JP4116806B2 - Spraying method for heat insulating irregular refractories for industrial kilns - Google Patents

Spraying method for heat insulating irregular refractories for industrial kilns Download PDF

Info

Publication number
JP4116806B2
JP4116806B2 JP2002089722A JP2002089722A JP4116806B2 JP 4116806 B2 JP4116806 B2 JP 4116806B2 JP 2002089722 A JP2002089722 A JP 2002089722A JP 2002089722 A JP2002089722 A JP 2002089722A JP 4116806 B2 JP4116806 B2 JP 4116806B2
Authority
JP
Japan
Prior art keywords
construction
spraying
heat
amorphous refractory
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002089722A
Other languages
Japanese (ja)
Other versions
JP2003287374A (en
Inventor
秀行 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2002089722A priority Critical patent/JP4116806B2/en
Publication of JP2003287374A publication Critical patent/JP2003287374A/en
Application granted granted Critical
Publication of JP4116806B2 publication Critical patent/JP4116806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種工業窯炉の断熱層形成に使用する工業窯炉用断熱質不定形耐火物の吹付け施工方法に関する。
【0002】
【従来の技術】
無機質軽量骨材とセラミックファイイバーを主材とした不定形耐火物は、微細空隙の内在による空気断熱によって優れた断熱性を発揮する。その具体的な材質は、例えば特開2001−39775号公報、特開2000−203951号公報、特開平6−87666号公報等に提案されているとおりである。
【0003】
この断熱質不定形耐火物の施工手段として吹付け施工方法がある。吹付け手段は前記した各公報の他、特開2001−12867号公報においても提案されている。
【0004】
吹付け施工は流し込み施工方法のように型枠を必要とせず、施工が迅速かつ経済的である。
【0005】
不定形耐火物の吹付け施工方法には大別して湿式と乾式とがある。湿式は予め施工水を添加混練した不定形耐火物を吹付ける方法である。乾式は不定形耐火物を粉体の状態でノズルに向けて送り出し、ノズル先端で施工水を添加して吹付けるものである。
【0006】
湿式法は不定形耐火物を予め混練することから、混練して造り置きした不定形耐火物が施工前に固化する、あるいはノズル内で不定形耐火物が硬化するノズル詰まりが生じやすい。これに対し乾式はこのような問題もなく、吹付け施工方法の主流である。
【0007】
【発明が解決しようとする課題】
断熱質不定形耐火物は、微細空隙の内在で断熱効果を有するものであるから、断熱機能を向上させようとすると微細空隙の割合が増え、かさ密度が小さくなる。セラミックファイイバーのうちでもロックウール粒状綿を混入した高断熱質不定形耐火物は、この微細空隙の組織が大きな塊で内在することになり、かさ密度が特に小さい。
【0008】
しかし、ロックウール粒状綿を混入した断熱質不定形耐火物はかさ密度が小さいために自重が不足し、従来の乾式施工では材料タンクから圧送装置への供給がスムーズでなく、ノズルからの噴出が息継ぎ等の弊害で施工効率の低下、吹付け施工体組織の不均一等の問題が生じている。また、ロックウール粒状綿が吹付け応力で圧縮され、その分、粒状綿のかさ密度が小さくなり、粒状綿がもつ断熱効果が損なわれる。
【0009】
一方、湿式は予め混練することで不定形耐火物組織に施工水を含み、不定形耐火物は自重が増すことで材料タンクから圧送装置への供給が容易となる。しかし、粒状綿を含む不定形耐火物は混練物に調整すると、粒状綿の摩擦抵抗が大きくなるためか圧送抵抗が急激に高くなり、ノズル詰まりによって施工効率が著しく低下する。
【0010】
そこで、本発明は、搬送・吹付け時の供給不良やノズル詰まりなどのトラブルを生じることなく高断熱性の施工体を形成することができる工業窯炉用断熱質不定形耐火物の吹付け施工方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明はロックウール粒状綿3〜40質量%、残部がセメントおよび無機質軽量骨材を主体とした断熱質不定形耐火物を、断熱質不定形耐火物に対する外掛けで水分5〜25質量%添加し混合して予め湿潤させた後、圧送管に送り出し、さらにノズル手前で施工水を断熱質不定形耐火物に対する外掛けで150〜300質量%添加して吹付けるものである。
【0012】
本発明の施工方法は、基本的には乾式法に相当する。断熱質不定形耐火物は湿潤によって重量を増し、材料タンクから圧送装置への供給が良好となる。
【0013】
粒状綿を含む不定形耐火物を使用するが、湿潤状態で不定形耐火物を圧送管に送る出すため、不定形耐火物を予め混練して泥しょう状に調整する湿式に比べて圧送抵抗が小さく、ノズル閉塞の問題はない。
【0014】
本発明では不定形耐火物を予め湿潤させておくことで、吸水性の高い粒状綿が湿潤水を先行して吸水する。水分は空気と違って可縮性がなく、粒状綿はこの水分を吸水することで圧送応力および吹付け応力に対抗することで、扁平化あるいは体積収縮が抑制される。その結果、粒状綿は不定形耐火物を吹き付けた後も吹き付け施工体組織内において密度を低く保ち、施工体の断熱性を向上させる。
【0015】
吹付け施工方法には、一般的ではないが前記した乾式と湿式の他に、本発明の方法と同様に予め湿潤させた後、圧送し、ノズル手前で施工水を添加して吹付ける方式が知られている。しかし、そこでの目的は施工時の発塵防止である。また、溶融金属容器の内張り補修を対象とした緻密質不定形耐火物の施工である。本件発明のようにロックウール粒状綿を含む断熱性不定形耐火物の施工例はないし、ましてや、その施工において粒状綿の扁平化あるいは体積収縮の抑制することで断熱性を向上することは知られていない。
【0016】
本発明の吹付け方法は、断熱性不定形耐火物の付着性にも優れている。吹付け施工は吹付け時の跳ね返り損失が避けられないが、本発明では不定形耐火物を予め湿潤させておくことで耐火性骨材の微粉部分が粒状綿の繊維組織に充填し、耐火性骨材と粒状綿とがより一体化し、付着性が向上する。
【0017】
断熱不定形耐火物の吹付けは施工水分量が多いために施工体の硬化が遅い。特に冬季では外気温が低いために施工後、数日間経ても施工体の強度が十分でない。本発明においては、施工水に温水を使用すると施工体の硬化が早くなり、施工性が向上する。温水を使用すると、冬季であっても例えば24時間以内で十分な硬化を得ることができる。これは、粒状綿によって施工水が施工体内部に保水され、施工水の温度低下が遅れることで、セメント反応が促進されるためと考えられる。
【0018】
【発明の実施の形態】
本発明で使用する断熱性不定形耐火物の配合物であるロックウール粒状綿において、ロックウールとは天然の岩石やスラグを高温で溶融し、その溶融物を遠心力で吹き飛ばして繊維状にしたもので、シリカ、カルシア、アルミナ等を主成分とする耐熱温度700〜900℃程度の耐熱性無機質繊維である。現在では、スラグに岩石を配合しての成分調整あるいは製法の変化で種々なグレードが作られているが、本発明ではその何れもが使用できる。
【0019】
また、粒状綿はバルク、ブランケット等のロックウールをダブルロール型の解綿機等を用い、粒状に解砕したものである。
【0020】
本発明で使用するロックウール粒状綿の解砕径は3〜150mmが好ましく、さらに好ましくは5〜100mmである。解砕径がこれより小さいと断熱効果が不十分であり、大きいと施工体の付着性及び強度が低下する。このロックウール粒状綿は市販品からも求めることができる。
【0021】
粒状綿の外形は一般に完全な球ではない。可縮性のために楕円体のケースが多い。また、解綿機等を用いて解砕されるために端部が筋引きになっているものがある。本発明でいう解砕径は、筋引き等の細部を除いた主体部分の寸法である。
【0022】
断熱質不定形耐火物に占めるロックウール粒状綿の割合は3〜40質量%とする。さらに好ましくは5〜30質量%である。ロックウール粒状綿が少ないと断熱効果に劣り、多いと施工体の付着性および強度が低下する。
【0023】
無機質軽量骨材はバーミキュライト(蛭石)、パーライト(真珠岩)、膨張頁岩、軽石、シラスバルーン、軽量シャモット等の発泡耐火原料が好ましい。経済性、品質安定性を考慮すると、中でもバーミキュライトおよびパーライトの使用が好ましい。
【0024】
セメントの具体例は、アルミナセメント、ポルトランドセメント、フライアッシュセメント、耐硫酸塩スラグセメント等の水硬セメントである。
【0025】
前記の無機質軽量骨材およびセメントの割合はロックウール粒状綿の残部の主体となるものである。その好ましい使用割合は、施工体の断熱性と強度のために、それぞれ無機質軽量骨材が10〜85質量%、セメントが10〜50質量%である。
【0026】
施工体の強度および吹付け時の流動性を付与するために、揮発シリカ、仮焼アルミナ等の超微粉を例えば10質量%以下の範囲で使用してもよい。
【0027】
非軽量の通常のアルミナ、シリカ、アルミナ−シリカ質等の耐火性原料の併用を否定するものではないが、断熱性低下の原因となるので使用は好ましくない。したがって、使用する場合でも例えば10質量%以下の範囲で、できるだけ少ないことが好ましい。
【0028】
必要により、増粘剤・硬化剤を使用してもよい。その具体例は、粘土、ベントナイト、アラビアゴム、デキストリン、CM(メチルセルロース)、CMC(カルボキシメチルセルロース)、アルギン酸ソーダ、消石灰、セピオライト等である。使用量は10質量%以下、さらに好ましくは1〜5質量%である。
【0029】
流動性付与のために分散剤を添加してもよい。分散剤としては例えば、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、クエン酸ソーダ、カルボキシル基含有ポリエーテル系分散剤、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ等が使用される。その添加割合は、外掛け0.01〜0.5質量%が好ましい。
【0030】
吹付け装置は乾式吹付ガンを使用することができる。例えばブリガン、ロテクターガン、野上セメントガン、ピッコラガン、アリバーガン、リードガン等の装置である。
【0031】
図1は本発明で使用する吹付ガンの装置例を模式的な示したものである。図1において1は台車、2は材料タンク、3は耐火物を圧送する圧搾空気を供給するエアーコンプレッサー、4は材料圧送管、5はノズル、6はノズル近傍に連結した施工水供給管、7は施工水供給源である。
【0032】
本発明では不定形耐火物を予め湿潤させておく。湿潤水量は5〜25質量%が好ましい。これより少ないと断熱性の高い施工体が得られない。多いと、圧送管内又はノズル内で詰まりやすくなる。
【0033】
湿潤処理は、例えば不定形耐火物の配合物全部に湿潤水を添加し、ミキサーにて混合して行なう。次いで、この湿潤させた不定形耐火物を吹付ガンの材料タンクに投入し、エヤーコンプレッサーによる圧搾空気で圧送管に送り出し、ノズルの手前で施工水を添加して吹付ける。
【0034】
ノズル手前で添加する施工水量は、断熱性不定形耐火物に対する外掛けで150〜300質量%、さらに好ましくは170〜250質量%である。施工水分量が少ないと跳ね返り損失が多くなり、付着性が低下し、多いと施工体の保形性が劣り、好ましくない。
【0035】
施工水に温水を使用する場合、温水温度は例えば30℃以上において効果がある。湿潤水も温水を使用するとさらに効果的である。また、例えば60℃を超える高温水は取り扱い上、危険であり、好ましくない。
【0036】
本発明による断熱質不定形耐火物の吹付け施工の対象は特に限定されるものではないが、例えば、都市ごみ焼却炉・廃棄物溶融炉・灰溶融炉等の廃棄物処理炉、均熱炉・加熱炉・タンディッシュ・取鍋等の鉄鋼工業炉、アルミニウム・銅・鉛・亜鉛他を対象とした非鉄金属精錬炉、石油工業炉等の化学工業窯炉あるいはボイラー、ガラス炉、セメント工業窯炉が挙げられる。
【0037】
【実施例】
以下に本発明の実験例、実施例および比較例を説明する。また、同時に各例の試験結果を示す。
【0038】
【表1】

Figure 0004116806
表1は各例で使用したロックウール粒状綿の化学成分値である。ロックウールは高炉スラグや天然岩石を高温で溶融し、遠心力で吹き飛ばして繊維状にしたものである。ここでは、新日鐵化学株式会社製の繊維径は5ミクロン以下のロックウール粒状綿「エスファイバー(登録商標)」を使用した。ロックウール粒状綿の径はダブルロール型の解綿機をもって調整した。
【0039】
各例はいずれも乾式吹付け装置であるピコラーガンを用いた。不定形耐火物を吹付け装置のタンクに投入し、施工に際してはタンクの下端から切り出し、圧搾空気で圧送管に送り、ノズル手前で施工水分を添加して、スタッドを植設した垂直鉄皮に吹付けた。このうち、不定形耐火物を予め湿潤させて吹付けた例では、前記方法に加え、不定形耐火物に湿潤水を添加して予めミキサーにて予め不定形耐火物を湿潤させた後、タンクに投入した。
【0040】
ノズルからの材料の吐出速度は、各例とも乾粉換算で2〜5kg/minとした。施工体厚さは約150〜200mmとした。各例における試験において、搬送性は材料タンクからの切り出し、圧送管内での圧送、ノズルからの吐出について良・不良を評価した。付着率および硬化時間は、施工水温度を常温と温水のそれぞれで吹き付けたものを測定した。
【0041】
かさ比重、曲げ強さ、熱伝導率は、試験片を施工体から切り出し、110℃×24時間乾燥した後、測定した。かさ比重はJIS R2655、曲げ強さはJIS R2653、熱伝導率にはJIS R2616に準じて測定した。
【0042】
【表2】
Figure 0004116806
表2において、実験例Aは湿潤水量が少ないため、吹付け機のタンクから材料の切り出しがスムーズでなく、ノズルからの吐出に息継ぎが見られた。粒状綿への保水が不十分なためか施工体の断熱性に劣る。
【0043】
実験例Bは粒状綿を添加しない不定形耐火物を使用したものであり、施工体の断熱性に劣る。実験例C、Dは本発明の範囲内の施工であり、施工性及び施工体の断熱性において優れた効果が得られた。
【0044】
実験例Eは湿潤水量が多いために材料が圧送管を閉塞し、吹付け施工が出来なかった。実験例Fは粒状綿が多いため施工体の強度が著しく低かった。実施例Gは施工水量が多いために被吹付け面から材料のほとんど流れ落ち、付着率が著しく低い。また、各例において、施工水に温水を用いた場合は、付着性の向上と硬化時間の短縮を図ることが出来た。
【0045】
実施例1:径10〜62mmに調整したロックウール粒状綿15質量%、バーミキュライトw45質量%、シリカフラワー5質量%、アルミナセメント35質%量の配合割合よりなる不定形耐火物に湿潤水を外掛け13質量%添加し、混錬したものを吹付装置のタンク内に投入した。施工に際しては、吹付け機の駆動でタンク内から切り出した前記の不定形耐火物を、エアーコンプレッサーの圧送空気をもって圧送管に送り出し、ノズル手前500mmの箇所で施工水分を外掛け230質量%添加し、吹き付けた。
【0046】
搬送性、付着性共に良好であり、また施工体は熱伝導率0.07W/m・Kと高断熱性が得られた。
【0047】
実施例2:ノズル手前で添加する施工水に35〜43℃の温水を使用し、他は実施例1と同様の条件で吹付施工した。付着性について、実施例1では81質%量であったが、本実施例では90質量%と向上した。硬化時間は、実施例1では35時間に対し、本実施例では7時間と短縮した。
【0048】
比較例:湿潤水を使用せず、材料タンクからの切出しは乾粉状態で行い、他は前記実施例1と同様の条件で吹付けを行なった。吹付け機のタンクから材料の切り出しがスムーズでなく、ノズルからの吐出時の息継ぎによって施工能率が大幅に低下した。また、施工体の熱伝導率は0.15W/m・Kであり、断熱性が実施例1に比べて大きく劣る。
【0049】
【効果】
以上の実験例、実施例の結果が示すように、本発明の吹付け施工方法は材料の搬送・吹付け時のトラブルを抑制した状態で高断熱性の施工体を形成することができる。また、施工水に温水を使用すると付着性、硬化性においてさらに向上する。
【図面の簡単な説明】
【図1】 本発明で使用する吹付ガンの装置例を模式的な示した図である。
【符号の説明】
1:台車、2:材料タンク、3:エアーコンプレッサー、4:材料圧送管、5:ノズル、6:施工水供給管、7:水供給源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spray installation how industrial furnaces for heat insulation quality monolithic refractories used for the heat insulating layer formed of various industrial kilns.
[0002]
[Prior art]
An amorphous refractory mainly composed of inorganic lightweight aggregate and ceramic fiber exhibits excellent heat insulation properties by air insulation due to the presence of fine voids. Specific materials thereof are as proposed in, for example, Japanese Patent Application Laid-Open Nos. 2001-39775, 2000-203951, and 6-87666.
[0003]
There is a spray construction method as a construction means for the heat insulating irregular refractory. The spraying means is proposed in Japanese Patent Laid-Open No. 2001-12867 in addition to the above-mentioned publications.
[0004]
The spray construction does not require a formwork unlike the casting construction method, and the construction is quick and economical.
[0005]
There are two types of spraying methods for irregular refractories: wet and dry. Wet is a method of spraying an amorphous refractory to which construction water has been added and kneaded in advance. In the dry method, the amorphous refractory is sent out in the form of powder toward the nozzle, and the construction water is added and sprayed at the nozzle tip.
[0006]
In the wet method, since the amorphous refractory is kneaded in advance, the amorphous refractory prepared by kneading is solidified before construction, or nozzle clogging is likely to occur in which the amorphous refractory is cured in the nozzle. On the other hand, the dry method has no such problem and is the mainstream spraying method.
[0007]
[Problems to be solved by the invention]
Since the adiabatic amorphous refractory has a heat insulation effect due to the presence of fine voids, the proportion of fine voids increases and the bulk density decreases when an attempt is made to improve the heat insulation function. Among ceramic fiber, a highly heat-insulating amorphous refractory mixed with rock wool granular cotton has a structure of this fine void in a large lump and has a particularly small bulk density.
[0008]
However, heat-insulating amorphous refractories mixed with rock wool granular cotton have low bulk density, so their own weight is insufficient, and in conventional dry construction, the supply from the material tank to the pumping device is not smooth, and the nozzles erupt. Problems such as a decrease in construction efficiency and non-uniformity in the structure of sprayed construction have occurred due to adverse effects such as breathing. In addition, rock wool granular cotton is compressed by spraying stress, and the bulk density of granular cotton is reduced accordingly, and the heat insulating effect of granular cotton is impaired.
[0009]
On the other hand, when wet is kneaded in advance, the amorphous refractory structure contains construction water, and the amorphous refractory increases its own weight so that supply from the material tank to the pumping device becomes easy. However, when the irregular refractory material containing granular cotton is adjusted to a kneaded product, the friction resistance of the granular cotton increases, or the feeding resistance increases rapidly, and the construction efficiency is significantly reduced due to nozzle clogging.
[0010]
Therefore, the present invention is a spraying construction of heat insulating quality amorphous refractories for industrial kiln furnaces that can form a highly heat-insulating construction body without causing troubles such as supply failure and nozzle clogging during transportation and spraying. it is intended to provide mETHODS.
[0011]
[Means for Solving the Problems]
The present invention is rock wool granular cotton 3-40 wt%, the balance being adiabatic quality monolithic refractories mainly composed of cement and inorganic lightweight aggregate, 5-25 wt% moisture at outer percentage for thermal insulation quality monolithic refractory added Then, the mixture is wetted in advance, then sent out to the pressure feeding pipe, and further , 150 to 300% by mass of the construction water is added to the heat-insulating amorphous refractory and sprayed before the nozzle.
[0012]
The construction method of the present invention basically corresponds to a dry method. The adiabatic amorphous refractory increases in weight due to wetting, and the supply from the material tank to the pumping device is improved.
[0013]
Although amorphous refractories containing granular cotton are used, in order to send the amorphous refractory to the pressure feeding tube in a wet state, the resistance to pumping is higher than that of the wet type in which the amorphous refractory is previously kneaded and adjusted to a mud shape. There is no problem of nozzle blockage.
[0014]
In the present invention, granular cotton having high water absorption absorbs wet water in advance by moistening the amorphous refractory in advance. Unlike air, the moisture is not contractible, and the granular cotton absorbs this moisture to counter the pumping stress and spraying stress, thereby suppressing flattening or volume shrinkage. As a result, the granular cotton keeps the density low in the sprayed construction body structure even after spraying the amorphous refractory, and improves the thermal insulation of the construction body.
[0015]
In addition to the above-mentioned dry and wet methods, the spraying method includes a method of pre-wetting in the same way as the method of the present invention, and then pumping and spraying by adding construction water before the nozzle. Are known. However, the purpose there is to prevent dust generation during construction. In addition, it is the construction of dense and irregular refractories for repairing the lining of molten metal containers. There is no construction example of heat-insulating amorphous refractories containing rock wool granular cotton as in the present invention, and it is well known that heat insulation is improved by suppressing flattening or volume shrinkage of granular cotton in the construction. Not.
[0016]
The spraying method of this invention is excellent also in the adhesiveness of a heat insulation amorphous refractory. In spray construction, bounce loss at the time of spraying is inevitable, but in the present invention, by pre-wetting the amorphous refractory, the fine powder part of the refractory aggregate fills the fiber structure of granular cotton, and the fire resistance Aggregates and granular cotton are more integrated, and adhesion is improved.
[0017]
The spraying of heat-insulated amorphous refractories has a slow construction time due to the large amount of water. Especially in winter, the external temperature is low, so the strength of the construction body is not sufficient even after several days after construction. In the present invention, when warm water is used as the construction water, the construction body is quickly cured and the workability is improved. When hot water is used, sufficient curing can be obtained within 24 hours, for example, even in winter. This is probably because the construction water is retained inside the construction body by the granular cotton, and the cement reaction is promoted by delaying the temperature drop of the construction water.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In rock wool granular cotton, which is a blend of heat-insulating amorphous refractories used in the present invention, rock wool melts natural rocks and slag at a high temperature, and the melt is blown off by a centrifugal force into a fibrous form. It is a heat-resistant inorganic fiber having a heat-resistant temperature of about 700 to 900 ° C. mainly composed of silica, calcia, alumina or the like. At present, various grades are made by adjusting the ingredients by adding rocks to slag or changing the manufacturing method, but any of them can be used in the present invention.
[0019]
The granular cotton is obtained by pulverizing rock wool such as bulk or blanket into a granular shape using a double roll type defatting machine or the like.
[0020]
The pulverized diameter of the rock wool granular cotton used in the present invention is preferably 3 to 150 mm, more preferably 5 to 100 mm. If the crushing diameter is smaller than this, the heat insulation effect is insufficient, and if it is larger, the adhesion and strength of the construction body are lowered. This rock wool granular cotton can also be obtained from commercial products.
[0021]
The outline of granular cotton is generally not a perfect sphere. There are many cases of ellipsoids due to the contractibility. In addition, some of the ends are striped because they are crushed using a cotton-tapping machine or the like. The crushing diameter as used in the field of this invention is a dimension of the main part except details, such as a line drawing.
[0022]
The proportion of rock wool granular cotton in the heat-insulating amorphous refractory is 3 to 40% by mass. More preferably, it is 5-30 mass%. If there is little rock wool granular cotton, it will be inferior in the heat insulation effect, and if there are many rock wool granularity, the adhesiveness and intensity | strength of a construction body will fall.
[0023]
The inorganic lightweight aggregate is preferably a foam refractory material such as vermiculite (pearlite), perlite (pearlite), expanded shale, pumice, shirasu balloon, lightweight chamotte. In view of economy and quality stability, it is preferable to use vermiculite and pearlite.
[0024]
Specific examples of the cement are hydraulic cements such as alumina cement, Portland cement, fly ash cement, and sulfate-resistant slag cement.
[0025]
The ratio of the above-mentioned inorganic lightweight aggregate and cement is the main component of the remainder of rock wool granular cotton. The preferable use ratio is 10 to 85% by mass of the inorganic lightweight aggregate and 10 to 50% by mass of the cement, respectively, for the heat insulating property and strength of the construction body.
[0026]
In order to provide the strength of the construction body and the fluidity at the time of spraying, ultrafine powders such as volatile silica and calcined alumina may be used within a range of 10% by mass or less, for example.
[0027]
Although it does not deny the combined use of non-lightweight ordinary refractory raw materials such as alumina, silica, alumina-silica, etc., it is not preferred because it causes a decrease in heat insulation. Accordingly, even when used, it is preferably as small as possible, for example, in the range of 10% by mass or less.
[0028]
If necessary, a thickener / curing agent may be used. Specific examples thereof include clay, bentonite, gum arabic, dextrin, CM (methylcellulose), CMC (carboxymethylcellulose), sodium alginate, slaked lime, sepiolite and the like. The amount used is 10% by mass or less, more preferably 1 to 5% by mass.
[0029]
A dispersant may be added to impart fluidity. Examples of the dispersant include sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, acidic hexametaphosphate soda, sodium borate, sodium citrate, carboxyl group-containing polyether dispersant, sodium tartrate, sodium polyacrylate, sulfone. Acid soda or the like is used. The addition ratio is preferably 0.01 to 0.5% by mass.
[0030]
The spray device can use a dry spray gun. For example, a brigan, a protector gun, a field cement gun, a piccola gun, an aliban gun, a lead gun and the like.
[0031]
FIG. 1 schematically shows an example of a spray gun used in the present invention. In FIG. 1, 1 is a cart, 2 is a material tank, 3 is an air compressor that supplies compressed air for pumping refractories, 4 is a material pumping pipe, 5 is a nozzle, 6 is a construction water supply pipe connected in the vicinity of the nozzle, 7 Is the construction water supply source.
[0032]
In the present invention, the amorphous refractory is wetted in advance. The amount of wet water is preferably 5 to 25% by mass. If it is less than this, a construction body with high heat insulation cannot be obtained. If it is large, clogging is likely to occur in the pressure feed tube or nozzle.
[0033]
The wet treatment is performed, for example, by adding wet water to the entire mixture of the amorphous refractory and mixing with a mixer. Next, the moistened amorphous refractory is put into the material tank of the spray gun, sent to the pressure feed pipe with the compressed air from the air compressor, and the construction water is added and sprayed before the nozzle.
[0034]
The amount of construction water added in front of the nozzle is 150 to 300% by mass, more preferably 170 to 250% by mass, as an outer cover for the heat-insulating amorphous refractory. If the amount of construction water is small, the rebound loss increases and the adhesion decreases, and if it is large, the shape retaining property of the construction body is inferior, which is not preferable.
[0035]
When warm water is used as construction water, the warm water temperature is effective at, for example, 30 ° C. or higher. Wet water is more effective when warm water is used. For example, high-temperature water exceeding 60 ° C. is dangerous in handling and is not preferable.
[0036]
The object of spray construction of the heat insulating irregular refractory according to the present invention is not particularly limited, for example, waste treatment furnace such as municipal waste incinerator, waste melting furnace, ash melting furnace, soaking furnace, etc.・ Steel industrial furnaces such as heating furnaces, tundishes, ladles, non-ferrous metal refining furnaces for aluminum, copper, lead, zinc, etc., chemical industrial furnaces such as petroleum industrial furnaces, boilers, glass furnaces, cement industrial kilns Furnace.
[0037]
【Example】
Hereinafter, experimental examples, examples, and comparative examples of the present invention will be described. Moreover, the test result of each example is shown simultaneously.
[0038]
[Table 1]
Figure 0004116806
Table 1 shows chemical component values of rock wool granular cotton used in each example. Rock wool is made by melting blast furnace slag and natural rocks at high temperatures and blowing them away by centrifugal force into fibers. Here, rock wool granular cotton “S Fiber (registered trademark)” manufactured by Nippon Steel Chemical Co., Ltd. having a fiber diameter of 5 microns or less was used. The diameter of rock wool granular cotton was adjusted with a double-roll type cotton-breaking machine.
[0039]
In each example, a picor gun, which is a dry spray device, was used. Injecting the irregular refractory into the tank of the spraying device, cutting out from the lower end of the tank for construction, sending it to the feeding pipe with compressed air, adding construction moisture before the nozzle, and attaching the stud to the vertical iron skin Sprayed. Among these, in the example in which the amorphous refractory is pre-moistened and sprayed, in addition to the above method, after adding wet water to the non-uniform refractory and pre-wetting the amorphous refractory with a mixer, the tank It was thrown into.
[0040]
The discharge speed of the material from the nozzle was set to 2 to 5 kg / min in terms of dry powder in each example. The construction body thickness was about 150 to 200 mm. In the test in each example, the conveyance performance was evaluated as good / bad for cutting out from the material tank, pressure feeding in the pressure feeding pipe, and ejection from the nozzle. The adhesion rate and the curing time were measured by spraying the construction water temperature at room temperature and warm water.
[0041]
The bulk specific gravity, bending strength, and thermal conductivity were measured after the test piece was cut out from the construction body and dried at 110 ° C. for 24 hours. The bulk specific gravity was measured according to JIS R2655, the bending strength was measured according to JIS R2653, and the thermal conductivity was measured according to JIS R2616.
[0042]
[Table 2]
Figure 0004116806
In Table 2, since the amount of wet water was small in Experimental Example A, the material was not smoothly cut out from the tank of the sprayer, and breathing was observed in the discharge from the nozzle. It is inferior in heat insulation of construction body because water retention to granular cotton is insufficient.
[0043]
Experimental Example B uses an amorphous refractory to which granular cotton is not added, and is inferior in heat insulation of the construction body. Experimental examples C and D were constructions within the scope of the present invention, and excellent effects were obtained in workability and heat insulation of the construction body.
[0044]
In Experimental Example E, since the amount of wet water was large, the material blocked the pumping tube, and spraying construction was not possible. In Experimental Example F, the strength of the construction body was remarkably low because of the large amount of granular cotton. In Example G, since the amount of construction water is large, most of the material flows down from the sprayed surface, and the adhesion rate is remarkably low. In each example, when warm water was used as construction water, it was possible to improve the adhesion and shorten the curing time.
[0045]
Example 1: Wet water was added to an amorphous refractory consisting of 15% by weight of rock wool granular cotton adjusted to a diameter of 10 to 62 mm, 45% by weight of vermiculite, 5% by weight of silica flour, and 35% by weight of alumina cement. The kneaded product was added into the tank of the spraying device after adding 13% by mass. At the time of construction, the above-mentioned irregular refractory cut out from the tank by driving the spraying machine is sent out to the feeding pipe with the air feeding pressure of the air compressor, and the working moisture is added 230 mass% over the area 500mm before the nozzle. , Sprayed.
[0046]
The transportability and adhesion were good, and the construction body had a thermal conductivity of 0.07 W / m · K and high heat insulation.
[0047]
Example 2: Hot water of 35 to 43 ° C. was used as construction water to be added in front of the nozzle, and the others were sprayed and constructed under the same conditions as in Example 1. The adhesion was 81% by mass in Example 1, but improved to 90% by mass in this example. The curing time was shortened to 7 hours in this example compared to 35 hours in Example 1.
[0048]
Comparative example: Wet water was not used, the material tank was cut out in a dry powder state, and spraying was performed under the same conditions as in Example 1 except that. The material was not cut out smoothly from the tank of the sprayer, and the construction efficiency was greatly reduced due to breathing at the time of discharge from the nozzle. Moreover, the thermal conductivity of the construction body is 0.15 W / m · K, and the heat insulation is greatly inferior to that of Example 1.
[0049]
【effect】
As the results of the above experimental examples and examples show, the spray construction method of the present invention can form a highly heat-insulated construction body in a state in which troubles during material conveyance and spraying are suppressed. Moreover, when warm water is used for construction water, adhesion and curability are further improved.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a spray gun device used in the present invention.
[Explanation of symbols]
1: Cart, 2: Material tank, 3: Air compressor, 4: Material pumping pipe, 5: Nozzle, 6: Construction water supply pipe, 7: Water supply source

Claims (4)

ロックウール粒状綿3〜40質量%、残部がセメントおよび無機質軽量骨材を主体とした断熱質不定形耐火物を、断熱質不定形耐火物に対する外掛けで水分5〜25質量%添加し混合して予め湿潤させた後、圧送管に送り出し、さらにノズル手前で施工水を断熱質不定形耐火物に対する外掛けで150〜300質量%添加して吹付けることを特徴とした、工業窯炉用断熱質不定形耐火物の吹付け施工方法。Rock wool granular cotton 3-40 mass%, the remainder is heat-insulating amorphous refractory mainly composed of cement and inorganic lightweight aggregate, 5-25 mass% of moisture is added to the heat-insulating amorphous refractory and mixed. pre after wetting, delivery to pumping tube, characterized in that spraying was further added 150-300 wt% in outer percentage for thermal insulation quality castable refractory and construction water at the nozzle front, industrial furnaces for heat insulation Te A spraying method for non-standard refractories. ロックウール粒状綿の主体部分の粒径が3〜150mmである請求項1記載の工業窯炉用断熱質不定形耐火物の吹付け施工方法。 The method for spraying a heat-insulating amorphous refractory for an industrial kiln furnace according to claim 1, wherein the main part of the rock wool granular cotton has a particle size of 3 to 150 mm. 無機質軽量骨材がバーミキュライト、パーライト、膨張頁岩、軽石、シラスバルーン等の発泡耐火原料である請求項1または2記載の断熱質不定形耐火物の吹付け施工方法。 The method for spraying a heat-insulating amorphous refractory according to claim 1 or 2 , wherein the inorganic lightweight aggregate is a foamed refractory material such as vermiculite, pearlite, expanded shale, pumice, and shirasu balloon . 施工水が温水である請求項1、2または3記載の断熱質不定形耐火物の吹付け施工方法。 The method for spraying a heat-insulating amorphous refractory according to claim 1, 2 or 3 , wherein the construction water is warm water .
JP2002089722A 2002-03-27 2002-03-27 Spraying method for heat insulating irregular refractories for industrial kilns Expired - Lifetime JP4116806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089722A JP4116806B2 (en) 2002-03-27 2002-03-27 Spraying method for heat insulating irregular refractories for industrial kilns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089722A JP4116806B2 (en) 2002-03-27 2002-03-27 Spraying method for heat insulating irregular refractories for industrial kilns

Publications (2)

Publication Number Publication Date
JP2003287374A JP2003287374A (en) 2003-10-10
JP4116806B2 true JP4116806B2 (en) 2008-07-09

Family

ID=29235231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089722A Expired - Lifetime JP4116806B2 (en) 2002-03-27 2002-03-27 Spraying method for heat insulating irregular refractories for industrial kilns

Country Status (1)

Country Link
JP (1) JP4116806B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058488B1 (en) * 2007-02-14 2008-03-12 吉永 和久 Binder
JP4058489B1 (en) * 2007-05-07 2008-03-12 吉永 和久 Permeable concrete composition
JP5374334B2 (en) * 2009-11-28 2013-12-25 株式会社エフコンサルタント Cured body
JP5731408B2 (en) * 2010-01-07 2015-06-10 ニチアス株式会社 Inorganic fiber refractory molded body, method for producing inorganic fiber refractory molded body, and inorganic fiber amorphous refractory composition
AU2010340533B2 (en) 2010-01-07 2014-04-10 Nichias Corporation Inorganic fibrous molded refractory article, method for producing inorganic fibrous molded refractory article, and inorganic fibrous unshaped refractory composition
CN106738312B (en) * 2017-01-09 2018-01-16 安徽临涣化工有限责任公司 A kind of coke oven flue healant proportioner
JP7256002B2 (en) * 2017-12-19 2023-04-11 エーアンドエー工事株式会社 Construction method of noncombustible sprayed insulation

Also Published As

Publication number Publication date
JP2003287374A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
CN107032810B (en) Gunning mix with excellent bonding performance for sintering large flue and preparation method
CN100467426C (en) Silicon carbide crusting resistant pouring material and preparation method thereof
JP5865200B2 (en) Method of spraying powder accelerating agent and irregular refractory
CN102040386A (en) Torpedo can spouting material and spouting method thereof
JP4116806B2 (en) Spraying method for heat insulating irregular refractories for industrial kilns
JP6049213B2 (en) Coke oven joint repair material
US5602063A (en) Lightweight sprayable tundish lining composition
JP4490879B2 (en) Repair material for magnesia dry spraying construction
CN100381233C (en) Painting and repairing material in use for wall of casting ladle
CN107244931A (en) A kind of cement kiln lining self-bonding wet type gunning refractory
JP2005029419A (en) Method for spraying heat insulation refractory and spray heat insulation refractory used therein
JP2003321276A (en) Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material
CN107162609A (en) A kind of wet spray material
JP4382930B2 (en) Refractory spraying method and refractory spraying material
JP3873426B2 (en) Refractories for spray repair and spray repair method
JP2004299959A (en) Fire resistant composition, monolithic refractory, and dry spray application method
JP4292332B2 (en) Insulating refractory composition for spraying
JPS5812226B2 (en) Refractories for hot spray repair
JP3080941B1 (en) Insulated sprayed plastic refractories
JP4377626B2 (en) Non-standard refractory wet spraying method
JPH11294965A (en) Refractory spraying execution method and spraying material used for it
JPS5851912B2 (en) Spraying material
JP3885133B2 (en) Spray refractories and refractory spray methods
JPH10318682A (en) Industrial furnace and construction for heat insulating layer of industrial furnace
JPS6221753B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term