unsaturated bond . 前記遷移元素は、パラジウムであることを特徴とする請求項に記載の還元反応用触媒。The catalyst for reduction reaction according to claim 1 , wherein the transition element is palladium. 合成繊維からなる不織布(但し、グラフト重合された合成繊維を除く)である担体に遷移元素イオンを含む溶液を含浸させる工程と、
含浸後の担体を室温で水素ガス中に保持して前記遷移元素イオンを還元する工程と
を有し、複数の不飽和結合を有する反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする還元反応用触媒の製造方法。
A step of impregnating a carrier which is a non-woven fabric made of synthetic fibers (excluding graft-polymerized synthetic fibers) with a solution containing transition element ions;
Holding the impregnated support in hydrogen gas at room temperature to reduce the transition element ions, and a 1-substitution double bond portion or a 2-substitution double bond of a reaction object having a plurality of unsaturated bonds A method for producing a catalyst for reduction reaction , wherein a part is selectively hydrogenated .
前記遷移元素は、パラジウムであることを特徴とする請求項に記載の還元反応用触媒の製造方法。The method for producing a catalyst for reduction reaction according to claim 3 , wherein the transition element is palladium. 請求項1又は2に記載の還元反応用触媒を、複数の不飽和結合を有する反応対象物を含む溶液中に水素ガスの存在下で浸漬し、該反応対象物の1置換二重結合部又は2置換二重結合部を選択的水素添加することを特徴とする選択的水素添加方法。The reduction reaction catalyst according to claim 1 or 2 is immersed in a solution containing a reaction object having a plurality of unsaturated bonds in the presence of hydrogen gas , and the one-substitution double bond portion of the reaction object or A selective hydrogenation method comprising selectively hydrogenating a 2-substituted double bond .
JP2003026134A 2003-02-03 2003-02-03 Catalyst for reduction reaction, production method thereof, and selective hydrogenation method Expired - Fee Related JP4116891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026134A JP4116891B2 (en) 2003-02-03 2003-02-03 Catalyst for reduction reaction, production method thereof, and selective hydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026134A JP4116891B2 (en) 2003-02-03 2003-02-03 Catalyst for reduction reaction, production method thereof, and selective hydrogenation method

Publications (2)

Publication Number Publication Date
JP2004237148A JP2004237148A (en) 2004-08-26
JP4116891B2 true JP4116891B2 (en) 2008-07-09

Family

ID=32954229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026134A Expired - Fee Related JP4116891B2 (en) 2003-02-03 2003-02-03 Catalyst for reduction reaction, production method thereof, and selective hydrogenation method

Country Status (1)

Country Link
JP (1) JP4116891B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146446A (en) * 1982-02-25 1983-09-01 Asahi Chem Ind Co Ltd Fixed bed catalyst
US5326825A (en) * 1992-11-27 1994-07-05 Naesman Jan H Process for the preparation of a graft copolymer bound catalyst
FI105274B (en) * 1996-03-15 2000-07-14 Upm Kymmene Oy Method for hydrogenation of non-hormone-containing unsaturated plant steroids and regeneration of spent catalyst

Also Published As

Publication number Publication date
JP2004237148A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5563221B2 (en) Process for producing a catalyst based on anisotropic metal nanoparticles in the presence of a reducing agent
CN102971278B (en) Process for the synthesis of trifluoroethylene
US7622416B2 (en) Hydrogenation catalyst, its preparation and use
US7632773B2 (en) Methods for manufacturing supported catalyst from a porous support and a nanocatalyst solution
JP5339923B2 (en) Method for direct amination of hydrocarbons
US4467110A (en) Process for purification of crude terephthalic acid
CN108290139A (en) The catalytic hydrogenation of halonitro aromatic compound
JPWO2011055604A1 (en) Carbon catalyst and its use
EP1436079A2 (en) Improved precious metal catalyst for debenzylation
US7947859B2 (en) Process for production of cycloolefin
CN101454076A (en) Process for hydrogenating an aldehyde
JP4116891B2 (en) Catalyst for reduction reaction, production method thereof, and selective hydrogenation method
CN111359671A (en) Preparation method of palladium-loaded or platinum-loaded zirconium-based microporous coordination polymer composite material
US20050221976A1 (en) Precious metal catalyst for debenzylation
JP5605619B2 (en) Transition element catalyst, production method thereof, and selective hydrogenation method
US4086275A (en) Reduced copper catalyst on support
JP3798949B2 (en) Hydrocracking catalyst
CN101098754B (en) Method for manufacturing palladium-containing catalyst
KR100222459B1 (en) Process for producing hydrochloromethanes
JP4779824B2 (en) Method for supporting metal catalyst on fibrous protein
JP3031508B2 (en) Reduction method of polychlorinated alkanes
Li et al. Hydrogenation–dechlorination of 2-chloro-4, 6-dinitroresorcinol over Pd/C catalysts
JP7077157B2 (en) A method for producing an activated carbon catalyst in which palladium is unevenly supported on the surface of non-molded activated carbon particles.
JP2003320251A (en) Alicyclic compound dehydrogenation catalyst
CN100566825C (en) A kind of c loaded noble metal catalyst and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees