JP4114074B2 - Conductive powder and method for producing the same - Google Patents

Conductive powder and method for producing the same Download PDF

Info

Publication number
JP4114074B2
JP4114074B2 JP2003352176A JP2003352176A JP4114074B2 JP 4114074 B2 JP4114074 B2 JP 4114074B2 JP 2003352176 A JP2003352176 A JP 2003352176A JP 2003352176 A JP2003352176 A JP 2003352176A JP 4114074 B2 JP4114074 B2 JP 4114074B2
Authority
JP
Japan
Prior art keywords
particles
metal
conductive
gold
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003352176A
Other languages
Japanese (ja)
Other versions
JP2005116465A (en
Inventor
基夫 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003352176A priority Critical patent/JP4114074B2/en
Publication of JP2005116465A publication Critical patent/JP2005116465A/en
Application granted granted Critical
Publication of JP4114074B2 publication Critical patent/JP4114074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電気・電子分野に使用される電子部品、例えばプリント配線板に適用される導電性回路や導電性接着剤、もしくは自動車用部品、携帯電話等の日用品、パソコン等の事務機などに使用可能な導電材料を組成するために有用な導電性粉体及びその製造方法に関し、より詳細に述べると、導電性ゴム、導電性ペースト、導電性インキ、電磁波シールド材料などの原料として、樹脂組成物に導電性を付与し得る、優れた導電性能をもち、保存安定性の良好な導電性粉体及びその製造方法に関する。   The present invention is applied to electronic parts used in the electric / electronic field, for example, conductive circuits and conductive adhesives applied to printed wiring boards, automobile parts, daily commodities such as mobile phones, and office machines such as personal computers. The conductive powder useful for composing the usable conductive material and the production method thereof will be described in more detail. As a raw material for conductive rubber, conductive paste, conductive ink, electromagnetic shielding material, etc., resin composition The present invention relates to a conductive powder having excellent conductive performance and good storage stability that can impart conductivity to an object, and a method for producing the same.

近年、導電性材料に関するニーズの多用化、例えば電子部品の小型化、軽量化、精密化などに伴って導電性材料、導電性樹脂組成物等の開発が盛んに行われている。これら導電性材料や組成物に用いられる導電性粉体としては、従来は低価格なカーボンが主に用いられていたが、最近は低抵抗化への要請から、高い導電性を持つ金属粉や金属被覆粉体が用いられるようになってきた。中でも、銀、銅、銀被覆銅粉、ニッケル、パラジウムといった金属粉体が、とりわけ頻繁に使用されていた。   In recent years, conductive materials, conductive resin compositions, and the like have been actively developed along with diversification of needs related to conductive materials, for example, downsizing, weight reduction, and precision of electronic components. Conventionally, low-priced carbon has been mainly used as the conductive powder used in these conductive materials and compositions, but recently, due to the demand for low resistance, Metal-coated powders have been used. Among them, metal powders such as silver, copper, silver-coated copper powder, nickel, and palladium have been used particularly frequently.

しかしながら、こうした金属粉体は、様々な問題点を持っていた。例えば銀粉は、電気特性は非常に優れているが、マイグレーションが起こるため信頼性が要求される用途には使用できない。銅粉は、安価で高い導電性を持っているものの酸化され易く、信頼性が低い。ニッケル粉は、接触抵抗が大きいため用途が限られている。   However, these metal powders have various problems. For example, silver powder has excellent electrical characteristics, but cannot be used for applications that require reliability because of migration. Although copper powder is inexpensive and has high conductivity, it is easily oxidized and has low reliability. The use of nickel powder is limited because of its high contact resistance.

また、これら単体の金属粉末のほかに、銅やニッケルの粉末の表面を銀で被覆した粉体も用いられている。しかし、この目的は、安価である銅やニッケル粉により銀のコストを下げるためであり、やはり空気中の酸素や水分や硫黄等の影響により、粉体表面に酸化膜や硫化膜を形成して導電性を悪化させるため、銀だけからなる粉末に比較して電気特性が劣っており、銀の代替としての使用も制限されていた。   In addition to these single metal powders, powders in which the surface of copper or nickel powder is coated with silver are also used. However, the purpose of this is to reduce the cost of silver by cheap copper and nickel powder. Again, an oxide film or sulfide film is formed on the powder surface due to the influence of oxygen, moisture, sulfur, etc. in the air. In order to deteriorate the electrical conductivity, the electrical properties are inferior compared with the powder made of only silver, and its use as a substitute for silver has been restricted.

従って、例えば、自動車に搭載される部品のように、高温の環境に置かれたり、高い信頼性が要求される用途には、極めて低い接触抵抗、体積抵抗という優れた電気特性を持ち、高温での耐酸化性ゆえに信頼性にも優れている金や白金といった貴金属粉末の使用が切望されていた。しかし、こうした貴金属粉は、比重が高く、単位体積あたりのコストが非常に高いため、ほとんど実用的には使用されていなかった。   Therefore, it has excellent electrical characteristics such as extremely low contact resistance and volume resistance for applications that are placed in high-temperature environments, such as parts mounted on automobiles, or that require high reliability. The use of noble metal powders such as gold and platinum, which are excellent in reliability due to their oxidation resistance, has been desired. However, such noble metal powders have been rarely used practically because of their high specific gravity and very high cost per unit volume.

この金属粉の比重が高く、単位質量あたりのコストがあがるという欠点を克服するため、無機粉体又は有機樹脂粉体からなる基材粉体の表面を金属で被覆した導電性粉体の開発がなされていた。例えば、本出願人は、導電性粉体として、無機粉体又は有機樹脂粉体からなる基材粉体の表面を、還元性を有するケイ素系高分子化合物で処理し、この上を無電解メッキした金属被覆粉体にすれば、低比重で低価格の電子材料用途に使用できる導電性粉体を容易に製造できることを提案している(特許文献1〜5;特開2000−319541号、特開2001−23435号、特開2001−152045号、特開2001−200180号、特開2002−133948号公報参照)。つまり、粉体の核を比重が低く安定な球状シリカにし、最表面だけを金のような貴金属にすることで、比重が低く価格も低い金メッキシリカを開発し、こうした問題を解決してきていた。   In order to overcome the disadvantage that the specific gravity of this metal powder is high and the cost per unit mass is increased, the development of conductive powder in which the surface of the substrate powder made of inorganic powder or organic resin powder is coated with metal has been developed. It was made. For example, the present applicant treats the surface of a base material powder made of an inorganic powder or an organic resin powder as a conductive powder with a reducing silicon-based polymer compound, and then electrolessly coats the surface. It has been proposed that a conductive powder that can be used for low-specific gravity and low-priced electronic material applications can be easily manufactured by using the above-described metal-coated powder (Patent Documents 1 to 5; JP 2000-319541 A, JP 2001-23435, JP 2001-152045, JP 2001-200180, JP 2002-133948). In other words, gold-coated silica with low specific gravity and low price has been developed by solving the problem by making the core of the powder a stable spherical silica with a low specific gravity and a noble metal such as gold only on the outermost surface.

この球状の導電性粉体は、導電性を付与し得る樹脂組成物に混合しやすく、異方性や強度の低下が起こりにくいという特長があるが、接触以外の導電メカニズムは起こりにくく、充填量がある値を超えて粉体の接触が始まると急激に導電性を発現するために、導電性のコントロールの点について更に改善が望まれた。   This spherical conductive powder has the feature that it is easy to mix into a resin composition that can impart conductivity, and it is difficult for anisotropy and strength to decrease. When the contact of the powder exceeds a certain value, the conductivity is suddenly developed. Therefore, further improvement in the control of the conductivity is desired.

一方、針状、繊維状、樹枝状あるいはフレーク状といった球状以外の形状を持つ導電性粉体(以下、異形導電性粉体と称す。)が使用できれば、少量の使用で高い導電性が得られることが期待できる。これは、粉体同士が接触し易く、粒子が尖っているほうがトンネル効果や熱電子輻射といった導電メカニズムが起こり易く、導電性組成物に充填した際に低添加量で安定した導電性が得られると考えられているためである。しかし、異形の金属被覆粉体を得る試みは、そうした形状の核に金属を被覆成形することが内部歪のため剥離を引き起こしやすく、非常に困難であるという問題と共に、樹脂との混合が困難で、樹脂と混合した時に折れ等の破損を生じた場合、導電性の低下が起こったり、導電性粉体が配向した時には、導電性だけでなく表面の平滑性や強度の異方性が出やすく、こうした様々な欠点があるため、実用化は成功していなかった。   On the other hand, if conductive powder having a non-spherical shape such as a needle shape, a fiber shape, a dendritic shape or a flake shape (hereinafter referred to as an irregular shape conductive powder) can be used, high conductivity can be obtained with a small amount of use. I can expect that. This is because it is easier for powders to come into contact with each other, and when the particles are sharp, a conductive mechanism such as a tunnel effect or thermal electron radiation is likely to occur, and stable conductivity can be obtained with a low addition amount when filled in a conductive composition. It is because it is considered. However, the attempt to obtain a deformed metal-coated powder is difficult to mix with the resin, together with the problem that it is very difficult to coat and mold metal on the core of such a shape due to internal distortion, which is very difficult. When the resin breaks, such as bending, when the resin is mixed, the conductivity decreases, and when the conductive powder is oriented, not only the conductivity but also the surface smoothness and strength anisotropy are likely to occur. Because of these various drawbacks, practical application has not been successful.

また、球状の導電性粉体の欠点を緩和するため、粉体の接触をコントロールすることで導電性のコントロールを行う試みとしては、カップリング剤、界面活性剤、ポリシロキサンのような高分子化合物等、様々な材料が利用されてきた。例えば、シリカのような無機の絶縁性粉体を導電性粉体の処理剤として組み合わせると、混合の条件によっては、導電性粉体単体を用いた場合よりも、導電性組成物としての抵抗率が下げられることは、既に知られている(非特許文献1;与那原邦夫、日刊工業新聞社、工業材料 第31巻,10号参照)。   In order to alleviate the shortcomings of spherical conductive powder, attempts to control conductivity by controlling the contact of the powder include polymer compounds such as coupling agents, surfactants, and polysiloxanes. Various materials have been used. For example, when an inorganic insulating powder such as silica is combined as a treatment agent for conductive powder, the resistivity of the conductive composition may be greater than when using a single conductive powder depending on the mixing conditions. Is already known (see Non-Patent Document 1; Kunio Yonahara, Nikkan Kogyo Shimbun, Industrial Materials Vol. 31, No. 10).

しかしながら、こうした処理剤はそれ自身もともと絶縁性であり、配合組成に依存せずに再現性よく該材料間の界面の制御を行い、導電性を向上させることは、困難であった。
以上のように、用途ごとに必要とされる配合組成に依存しない高い導電性を有すると共に、電子部品のすべての用途に適した、成形性、特に表面の平滑性が良好で異方性のない、硬化物の物性と導電性の調整、塗料ならば成膜性や基材への密着性などといった、高導電性と加工性のすべてを満足する導電性粉体の開発が求められている。
However, such a treating agent is inherently insulating, and it has been difficult to improve the conductivity by controlling the interface between the materials with good reproducibility without depending on the composition.
As described above, it has high conductivity that does not depend on the composition required for each application, and is suitable for all applications of electronic components, with good moldability, especially surface smoothness, and no anisotropy. Therefore, there is a demand for the development of conductive powders that satisfy all of high conductivity and workability, such as adjustment of physical properties and conductivity of cured products, and film formation and adhesion to a substrate for coatings.

特開2000−319541号公報JP 2000-319541 A 特開2001−23435号公報Japanese Patent Laid-Open No. 2001-23435 特開2001−152045号公報JP 2001-152045 A 特開2001−200180号公報JP 2001-200180 A 特開2002−133948号公報JP 2002-133948 A 与那原邦夫、日刊工業新聞社、工業材料 第31巻,10号Kunio Yonahara, Nikkan Kogyo Shimbun, Industrial Materials Vol.31, No.10

本発明は、上記の点に鑑みてなされたものであり、高い抗酸化性と高い導電性を持つ耐熱性の高い導電性粉体、特に、金に匹敵する導電性とその安定性を持ち、低比重で加工性の良好な導電性粉体、及びこの導電性粉体を低コストで提供することができる導電性粉体の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and has high heat resistance and high heat resistance conductive powder having high anti-oxidation property and high conductivity, in particular, has conductivity comparable to gold and its stability, It is an object of the present invention to provide a conductive powder having a low specific gravity and good workability, and a method for producing a conductive powder capable of providing the conductive powder at a low cost.

本発明者は、上述した従来技術における問題点を解決して上記目的を達成するため、鋭意検討を重ねた結果、導電粒子に対し導電性の貴金属箔を結合処理剤として利用して、球状の導電粒子から構成される導電粉末と貴金属箔状体とを混合・加圧した後、粉砕することで、複数の球状の導電粒子が貴金属箔状体を介して乾式で機械的圧力をもって結合された粉体からなる導電性粉体が得られ、かかる導電性粉体は、上記の加工性と導電性低下の問題も改善し得て、金に匹敵する導電性とその安定性を持ち、低比重で加工性が良好で、樹脂に導電性を付与する機能に優れていることを知見した。   In order to solve the above-described problems in the prior art and achieve the above-mentioned object, the present inventor has made extensive studies and as a result, a conductive noble metal foil is used as a binding treatment agent for the conductive particles, and the spherical shape is reduced. After mixing and pressurizing the conductive powder composed of conductive particles and the noble metal foil, a plurality of spherical conductive particles are bonded together with dry mechanical pressure through the noble metal foil. A conductive powder made of powder is obtained, and such a conductive powder can improve the above-mentioned problems of workability and conductivity, has conductivity comparable to gold and its stability, and has a low specific gravity. It was found that the processability was good and the resin was imparted with excellent conductivity.

特に、上記導電性粉体として、無機粒子又は有機樹脂粒子からなる基材粉体を金属メッキしたもの、とりわけ該基材粉体の表面を還元性を有するケイ素系高分子化合物で処理し、この上を無電解メッキした後、最表層を金箔で処理したものは、高導電性でありながら、低比重、低コスト、加工性に優れ、あらゆる電子材料用途に使用できることを見出し、本発明をなすに至ったものである。   In particular, as the conductive powder, a base powder composed of inorganic particles or organic resin particles is metal-plated, and in particular, the surface of the base powder is treated with a reducing silicon-based polymer compound. After the electroless plating on the top, the outermost layer treated with a gold foil has been found to be highly conductive but has low specific gravity, low cost, excellent workability, and can be used for any electronic material application. Has been reached.

本発明においては、酸化され難く、導電性の高い貴金属箔により球状の導電粒子を結合することで、低抵抗導電性粉体とすることができ、球状の粒子を使用しながら、少量の添加で高い導電率が発現し得るもので、この導電性粉体は、粒子表面に存在する貴金属箔の導電性を利用するため、少量の貴金属箔の量で効果的な導電性能を付与でき、金属箔を使用しながら加工性の良好な導電性粉体であり、樹脂組成物への高充填が容易で、かつ、高充填しても強度や機能性低下、凝集による加工性の悪化などの悪影響もない。本発明の導電性粉体は、導電性を必要とする素材及び樹脂組成物との混合加工性に優れており、導電性粉体を含有してなる組成物を硬化して得られる材料は、所定のコンタクト部で低い電気抵抗率を高温にあっても安定に保持できるため、信頼性の高いコネクターや電磁波障害を防ぐためのガスケット材料等の原料とすることができる。   In the present invention, it is possible to obtain a low-resistance conductive powder by combining spherical conductive particles with a highly conductive noble metal foil that is difficult to be oxidized, and with a small amount of addition while using spherical particles. High conductivity can be expressed, and since this conductive powder uses the conductivity of the noble metal foil present on the particle surface, it can provide effective conductive performance with a small amount of noble metal foil. It is a conductive powder with good processability while using it, and it is easy to fill the resin composition easily, and even if it is filled high, there are also adverse effects such as deterioration of strength and functionality, deterioration of workability due to aggregation Absent. The conductive powder of the present invention is excellent in mixing processability with a material that requires conductivity and a resin composition, and a material obtained by curing a composition containing the conductive powder is: Since a low electrical resistivity can be stably maintained even at a high temperature at a predetermined contact portion, it can be used as a raw material for a highly reliable connector or a gasket material for preventing electromagnetic interference.

更に、本発明の導電性粉体の製造方法は、乾式による製造方法であるため、無電解メッキ法と比べて作業性に優れ、低コストでかつ幅広い種類の導電性複合粉体を製造することができる。
また、コア粒子として低比重かつ球形の粒子を選ぶことができるので、混練り作業性、分散安定性に優れ、従来のフィラーと比べて樹脂中に導電性粉体を高充填することが可能となり、安定した導電性能、シールド効果を付与することができる。
Furthermore, since the conductive powder manufacturing method of the present invention is a dry manufacturing method, it is superior in workability compared to the electroless plating method, and manufactures a wide variety of conductive composite powders at low cost. Can do.
In addition, since spherical particles with low specific gravity can be selected as core particles, it is excellent in kneading workability and dispersion stability, and it is possible to fill conductive resin in resin more highly than conventional fillers. Stable conductive performance and shielding effect can be imparted.

従って、本発明は、
(1)球状の導電粒子から構成される導電粉末と金箔状体とを混合し、前記球状導電粒子が非金属でこれを金属被覆した金属被覆粒子の場合は10〜1,000kg/cm 2 、金属粒子又は核粒子が金属でこれを金属被覆した金属被覆粒子の場合は10〜400kg/cm 2 の圧力で加圧し、粉砕することによって形成され、前記複数の球状導電粒子が金箔状体で結合された粒体からなることを特徴とする導電性粉体、及び
(2)球状の導電粒子から構成される導電粉末と金箔状体とを混合し、前記球状導電粒子が非金属でこれを金属被覆した金属被覆粒子の場合は10〜1,000kg/cm 2 、金属粒子又は核粒子が金属でこれを金属被覆した金属被覆粒子の場合は10〜400kg/cm 2 の圧力で加圧し、粉砕して、前記複数の球状導電粒子が金箔状体で結合された導電性粒体を得ることを特徴とする導電性粉体の製造方法
を提供する。
Therefore, the present invention
(1) In the case of a metal-coated particle obtained by mixing a conductive powder composed of spherical conductive particles and a gold foil-like body, and the spherical conductive particles are non-metallic and coated with metal, 10 to 1,000 kg / cm 2 ; In the case of metal-coated particles in which metal particles or core particles are metal-coated, they are formed by pressurizing at a pressure of 10 to 400 kg / cm 2 and pulverizing, and the plurality of spherical conductive particles are bonded by a gold foil. A conductive powder characterized in that it is made of a granular material, and
(2) A conductive powder composed of spherical conductive particles and a gold foil are mixed, and in the case of metal-coated particles in which the spherical conductive particles are non-metallic and metal-coated, 10 to 1,000 kg / cm 2 , In the case of metal-coated particles in which metal particles or core particles are metal-coated , pressurization is performed at a pressure of 10 to 400 kg / cm 2 and pulverization, and the plurality of spherical conductive particles are combined with a gold foil-like body. Provided is a method for producing a conductive powder, characterized in that a conductive particle is obtained .

本発明の導電性粉体は、優れた導電性能と良好な保存安定性をもち、加工性が良好なため、高安定性と高信頼性を要求される種々の電子材料用途に使用することができる。
本発明の製造方法は、粒子表面に存在する貴金属箔の導電性を利用するため、少量の貴金属箔の量で効果的な導電性能を付与でき、また、作業性に優れ、低コストでかつ幅広い種類の導電性複合粉体を製造することができる。更に、コア粒子として低比重かつ球形の粒子を選べるので、混練り作業性、分散安定性に優れ、樹脂中への高充填が可能で、安定した導電性能、シールド効果を付与し得る導電性粉体を工業的に有利に製造できる。
Since the conductive powder of the present invention has excellent conductive performance and good storage stability and good workability, it can be used for various electronic material applications that require high stability and high reliability. it can.
Since the production method of the present invention utilizes the conductivity of the noble metal foil present on the particle surface, it can provide effective conductive performance with a small amount of noble metal foil, and it is excellent in workability, low cost and wide range. Various types of conductive composite powders can be produced. In addition, since it is possible to select spherical particles with low specific gravity as core particles, the conductive powder is excellent in kneading workability and dispersion stability, can be highly filled into the resin, and can provide stable conductive performance and shielding effect. The body can be produced industrially advantageously.

以下、本発明につき更に詳細に説明すると、本発明の導電性粉体は、球状の導電粒子(A粒子)が、貴金属箔状体(B箔状体)を介して結合されてなるものである。   Hereinafter, the present invention will be described in more detail. The conductive powder of the present invention is obtained by bonding spherical conductive particles (A particles) through a noble metal foil (B foil). .

ここで、A粒子の球状の導電粒子としては、形状が球状で、その大きさは、樹脂等への混合し易さから、平均粒径が1μm以上100μm以下、特に5μm以上50μm以下であるものが好ましい。平均粒径が小さすぎることは、これを後述する核粒子をメッキして形成したものとする場合、核粒子が小さすぎることを意味し、核粒子が小さすぎると、比表面積が高いためにメッキ金属量が多くなり、経済的に好ましくない場合がある。一方、平均粒径が大きすぎると母材に混合しにくくなる場合がある。   Here, the spherical conductive particles of the A particles have a spherical shape and have an average particle size of 1 μm or more and 100 μm or less, particularly 5 μm or more and 50 μm or less because of easy mixing with a resin or the like. Is preferred. If the average particle size is too small, it means that the core particle is too small when it is formed by plating the core particles to be described later. In some cases, the amount of metal increases, which is not preferable economically. On the other hand, if the average particle size is too large, it may be difficult to mix with the base material.

また、A粒子としては、粒子の最表面が耐酸化性のある電気的に良好な導体である貴金属、例えば金、銀、パラジウム、白金を主成分とする貴金属で形成されている限りその材質に特に制限はないが、無機粒子、有機樹脂粒子又はセラミック粒子からなる核粒子の最表面が貴金属で被覆されたものが好適に使用できる。   As the A particle, the outermost surface of the particle is made of a noble metal that is an oxidation-resistant electrically good conductor, for example, a noble metal mainly composed of gold, silver, palladium, or platinum. Although there is no restriction | limiting in particular, The thing by which the outermost surface of the core particle which consists of an inorganic particle, an organic resin particle, or a ceramic particle was coat | covered with the noble metal can be used conveniently.

A粒子としては、貴金属で被覆された金属粒子、例えば金、銀、パラジウム、白金を主成分とする貴金属でメッキされた銅、銀、ニッケル等の金属粒子を使用することができるが、特に、核粒子として無機粒子又は有機樹脂粒子を使用し、これを銅、銀、ニッケル等でメッキ処理して中間メッキ層を形成した後、上記貴金属のメッキにより最表面に該貴金属メッキ層を形成したものを好適に使用できる。   As the A particles, metal particles coated with a noble metal, for example, metal particles such as copper, silver and nickel plated with a noble metal mainly composed of gold, silver, palladium and platinum can be used. Inorganic particles or organic resin particles are used as core particles, and this is plated with copper, silver, nickel, etc. to form an intermediate plating layer, and then the noble metal plating layer is formed on the outermost surface by plating with the noble metal. Can be suitably used.

上記核粒子として使用される無機粒子又は有機樹脂粒子は、比重を下げるために、比重が4以下、特に0.5〜3.5、とりわけ0.7〜3.0であるものが好ましい。比重が4を超えると金属を被覆した場合の比重が高くなり、組成物に配合した場合、経時で導電性粉体が沈降分離し易くなる場合がある。   The inorganic particles or organic resin particles used as the core particles preferably have a specific gravity of 4 or less, particularly 0.5 to 3.5, particularly 0.7 to 3.0 in order to lower the specific gravity. When the specific gravity exceeds 4, the specific gravity when the metal is coated becomes high, and when blended in the composition, the conductive powder may easily settle and separate over time.

核粒子の平均粒径は、0.5〜100μm、特に1.0〜50μmが好ましく、平均粒径が小さすぎると比表面積が高くなるため、メッキ金属量が多くなって高価となり、経済的に好ましくない場合があり、平均粒径が大きすぎると母材に混合しにくくなり、組成物の硬化物表面が凹凸となってしまう場合がある。この場合、平均粒径は、具体的にcoulter multisizer(粒度測定機)により測定した値である。   The average particle size of the core particles is preferably 0.5 to 100 μm, particularly preferably 1.0 to 50 μm. If the average particle size is too small, the specific surface area increases, so the amount of plating metal increases and the cost is increased. When the average particle size is too large, it may be difficult to mix with the base material, and the cured product surface of the composition may be uneven. In this case, the average particle diameter is a value specifically measured by a Coulter multisizer (particle size measuring machine).

上記核粒子として使用される無機粒子としては、200℃以上の耐熱性のある無機粒子が望ましく、金属粉末、金属又は非金属の酸化物、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属酸塩、金属ハロゲン化物又はカーボン等が挙げられ、例えばシリカ、アルミナ、ケイ酸アルミナ、タルク、マイカ、シラスバルーン、グラファイト、ガラスファイバー、シリコンファイバー、カーボンファイバー、アスベスト、チタン酸カリウムウィスカー、亜鉛華、窒化アルミ、酸化マグネシウム、窒化ホウ素等が挙げられる。   As the inorganic particles used as the core particles, inorganic particles having heat resistance of 200 ° C. or higher are desirable. Metal powder, metal or non-metal oxide, metal silicate including aluminosilicate, metal carbide, metal nitridation Such as silica, alumina, alumina silicate, talc, mica, shirasu balloon, graphite, glass fiber, silicon fiber, carbon fiber, asbestos, potassium titanate whisker, Examples include zinc white, aluminum nitride, magnesium oxide, and boron nitride.

有機樹脂粒子としては、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリルエステル樹脂、アクリルニトリル樹脂、ウレタン樹脂、ポリアセタール樹脂、アルキッド樹脂、メラミン樹脂、シリコーン樹脂、フッ素樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリジアリールフタレート樹脂、ポリキシレン樹脂、ポリビニルアルコール、ポリカーボネートのような絶縁性樹脂粒子、ポリアニリン樹脂、ポリアセチレン樹脂、ポリチオフェン樹脂、ポリピロール樹脂のような低い導電性樹脂粒子等が挙げられ、必要に応じて熱処理を行い、炭素にしてもよい。   Organic resin particles include phenol resin, polyester resin, epoxy resin, polyamide resin, polyimide resin, acrylic ester resin, acrylonitrile resin, urethane resin, polyacetal resin, alkyd resin, melamine resin, silicone resin, fluorine resin, polyethylene resin, Insulating resin particles such as polypropylene resin, polybutene resin, polystyrene resin, polyvinyl chloride resin, polydiaryl phthalate resin, polyxylene resin, polyvinyl alcohol, polycarbonate, low as polyaniline resin, polyacetylene resin, polythiophene resin, polypyrrole resin Conductive resin particles and the like may be mentioned, and heat treatment may be performed as necessary to make carbon.

特に高度な信頼性を要求される電子材料に使用するには、イオン性の金属を含まず、耐熱的にも安定な無機粒子が好ましく、特にケイ素系高分子化合物と相性のよい、シリカであることが好ましい。特に比表面積を低くするためには、表面に繋がる空洞を内部に持たないものが好ましく、溶融石英粉が好適に用い得る。   In particular, inorganic particles that do not contain ionic metals and are stable in heat resistance are preferred for use in electronic materials that require a high degree of reliability. Silica is particularly compatible with silicon-based polymer compounds. It is preferable. In particular, in order to reduce the specific surface area, those having no cavity connected to the surface are preferable, and fused quartz powder can be suitably used.

本発明では、とりわけ導電粒子として、無機粒子又は有機樹脂粒子からなる核粒子を金属メッキ処理したもの、特に核粒子の表面に還元性を有するケイ素系高分子層又はその一部もしくは全部にセラミック化した層が形成され、この層の表面上を無電解メッキにより金属で被覆した金属被覆粒子であって、更に最表層を貴金属メッキした導電粒子が、比重が低く安定性が高いため、より好適である。核粒子の表面に還元作用を有するケイ素系高分子層を形成することにより、核粒子と金属の界面の接着安定性が向上する。基材粒子の表面に還元作用を有するケイ素系高分子化合物層を形成する方法としては、基材粒子を還元性を有するケイ素系高分子化合物で処理して、核粒子の表面に還元性ケイ素系高分子化合物の層を形成する方法が挙げられる。   In the present invention, in particular, as the conductive particles, core particles made of inorganic particles or organic resin particles are subjected to metal plating treatment, and in particular, the silicon-based polymer layer having reducibility on the surface of the core particles or a part or all of the ceramics is ceramicized. This is a metal-coated particle in which the surface of this layer is coated with metal by electroless plating, and the conductive particles with the outermost layer plated with noble metal are more suitable because of their low specific gravity and high stability. is there. By forming a silicon-based polymer layer having a reducing action on the surface of the core particle, the adhesion stability at the interface between the core particle and the metal is improved. As a method for forming a silicon-based polymer compound layer having a reducing action on the surface of the base particle, the base particle is treated with a reducing silicon-based polymer compound, and the surface of the core particle is reduced to a reductive silicon-based compound. The method of forming the layer of a high molecular compound is mentioned.

ここで、還元作用を持つケイ素系高分子化合物としては、Si−Si結合又はSi−H結合を有するケイ素系高分子化合物が挙げられ、このようなケイ素系高分子化合物としては、ポリシラン、ポリカルボシラン、ポリシロキサン、ポリシラザン等が挙げられ、中でもポリシラン、Si原子に直接結合した水素原子を有するポリシロキサンが好適に用いられ、特に下記一般式(1)で表されるポリシランが好適に用いられる。   Here, examples of the silicon-based polymer compound having a reducing action include silicon-based polymer compounds having a Si—Si bond or a Si—H bond. Examples of such silicon-based polymer compounds include polysilane and polycarbohydrate. Silane, polysiloxane, polysilazane and the like can be mentioned. Among them, polysilane and polysiloxane having a hydrogen atom directly bonded to Si atom are preferably used, and in particular, polysilane represented by the following general formula (1) is preferably used.

(R1 a2 bcSi)d (1)
(式中、R1、R2は水素原子又は置換もしくは非置換の一価炭化水素基、Xは、R1と同様の基、アルコキシ基、ハロゲン原子、酸素原子、又は窒素原子を示し、R1、R2は同一であっても異なっていてもよい。a、b、及びcは、0.1≦a≦2、0≦b≦1、0≦c≦0.5、1≦a+b+c≦2.5を満足する数であり、dは、4≦d≦100,000を満足する整数である。)
(R 1 a R 2 b X c Si) d (1)
Wherein R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, X represents the same group as R 1 , an alkoxy group, a halogen atom, an oxygen atom, or a nitrogen atom; 1 and R 2 may be the same or different, a, b, and c are 0.1 ≦ a ≦ 2, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.5, 1 ≦ a + b + c ≦ 2.5 is a number that satisfies 2.5, and d is an integer that satisfies 4 ≦ d ≦ 100,000.)

1、R2は水素原子又は置換もしくは非置換の一価炭化水素基であり、一価炭化水素基としては、炭素数1〜12、好ましくは1〜6の脂肪族又は脂環式炭化水素基、炭素数6〜14、好ましくは6〜10の芳香族炭化水素基等が挙げられる。脂肪族又は脂環式炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。芳香族炭化水素基としては、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基等が挙げられる。なお、これらの水素原子の一部又は全部をハロゲン原子、アルコキシ基、アミノ基、アミノアルキル基等で置換したもの、例えばモノフルオロメチル基、トリフルオロメチル基、m−ジメチルアミノフェニル基等が挙げられる。 R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and the monovalent hydrocarbon group is an aliphatic or alicyclic hydrocarbon having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms. Group, an aromatic hydrocarbon group having 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms, and the like. Examples of the aliphatic or alicyclic hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a benzyl group. In addition, those obtained by substituting some or all of these hydrogen atoms with halogen atoms, alkoxy groups, amino groups, aminoalkyl groups, etc., such as monofluoromethyl groups, trifluoromethyl groups, m-dimethylaminophenyl groups, etc. It is done.

Xは、R1と同様の基、アルコキシ基、ハロゲン原子、酸素原子、又は窒素原子であり、アルコキシ基としては、特に炭素数1〜4のメトキシ基、エトキシ基、イソプロポキシ基等が挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。Xとしては、特に、メトキシ基、エトキシ基が好ましい。 X is the same group as R 1 , an alkoxy group, a halogen atom, an oxygen atom, or a nitrogen atom. Examples of the alkoxy group include a methoxy group having 1 to 4 carbon atoms, an ethoxy group, and an isopropoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. X is particularly preferably a methoxy group or an ethoxy group.

aは0.1≦a≦2、好ましくは0.5≦a≦1であり、bは0≦b≦1、好ましくは0.5≦b≦1であり、cは0≦c≦0.5、好ましくは0≦c≦0.2であり、かつ1≦a+b+c≦2.5、特に1.5≦a+b+c≦2を満足する数であり、dは4≦d≦100,000、好ましくは10≦d≦10,000の範囲の整数である。   a is 0.1 ≦ a ≦ 2, preferably 0.5 ≦ a ≦ 1, b is 0 ≦ b ≦ 1, preferably 0.5 ≦ b ≦ 1, and c is 0 ≦ c ≦ 0. 5, preferably 0 ≦ c ≦ 0.2 and 1 ≦ a + b + c ≦ 2.5, in particular 1.5 ≦ a + b + c ≦ 2, and d is 4 ≦ d ≦ 100,000, preferably It is an integer in the range of 10 ≦ d ≦ 10,000.

また、下記一般式(2)で表されるポリシロキサンも好適に用いられる。
(R3 e4 fgSiOhi (2)
(式中、R3、R4は水素原子又は置換もしくは非置換の一価炭化水素基、アルコキシ基又はハロゲン原子を示し、R3、R4は同一であっても異なっていてもよい。eは、0.1≦e≦2、fは、0≦f≦1、gは、0.01≦g≦1、hは、0.5≦h≦1.95であり、かつ、2≦e+f+g+h≦3.5を満足する数、iは2≦i≦100,000を満足する整数である。)
Moreover, polysiloxane represented by the following general formula (2) is also preferably used.
(R 3 e R 4 f H g SiO h ) i (2)
(Wherein R 3 and R 4 represent a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, an alkoxy group or a halogen atom, and R 3 and R 4 may be the same or different. E Is 0.1 ≦ e ≦ 2, f is 0 ≦ f ≦ 1, g is 0.01 ≦ g ≦ 1, h is 0.5 ≦ h ≦ 1.95, and 2 ≦ e + f + g + h (A number satisfying ≦ 3.5, i is an integer satisfying 2 ≦ i ≦ 100,000)

3、R4は、水素原子又は置換もしくは非置換の一価炭化水素基、アルコキシ基又はハロゲン原子であり、一価炭化水素基としては、炭素数1〜12、好ましくは1〜6の脂肪族又は脂環式炭化水素基、炭素数6〜14、好ましくは6〜10の芳香族炭化水素基等が挙げられる。脂肪族又は脂環式炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。芳香族炭化水素基としては、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基等が挙げられる。なおこれらの水素原子の一部又は全部をハロゲン原子、アルコキシ基、アミノ基、アミノアルキル基等で置換したもの、例えばモノフルオロメチル基、トリフルオロメチル基、m−ジメチルアミノフェニル基等が挙げられる。アルコキシ基としてはメトキシ基、エトキシ基、イソプロポキシ基等の炭素数1〜4のもの、ハロゲン原子としては、塩素原子、臭素原子等が挙げられ、通常メトキシ基、エトキシ基が用いられる。 R 3 and R 4 are a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, an alkoxy group or a halogen atom, and the monovalent hydrocarbon group is an aliphatic having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms. An aromatic or alicyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms. Examples of the aliphatic or alicyclic hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a benzyl group. In addition, those in which some or all of these hydrogen atoms are substituted with halogen atoms, alkoxy groups, amino groups, aminoalkyl groups, and the like, such as monofluoromethyl groups, trifluoromethyl groups, m-dimethylaminophenyl groups and the like can be mentioned. . Examples of the alkoxy group include those having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group. Examples of the halogen atom include a chlorine atom and a bromine atom. Usually, a methoxy group and an ethoxy group are used.

eは0.1≦e≦2、好ましくは0.5≦e≦1であり、fは0≦f≦1、好ましくは0.5≦f≦1であり、gは0.01≦g≦1、好ましくは0.1≦g≦1であり、hは0.5≦h≦1.95、好ましくは1≦h≦1.5であり、かつ、2≦e+f+g+h≦3.5、好ましくは2≦e+f+g+h≦3.2を満足する数である。iは2≦i≦100,000、好ましくは10≦i≦10,000の範囲の整数である。   e is 0.1 ≦ e ≦ 2, preferably 0.5 ≦ e ≦ 1, f is 0 ≦ f ≦ 1, preferably 0.5 ≦ f ≦ 1, and g is 0.01 ≦ g ≦ 1. 1, preferably 0.1 ≦ g ≦ 1, h is 0.5 ≦ h ≦ 1.95, preferably 1 ≦ h ≦ 1.5, and 2 ≦ e + f + g + h ≦ 3.5, preferably It is a number satisfying 2 ≦ e + f + g + h ≦ 3.2. i is an integer in the range of 2 ≦ i ≦ 100,000, preferably 10 ≦ i ≦ 10,000.

ケイ素系高分子化合物層の厚さは、0.0001〜1.0μmが好ましく、特に0.001〜0.5μmが好ましい。厚さが0.0001μm未満だと密着性に優れたメッキが良好に行われない場合があり、1.0μmを超えると高価となる割には特性の向上が見られない場合がある。   The thickness of the silicon-based polymer compound layer is preferably 0.0001 to 1.0 μm, particularly preferably 0.001 to 0.5 μm. When the thickness is less than 0.0001 μm, plating with excellent adhesion may not be performed satisfactorily, and when it exceeds 1.0 μm, the improvement in characteristics may not be seen for the cost.

被覆する金属としては、例えば、ニッケル、銅、銀、コバルト、タングステン、鉄、亜鉛、金、白金、パラジウム等の金属を含んでなるものが好適に用いられる。この単独の金属の他、合金、例えばNi−Co、Ni−W、Ni−Fe、Co−W、Co−Fe、Ni−Cu、Ni−P、Au−Pd、Au−Pt、Pd−Pt等から構成させることができる。かかる合金被膜を形成させるには所望に応じた複数の金属塩を使用したメッキ液を用いればよい。   As a metal to coat | cover, what contains metals, such as nickel, copper, silver, cobalt, tungsten, iron, zinc, gold | metal | money, platinum, palladium, is used suitably, for example. In addition to this single metal, alloys such as Ni-Co, Ni-W, Ni-Fe, Co-W, Co-Fe, Ni-Cu, Ni-P, Au-Pd, Au-Pt, Pd-Pt, etc. It can be made up of. In order to form such an alloy film, a plating solution using a plurality of metal salts as desired may be used.

上記A粒子は、基材粒子の表面にケイ素系高分子化合物層が形成され、ケイ素系高分子化合物層の表面上を金属で被覆してなる金属層(第一金属層)が形成された導電粒子で、その最外表面に第二金属層として貴金属層が形成されたものであることが好ましい。   The A particle is a conductive material in which a silicon-based polymer compound layer is formed on the surface of a substrate particle, and a metal layer (first metal layer) formed by coating the surface of the silicon-based polymer compound layer with a metal is formed. It is preferable that the particles have a noble metal layer formed on the outermost surface as a second metal layer.

具体的には、絶縁性粒子表面上に、ケイ素系高分子化合物層、第一金属層及び第二金属層が順次形成され、第一金属層がニッケル、銅、銀、コバルトからなる群から選ばれるイオン化ポテンシャルの低い金属よりなり、第二金属層がイオン化ポテンシャルが高く抗酸化性に優れた金、銀、白金、パラジウムからなる群から選ばれる金属よりなる導電粒子であることが好ましい。特に、第一金属層がニッケル、第二金属層が金であり、基材粒子−ケイ素系高分子層−ニッケル層−金層という4層構造を持つ金属被覆粒子が好ましい。これは、粉体の最表面となる第二金属層は、貴金属の中でも高い導電率を持ち、高温、多湿雰囲気下に長時間置かれても酸化や硫化により抵抗率が上がることのない金が好ましく、第一金属層は、低価格、耐食性、適度な硬度があり、第二金属層の下地層として安定に保持する層となるニッケルが好ましいからである。   Specifically, a silicon-based polymer compound layer, a first metal layer, and a second metal layer are sequentially formed on the surface of the insulating particles, and the first metal layer is selected from the group consisting of nickel, copper, silver, and cobalt. It is preferable that the second metal layer is a conductive particle made of a metal selected from the group consisting of gold, silver, platinum, and palladium, which has a high ionization potential and excellent antioxidant properties. In particular, metal-coated particles having a four-layer structure in which the first metal layer is nickel, the second metal layer is gold, and the base particle-silicon polymer layer-nickel layer-gold layer are preferable. This is because the second metal layer, which is the outermost surface of the powder, has a high conductivity among noble metals, and the gold does not increase in resistivity due to oxidation or sulfuration even when placed in a high temperature and high humidity atmosphere for a long time. This is because the first metal layer is preferably nickel that has low cost, corrosion resistance, and moderate hardness, and is a layer that can be stably held as an underlayer of the second metal layer.

第一、第二金属層の厚さは、合計で0.01〜10.0μm、好ましくは1.0〜6.0μmとすることができる。0.01μm未満であると、粉体を完全に被いかつ十分な硬度や耐食性が得られにくくなる場合があり、10.0μmを超えると金属の量が多くなり、高価となりかつ比重が高くなるため、経済的に好ましくない場合がある。更に、価格を押さえるために、第一の金属層が第二の金属層より厚いことが望ましく、第一の金属層が0.5〜10.0μm、望ましくは1.0〜5.0μmで、第二の金属層が0.005〜5μm、望ましくは0.01〜1.0μmであることが好ましい。   The total thickness of the first and second metal layers can be 0.01 to 10.0 μm, preferably 1.0 to 6.0 μm. If the thickness is less than 0.01 μm, the powder may be completely covered and sufficient hardness and corrosion resistance may not be obtained. If the thickness exceeds 10.0 μm, the amount of metal increases, resulting in an increase in cost and specific gravity. In some cases, it is economically undesirable. Furthermore, in order to keep the price down, it is desirable that the first metal layer is thicker than the second metal layer, the first metal layer is 0.5-10.0 μm, preferably 1.0-5.0 μm, It is preferable that the second metal layer has a thickness of 0.005 to 5 μm, desirably 0.01 to 1.0 μm.

A粒子としての導電粒子は、下記工程により得ることができる。
核粒子をトルエン、キシレン等の芳香族系炭化水素溶媒中にて還元性ケイ素系高分子化合物で処理し、粒子表面に該還元性ケイ素系高分子化合物の層を形成させ(第一工程)、得られた粒子を凝集のない状態で分散させ、次いでこの粒子を塩化パラジウムのような標準酸化還元電位0.54V以上の金属からなる金属塩で処理し、還元性ケイ素系高分子化合物層上に金属コロイドを析出させて、金属コロイド被覆粒子を得(第二工程)、その後無電解メッキ液で処理して、上記粒子の表面に第一の金属層を析出させ、必要により無電解メッキ液、電気メッキ液で処理して第二の金属層を析出させる(第三工程)ことで導電粒子を製造する。更に、得られた導電粒子を200℃以上の温度で熱処理して、還元性ケイ素系高分子化合物の一部又は全部をセラミック化することが好ましい。
The conductive particles as the A particles can be obtained by the following steps.
The core particles are treated with a reducing silicon polymer compound in an aromatic hydrocarbon solvent such as toluene and xylene to form a layer of the reducing silicon polymer compound on the particle surface (first step), The obtained particles are dispersed without aggregation, and then the particles are treated with a metal salt made of a metal having a standard oxidation-reduction potential of 0.54 V or more, such as palladium chloride, on the reducible silicon-based polymer compound layer. Metal colloid is deposited to obtain metal colloid-coated particles (second step), and then treated with an electroless plating solution to deposit a first metal layer on the surface of the particles, and if necessary, an electroless plating solution, Conductive particles are produced by depositing the second metal layer by treatment with an electroplating solution (third step). Furthermore, it is preferable that the obtained conductive particles are heat-treated at a temperature of 200 ° C. or more to ceramicize part or all of the reducing silicon polymer compound.

第三工程を具体的に説明すると、第二工程後、金属コロイド被覆粒子を無電解メッキ処理し、第一の金属層を形成する。無電解メッキ液は、必須成分であるメッキ金属塩液と還元剤液と任意成分である錯化剤、pH調整剤、界面活性剤等を含有する。   Specifically explaining the third step, after the second step, the metal colloid-coated particles are subjected to electroless plating to form a first metal layer. The electroless plating solution contains an essential component plating metal salt solution, a reducing agent solution, and optional components such as a complexing agent, a pH adjusting agent, and a surfactant.

メッキ金属塩液は、上記被覆金属として挙げられた金属の塩が含まれる。還元剤液としては、次亜リン酸ナトリウム、ホルマリン、ヒドラジン、水素化ホウ素ナトリウム等が挙げられ、pH調整剤としては酢酸ナトリウム等が挙げられ、錯化剤としてはフェニレンジアミンや酒石酸ナトリウムカリウム等が挙げられる。   The plating metal salt solution includes a salt of the metal mentioned as the above-described coating metal. Examples of the reducing agent solution include sodium hypophosphite, formalin, hydrazine, sodium borohydride, and the like. Examples of the pH adjuster include sodium acetate. Examples of the complexing agent include phenylenediamine and sodium potassium tartrate. Can be mentioned.

メッキ金属塩液と還元剤液の配合割合は、それらの組み合わせにより異なるため一様ではないが、還元剤は、酸化等による無効分解で消費されるため金属塩より過剰に用いられ、通常は金属塩の1.1〜5倍モルの還元剤が使用される。通常は無電解メッキ液として市販されており、安価に入手することができる。   The blending ratio of the plating metal salt solution and the reducing agent solution is not uniform because it varies depending on the combination of them. However, the reducing agent is consumed in an ineffective decomposition due to oxidation or the like, and is used in excess of the metal salt. A reducing agent 1.1 to 5 times the mole of the salt is used. Usually, it is marketed as an electroless plating solution and can be obtained at low cost.

メッキ温度は、通常15〜100℃であるが、浴中の金属イオン拡散速度が速くメッキ金属のつきまわりがよく、かつ浴成分の揮発による減少、溶媒の減少等が比較的少ない40〜95℃が好ましく、特に65〜85℃が好ましい。40℃より低いとメッキ反応の進行が非常に遅く、実用的でない場合があり、95℃より高いと溶媒に水を用いていることから溶媒の蒸発が激しく、浴管理が難しくなる場合がある。   The plating temperature is usually from 15 to 100 ° C., but the diffusion rate of metal ions in the bath is fast, the plating metal is well-circulated, and the decrease due to volatilization of the bath components and the decrease in the solvent are relatively low. Is preferable, and 65-85 degreeC is especially preferable. If the temperature is lower than 40 ° C., the progress of the plating reaction may be very slow and may not be practical. If the temperature is higher than 95 ° C., water is used as the solvent, so that the evaporation of the solvent is severe and bath management may be difficult.

このように第一の金属層を形成した後、この金属層が酸化されないうちにすぐに耐酸化性の貴金属からなる第二の金属層を形成させることが好ましい。かかる貴金属層を形成させるために用いる無電解メッキ液は、上記の方法により調製したものを用いればよいが、その際に使用する金属としては、例えば、金、白金、パラジウム、銀等の単独の金属の他、合金、例えばAu−Pd、Au−Pt、Pd−Pt等が挙げられる。この中で、金が安定性の面から、また銀が価格の面から最も好ましい。   After forming the first metal layer in this way, it is preferable to form a second metal layer made of an oxidation-resistant noble metal immediately before the metal layer is not oxidized. The electroless plating solution used for forming the noble metal layer may be prepared by the above method. Examples of the metal used at that time include gold, platinum, palladium, silver and the like. In addition to metals, alloys such as Au—Pd, Au—Pt, Pd—Pt, and the like can be given. Among these, gold is most preferable from the viewpoint of stability and silver is most preferable from the viewpoint of price.

第一の金属層を形成させた粒子に対する第二の金属層の表面被膜を形成する方法としては、無電解メッキ、電気メッキ、置換メッキのいずれの方法でもよいが、無電解メッキの場合は、上記の第三工程と同様の方法で行うことができる。   As a method of forming the surface coating of the second metal layer on the particles on which the first metal layer is formed, any method of electroless plating, electroplating, and displacement plating may be used, but in the case of electroless plating, It can carry out by the method similar to said 3rd process.

これらの工程終了後に、不要な金属塩、還元剤、錯化剤、界面活性剤等を除くため、十分な洗浄を行うとよい。   After these steps are completed, it is preferable to perform sufficient washing to remove unnecessary metal salts, reducing agents, complexing agents, surfactants, and the like.

最後に、得られた金属被覆粒子を、アルゴン、ヘリウム、窒素等の不活性気体、又は水素、アルゴン−水素、アンモニア等の還元性気体の存在下に150℃以上の温度で熱処理することが好ましい。不活性気体又は還元性気体処理条件は、通常200〜900℃、処理時間は1分〜24時間が好適に用いうる。より好ましくは、200〜500℃で処理時間は30分〜4時間である。これにより、粒子と金属層間にある還元性ケイ素系高分子化合物の一部又は全部は、セラミックに変化し、より高い耐熱性と絶縁性と密着性を持つことになる。このときの雰囲気を水素のような還元系で行うことにより、金属中の酸化物を減少させ、ケイ素系高分子化合物を安定な構造に変えることで、粒子と金属が強固に結合し、高い導電性を安定的に示す粒子を得ることができる。   Finally, it is preferable to heat-treat the obtained metal-coated particles at a temperature of 150 ° C. or higher in the presence of an inert gas such as argon, helium, or nitrogen, or a reducing gas such as hydrogen, argon-hydrogen, or ammonia. . Inert gas or reducing gas treatment conditions are usually 200 to 900 ° C., and a treatment time of 1 minute to 24 hours can be suitably used. More preferably, the treatment time is 200 to 500 ° C. and 30 minutes to 4 hours. Thereby, a part or all of the reducing silicon-based polymer compound between the particles and the metal layer changes to ceramic, and has higher heat resistance, insulation, and adhesion. By performing the atmosphere at this time in a reducing system such as hydrogen, the oxides in the metal are reduced, and the silicon polymer compound is changed to a stable structure, so that the particles and the metal are firmly bonded, and high conductivity is achieved. It is possible to obtain particles that stably exhibit properties.

次に、B箔状体の貴金属箔状体としては、金、銀、パラジウム、白金を主成分とする貴金属からなる箔形状の貴金属箔状体が使用できるが、特に金、銀、白金、又はこれら貴金属の含有量が90質量%以上、特に95〜100%である合金が好適である。価格と比重を下げるために副成分として、銀のような低価格貴金属や、銅、ニッケル、アルミニウム、マグネシウム、亜鉛、鉄等の卑金属を含んでもよいが、耐熱的に安定な導電性を発現させるためには、抗酸化性を持つ貴金属の割合が90質量%以上、更に望ましくは95質量%以上が望ましい。   Next, as the noble metal foil of the B foil, a foil-shaped noble metal foil made of a noble metal mainly composed of gold, silver, palladium, or platinum can be used. In particular, gold, silver, platinum, or An alloy having a content of these noble metals of 90% by mass or more, particularly 95 to 100% is preferable. Low price precious metals such as silver and base metals such as copper, nickel, aluminum, magnesium, zinc, iron, etc. may be included as subcomponents to lower the price and specific gravity, but develop heat resistant and stable conductivity For this purpose, the proportion of the noble metal having antioxidant properties is preferably 90% by mass or more, more preferably 95% by mass or more.

B箔状体の厚さは、0.1〜10μm、特に0.2〜5μmであることが好ましい。金属箔の厚さが0.1μmより薄いと、薄すぎて、A粒子とB箔状体の結合粒体を形成する場合に金属箔に皺が発生したり金属箔が切れやすくなったりして、結合加工がスムースにでき難くなったり、導電性粉体を得るためにカットあるいは破砕する場合の加工もスムースにでき難くなる場合がある。金属箔の厚さが10μmより厚いと厚すぎて、結合加工がスムースにでき難くなり、A粒子を結合させるために大量にこのB箔状体が必要となるため、高価格になるので好ましくない場合がある。   The thickness of the B foil is preferably 0.1 to 10 μm, particularly preferably 0.2 to 5 μm. If the thickness of the metal foil is less than 0.1 μm, the metal foil is too thin, and when forming the bonded particles of the A particles and the B foil, wrinkles are generated on the metal foil or the metal foil is easily cut. In some cases, it is difficult to make the connecting process smooth, or it is difficult to make the process smoothly when cutting or crushing to obtain conductive powder. If the thickness of the metal foil is thicker than 10 μm, it will be too thick and it will be difficult to make the bonding process smooth, and a large amount of this B foil will be required to bind the A particles. There is a case.

更に、上記金属箔の平均アスペクト比(フレーク径μm/フレーク厚さμm)は10〜100,000、特に100〜10,000、平均径は100〜10,000μm、特に200〜5,000μmの箔であることが好ましい。平均アスペクト比が10より小さいとA粒子の十分な結合による低抵抗化の効果が得られない場合があり、平均アスペクト比が100,000より大きい箔は工業的に入手しにくくなる。特に、金は、優れた導電性と導電安定性を持ち極めて箔形状にしやすい貴金属であり、金箔として工業的に入手しやすく、好適に用い得る。例えば、厚みが0.2μmであり、平均径が5,000μmである金箔は、かなざわ純金箔として容易に入手できる。   Further, the metal foil has an average aspect ratio (flake diameter μm / flake thickness μm) of 10 to 100,000, particularly 100 to 10,000, and an average diameter of 100 to 10,000 μm, particularly 200 to 5,000 μm. It is preferable that If the average aspect ratio is less than 10, the effect of lowering resistance due to sufficient bonding of A particles may not be obtained, and foils having an average aspect ratio greater than 100,000 are difficult to obtain industrially. In particular, gold is a noble metal that has excellent conductivity and conductivity stability and is extremely easy to form into a foil shape, and is easily available industrially as a gold foil and can be suitably used. For example, a gold foil having a thickness of 0.2 μm and an average diameter of 5,000 μm can be easily obtained as a Kanazawa pure gold foil.

本発明においては、B箔状体の金属箔よりも体積抵抗率が高いA粒子を用いたり、逆にA粒子よりも体積抵抗率が高いB箔状体を用いた場合は、いずれも体積抵抗率が高い粒子よりは電気特性を向上できるが、体積抵抗率が低い粒子の電気特性より優れた電気特性は得られ難いので、A粒子とB箔状体の最も望ましい組み合わせは、A粒子として最表面が金で被覆された粒子で、B箔状体としては金箔を用いた場合で、この場合、最も低い抵抗率が得られる。   In the present invention, when using A particles having a higher volume resistivity than the metal foil of the B foil, or conversely using a B foil having a higher volume resistivity than the A particles, the volume resistance is all. Although it is possible to improve the electrical characteristics as compared with particles having a high rate, it is difficult to obtain electrical characteristics superior to those of particles having a low volume resistivity. Therefore, the most desirable combination of A particles and B foils is the most desirable as A particles. This is the case where the surface is coated with gold and gold foil is used as the B foil, and in this case, the lowest resistivity is obtained.

このA粒子とB粒子、つまり球状の導電粒子と箔状の貴金箔状体とは、混合・加圧した後、粉砕することで、導電粒子が貴金属箔状体で結合された粒体からなる導電性粉体を得ることができる。   The A particles and B particles, that is, the spherical conductive particles and the foil-like noble gold foil are mixed and pressurized and then pulverized to form particles in which the conductive particles are combined with the noble metal foil. Conductive powder can be obtained.

このA粒子とB箔状体の結合方法は、乾式で外部から圧力を加え、凝集体を作り、その後解砕すればよい。例えば、A粒子とB箔状体の混合物を、ペレット作成器に充填し、真空ポンプにつないで排気しつつ油圧ポンプにより外部から圧力をかけ、5〜10分間加圧して一旦ペレット状にした後、細かく粉砕すればよい。圧力は、特にA粒子(導電粒子)の種類に応じて選定される。例えば、球状導電粒子として核粒子が非金属で、これを金属被覆した金属被覆粒子の場合は10〜1,000kg/cm2、特に50〜500kg/cm2であることが好ましい。また、金属粒子又は核粒子が金属で、これを金属被覆したものの場合は10〜400kg/cm2、特に50〜200kg/cm2であることが好ましい。圧力が小さすぎると、A粒子とB箔状体の結合が十分できない場合があり、大きすぎると塊状になり、粉砕が困難になることがあり、粒子が潰れて本発明に係る導電性粉体が得られない場合が生じる。とりわけ、A粒子が金属粉の場合、A粒子同士の結合が起こり、塊状になりやすくペレット状になった導電性粒体を再び粉体にすることが困難になる場合があるので、A粒子は、絶縁性粒子表面上に金属を被覆した導電粒子であることがより望ましい。このような圧力処理によってA粒子がB箔状体により結合体として形成されるのは、金属箔の延展性を利用してB箔状体が複数のA粒子表面に延ばしつけられるためである。 The bonding method of the A particles and the B foil may be a dry method in which pressure is applied from the outside to form an aggregate and then crushed. For example, after a mixture of A particles and B foil is filled in a pelletizer, exhausted while connected to a vacuum pump, pressure is applied from the outside by a hydraulic pump, and after pressurizing for 5 to 10 minutes to form a pellet once Just finely pulverize. The pressure is particularly selected according to the type of A particles (conductive particles). For example, core particles are non-metallic as spherical conductive particles, 10~1,000kg / cm 2 when this metal-coated metal-coated particles, particularly preferably 50~500kg / cm 2. In the case where the metal particles or the core particles are made of metal and coated with metal, it is preferably 10 to 400 kg / cm 2 , particularly preferably 50 to 200 kg / cm 2 . If the pressure is too low, the A particles and the B foil may not be sufficiently bonded. If the pressure is too high, the particles may be agglomerated and difficult to grind, and the particles may be crushed and the conductive powder according to the present invention. May not be obtained. In particular, when the A particle is a metal powder, bonding between the A particles occurs, and it may be difficult to form a conductive particle that is easily agglomerated and pelletized. It is more preferable that the conductive particles have metal surfaces coated on the surfaces of the insulating particles. The reason why the A particles are formed as a combined body by the B foil-like body by such pressure treatment is that the B foil-like body is extended to the surfaces of the plurality of A particles by utilizing the spreadability of the metal foil.

ペレット状になった導電粒体を破砕する場合、破砕方法は問わない。例えば、ハンマーミル、ボールミル、ニーダー等を用いる粉砕方法等の適宜の破砕方法を採用することができる。あるいは、キャビテーションタイプの分散・粉砕機としては、ホモジナイザー(AVP GOULIN社)や、必要に応じて上記分散・粉砕処理よりも弱い条件、例えばマルチブレンダーミル((株)日本精機製作所製)を採用することができる。   When crushing the pellet-shaped conductive particles, the crushing method is not limited. For example, an appropriate crushing method such as a crushing method using a hammer mill, a ball mill, a kneader or the like can be employed. Alternatively, as a cavitation type dispersing / pulverizing machine, a homogenizer (AVP GOULIN) or, if necessary, conditions weaker than the above-described dispersing / pulverizing treatment, for example, a multi blender mill (manufactured by Nippon Seiki Seisakusho) is employed. be able to.

A粒子とB箔状体で結合、形成された導電性粉体の平均粒径は、スクリーン印刷等に対応するため90質量%以上が100μm以下であることが好ましい。100μmより大きい金属粉末が10質量%以上含まれると、微細なスクリーン印刷に対応できなくなり問題となる場合がある。更に好ましくは、95質量%以上が75μm以下であればより微細なスクリーン印刷が可能である。   The average particle diameter of the conductive powder bonded and formed by the A particles and the B foil is preferably 90% by mass or more and 100 μm or less in order to cope with screen printing or the like. If 10% by mass or more of metal powder larger than 100 μm is contained, it may not be possible to cope with fine screen printing, which may be a problem. More preferably, if 95% by mass or more is 75 μm or less, finer screen printing is possible.

B箔状体の使用量は、A粒子の量に対して0.5〜10質量%、特にコスト的な観点から1〜5質量%であることが好ましい。B箔状体である金属箔の結合量が少なすぎると金属箔による結合が不完全となり、金属箔の特性を十分に得ることができない場合があり、多すぎると、コストが高くなり好ましくない場合がある。   It is preferable that the usage-amount of B foil-like body is 0.5-10 mass% with respect to the quantity of A particle, and is 1-5 mass% especially from a cost viewpoint. When the amount of bonding of the metal foil which is a B foil is too small, the bonding by the metal foil may be incomplete, and the characteristics of the metal foil may not be obtained sufficiently. There is.

本発明の導電性粉体は、優れた導電性初期性能と良好な保存安定性をもち、導電性を必要とする素材及び樹脂組成物との混合加工性に優れており、導電性組成物のそれぞれの用途で必要とされる加工性、成形性、特に表面の平滑性や異向性、硬化物の物性と導電性の調整、成膜性などといった汎用的な電子部品用途に適したものであり、高安定性と高信頼性の電子材料用途に使用できる。   The conductive powder of the present invention has excellent initial conductive performance and good storage stability, and is excellent in mixing processability with materials and resin compositions that require electrical conductivity. Suitable for general-purpose electronic component applications such as processability and moldability required for each application, especially surface smoothness and anisotropic properties, adjustment of physical properties and conductivity of cured products, film formability, etc. Yes, it can be used for highly stable and highly reliable electronic materials.

例えば、近年の電子部品の小型軽量化に伴い、加工性と高導電性の導電性粉体が実用化に不可欠になっている導電性ゴム、導電性ペースト、導電性インキ、電磁波シールド材料などの素材及び樹脂組成物に満足な導電性を付与し得るもので、特に、回路パターンを形成するといったスクリーン印刷が必要とされる電子部品の用途や、ゴムコネクタ、電磁波シールド用のガスケットや面状発熱体等の用途に好適に用いることができる。
本発明の導電性粉体を含有してなる組成物を硬化して得られる材料は、所定のコンタクト部で低い電気抵抗率を高温にあっても安定に保持できるため、信頼性の高いコネクターや電磁波障害を防ぐためのガスケット材料等の原料として有用である。
For example, with recent reductions in size and weight of electronic components, conductive rubber, conductive paste, conductive ink, electromagnetic wave shielding materials, etc., in which workable and highly conductive conductive powders are indispensable for practical use, etc. It can give satisfactory conductivity to materials and resin compositions, especially for electronic parts that require screen printing, such as forming circuit patterns, rubber connectors, gaskets for electromagnetic shielding, and sheet heating. It can use suitably for uses, such as a body.
Since the material obtained by curing the composition comprising the conductive powder of the present invention can stably maintain a low electrical resistivity at a predetermined contact portion even at high temperatures, a highly reliable connector or It is useful as a raw material for gasket materials and the like for preventing electromagnetic interference.

以下、参考例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、以下の例において配合量はいずれも質量%である。   EXAMPLES Hereinafter, although a reference example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the blending amount is mass%.

〔参考例1〕 ポリシランの製造方法
フェニルハイドロジェンポリシラン(以下PPHSと略記する)を、以下の方法により製造した。
アルゴン置換したフラスコ内にビス(シクロペンタジエニル)ジクロロジルコニウムのTHF溶液にメチルリチウムのジエチルエーテル溶液を添加し、30分室温で反応させた後、溶剤を減圧にて留去することで、系内で触媒を調整した。これに、フェニルトリヒドロシランを触媒の10,000倍モル添加し、100℃から150℃で3時間、次いで200℃で8時間加熱攪拌を行った。生成物をトルエンに溶解させ、塩酸水洗を行うことで、触媒を失活除去した。このトルエン溶液に硫酸マグネシウムを加え、水分を除去し、濾過した。これにより、ほぼ定量的に質量平均分子量1,200、ガラス転移点65℃のPPHSを得た。これは、NMRにより、−(SiPh)a−(SiPhH)b−;a/b=1/1 の構造をしていることが確認された。
Reference Example 1 Polysilane Production Method Phenyl hydrogen polysilane (hereinafter abbreviated as PPHS) was produced by the following method.
In a flask purged with argon, a diethyl ether solution of methyllithium was added to a THF solution of bis (cyclopentadienyl) dichlorozirconium and reacted at room temperature for 30 minutes. The catalyst was adjusted within. To this was added 10,000 times moles of phenyltrihydrosilane as a catalyst, and the mixture was heated and stirred at 100 to 150 ° C. for 3 hours and then at 200 ° C. for 8 hours. The catalyst was deactivated and removed by dissolving the product in toluene and washing with hydrochloric acid. Magnesium sulfate was added to the toluene solution to remove water and filtered. As a result, PPHS having a mass average molecular weight of 1,200 and a glass transition point of 65 ° C. was obtained almost quantitatively. This was confirmed by NMR to have a structure of-(SiPh) a- (SiPhH) b- ; a / b = 1/1.

〔参考例2〕 金メッキシリカ1粉体の製造
球状シリカ粉体US−10(三菱レーヨン製;平均粒径10μm;真比重2.2)を分級により粒径を揃えたものを用いた。
上記参考例1で得られたPPHS0.5gをトルエン200gに溶解させ、この溶液を上記粉体100gに加え1時間撹拌した。ロータリーエバポレーターにて、60℃の温度、45mmHgの圧力で、トルエンを留去させ乾燥させた。
得られたポリシラン処理粉体は疎水化されているので、界面活性剤としてサーフィノール504(日信化学工業(株)製界面活性剤)の0.5%水溶液5gにこの処理粉体10gを撹拌しながら投入し、水に分散させた。
Reference Example 2 Production of Gold-Plated Silica 1 Powder Spherical silica powder US-10 (Mitsubishi Rayon; average particle size 10 μm; true specific gravity 2.2) having a uniform particle size by classification was used.
0.5 g of PPHS obtained in Reference Example 1 was dissolved in 200 g of toluene, and this solution was added to 100 g of the powder and stirred for 1 hour. In a rotary evaporator, toluene was distilled off and dried at a temperature of 60 ° C. and a pressure of 45 mmHg.
Since the resulting polysilane-treated powder is hydrophobized, 10 g of this treated powder is stirred into 5 g of a 0.5% aqueous solution of Surfynol 504 (surfactant manufactured by Nissin Chemical Industry Co., Ltd.) as a surfactant. The mixture was added while being dispersed in water.

パラジウム処理としては、上記粉体−水分散体15gに対し1%PdCl2水溶液を7g(塩化パラジウムとして0.07g、パラジウムとして0.04g)添加して、30分撹拌後、ろ過し、水洗した。これらの処理により、粉体表面はパラジウムコロイドが付着した黒灰色に着色した粉体が得られた。この粉体をろ過により単離し、水洗後直ちにメッキ化を行った。 For palladium treatment, 7 g of 1% PdCl 2 aqueous solution (0.07 g as palladium chloride, 0.04 g as palladium) was added to 15 g of the powder-water dispersion, stirred for 30 minutes, filtered, and washed with water. . By these treatments, a black-gray colored powder having a palladium colloid attached to the powder surface was obtained. The powder was isolated by filtration and plated immediately after washing with water.

ニッケルメッキ用還元液として、イオン交換水で希釈した次亜リン酸ナトリウム2.0M、酢酸ナトリウム1.0M、グリシン0.5Mの混合溶液260gを用いた。上記パラジウムコロイド析出粉体を、KS−538(信越化学工業(株)製消泡剤)0.5gと共にニッケルメッキ還元液中に分散させた。撹拌しながら液温を室温から65℃に上げた。イオン交換水で希釈した水酸化ナトリウム2.0M 260gを空気ガスにより同伴させながら滴下し、同時にイオン交換水で希釈した硫酸ニッケル1.0M 260gを窒素ガスにより同伴させながら、還元液中に滴下した。すると、細かい発泡とともに粉体が黒色となり、粉体表面に金属ニッケルが析出した。この粉体は、全面に金属ニッケルが析出していた。   As a reducing solution for nickel plating, 260 g of a mixed solution of sodium hypophosphite 2.0M, sodium acetate 1.0M and glycine 0.5M diluted with ion-exchanged water was used. The palladium colloid deposition powder was dispersed in a nickel plating reducing solution together with 0.5 g of KS-538 (an antifoaming agent manufactured by Shin-Etsu Chemical Co., Ltd.). The liquid temperature was raised from room temperature to 65 ° C. with stirring. 260 g of sodium hydroxide 2.0M diluted with ion-exchanged water was dropped while being accompanied by air gas, and 260 g of nickel sulfate 1.0M diluted with ion-exchanged water was simultaneously dropped into the reducing solution while being accompanied by nitrogen gas. . Then, the powder became black with fine foaming, and metallic nickel was deposited on the powder surface. This powder had metallic nickel deposited on the entire surface.

この粉体を、亜硫酸金ソーダを7.1g(金3.7g含有)溶解させた水溶液100g中に分散させた。撹拌しながら液温を室温から80℃に上げると、表面のニッケルが金に置換され粉体が黄色となり、粉体表面に金が析出した。   This powder was dispersed in 100 g of an aqueous solution in which 7.1 g (containing 3.7 g of gold) of sodium gold sulfite was dissolved. When the liquid temperature was raised from room temperature to 80 ° C. with stirring, the nickel on the surface was replaced with gold, the powder became yellow, and gold was deposited on the powder surface.

メッキ溶液中に浮遊している粉体は、濾過、水洗、乾燥(50℃で30分)の後、水素で置換された電気炉にて200℃で1時間焼成した。実体顕微鏡観察により、粉体全表面が黄色により覆われた粉体(以下、金メッキシリカ1と表記する。)が得られていることがわかった。顕微鏡により観察した外観は球状黄色、比重は5.0であった。金属の含有量は、金13%、ニッケル52%であった。
上記金メッキシリカ1の抵抗率を測定したところ、抵抗率は、0.4mΩcmであった。なお、抵抗率は下記方法により測定した(以下、同様)。
The powder floating in the plating solution was filtered, washed with water, and dried (30 minutes at 50 ° C.) and then baked at 200 ° C. for 1 hour in an electric furnace replaced with hydrogen. By observation with a stereomicroscope, it was found that a powder (hereinafter referred to as gold-plated silica 1) whose entire surface was covered with yellow was obtained. The appearance observed with a microscope was spherical yellow and the specific gravity was 5.0. The metal content was 13% gold and 52% nickel.
When the resistivity of the gold-plated silica 1 was measured, the resistivity was 0.4 mΩcm. The resistivity was measured by the following method (hereinafter the same).

導電性粉体の抵抗率の測定方法:
導電性粉体の抵抗率は、4端子を持つ円筒状のセルに粉体を充填し、両末端の面積0.2cm2の端子からSMU−257(ケースレ社製電流源)より−10−10mAの電流を流し、円筒の中央部に0.2cm離して設置した端子から、2000型ケースレ社製ナノボルトメーターで電圧降下を測定することで求めた。
Method for measuring resistivity of conductive powder:
The resistivity of the conductive powder is such that a cylindrical cell having four terminals is filled with the powder, and from the terminals having an area of 0.2 cm 2 at both ends, SMU-257 (current source manufactured by Keithley Co., Ltd.) is -10-10 mA. Was obtained by measuring a voltage drop with a 2000 volt type nanovolt meter from a terminal placed 0.2 cm away from the center of the cylinder.

〔参考例3〕 金メッキシリカ2粉体の製造
ニッケルメッキ用還元液の混合溶液、イオン交換水で希釈した水酸化ナトリウム溶液、イオン交換水で希釈した硫酸ニッケル溶液をそれぞれ260gから75gに変え、亜硫酸金ソーダを2.37g(金1.23g含有)用いる以外は、参考例2と同様に操作した。この場合、得られた全面に金属ニッケルが析出した粉体を金メッキ液中に分散させた。撹拌しながら液温を室温から80℃に上げると、表面のニッケルが金に置換され粉体が黄色となり、粉体表面に金が析出した。この粉体を、金メッキシリカ2と表記する。顕微鏡により観察した外観は黄色、比重は3.0であった。金属の含有量は、金8%、ニッケル27%で、参考例2と同様に測定した抵抗率は、2.5mΩcmであった。
[Reference Example 3] Production of gold-plated silica 2 powder The mixed solution of the reducing solution for nickel plating, the sodium hydroxide solution diluted with ion-exchanged water, and the nickel sulfate solution diluted with ion-exchanged water were changed from 260 g to 75 g, respectively. The same operation as in Reference Example 2 was performed except that 2.37 g of gold soda (containing 1.23 g of gold) was used. In this case, the obtained powder having metallic nickel deposited on the entire surface was dispersed in a gold plating solution. When the liquid temperature was raised from room temperature to 80 ° C. with stirring, the nickel on the surface was replaced with gold, the powder became yellow, and gold was deposited on the powder surface. This powder is denoted as gold-plated silica 2. The appearance observed with a microscope was yellow and the specific gravity was 3.0. The metal content was 8% gold and 27% nickel, and the resistivity measured in the same manner as in Reference Example 2 was 2.5 mΩcm.

〔参考例4〕 金メッキニッケル粉体の製造
シリカの代わりに、ニッケル粉(福田金属社製、平均粒径8μm)を希塩酸−イオン交換水で十分洗浄したものを用いた。このニッケル粉10gを、亜硫酸金ソーダを1.67g(金0.87g含有)溶解させた水溶液100g中に分散させた。撹拌しながら液温を室温から80℃に上げると、表面のニッケルが金に置換され、粉体が黄色となり、粉体表面に金が析出した。この粉体を金メッキニッケルと表記する。顕微鏡により観察した外観は黄色、比重は9.8であった。金属の含有量は、金8%、ニッケル92%で、抵抗率は0.15mΩcmであった。
[Reference Example 4] Manufacture of gold-plated nickel powder Instead of silica, nickel powder (Fukuda Metals Co., Ltd., average particle size: 8 μm) washed thoroughly with dilute hydrochloric acid-ion exchange water was used. 10 g of this nickel powder was dispersed in 100 g of an aqueous solution in which 1.67 g (containing 0.87 g of gold) sodium sulfite was dissolved. When the liquid temperature was raised from room temperature to 80 ° C. with stirring, the nickel on the surface was replaced with gold, the powder became yellow, and gold was deposited on the powder surface. This powder is expressed as gold-plated nickel. The appearance observed with a microscope was yellow and the specific gravity was 9.8. The metal content was 8% gold, 92% nickel, and the resistivity was 0.15 mΩcm.

〔実施例1、比較例1〕
金メッキシリカ1の粉体(参考例2で製造:抵抗率0.40mΩcm)1gと金箔(カタニ産業(株):金切り回し「華ふぶき」長さ3mm、厚み0.2μm、平均径3,000μm(3mm))10mg(金メッキシリカの1%)を、単純に混合し、得られた導電性粉体の抵抗率を測定したところ、0.49mΩcmであり、導電率の改善は見られなかった(比較例1:以下、このような混合方法を単純混合と略記する)。
[Example 1, Comparative Example 1]
1 g of powder of gold-plated silica 1 (manufactured in Reference Example 2: resistivity 0.40 mΩcm) and gold foil (Katani Sangyo Co., Ltd .: Gold cutting “Hana Fubuki” length 3 mm, thickness 0.2 μm, average diameter 3,000 μm (3 mm)) 10 mg (1% of gold-plated silica) was simply mixed, and the resistivity of the obtained conductive powder was measured. As a result, it was 0.49 mΩcm, and no improvement in conductivity was observed ( Comparative Example 1: Hereinafter, such a mixing method is abbreviated as simple mixing).

この単純混合した粉体を、錠剤成型機に入れて真空ポンプで排気しつつ、100kg/cm2の圧力で5分間加圧して(以下、加圧Aと略記する)、錠剤を作った。とりだした塊状の金箔により固化した金メッキシリカはメノウ乳鉢にとり、軽く押さえることで再度粉末状に解砕した。この粉体は、実体顕微鏡で観察したところ、金箔により金メッキシリカが結合されていた(実施例1)。
この金箔結合金メッキシリカの抵抗率は、0.29mΩcmであった。また、導電性の改善率(下記式により定義して算出。以下同様。)は28%で、大きな導電率の改善が見られた。
The simply mixed powder was put into a tablet molding machine and evacuated with a vacuum pump, and pressurized at a pressure of 100 kg / cm 2 for 5 minutes (hereinafter abbreviated as “pressurization A”) to produce tablets. The gold-plated silica solidified by the lump-shaped gold foil taken out was taken into an agate mortar and crushed again into a powder form by lightly pressing. When this powder was observed with a stereomicroscope, gold-plated silica was bound by a gold foil (Example 1).
The resistivity of this gold foil-bonded gold-plated silica was 0.29 mΩcm. Further, the conductivity improvement rate (defined by the following formula and calculated; the same applies hereinafter) was 28%, indicating a significant improvement in conductivity.

導電性の改善率(%)=100×(A粉体の抵抗率−B粉体添加後に得られた導電性粉体
の抵抗率)/A粉体の抵抗率
A粉体;導電核粒子(上記金メッキシリカ1,2又は金メッキニッケル
B粉体;金箔
Improvement rate of conductivity (%) = 100 × (A resistivity of A powder−conductive powder obtained after addition of B powder)
Resistivity) / A powder resistivity
A powder; conductive core particles (gold-plated silica 1, 2 or gold-plated nickel
B powder; gold leaf

なお、上記実施例、比較例で使用した粉体を具体的に示すと、図1は上記実施例、比較例で使用した金メッキシリカのみの拡大実体顕微鏡写真、図2は比較例1において、単純混合により得られた導電性粉体の拡大実体顕微鏡写真、図3,4は実施例1において、加圧後に固化した金メッキシリカの拡大実体顕微鏡写真、図5は実施例1において、加圧後に固化した金メッキシリカを破砕した後の拡大実体顕微鏡写真である。   The powders used in the above examples and comparative examples are specifically shown. FIG. 1 is an enlarged stereomicrograph of only the gold-plated silica used in the above examples and comparative examples, and FIG. 3 and 4 are enlarged stereoscopic micrographs of gold-plated silica solidified after pressing in Example 1, and FIG. 5 is solidified after pressing in Example 1. It is an enlarged stereomicrograph after crushing the gold-plated silica.

この理由を調べるために、導電率の向上した金箔改質金メッキシリカを実体顕微鏡で調べた。すると、圧力をかけることにより、この金箔と金メッキシリカが結合し、複数の導電粒子が、金箔を介して結合された状態が観測された。   In order to investigate this reason, gold foil-modified gold-plated silica with improved conductivity was examined with a stereomicroscope. Then, by applying pressure, it was observed that the gold foil and gold-plated silica were bonded, and a plurality of conductive particles were bonded through the gold foil.

上記金箔結合金メッキシリカの原料として用いた金箔は、金96.1%、銀3.9%の合金を叩く事で箔形状とし、箔の長尺方向が3mm、短尺方向が0.5〜1mmであるのにもかかわらず、厚みが0.1〜0.2μmと非常に薄い。このため、アスペクト比(箔の広がり長と厚み長の比)が2,500〜30,000と非常に大きく、外圧により簡単に微細化する。但し、単にこの金箔と金メッキシリカを混ぜただけでは、不均一な空洞ができて導電率が悪化したと考えられる。   The gold foil used as a raw material for the gold-bonded gold-plated silica is formed into a foil shape by hitting an alloy of 96.1% gold and 3.9% silver, the long direction of the foil is 3 mm, and the short direction is 0.5 to 1 mm. Despite this, the thickness is as very thin as 0.1 to 0.2 μm. For this reason, the aspect ratio (ratio of the spreading length of the foil to the thickness length) is very large, 2500 to 30,000, and it can be easily miniaturized by external pressure. However, simply mixing this gold foil and gold-plated silica is considered to cause nonuniform cavities and deteriorate the conductivity.

一方、圧力をかけることにより、この金箔と金メッキシリカは結合し、複数の導電粒子が、金箔を介して結合していた。このため、質量比で1%(体積比ではわずか0.2%)という微量の金箔の混合により、金メッキシリカ間の接触抵抗が低下し、これにより全体としての導電率が向上したものと考えられる。   On the other hand, by applying pressure, the gold foil and gold-plated silica were bonded, and a plurality of conductive particles were bonded via the gold foil. For this reason, it is considered that the contact resistance between the gold-plated silicas is reduced by mixing a small amount of gold foil of 1% by mass (only 0.2% by volume), thereby improving the overall conductivity. .

〔比較例2〕
比較のために、この金メッキシリカと金箔を単純混合した粉体を、ボールミル中で30分間十分混合した後、導電率を調べた。抵抗率は、0.52mΩcmと逆に高くなっていた(以下、この混合方法をボールミル混合と略記する)。
[Comparative Example 2]
For comparison, the powder obtained by simply mixing the gold-plated silica and the gold foil was thoroughly mixed in a ball mill for 30 minutes, and then the conductivity was examined. The resistivity was as high as 0.52 mΩcm (hereinafter, this mixing method is abbreviated as “ball mill mixing”).

〔実施例2、比較例3〕
金箔の使用量を20mg(金メッキシリカの2%)に変えた以外は比較例1と同様にして、単純混合して得られた導電性粉体の抵抗率を測定したところ、0.44mΩcmでやはり改善は見られなかった(比較例3)。
[Example 2, Comparative Example 3]
The resistivity of the conductive powder obtained by simple mixing was measured in the same manner as in Comparative Example 1 except that the amount of gold foil used was changed to 20 mg (2% of gold-plated silica), and it was 0.44 mΩcm. There was no improvement (Comparative Example 3).

一方、この混合物を100kg/cm2の圧力で5分間加圧して錠剤を作った後、再度粉末状に解砕したところ、この金箔結合金メッキシリカが得られていた(実施例2)。この抵抗率は0.27mΩcmであり、更に抵抗が下がっていた。 On the other hand, after pressurizing this mixture at a pressure of 100 kg / cm 2 for 5 minutes to produce a tablet, the mixture was pulverized again to obtain this gold foil-bonded gold-plated silica (Example 2). This resistivity was 0.27 mΩcm, and the resistance was further lowered.

〔実施例3〕
圧力を500kg/cm2に変えて加圧(以下、この加圧条件を加圧Bと略記する)して錠剤を作った以外は実施例1と同様にして、金箔結合金メッキシリカを得たところ、この導電性粉体の抵抗率は0.29mΩcmであった。この加圧混合による導電率の改善率は、28%であった(実施例3)。
Example 3
A gold-foil-bonded gold-plated silica was obtained in the same manner as in Example 1 except that a tablet was prepared by changing the pressure to 500 kg / cm 2 (hereinafter, this pressurizing condition is abbreviated as pressurization B). The resistivity of this conductive powder was 0.29 mΩcm. The improvement rate of conductivity by this pressure mixing was 28% (Example 3).

〔実施例4、比較例4〕
金メッキシリカ1の代わりに、金メッキニッケル粉(参考例4で製造:抵抗率0.15mΩcm、平均粒径8μm)を用いた以外は比較例1と同様にして、単純混合して得られた導電性粉体の抵抗率を測定したところ、電気抵抗率は0.17mΩcmであった(比較例4)。
[Example 4, Comparative Example 4]
Conductivity obtained by simple mixing in the same manner as in Comparative Example 1, except that gold-plated nickel powder (manufactured in Reference Example 4: resistivity: 0.15 mΩcm, average particle size: 8 μm) was used instead of gold-plated silica 1. When the resistivity of the powder was measured, the electrical resistivity was 0.17 mΩcm (Comparative Example 4).

この混合物を、錠剤成型機に入れて真空ポンプで排気しつつ、100kg/cm2の圧力で5分間加圧して錠剤を作った。とりだした塊状の金箔により固化した金メッキニッケルをメノウ乳鉢にとり、軽く押さえることで再度粉末状に解砕した。この金箔結合金メッキニッケルの抵抗率は、0.10mΩcmであり、改善率は33%であった(実施例4)。 The mixture was put into a tablet molding machine and evacuated with a vacuum pump, and then pressurized at a pressure of 100 kg / cm 2 for 5 minutes to produce a tablet. The gold-plated nickel solidified by the lump-shaped gold foil taken out was taken into an agate mortar and crushed again into a powder form by lightly pressing. The resistivity of this gold foil-bonded gold-plated nickel was 0.10 mΩcm, and the improvement rate was 33% (Example 4).

〔比較例5〕
比較のため、上記比較例4と同様の単純混合した粉体を、ボールミル中で30分間十分混合した後、導電率を調べた。抵抗率は、0.15mΩcmと初期の金メッキニッケル粉の抵抗率と同じであった。
[Comparative Example 5]
For comparison, the same simply mixed powder as in Comparative Example 4 was sufficiently mixed in a ball mill for 30 minutes, and then the conductivity was examined. The resistivity was 0.15 mΩcm, which was the same as the resistivity of the initial gold-plated nickel powder.

〔比較例6〕
圧力を500kg/cm2に変えて加圧して錠剤を作った以外は実施例4と同様にした。このときのとりだした塊状物は、金箔により強く固化しており、これはもはや粉末状に解砕することはできなかった。
[Comparative Example 6]
The same procedure as in Example 4 was conducted, except that the pressure was changed to 500 kg / cm 2 and the tablet was formed by pressurization. The lump taken out at this time was strongly solidified by the gold foil, which could no longer be pulverized into powder.

〔実施例5、比較例7〕
金メッキシリカ2の粉体(参考例3で製造:抵抗率2.5mΩcm)1gと金箔10mgを混合し、得られた導電性粉体の抵抗率を測定したところ、2.3mΩcmであり、やや改善が見られたが、その改善率は8%と、わずか1ケタ台であった(比較例7)。
一方、この混合物を錠剤成型機に入れて真空ポンプで排気しつつ、100kg/cm2の圧力で5分間加圧して錠剤を作った後、再度粉末状に解砕したところ、得られた金箔結合金メッキシリカの抵抗率は1.9mΩcmであり、大きく抵抗が下がっていて、その改善率は24%であった(実施例5)。
[Example 5, Comparative Example 7]
When 1 g of gold-plated silica 2 powder (manufactured in Reference Example 3; resistivity: 2.5 mΩcm) and 10 mg of gold foil were mixed and the resistivity of the obtained conductive powder was measured, it was 2.3 mΩcm, which was a little improved. However, the improvement rate was 8%, which was only 1 digit (Comparative Example 7).
On the other hand, this mixture was put into a tablet molding machine and evacuated with a vacuum pump, and pressed for 5 minutes at a pressure of 100 kg / cm 2 to make a tablet, and then crushed again into a powder. The resistivity of the gold-plated silica was 1.9 mΩcm, the resistance was greatly reduced, and the improvement rate was 24% (Example 5).

以上の結果を表1にまとめて示した。上記結果からわかるように、単に導電粒子に金箔を混ぜたり、ボールミルで混合したりしただけでは、低抵抗化できず、逆に抵抗は高くなったが、圧力をかけて十分金メッキシリカと金箔を接触させた後、凝集したこの導電性粒体を破砕すると、わずか1質量%の金箔の添加でも27〜33%程度抵抗率を低減することが可能であった。   The above results are summarized in Table 1. As can be seen from the above results, it was not possible to reduce the resistance by simply mixing gold foil into the conductive particles or by mixing with a ball mill, but the resistance increased, but the gold plating silica and the gold foil were sufficiently applied by applying pressure. When the aggregated conductive particles were crushed after contact, the resistivity could be reduced by about 27 to 33% even with the addition of only 1% by mass of gold foil.

Figure 0004114074
*1;金メッキシリカ1 Au/Ni/SiO2 8/50/42 平均粒径12μm
金メッキシリカ2 Au/Ni/SiO2 8/27/65 平均粒径12μm
金メッキNi Au/Ni 8/92 平均粒径8μm
*2;金箔 平均径3mm/厚み0.2μm
*3;改善率(%)=100×(A粒子の抵抗率−B箔状体添加後に得られた導電性粉体
の抵抗率)/A粒子の抵抗率
Figure 0004114074
* 1; Gold-plated silica 1 Au / Ni / SiO 2 8/50/42 Average particle size 12 μm
Gold-plated silica 2 Au / Ni / SiO 2 8/27/65 Average particle size 12 μm
Gold plating Ni Au / Ni 8/92 Average particle size 8μm
* 2: Gold foil Average diameter 3mm / Thickness 0.2μm
* 3: Improvement rate (%) = 100 × (A particle resistivity−B foil resistivity after addition of B foil) / A particle resistivity

実施例1、比較例1で使用した金メッキシリカのみの拡大実体顕微鏡写真(倍率500倍)である。4 is an enlarged stereomicrograph (magnification 500 times) of only gold-plated silica used in Example 1 and Comparative Example 1. FIG. 比較例1において、単純混合により得られた導電性粉体の拡大実体顕微鏡写真(倍率200倍)である。In Comparative Example 1, it is an enlarged stereomicrograph (magnification 200 times) of the conductive powder obtained by simple mixing. 実施例1において、加圧後に固化した金メッキシリカの拡大実体顕微鏡写真(倍率500倍)である。In Example 1, it is an expansion stereomicrograph (500-times multiplication factor) of the gold plating silica which solidified after pressurization. 実施例1において、加圧後に固化した金メッキシリカの拡大実体顕微鏡写真(倍率500倍)である。In Example 1, it is an expansion stereomicrograph (500-times multiplication factor) of the gold plating silica which solidified after pressurization. 実施例1において、加圧後に固化した金メッキシリカを破砕した後の拡大実体顕微鏡写真(倍率500倍)である。In Example 1, it is an expansion stereomicrograph (500-times multiplication factor) after crushing the gold plating silica which solidified after pressurization.

Claims (12)

球状の導電粒子から構成される導電粉末と金箔状体とを混合し、前記球状導電粒子が非金属でこれを金属被覆した金属被覆粒子の場合は10〜1,000kg/cm 2 、金属粒子又は核粒子が金属でこれを金属被覆した金属被覆粒子の場合は10〜400kg/cm 2 の圧力で加圧し、粉砕することによって形成され、前記複数の球状導電粒子が金箔状体で結合された粒体からなることを特徴とする導電性粉体。 In the case of a metal-coated particle in which a conductive powder composed of spherical conductive particles and a gold foil are mixed and the spherical conductive particles are non-metallic and metal-coated, 10 to 1,000 kg / cm 2 , metal particles or When the core particles are metal and are metal-coated particles, the particles are formed by pressurizing and crushing at a pressure of 10 to 400 kg / cm 2 , and the plurality of spherical conductive particles are bonded by a gold foil. A conductive powder comprising a body. 金箔状体の使用量が球状の導電粒子の量に対して0.5〜10質量%である請求項1記載の導電性粒子。The conductive particles according to claim 1, wherein the amount of the gold foil used is 0.5 to 10% by mass based on the amount of the spherical conductive particles. 球状の導電粒子として平均粒径1〜100μmの球状の金属被覆粒子が、アスペクト比(L/D=フレーク長/フレーク厚)が10〜100,000で、厚さが0.1〜10μmの貴金属箔状体にて結合された粒体からなるものである請求項1又は2記載の導電性粉体。 Spherical metal coated particles having an average particle diameter of 1 to 100 μm as spherical conductive particles have an aspect ratio (L / D = flake length / flake thickness) of 10 to 100,000 and a thickness of 0.1 to 10 μm. electrically conductive powder according to claim 1 or 2 wherein is made of granules that are bound in a foil-like body. 球状の導電粒子が、無機粒子又は有機樹脂粒子からなる基材粒子を覆ってその表面にメッキ金属層が形成されたものである請求項1〜3のいずれか1項記載の導電性粉体。 The conductive powder according to any one of claims 1 to 3, wherein the spherical conductive particles cover the base particles made of inorganic particles or organic resin particles, and a plated metal layer is formed on the surface thereof. 球状の導電粒子が、無機粒子又は有機樹脂粒子からなる基材粒子の表面に還元性を有するケイ素系高分子化合物層又はその一部もしくは全部をセラミック化した層が形成され、更に、この層の表面上をメッキによる金属で被覆してなる金属被覆粒子であって、その最表層が貴金属層である請求項記載の導電性粉体。 The spherical conductive particles are formed on the surface of the base particles composed of inorganic particles or organic resin particles, and a silicon-based polymer compound layer having a reducing property or a layer obtained by ceramicizing a part or all of the layer is further formed. 5. The conductive powder according to claim 4 , wherein the surface is metal-coated particles formed by coating a metal by plating, and the outermost layer is a noble metal layer. 基材粒子の表面層を形成する還元性を有するケイ素系高分子化合物がポリシランであり、金属被覆粒子の最表層を形成する貴金属が金、銀、パラジウム、白金から選ばれる貴金属である請求項記載の導電性粉体。 Silicon-based polymer compound having a reducing forming the surface layer of the base particle is polysilane, claim 5 is a noble metal a noble metal to form the outermost layer of the metal-coated particles are selected gold, silver, palladium, platinum The electroconductive powder as described. 球状の導電粒子から構成される導電粉末と金箔状体とを混合し、前記球状導電粒子が非金属でこれを金属被覆した金属被覆粒子の場合は10〜1,000kg/cm  In the case of a metal-coated particle in which a conductive powder composed of spherical conductive particles and a gold foil are mixed, and the spherical conductive particles are non-metallic and metal-coated, 10 to 1,000 kg / cm. 22 、金属粒子又は核粒子が金属でこれを金属被覆した金属被覆粒子の場合は10〜400kg/cmIn the case of metal-coated particles in which metal particles or core particles are metal-coated, 10 to 400 kg / cm 22 の圧力で加圧し、粉砕して、前記複数の球状導電粒子が金箔状体で結合された導電性粒体を得ることを特徴とする導電性粉体の製造方法。A method for producing a conductive powder, characterized in that a conductive particle in which the plurality of spherical conductive particles are bonded with a gold foil-like body is obtained by pressurizing at a pressure of 5 and pulverizing. 金箔状体の使用量が球状の導電粒子の量に対して0.5〜10質量%である請求項7記載の製造方法。The production method according to claim 7, wherein the amount of the gold foil used is 0.5 to 10% by mass with respect to the amount of the spherical conductive particles. 球状の導電粒子として平均粒径1〜100μmの球状の金属被覆粒子が、アスペクト比(L/D=フレーク長/フレーク厚)が10〜100,000で、厚さが0.1〜10μmの貴金属箔状体にて結合された粒体からなるものである請求項7又は8記載の製造方法。Spherical metal coated particles having an average particle diameter of 1 to 100 μm as spherical conductive particles have an aspect ratio (L / D = flake length / flake thickness) of 10 to 100,000 and a thickness of 0.1 to 10 μm. The production method according to claim 7 or 8, wherein the production method comprises particles joined by a foil-like body. 球状の導電粒子が、無機粒子又は有機樹脂粒子からなる基材粒子を覆ってその表面にメッキ金属層が形成されたものである請求項7〜9のいずれか1項記載の製造方法。The manufacturing method according to any one of claims 7 to 9, wherein the spherical conductive particles cover the base particles made of inorganic particles or organic resin particles, and a plated metal layer is formed on the surface thereof. 球状の導電粒子が、無機粒子又は有機樹脂粒子からなる基材粒子の表面に還元性を有するケイ素系高分子化合物層又はその一部もしくは全部をセラミック化した層が形成され、更に、この層の表面上をメッキによる金属で被覆してなる金属被覆粒子であって、その最表層が貴金属層である請求項10記載の製造方法。The spherical conductive particles are formed on the surface of the base particles composed of inorganic particles or organic resin particles, and a silicon-based polymer compound layer having a reducing property or a layer obtained by ceramicizing a part or all of the layer is further formed. The method according to claim 10, wherein the surface is a metal-coated particle formed by coating a metal by plating, and the outermost layer is a noble metal layer. 基材粒子の表面層を形成する還元性を有するケイ素系高分子化合物がポリシランであり、金属被覆粒子の最表層を形成する貴金属が金、銀、パラジウム、白金から選ばれる貴金属である請求項11記載の製造方法。12. The reducing silicon-based polymer compound that forms the surface layer of the substrate particles is polysilane, and the noble metal that forms the outermost layer of the metal-coated particles is a noble metal selected from gold, silver, palladium, and platinum. The manufacturing method as described.
JP2003352176A 2003-10-10 2003-10-10 Conductive powder and method for producing the same Expired - Fee Related JP4114074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352176A JP4114074B2 (en) 2003-10-10 2003-10-10 Conductive powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352176A JP4114074B2 (en) 2003-10-10 2003-10-10 Conductive powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005116465A JP2005116465A (en) 2005-04-28
JP4114074B2 true JP4114074B2 (en) 2008-07-09

Family

ID=34543197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352176A Expired - Fee Related JP4114074B2 (en) 2003-10-10 2003-10-10 Conductive powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4114074B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186730B2 (en) * 2006-05-16 2013-04-24 日産自動車株式会社 Battery electrode
JP5323461B2 (en) * 2008-12-03 2013-10-23 福田金属箔粉工業株式会社 Fine metal powder for conductive paint and method for producing the same
DE102012209513A1 (en) * 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Connector, method for connecting two bodies and electronic assembly
JP2019210471A (en) * 2018-06-04 2019-12-12 国立大学法人北陸先端科学技術大学院大学 Conductive ink and conductive film
JP7426070B2 (en) * 2019-12-10 2024-02-01 国立大学法人北陸先端科学技術大学院大学 Conductive ink and conductive film

Also Published As

Publication number Publication date
JP2005116465A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
TWI300084B (en)
KR100537130B1 (en) Conductive Powder and Making Process
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP3956121B2 (en) Conductive silicone adhesive composition
KR101186945B1 (en) Nickel coated copper powder and process for producing the same
JP2007242307A (en) Conductive particulate and anisotropic conductive material
Zhang et al. PVP-mediated galvanic replacement synthesis of smart elliptic Cu–Ag nanoflakes for electrically conductive pastes
JP2004332047A (en) Linked metal powder, its manufacturing method, and electroconductivity-imparting material using the powder
JP2013177690A (en) REDUCTION-PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND METHOD FOR PRODUCING THE SAME
JP4114074B2 (en) Conductive powder and method for producing the same
JP4022750B2 (en) Conductive powder, method for producing the same, and conductive silicone rubber composition
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP4535289B2 (en) Conductive composition
JP4085228B2 (en) Metal-coated powder and method for producing the same
JP2007217693A (en) Silicone rubber composite material and method for producing the same
JP2012169212A (en) Composition for forming conductive pattern and method for forming conductive pattern
KR101718158B1 (en) Low specific gravity conductive particle, method for producing the particle, and composite structure comprising the particle
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP2008021513A (en) Conductive magnetic powder
JP5368611B1 (en) Conductive fine particles
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP4054969B2 (en) Conductive composition
JP2002363603A (en) Ni ALLOY GRAIN FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM AND PRODUCTION METHOD THEREFOR
Nakamoto et al. A variety of silver nanoparticle pastes for fine electronic circuit pattern formation
WO2017057231A1 (en) Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees