JP4114012B2 - Multi-branched polyether polyol - Google Patents

Multi-branched polyether polyol Download PDF

Info

Publication number
JP4114012B2
JP4114012B2 JP2005100813A JP2005100813A JP4114012B2 JP 4114012 B2 JP4114012 B2 JP 4114012B2 JP 2005100813 A JP2005100813 A JP 2005100813A JP 2005100813 A JP2005100813 A JP 2005100813A JP 4114012 B2 JP4114012 B2 JP 4114012B2
Authority
JP
Japan
Prior art keywords
polyether polyol
polyol
branched polyether
component
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005100813A
Other languages
Japanese (ja)
Other versions
JP2006282698A5 (en
JP2006282698A (en
Inventor
ライナー・ビー・フリングス
俊博 大木
泰廣 高田
均 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2005100813A priority Critical patent/JP4114012B2/en
Priority to TW095121593A priority patent/TWI370144B/en
Publication of JP2006282698A publication Critical patent/JP2006282698A/en
Publication of JP2006282698A5 publication Critical patent/JP2006282698A5/en
Application granted granted Critical
Publication of JP4114012B2 publication Critical patent/JP4114012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、ウレタン系樹脂組成物のポリオール成分として有用な新規な多分岐ポリエーテルポリオール、及び、作業性に優れると共に、硬質な硬化物を与えるウレタン系樹脂組成物に関する。   The present invention relates to a novel multi-branched polyether polyol useful as a polyol component of a urethane-based resin composition, and a urethane-based resin composition that is excellent in workability and gives a hard cured product.

ポリオール成分とポリイソシアネート成分とからなるウレタン系樹脂組成物は、硬化性や硬化塗膜の伸びが良好であるという特長から建設材料用床材などの被覆材に広く用いられている。しかし乍ら、かかるウレタン系樹脂組成物は、一般に軟質である他、塗膜が吸湿して発泡し易く、被膜外観に劣るという問題を有しており、近年、硬質タイプのウレタン系樹脂組成物が種々検討されてきた(例えば、特許文献1参照)。一方、被覆材の硬質化を図るには、一般にポリオール成分とポリイソシアネート成分との反応性を高めればよいが、この場合、両者混合時に速やかにこれらが反応してしまう為、十分な可使時間を確保できないものであった。そこで、従来より、ビスフェノール型エポキシ樹脂に高級脂肪酸を反応させた構造のポリオールと、ひまし油脂肪酸との混合物をポリオール成分として用い、かつ、ピュアMDIとポリメリックMDIとを所定割合で配合したものをポリイソシアネート成分として用いることによって、可使時間を十分に確保し乍らも硬質で、かつ、高温多湿下であっても発泡し難い硬質タイプのウレタン系被服用樹脂組成物が知られている(下記、特許文献2参照)。   A urethane-based resin composition comprising a polyol component and a polyisocyanate component is widely used for coating materials such as flooring materials for construction materials because of its good curability and elongation of a cured coating film. However, such a urethane resin composition is generally soft, and has a problem that the coating film absorbs moisture and easily foams, resulting in a poor appearance of the coating film. Recently, a hard type urethane resin composition is used. Have been studied in various ways (see, for example, Patent Document 1). On the other hand, in order to increase the hardness of the coating material, it is generally sufficient to increase the reactivity between the polyol component and the polyisocyanate component, but in this case, since these react quickly when mixed, sufficient pot life Could not be secured. Therefore, conventionally, a polyisocyanate is obtained by using a mixture of a polyol having a structure in which a higher fatty acid is reacted with a bisphenol-type epoxy resin and castor oil fatty acid as a polyol component and blending pure MDI and polymeric MDI in a predetermined ratio. By using it as a component, a hard type urethane-based resin composition for clothing that is sufficiently hard to secure a pot life and hard to foam even under high temperature and high humidity is known (the following, Patent Document 2).

しかし、このビスフェノール型エポキシ樹脂に高級脂肪酸を反応させた構造のポリオールと、ひまし油との混合物をポリオール成分として用い、かつ、ポリイソシアネート成分としてピュアMDIとポリメリックMDIとを所定割合で配合したものを用いる技術は、確かに可使時間が長く、かつ、硬質な塗膜が形成されるものの、とりわけポリオール成分の粘度が著しく高いため、刷毛塗りやローラー塗り、スプレー塗布といった、熟練を要することなく、かつ、表面仕上がりに斑の生じない塗工方法への適用が困難なものであった。
特開昭57−92015号公報 特開2001−187863
However, a mixture of a polyol having a structure in which a higher fatty acid is reacted with this bisphenol-type epoxy resin and castor oil is used as a polyol component, and a mixture of pure MDI and polymeric MDI in a predetermined ratio is used as a polyisocyanate component. Although the technology certainly has a long pot life and a hard coating is formed, the viscosity of the polyol component is particularly high, so it does not require skill such as brush coating, roller coating, spray coating, and the like. Therefore, it was difficult to apply to a coating method in which spots were not generated on the surface finish.
JP-A-57-92015 JP 2001-187863 A

本発明が解決しようとする課題は、ウレタン系樹脂組成物におけるポリオール成分として、十分な可使時間を確保でき、また、高い硬度を硬化塗膜に付与できると共に、更に、粘度が従来になく低い新規な多分岐ポリエーテルポリオール、及び、これを含有する作業性と塗膜硬度に優れるウレタン系樹脂組成物を提供することにある。   The problem to be solved by the present invention is that a sufficient pot life can be secured as a polyol component in a urethane-based resin composition, a high hardness can be imparted to a cured coating film, and the viscosity is lower than ever before. It is an object of the present invention to provide a novel multi-branched polyether polyol and a urethane resin composition excellent in workability and coating film hardness containing the same.

本発明者等は、前記課題を解決すべく鋭意検討した結果、ヒドロキシアルキルオキセタンと1官能性エポキシ化合物とを開環反応によって共重合させて得られる多分岐構造を有し、かつ、1級水酸基と2級水酸基とを有し、更に、所定の全水酸基量及び分子量を有する化合物をウレタン系樹脂組成物におけるポリオール成分として用いることにより、可使時間も長く且つ硬化時の架橋密度も高くなると同時に、当該化合物の慣性半径が小さくなり、低粘度化を図ることができることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have a multibranched structure obtained by copolymerizing a hydroxyalkyl oxetane and a monofunctional epoxy compound by a ring-opening reaction, and have a primary hydroxyl group. And a secondary hydroxyl group, and furthermore, by using a compound having a predetermined total hydroxyl group amount and molecular weight as a polyol component in the urethane-based resin composition, the pot life is long and the crosslinking density at the time of curing is also increased. The inventors have found that the radius of inertia of the compound is reduced and the viscosity can be reduced, and the present invention has been completed.

すなわち本発明は、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを(a1)/(a2)=1/1〜1/3(モル比)で開環反応させて得られる多分岐ポリエーテルポリオールであって、その分子構造中に1級水酸基(H1)と2級水酸基(H2)とを有しており、かつ、その分子構造中に2級水酸基(H2)を、全水酸基数に対して20〜70%の割合で有しており、前記多分岐ポリエーテルポリオールの数平均分子量(Mn)が1000〜3500、水酸基価が150〜350mg・KOH/gであることを特徴とする多分岐ポリエーテルポリオールに関する。 That is, the present invention is obtained by ring-opening reaction of hydroxyalkyl oxetane (a1) and monofunctional epoxy compound (a2) at (a1) / (a2) = 1/1 to 1/3 (molar ratio). It is a multi-branched polyether polyol having a primary hydroxyl group (H1) and a secondary hydroxyl group (H2) in its molecular structure , and all of the secondary hydroxyl groups (H2) in its molecular structure. The polybranched polyether polyol has a number average molecular weight (Mn) of 1000 to 3500 and a hydroxyl value of 150 to 350 mg · KOH / g. To a multi-branched polyether polyol.

本発明によれば、ウレタン系樹脂組成物におけるポリオール成分として、十分な可使時間を確保でき、また、高い硬度を硬化塗膜に付与できると共に、更に、粘度を従来になく低くいポリエーテルポリオールを提供できる。よって、これを含有するウレタン系樹脂組成物は、優れた作業性と塗膜硬度とを兼備させることができる。   According to the present invention, as a polyol component in the urethane-based resin composition, a sufficient pot life can be secured, a high hardness can be imparted to the cured coating film, and a polyether polyol having a viscosity which is not low as in the prior art. Can provide. Therefore, the urethane type resin composition containing this can combine the outstanding workability | operativity and coating-film hardness.

以下本発明をさらに詳細に説明する。
本発明の多分岐ポリエーテルポリオールは、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを開環反応させて得られる多分岐ポリエーテルポリオールである。本発明では、このような構造を有することから、当該多分岐ポリエーテルポリオールの慣性半径が小さくなって、分子同士の絡みが少なくなる結果、粘度が低くなる。
The present invention is described in further detail below.
The multi-branched polyether polyol of the present invention is a multi-branched polyether polyol obtained by ring-opening reaction of a hydroxyalkyl oxetane (a1) and a monofunctional epoxy compound (a2). In this invention, since it has such a structure, the inertial radius of the said multibranched polyether polyol becomes small, resulting in less entanglement between molecules, resulting in a lower viscosity.

ここで、ヒドロキシアルキルオキセタン(a1)は、下記一般式(1)で表される構造を有するものが挙げられる。   Here, examples of the hydroxyalkyl oxetane (a1) include those having a structure represented by the following general formula (1).

Figure 0004114012

ここで、一般式(1)中、Rは、メチレン基、エチレン基、若しくはプロピレン基であり、一方、Rは、水素原子、炭素原子数1〜8のアルキル基、炭素原子数1〜5のアルコキシアルキル基、又は炭素原子数1〜6のヒドロキシアルキル基を表す。また、炭素原子数1〜8のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、及び2−エチルヘキシル基が挙げられ、炭素原子数1〜5のアルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基が挙げられる。また、炭素原子数1〜3のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、及びヒドロキシプロピル基が挙げられる。
Figure 0004114012

Here, in the general formula (1), R 1 is a methylene group, ethylene group, or propylene group, while R 2 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or 1 to 1 carbon atoms. 5 represents an alkoxyalkyl group or a hydroxyalkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a 2-ethylhexyl group. As the alkoxyalkyl group having 1 to 5 carbon atoms, Includes a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a methoxyethyl group, an ethoxyethyl group, and a propoxyethyl group. Moreover, as a C1-C3 hydroxyalkyl group, a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group are mentioned.

かかる一般式(1)で表されるヒドロキシアルキルオキセタンの中でも、慣性半径がより小さくなって粘度低減に効果的であり、また、硬化物の硬度も良好となる点から、Rがメチレン基であり、かつ、Rが炭素原子数1〜7のアルキル基である化合物、とりわけ3−ヒドロキシメチル−3−エチルオキセタン、及び3−ヒドロキシメチル−3−メチルオキセタンが好ましい。 Among the hydroxyalkyl oxetanes represented by the general formula (1), R 1 is a methylene group because the radius of inertia is smaller and effective in reducing the viscosity, and the hardness of the cured product is improved. And R 2 is an alkyl group having 1 to 7 carbon atoms, particularly 3-hydroxymethyl-3-ethyloxetane and 3-hydroxymethyl-3-methyloxetane.

次に、上記ヒドロキシアルキルオキセタン(a1)と開環反応させる1官能性エポキシ化合物(a2)は、オレフィンエポキサイド、アルキルグリシジルエーテル、アルキルグリシジルエステル等が挙げられる。   Next, examples of the monofunctional epoxy compound (a2) that undergoes a ring-opening reaction with the hydroxyalkyl oxetane (a1) include olefin epoxides, alkyl glycidyl ethers, and alkyl glycidyl esters.

ここで、オレフィンエポキサイドは、具体的には、プロピレンオキサイド、1−ブテンオキサイド、1−ペンテンオキサイド、1−ヘキセンオキサイド、1,2−エポキシオクタン、1,2−エポキシドデカン、シクロヘキセンオキシド、シクロオクテンオキシド、シクロドデセンオキシド、スチレンオキシド、及び、フッ素原子数1〜18のフロロアルキルエポキシドが挙げられる。   Here, the olefin epoxide specifically includes propylene oxide, 1-butene oxide, 1-pentene oxide, 1-hexene oxide, 1,2-epoxyoctane, 1,2-epoxydodecane, cyclohexene oxide, cyclooctene oxide. , Cyclododecene oxide, styrene oxide, and fluoroalkyl epoxide having 1 to 18 fluorine atoms.

アルキルグリシジルエーテルは、メチルグリシジルエーテル、エチルグリシジルエーテル、n−プロピルグリシジルエーテル、i−プロピルグリシジルエーテル、n−ブチルグリシジルエーテル、i−ブチルグリシジルエーテル、n−ペンチルグリシジルエーテル、2−エチルヘキシル−グリシジルエーテル、ウンデシルグリシジルエーテル、ヘキサデシルグリシジルエーテル、アリールグリシジルエーテル、フェニルグリシジルエーテル、2−メチルフェニルグリシジルエーテル、4−t−ブチルフェニルグリシジルエーテル、4−ノニルフェニルグリシジルエーテル、4−メトキシフェニルグリシジルエーテル、及び、1〜18のフッ素原子数を有するフロロアルキルグリシジルエーテルが挙げられる。   Alkyl glycidyl ether is methyl glycidyl ether, ethyl glycidyl ether, n-propyl glycidyl ether, i-propyl glycidyl ether, n-butyl glycidyl ether, i-butyl glycidyl ether, n-pentyl glycidyl ether, 2-ethylhexyl-glycidyl ether, Undecyl glycidyl ether, hexadecyl glycidyl ether, aryl glycidyl ether, phenyl glycidyl ether, 2-methylphenyl glycidyl ether, 4-t-butylphenyl glycidyl ether, 4-nonylphenyl glycidyl ether, 4-methoxyphenyl glycidyl ether, and Examples thereof include fluoroalkyl glycidyl ether having 1 to 18 fluorine atoms.

アルキルグリシジルエステルは、グリシジルアセテート、グリシジルプロピオネート、グリシジルブチレート、グリシジルメタクリレート、及びグリシジルベンゾエートが挙げられる。   Alkyl glycidyl esters include glycidyl acetate, glycidyl propionate, glycidyl butyrate, glycidyl methacrylate, and glycidyl benzoate.

これらの中でも特に、塗膜硬度が良好であり、また、分子量が小さくなる点からオレフィンエポキサイドが好ましく、とりわけプロピレンオキサイド、1−ブテンオキサイド、1−ペンテンオキサイド、又は1−ヘキセンオキサイドが好ましい。   Among these, olefin epoxide is preferable from the viewpoint of good coating film hardness and low molecular weight, and propylene oxide, 1-butene oxide, 1-pentene oxide, or 1-hexene oxide is particularly preferable.

ここで、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを開環反応させる方法は、具体的には、以下の(方法1)〜(方法3)が挙げられる。   Here, specific examples of the method of ring-opening reaction of the hydroxyalkyl oxetane (a1) and the monofunctional epoxy compound (a2) include the following (Method 1) to (Method 3).

(方法1)
方法1は、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを、モル基準で、(ヒドロキシアルキルオキセタン(a1)/1官能性エポキシ化合物(a2))1/1〜1/3となる割合で混合し、これらをパーオキサイドフリーの有機溶媒、例えば、ジエチルエーテル、ジ−i−プロピルエーテル、ジ−n−ブチルエーテル、ジ−i−ブチルエーテル、ジ−t−ブチルエーテル、t−アミルメチルエーテル、又はジオキソランで、原料成分/有機溶剤の質量比が1/1〜1/5、好ましくは1/1.5〜1/2.5となる割合で溶解する。
(Method 1)
Method 1 comprises hydroxyalkyloxetane (a1) and monofunctional epoxy compound (a2) on a molar basis, (hydroxyalkyloxetane (a1) / 1 functional epoxy compound (a2)) = 1/1 to 1 / 3, and these are mixed with a peroxide-free organic solvent such as diethyl ether, di-i-propyl ether, di-n-butyl ether, di-i-butyl ether, di-t-butyl ether, t- In amyl methyl ether or dioxolane, the raw material component / organic solvent has a mass ratio of 1/1 to 1/5, preferably 1 / 1.5 to 1 / 2.5.

得られた溶液を−10℃〜−15℃まで攪拌しながら冷却、次いで、重合開始剤を単独で、或いは溶液状態で、0.1〜1時間、好ましくは0.3〜0.5時間かけて滴下する。ここで、重合開始剤は、原料モノマーの全質量に対して0.01〜1質量%、好ましくは0.75〜0.3質量%なる割合で使用できる。また、重合開始剤を溶液状態で使用する場合、当該溶液中の重合開始剤の濃度は、1〜90質量%、特に25〜50質量%であることが好ましい。ついで、この重合溶液を25℃になる迄攪拌し、次いで、リフラックスする温度まで加熱し、0.5〜3時間かけて原料成分を全て反応するまで反応を行う。原料モノマーの転化率は、GC、NMR、又はIRスペクトルによって確認することによって制御できる。   The resulting solution is cooled while stirring to -10 ° C to -15 ° C, and then the polymerization initiator alone or in the solution state is 0.1 to 1 hour, preferably 0.3 to 0.5 hour. And dripping. Here, the polymerization initiator can be used at a ratio of 0.01 to 1% by mass, preferably 0.75 to 0.3% by mass, based on the total mass of the raw material monomers. Moreover, when using a polymerization initiator in a solution state, it is preferable that the density | concentration of the polymerization initiator in the said solution is 1-90 mass%, especially 25-50 mass%. Next, the polymerization solution is stirred until it reaches 25 ° C., then heated to a refluxing temperature, and the reaction is carried out until all the raw material components are reacted over 0.5 to 3 hours. The conversion rate of the raw material monomer can be controlled by confirming with GC, NMR, or IR spectrum.

重合後、得られた前記多分岐ポリエーテルポリオールは、前記重合開始剤と当量の水酸化アルカリ水溶液による攪拌、又は、前記重合開始剤と当量のナトリウムアルコキシドやカリウムアルコキシドの添加によって中和する。中和後、濾過し、溶媒で目的物を抽出後、減圧下に溶媒を留去し、目的とする多分岐ポリエーテルポリオールを得ることができる。   After the polymerization, the obtained multi-branched polyether polyol is neutralized by stirring with an alkali hydroxide aqueous solution equivalent to the polymerization initiator or by adding sodium alkoxide or potassium alkoxide equivalent to the polymerization initiator. After neutralization, the mixture is filtered and the desired product is extracted with a solvent, and then the solvent is distilled off under reduced pressure to obtain the desired multi-branched polyether polyol.

(方法2)
方法2は、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを、モル基準で、(ヒドロキシアルキルオキセタン(a1)/1官能性エポキシ化合物(a2))1/1〜1/3となる割合で、70℃以上の沸点を有する炭化水素系溶媒中に溶解する。ここで、炭化水素系溶媒は、例えば、n−ヘプタン、i−オクタン、シクロヘキサンが挙げられ、とりわけ溶解性の点からシクロヘキサンが好ましい。また、原料モノマーと炭化水素系溶媒との比率は、前者:後者が1:1〜1:10、特に1:2.5〜1:3.5であることが好ましい。
(Method 2)
Method 2 comprises hydroxyalkyloxetane (a1) and monofunctional epoxy compound (a2) on a molar basis, (hydroxyalkyloxetane (a1) / 1 functional epoxy compound (a2)) = 1/1 to 1 It dissolves in a hydrocarbon solvent having a boiling point of 70 ° C. or higher at a ratio of / 3. Here, examples of the hydrocarbon solvent include n-heptane, i-octane, and cyclohexane, and cyclohexane is particularly preferable from the viewpoint of solubility. The ratio of the raw material monomer to the hydrocarbon solvent is preferably 1: 1 to 1:10, particularly 1: 2.5 to 1: 3.5, the former: the latter.

この混合物の温度は、0〜25℃、好ましくは5〜15℃、特に好ましくは10〜15℃に保持され、次いで、攪拌下に原料モノマーの全量に対して0.01〜1モル%、特に0.05〜0.15モル%の重合開始剤を一度に加える。
重合開始剤の添加直後、系内は不均一系になって25〜40℃まで系内温度が上昇する。一旦、15〜25℃まで冷却した後、反応混合物を40〜70℃、好ましくは50〜60℃まで加熱して、1〜5時間、好ましくは2〜3時間の間、原料モノマーが全て転化するまで反応を行う。反応終了後は、方法1と同様にして中和、濾過し、次いで、溶媒を留去する。
The temperature of the mixture is maintained at 0 to 25 ° C., preferably 5 to 15 ° C., particularly preferably 10 to 15 ° C., and then 0.01 to 1 mol% with respect to the total amount of raw material monomers with stirring, in particular 0.05 to 0.15 mol% of polymerization initiator is added at once.
Immediately after the addition of the polymerization initiator, the system becomes heterogeneous and the system temperature rises to 25-40 ° C. Once cooled to 15-25 ° C., the reaction mixture is heated to 40-70 ° C., preferably 50-60 ° C., and all the raw material monomers are converted for 1-5 hours, preferably 2-3 hours. Perform the reaction until After completion of the reaction, the solution is neutralized and filtered in the same manner as in Method 1, and then the solvent is distilled off.

(方法3)
方法3は、原料モノマーの全量に対して0.01〜1モル%、特に0.05〜0.15モル%となる量の重合開始剤を、70℃以上の沸点を有する炭化水素系有機溶媒に溶解し、これを0〜25℃、好ましくは5〜15℃、特に好ましくは10〜15℃に保持する。ここで、炭化水素系溶媒は、例えば、n−ヘプタン、i−オクタン、シクロヘキサンが挙げられ、とりわけ溶解性の点からシクロヘキサンが好ましい。また、該炭化水素系溶媒中の重合開始剤濃度は、0.01〜1質量%、特に0.025〜0.25質量%であることが好ましい。
(Method 3)
Method 3 is a hydrocarbon-based organic solvent having a boiling point of 70 ° C. or higher with an amount of 0.01 to 1 mol%, particularly 0.05 to 0.15 mol% of the polymerization initiator based on the total amount of raw material monomers. And is maintained at 0 to 25 ° C, preferably 5 to 15 ° C, particularly preferably 10 to 15 ° C. Here, examples of the hydrocarbon solvent include n-heptane, i-octane, and cyclohexane, and cyclohexane is particularly preferable from the viewpoint of solubility. The polymerization initiator concentration in the hydrocarbon solvent is preferably 0.01 to 1% by mass, particularly preferably 0.025 to 0.25% by mass.

この溶液に対して、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを、モル基準で、(ヒドロキシアルキルオキセタン(a1)/1官能性エポキシ化合物(a2))1/1〜1/3となる割合で、混合した混合物を、系内の温度が20〜35℃になるように連続的に滴下する。滴下終了後も系内の温度が20〜25℃になるまで攪拌を行う。次いで、反応混合物を40〜70℃、好ましくは50〜60℃まで加熱して、1〜5時間、好ましくは2〜3時間の間、原料モノマーが全て転化するまで反応を行う。原料モノマーの転化率は、GC、NMR、又はIRスペクトルによって確認することによって制御できる。反応終了後は、方法1と同様にして中和、濾過し、次いで、溶媒を留去する。 To this solution, hydroxyalkyloxetane (a1) and monofunctional epoxy compound (a2) on a molar basis, (hydroxyalkyloxetane (a1) / 1 functional epoxy compound (a2)) = 1/1 The mixed mixture is continuously added dropwise at a ratio of ˜1 / 3 so that the temperature in the system is 20 to 35 ° C. Stirring is continued until the temperature in the system reaches 20 to 25 ° C. even after completion of the dropping. Next, the reaction mixture is heated to 40 to 70 ° C., preferably 50 to 60 ° C., and the reaction is performed for 1 to 5 hours, preferably 2 to 3 hours until all the raw material monomers are converted. The conversion rate of the raw material monomer can be controlled by confirming with GC, NMR, or IR spectrum. After completion of the reaction, the solution is neutralized and filtered in the same manner as in Method 1, and then the solvent is distilled off.

ここで用いる重合開始剤は、HSO、HCl、HBF、HPF、HSbF、HAsF、p−トルエンスルホン酸、トリフロロメタンスルホン酸などのブロンステッド酸、BF、AlCl、TiCl、SnClなどのルイス酸、トリアリールスルフォニウム−ヘキサフルオロホスフェート、トリアリールスルフォニウム−アンチモネート、ジアリールイオドニウム−ヘキサフルオロホスフェート、ジアリールイオドニウム−アンチモネート、N−ベンジルピリジニウム−ヘキサフルオロホスフェート、N−ベンジルピリジニウム−アンチモネートなどのオニウム塩化合物、トリフェニルカルボニウム−テトラフルオロボレート、トリフェニルカルボニウム−ヘキサフルオロホスフェート、トリフェニルカルボニウム−ヘキサフルオロアンチモネートなどのトリフェニルカルボニウム塩、p−トルエンスルホニルクロライド、メタンスルホニルクロライド、トリフルオロメタンスルホニルクロライド、p−トルエンスルホン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、p−トルエンスルホン酸メチルエステル、p−トルエンスルホン酸エチルエステル、メタンスルホン酸メチルエステル、トリフルオロメタンスルホン酸メチルエステル、トリフルオロメタンスルホン酸トリメチルシリルエステルなどのアルキル化剤が挙げられる。 The polymerization initiator used here, H 2 SO 4, HCl, HBF 4, HPF 6, HSbF 6, HAsF 6, p- toluenesulfonic acid, Bronsted acids such as trifluoromethanesulfonic acid, BF 3, AlCl 3, Lewis acids such as TiCl 4 , SnCl 4 , triarylsulfonium-hexafluorophosphate, triarylsulfonium-antimonate, diaryliodonium-hexafluorophosphate, diaryliodonium-antimonate, N-benzylpyridinium-hexa Onium salt compounds such as fluorophosphate, N-benzylpyridinium-antimonate, triphenylcarbonium-tetrafluoroborate, triphenylcarbonium-hexafluorophosphate, triphenylcarbonate Triphenylcarbonium salts such as nitro-hexafluoroantimonate, p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonic acid anhydride, methanesulfonic acid anhydride, trifluoromethanesulfonic acid anhydride, Examples include alkylating agents such as p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid ethyl ester, methanesulfonic acid methyl ester, trifluoromethanesulfonic acid methyl ester, and trifluoromethanesulfonic acid trimethylsilyl ester.

これらのなかでも特に、HPF、HSbF、HAsF、トリフェニルカルボニウム−ヘキサフルオロホスフェートが活性に優れる点から好ましく、特にHPF及びトリフェニルカルボニウム−ヘキサフルオロホスフェートが好ましい。 Among these, HPF 6 , HSbF 6 , HAsF 6 , and triphenylcarbonium-hexafluorophosphate are particularly preferable from the viewpoint of excellent activity, and HPF 6 and triphenylcarbonium-hexafluorophosphate are particularly preferable.

このようにして得られる多分岐ポリエーテルポリオールは、その分子構造中に1級水酸基(H1)と2級水酸基(H2)とを有しており、かつ、前記多分岐ポリエーテルポリオールの数平均分子量(Mn)が1,000〜3,500、水酸基価が150〜350mg・KOH/gであることを特徴としている。   The multibranched polyether polyol thus obtained has a primary hydroxyl group (H1) and a secondary hydroxyl group (H2) in its molecular structure, and the number average molecular weight of the multibranched polyether polyol. (Mn) is 1,000 to 3,500, and a hydroxyl value is 150 to 350 mg · KOH / g.

即ち、本発明の多分岐ポリエーテルポリオールは、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを開環反応させて得られる多分岐構造を有することから該多分岐ポリエーテルポリオールの慣性半径が小さくなり、更に、数平均分子量(Mn)が1,000〜3,500という低い値を有することから、従来になく流動性が極めて良好となり、ウレタン系樹脂組成物として作業性が飛躍的に改善される。また、水酸基価が150〜350mg・KOH/gであり、分子量が小さい割に多くの水酸基を有することから硬化時の架橋密度が高くなって、硬質の塗膜を形成できる。   That is, the multi-branched polyether polyol of the present invention has a multi-branched structure obtained by ring-opening reaction of hydroxyalkyl oxetane (a1) and monofunctional epoxy compound (a2). And the number average molecular weight (Mn) has a low value of 1,000 to 3,500, so that the fluidity is extremely good compared to the prior art, and workability as a urethane resin composition is improved. Dramatically improved. Moreover, since it has a hydroxyl value of 150 to 350 mg · KOH / g and a large number of hydroxyl groups for a small molecular weight, the crosslinking density at the time of curing is increased, and a hard coating film can be formed.

更に、分子構造中に1級水酸基(H1)のみならず、2級水酸基(H2)を有することから、該2級水酸基(H1)の反応遅延性に起因して可使時間を長時間確保することができる。本発明においてこのような反応性の低い2級水酸基(H2)を有しながらも、最終的な硬化物の硬度が良好となるのは、当該多分岐ポリエーテルポリオールの分子構造が球状形状をとり、該球状体の外側に向けて水酸基が存在するため、反応速度が低下しても、最終的には殆どの水酸基が十分に反応に寄与し、硬化物の架橋密度が極めて高くなるためである。このような可使時間と硬化物硬度とのバランスの点から特に前記2級水酸基(H2)の存在割合が全水酸基数に対して20〜70%となる割合である。

Further, since the molecular structure has not only the primary hydroxyl group (H1) but also the secondary hydroxyl group (H2), the pot life is secured for a long time due to the reaction delay of the secondary hydroxyl group (H1). be able to. In the present invention, the hardness of the final cured product is good although it has such a low reactive secondary hydroxyl group (H2). The molecular structure of the multi-branched polyether polyol has a spherical shape. This is because, since the hydroxyl group exists toward the outside of the spherical body, even if the reaction rate decreases, finally, most of the hydroxyl group contributes sufficiently to the reaction, and the crosslink density of the cured product becomes extremely high. . Such existing ratio of especially the secondary hydroxyl group from the viewpoint (H2) of the balance of pot life and the cured hardness of Ru ratio der to be 20% to 70% relative to the total number of hydroxyl groups.

なお、多分岐ポリエーテルポリオール中の全水酸基数に対する2級水酸基(H2)の割合は、多分岐ポリエーテルポリオールをトリフロロ酢酸エステルとを反応させた後、19F−NMRで測定することによって特定することができる。 The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups in the multi-branched polyether polyol is specified by measuring 19 F-NMR after reacting the multi-branched polyether polyol with trifluoroacetic acid ester. be able to.

このような多分岐ポリエーテルポリオールの具体的構造は、ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを開環反応させて得られる種々の構造が含まれる。具体的には、下記一般式(1)   Specific structures of such a multi-branched polyether polyol include various structures obtained by ring-opening reaction of hydroxyalkyl oxetane (a1) and monofunctional epoxy compound (a2). Specifically, the following general formula (1)

Figure 0004114012
(ここで、一般式(1)中、R及びRは、前記したものと同一である。)
で表されるヒドロキシアルキルオキセタン(a1)と、下記一般式(2)
Figure 0004114012
(Here, in general formula (1), R 1 and R 2 are the same as described above.)
And a hydroxyalkyl oxetane (a1) represented by the following general formula (2)

Figure 0004114012
(ここで、一般式(2)中、Rは前記1官能性エポキシ化合物(a2)のエポキシ基の他の構造を表す。)で表される1官能性エポキシ化合物(a2)とを開環反応させた場合、下記の構造で表される繰り返し単位、および、末端構造単位の中から適宜選択される構造単位で前記多分岐ポリエーテルポリオールは構成されることになる。
Figure 0004114012
(Wherein R 3 represents another structure of the epoxy group of the monofunctional epoxy compound (a2) in the general formula (2)) and the monofunctional epoxy compound (a2) represented by the ring opening. When reacted, the multi-branched polyether polyol is composed of a repeating unit represented by the following structure and a structural unit appropriately selected from terminal structural units.

Figure 0004114012
Figure 0004114012

Figure 0004114012
Figure 0004114012

ここで、前記各構造単位において実線部分は当該構造単位内の単結合を示し、破線部分は、他の構造単位とエーテル結合を形成する単結合を示す。また、前記OR1〜OR3、OE1、及びOE2は、ヒドロキシアルキルオキセタン(a1)に起因する構造単位であって、OR1〜OR3は繰り返し単位を表し、OE1及びOE2は末端構造単位を表す。
また、ER1、EE1、及びEE2は、前記1官能性エポキシ化合物(a2)に起因する構造単位であって、ER1は繰り返し単位を表し、EE1及びEE2は末端構造単位を表す。
Here, in each of the structural units, a solid line portion indicates a single bond in the structural unit, and a broken line portion indicates a single bond that forms an ether bond with another structural unit. Moreover, said OR1-OR3, OE1, and OE2 are structural units resulting from a hydroxyalkyl oxetane (a1), OR1-OR3 represents a repeating unit, and OE1 and OE2 represent a terminal structural unit.
Further, ER1, EE1, and EE2 are structural units derived from the monofunctional epoxy compound (a2), ER1 represents a repeating unit, and EE1 and EE2 represent terminal structural units.

本発明の多分岐ポリエーテルポリオールは、前記OR1〜OR3及びER1から選択される繰り返し単位によって多分岐構造が形成され、末端に前記OE1、OE2、EE1、及びEE2から選択される末端構造単位を有するものである。なお、これらの繰り返し単位及び末端構造単位はランダムに存在していてもよいし、OR1〜OR3が分子構造の中心部分を構成し、末端に前記末端構造単位を有するものであってもよい。なお、本発明では2級水酸基(H2)が必須であることから、前記EE1は必須の構造単位として多分岐ポリエーテルポリオール中に存在する。   The multi-branched polyether polyol of the present invention has a multi-branched structure formed by repeating units selected from the OR1 to OR3 and ER1, and has a terminal structural unit selected from the OE1, OE2, EE1, and EE2 at the terminal. Is. In addition, these repeating units and terminal structural units may exist at random, OR1-OR3 may comprise the center part of molecular structure, and may have the said terminal structural unit at the terminal. In the present invention, since the secondary hydroxyl group (H2) is essential, the EE1 is present in the multi-branched polyether polyol as an essential structural unit.

本発明のウレタン系樹脂組成物は、ポリオール成分(A)及びポリイソシアネート成分(B)との二成分系硬化性組成物であって、当該ポリオール成分(A)として、前記多分岐ポリエーテルポリオールを用いることを特徴としている。
本発明では、ポリオール成分(A)として、前記多分岐ポリエーテルポリオールに加え、水酸基含有高級脂肪酸アルキルエステルを併用することが、2液混合状態での混合物の疎水性が高まり硬化時の発泡を抑制できる点から好ましい。
The urethane-based resin composition of the present invention is a two-component curable composition with a polyol component (A) and a polyisocyanate component (B), and the multi-branched polyether polyol is used as the polyol component (A). It is characterized by use.
In the present invention, as the polyol component (A), in addition to the multi-branched polyether polyol, the use of a hydroxyl group-containing higher fatty acid alkyl ester increases the hydrophobicity of the mixture in a two-component mixed state and suppresses foaming during curing. It is preferable because it can be performed.

かかる水酸基含有脂肪酸アルキルエステルとは、ステアリン酸、リノール酸等の高級脂肪酸を、グリコール及びグリセリンなどの多価アルコールと水酸基が残存するように反応させた水酸基含有のエステル化合物、リシノール酸などの水酸基含有高級脂肪酸をモノアルコール、グリコール、グリセリン、トリメチロールプロパンなどと反応させたエステル化合物などの他、ひまし油等の水酸基含有天然油脂が挙げられる。
また、椰子油、大豆油などの水酸基を実効量含有しない天然油脂であっても、これらを多価アルコールとエステル交換反応させて水酸基を導入したものであってもよい。
The hydroxyl group-containing fatty acid alkyl ester is a hydroxyl group-containing ester compound obtained by reacting a higher fatty acid such as stearic acid or linoleic acid with a polyhydric alcohol such as glycol or glycerine so that the hydroxyl group remains, and a hydroxyl group containing ricinoleic acid or the like. In addition to ester compounds obtained by reacting higher fatty acids with monoalcohol, glycol, glycerin, trimethylolpropane, and the like, hydroxyl group-containing natural fats and oils such as castor oil are exemplified.
Further, even natural oils and fats such as coconut oil and soybean oil that do not contain an effective amount of hydroxyl groups may be those obtained by transesterifying these with polyhydric alcohol to introduce hydroxyl groups.

更に、上記した水酸基含有脂肪酸アルキルエステルのうち、アルキル鎖に二重結合を含むものは、更に疎水性を高めるべく、ジシクロペンタジエンで変性したものも好ましく用いることができる。これらのなかでも特に、塗膜の疎水性向上の効果が顕著である点から、水酸基価100〜300mg・KOH/g、かつ、アルキル鎖部分の炭素原子数10〜25のものがとりわけ好ましい。   Further, among the hydroxyl group-containing fatty acid alkyl esters described above, those having a double bond in the alkyl chain can be preferably used those modified with dicyclopentadiene to further increase the hydrophobicity. Among these, particularly those having a hydroxyl value of 100 to 300 mg · KOH / g and an alkyl chain portion of 10 to 25 carbon atoms are particularly preferred since the effect of improving the hydrophobicity of the coating film is remarkable.

なお、ポリオール成分(A)中において、多分岐ポリマーポリオールと水酸基含有高級脂肪酸アルキルエステルとの使用割合は、前者/後者の質量比で、3/7〜9/1であることが発泡抑制の効果の点から好ましい。   In the polyol component (A), the ratio of the use of the hyperbranched polymer polyol and the hydroxyl group-containing higher fatty acid alkyl ester is 3/7 to 9/1 in terms of the former / latter mass ratio. From the point of view, it is preferable.

前記ポリオール成分(A)としては、更に本発明の効果を損なわない範囲で、公知慣用のエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4ブタンジオール、1,3ブタンジオール、3−メチルペンタンジオール、3,3−ジメチロールヘプタン、トリメチロールプロパン等の単鎖ポリオール類、これら単鎖ポリオール類とアルキレンオキサイド類(例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等)を重合させたポリアルキレンエーテルポリオール類あるいはフタル酸、マレイン酸、アジピン酸、ヘット酸、コハク酸、水添ダイマー酸等の二塩基酸と前述の単鎖グリコール類とのエステル化反応によって得られるポリエステルポリオール類、ポリオール類に付加重合させたイプシロンカプロラクトンのポリオールやポリテトラメチレンエーテルグリコール、ポリブタジエンポリオール、ポリオール型キシレンホルムアルデヒド樹脂等を用いることができる。   As the polyol component (A), a publicly known and commonly used ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4 butanediol, 1,3 butanediol, 3-methyl may be used as long as the effects of the present invention are not impaired. Polyesters obtained by polymerizing single-chain polyols such as pentanediol, 3,3-dimethylolheptane and trimethylolpropane, and these single-chain polyols and alkylene oxides (for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc.) Polyester polyols obtained by esterification reaction of alkylene ether polyols or dibasic acids such as phthalic acid, maleic acid, adipic acid, het acid, succinic acid, and hydrogenated dimer acid with the aforementioned single-chain glycols Can be used polyols and polytetramethylene ether glycol epsilon caprolactone obtained by addition polymerization in polyols, polybutadiene polyols, the polyol type xylene formaldehyde resin and the like.

次に、本発明のウレタン系樹脂組成物において前記ポリオール成分(A)と組み合わされる、ポリイソシアネート成分(B)は、例えば、公知の脂肪族系ポリイソシアネート及び芳香族系ポリイソシアネートを用いることができる。   Next, for the polyisocyanate component (B) combined with the polyol component (A) in the urethane resin composition of the present invention, for example, known aliphatic polyisocyanates and aromatic polyisocyanates can be used. .

ここで、脂肪族系ポリイソシアネートとしては、ヘキサメチレンジイソシアネート(以下、「HDI」と略記する。)などのアルキレンジイソシアネート、脂環式炭化水素構造含有ジイソシアネート、ビューレット変性HDI及びイソシアヌレート変性HDIなどのジイソシアネート化合物の3量体、並びにHDIとトリメチロールプロパンとの付加反応化合物などが挙げられる。     Here, examples of the aliphatic polyisocyanate include alkylene diisocyanates such as hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), alicyclic hydrocarbon structure-containing diisocyanates, burette-modified HDI, and isocyanurate-modified HDI. Examples include trimers of diisocyanate compounds, addition reaction compounds of HDI and trimethylolpropane, and the like.

次に、芳香族系ポリイソシアネートとしては、ジフェニルメタンジイソシアネート(以下、「MDI」と略称する。)、ポリメチレンポリフェニルポリイソシアネート(以下、「ポリメリックMDI」と略記する。)、トリレンジイソシアネート(以下、「TDI」と略記する。)、キシリレンジイソシアネート(以下、「XDI」と略記する。)、あるいは、ウレチジオン変性TDIなどのジイソシアネート化合物の2量体などが挙げられる。   Next, as the aromatic polyisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as “MDI”), polymethylene polyphenyl polyisocyanate (hereinafter abbreviated as “polymeric MDI”), tolylene diisocyanate (hereinafter referred to as “MDI”). Abbreviated as "TDI"), xylylene diisocyanate (hereinafter abbreviated as "XDI"), or dimers of diisocyanate compounds such as uretidione-modified TDI.

これらの中でも特に硬化物の硬度に優れる点から、芳香族系ポリイソシアネートが好ましく、とりわけポリメリックMDIが硬度の改善効果が顕著である点から好ましい。ここで、ポリメリックMDIは、アニリンとホルマリンとの重縮合によって得られる高分子量体をイソシアネート化したものであり、MDI、及びそれ以上の核体数を有するものの混合物として用いられる。通常、核体数が増加するに従い、硬化物の硬度は高まるものの増粘しやすくなり、その一方で、核体数が低下するに従い、ポリオール成分(A)との相溶性が良好で、粘度は低くなるものの、結晶化しやすくなって低温での安定性に劣る。そこで、本発明ではポリメリックMDIに占める前記MDIの割合、即ち、2官能性成分の割合を50〜80質量%となる割合に調節することがこれらの性能バランスの点から好ましい。とりわけこの物性バランスに優れ、かつ、被膜面の色斑防止といった、所謂、仕上がり性が良好となる点から60〜70質量%であることが好ましい。   Among these, aromatic polyisocyanate is preferable from the viewpoint of excellent hardness of the cured product, and polymeric MDI is particularly preferable from the viewpoint of remarkable hardness improvement effect. Here, polymeric MDI is obtained by isocyanate-izing a high molecular weight product obtained by polycondensation of aniline and formalin, and is used as a mixture of MDI and those having a number of nuclei higher than that. Normally, as the number of nuclei increases, the hardness of the cured product increases, but the viscosity tends to increase. On the other hand, as the number of nuclei decreases, the compatibility with the polyol component (A) is good and the viscosity is Although it becomes low, it becomes easy to crystallize and is inferior in stability at low temperature. Therefore, in the present invention, it is preferable from the viewpoint of these performance balances to adjust the ratio of the MDI in the polymeric MDI, that is, the ratio of the bifunctional component to a ratio of 50 to 80% by mass. In particular, the amount is preferably 60 to 70% by mass from the viewpoint of excellent balance of physical properties and good so-called finish properties such as prevention of color spots on the coating surface.

なお、ポリイソシアネート成分(B)として、単独で使用されるMDI、或いは、ポリメリックMDIにおける核体数の調整の為に使用されるMDIは、2,2’−ジフェニルメタンジイソシアネート(以下、「2,2’−MDI」と略記する。)(イ)、2,4’−ジフェニルメタンジイソシアネート(以下、「2,4’−MDI」と略記する。)(ロ)及び4,4’−ジフェニルメタンジイソシアネート(以下、「4,4’−MDI」と略記する。)(ハ)から構成される。ここで、MDI中の2,2’−MDI(イ)と2,4’−MDI(ロ)の合計質量((イ)+(ロ))が少なくなると、低温でポリイソシアネート成分(B)が結晶化しやすく、逆に、前記合計質量((イ)+(ロ))が多くなると、硬化物の硬度が発現し難くなる傾向にある。従って、これら(イ)〜(ハ)の質量比は、((イ)+(ロ)):(ハ)=5:95〜40:60、とりわけ((イ)+(ロ)):(ハ)=10:90〜30:70の範囲であることが、ポリイソシアネート成分(B)の低温安定性、及び硬化物硬度の点から好ましい。   As the polyisocyanate component (B), MDI used alone or MDI used for adjusting the number of nuclei in polymeric MDI is 2,2′-diphenylmethane diisocyanate (hereinafter “2,2”). (A), 2,4'-diphenylmethane diisocyanate (hereinafter abbreviated as "2,4'-MDI") (b) and 4,4'-diphenylmethane diisocyanate (hereinafter, "-MDI"). (Abbreviated as “4,4′-MDI”). Here, when the total mass ((b) + (b)) of 2,2′-MDI (b) and 2,4′-MDI (b) in MDI decreases, the polyisocyanate component (B) is reduced at a low temperature. It is easy to crystallize, and conversely, when the total mass ((b) + (b)) increases, the hardness of the cured product tends to be difficult to express. Therefore, the mass ratio of (A) to (C) is ((I) + (B)) :( C) = 5: 95 to 40:60, especially ((A) + (B)) :( C ) = 10: 90 to 30:70 is preferable from the viewpoint of the low temperature stability of the polyisocyanate component (B) and the hardness of the cured product.

また、本発明ではポリイソシアネート成分(B)として、脂環式炭化水素構造含有ジイソシアネートを用いた場合、その硬化皮膜は硬質であり乍ら、適度な柔軟性を発現し、ひび割れに対する十分な追従性を発現する。また、芳香族系ポリイソシアネートを用いた場合に生じやすい紫外線劣化による黄変を低減させることができ、意匠性に優れた被覆面を形成することができる。   Further, in the present invention, when the diisocyanate containing an alicyclic hydrocarbon structure is used as the polyisocyanate component (B), the cured film is hard but expresses an appropriate flexibility and has sufficient followability to cracks. Is expressed. In addition, yellowing due to ultraviolet degradation that easily occurs when aromatic polyisocyanate is used can be reduced, and a coated surface with excellent design can be formed.

かかる、脂環式炭化水素構造含有ジイソシアネートは、具体的には、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ノルボルネンジイソシアネート、ジメタノナフタレンジイソシアネート、及び、これらとポリオールとを反応させて得られるポリイソシアネートが挙げられる。
ここで使用し得るポリオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、テトラメチレングリコール、1,3−ブタンジオール、3−メチルペンタンジオール、3,3−ジメチロールヘプタン、トリメチロールプロパン等のアルキレンジオール、或いは、これらのアルキレンジオールにエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等のアルキレンオキサイドを重合させたポリアルキレンエーテルポリオールが挙げられる。また、前記アルキレンジオールに、フタル酸、マレイン酸、アジピン酸、ヘット酸、コハク酸、水添ダイマー酸等の二塩基酸とのエステル化反応によって得られるポリエステルポリオール類、前記アルキレンジオールにイプシロンカプロラクトンを共重合させたポリオール等が挙げられる。
これらに中でも特に、硬化被膜の硬度と柔軟性とのバランスが顕著に良好となる点からノルボルネンジイソシアネート、及びジメタノナフタレンジイソシアネートが好ましい。
The alicyclic hydrocarbon structure-containing diisocyanate specifically includes isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, cyclohexane diisocyanate, norbornene diisocyanate, dimethanonaphthalene diisocyanate, and these and a polyol. And polyisocyanate obtained.
Examples of polyols that can be used here include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tetramethylene glycol, 1,3-butanediol, 3-methylpentanediol, 3,3-dimethylolheptane, and trimethylolpropane. Or an alkylene diol obtained by polymerizing an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide, or styrene oxide to the alkylene diol. Further, polyester polyols obtained by esterification reaction with dibasic acids such as phthalic acid, maleic acid, adipic acid, het acid, succinic acid, and hydrogenated dimer acid are added to the alkylene diol, and epsilon caprolactone is added to the alkylene diol. Examples include polyols copolymerized.
Among these, norbornene diisocyanate and dimethanonaphthalene diisocyanate are particularly preferable from the viewpoint that the balance between the hardness and flexibility of the cured coating is remarkably improved.

本発明では、上記した脂環式炭化水素構造含有ジイソシアネートを用いることにより、硬化被膜の硬度がショアーD75以上と硬質であり、かつ伸度が60%以上と高伸度となる。よって、本発明において脂環式炭化水素構造含有ジイソシアネートを用いたウレタン系樹脂組成物は、下地基材のひび割れに十分に追従し、信頼性の高い被覆性能を得ることができる。また、高い耐候性を有し、優れた黄変防止性を有しているため、意匠性を長期保持することの出来る被覆面を提供することが出来る。   In the present invention, by using the above-described alicyclic hydrocarbon structure-containing diisocyanate, the hardness of the cured film is as hard as Shore D75 or more, and the elongation is as high as 60% or more. Therefore, in the present invention, the urethane-based resin composition using the alicyclic hydrocarbon structure-containing diisocyanate can sufficiently follow the cracks in the base substrate, and can obtain highly reliable coating performance. Moreover, since it has high weather resistance and has excellent yellowing prevention properties, it is possible to provide a coated surface that can maintain design properties for a long period of time.

また、本発明では、ポリイソシアネート成分(B)として前記脂環式炭化水素構造含有ジイソシアネートを用いる場合、前記した水酸基含有高級脂肪酸アルキルエステルを併用することにより、硬度を保持し乍ら柔軟性をより高めることができる。   Further, in the present invention, when the alicyclic hydrocarbon structure-containing diisocyanate is used as the polyisocyanate component (B), the above-mentioned hydroxyl group-containing higher fatty acid alkyl ester is used in combination, so that the hardness can be maintained while maintaining the hardness. Can be increased.

本発明のウレタン系樹脂組成物を被覆材に用いる場合、前記ポリオール成分(A)及び前記ポリイソシアネート成分(B)に、更に充填材、及び必要に応じてその他各種の添加剤を加えて目的とする被覆材を調整できる。なお、本発明の組成物から得られる被覆材は、ショアーD硬度70以上の硬質被覆材として、機械強度のみならず低粘度で作業性に優れるという顕著な性能を発現する。即ち、本発明では、ポリオール成分(A)とイソシアネート成分(B)とを混合した場合の粘度が、ローラー塗布が可能となる1000mPa・s以下になるという特長を有する。   When the urethane-based resin composition of the present invention is used as a coating material, the polyol component (A) and the polyisocyanate component (B) are further added with a filler and, if necessary, various other additives. The covering material to be adjusted can be adjusted. In addition, the coating material obtained from the composition of this invention expresses the remarkable performance that it is excellent in workability | operativity not only with mechanical strength but with low viscosity as a hard coating material with a Shore D hardness of 70 or more. That is, the present invention has a feature that the viscosity when the polyol component (A) and the isocyanate component (B) are mixed is 1000 mPa · s or less that enables roller coating.

ここで充填材としては、炭酸カルシウム、表面処理炭酸カルシウム、水酸化アルミニウム、沈降性硫酸バリウム、クレー、シリカ、タルクなどが挙げられる。   Examples of the filler include calcium carbonate, surface-treated calcium carbonate, aluminum hydroxide, precipitated barium sulfate, clay, silica, and talc.

また、他の添加剤成分としては、活性アルミナ粉末、合成ゼオライト、シリカゲル、珪藻土、消石灰、生石灰、水酸化マグネシウム、無水石膏、塩化カルシウム、合成ハイドロタルサイト、活性炭、活性白土の如き吸湿剤、アゾ系、銅フタロシアニン系、弁柄、黄鉛、酸化チタン、亜鉛華またはカーボンブラックの如き有機ないしは無機系の着色顔料、および、鉛丹、鉛白、塩基性クロム酸塩、塩基性硫酸鉛、ジンククロメート、亜鉛末またはMIOの如き防錆顔料、さらには、チキソ付与剤、レベリング剤、吸湿剤、シランあるいはチタネート系カップリング剤などの各種助剤が挙げられる。さらに必要に応じ、ジブチルチンジラウレートまたはジブチルチンジアセテートの如き有機金属化合物や各種アミン類などの硬化触媒を始め、ジオクチルフタレート、アスファルト、またはタールの如き可塑剤成分や、重油または芳香族炭化水素の如き石油系希釈剤成分などを、本発明の効果を損なわない範囲で使用してもよい。   Other additive components include activated alumina powder, synthetic zeolite, silica gel, diatomaceous earth, slaked lime, quicklime, magnesium hydroxide, anhydrous gypsum, calcium chloride, synthetic hydrotalcite, activated carbon, activated clay, moisture absorbents such as azo , Copper phthalocyanine, petal, yellow lead, titanium oxide, zinc white or carbon black, organic or inorganic color pigments, red lead, lead white, basic chromate, basic lead sulfate, zinc Examples include rust preventive pigments such as chromate, zinc dust or MIO, and various auxiliary agents such as thixotropic agents, leveling agents, hygroscopic agents, silane or titanate coupling agents. In addition, if necessary, a curing catalyst such as an organometallic compound such as dibutyltin dilaurate or dibutyltin diacetate or various amines, a plasticizer component such as dioctyl phthalate, asphalt, or tar, or a heavy oil or aromatic hydrocarbon. You may use a petroleum-type diluent component etc. in the range which does not impair the effect of this invention.

上記の充填材、添加物等は、主にポリオール成分(A)に常法により、あらかじめ練り合わせて使用することができる。   The above fillers, additives and the like can be used by kneading in advance with the polyol component (A) by a conventional method.

本発明の組成物から調整された被覆材を用いて塗工する方法は、ポリオール成分(A)、ポリイソシアネート成分(B)、及び必要に応じて充填材やその他の添加剤成分を所定の混合比で混合(常温)し、可使時間内に下地、例えばコンクリート、金属、プラスチック、FRP、木質物等に塗布して硬化させる方法が挙げられる。本発明によれば、低粘度かつ十分な可使時間を発現することから、作業性に優れた被覆材が得られる。よって、熟練を要するコテ塗りのみならず、ローラー塗りまたは刷毛塗りといった、熟練不要の方法により塗工でき、更にスプレー塗装も可能となる。   The coating method using the coating material prepared from the composition of the present invention comprises a predetermined mixing of a polyol component (A), a polyisocyanate component (B), and, if necessary, a filler and other additive components. A method of mixing at a ratio (room temperature), applying to a base, such as concrete, metal, plastic, FRP, woody material, etc. within a pot life and curing. According to the present invention, since a low viscosity and a sufficient pot life are exhibited, a coating material excellent in workability can be obtained. Therefore, not only skillful iron coating but also roller coating or brush coating can be applied by methods that do not require skill, and spray coating is also possible.

以下本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また本文中「部」とあるのは、質量部を示すものである。
なお、実施例1〜4、及び実施例6中の多分岐ポリエーテルポリオール中の全水酸基数に対する2級水酸基(H2)の割合は、多分岐ポリエーテルポリオールをトリフロロ酢酸エステルとを反応させた後、19F−NMRによって測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. In addition, “part” in the text indicates a part by mass.
In addition, the ratio of the secondary hydroxyl group (H2) with respect to the total number of hydroxyl groups in the hyperbranched polyether polyols in Examples 1 to 4 and Example 6 is obtained after reacting the hyperbranched polyether polyol with trifluoroacetic acid ester. , 19 F-NMR.

実施例1<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した500ml三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 92.8g(0.8モル)と、プロピレンオキサイド 46.4g(0.8モル)とを、乾燥かつ過酸化物フリーの200mlのジエチルエーテルに溶解し、次いで、このフラスコを−14℃のアイスバスで冷却した。
次いで、HPF 97gの60質量%水溶液を10分で滴下した。反応混合物は僅かに白濁した。次いで、室温で一晩反応させ、翌朝、透明な反応混合物を3時間還流した。
その後、樹脂溶液からジエチルエーテルを留去し、生成物をKOH2.8gと水400mlの水溶液で洗浄した。単離した有機層は、次いで、非イオン水400mlで洗浄し、再度、ジエチルエーテルを除去し、透明で高粘性の多分岐ポリエーテルポリオール136gを得た。収率94%であった。
この多分岐ポリエーテルポリオールは、Mn=1,390g/mol、Mw=2,520g/mol、OHV=320mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:1であることが判明した。また、全水酸基数に対する2級水酸基(H2)の割合は、27.6%であった。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第1図に、プロトンNMRのチャート図を第2図に示す。
Example 1 <Synthesis of Multibranched Polyether Polyol>
In a 500 ml three-necked flask equipped with a reflux condenser, a magnetic stirring bar and a thermometer, 92.8 g (0.8 mol) of 3-hydroxymethyl-3-ethyloxetane and 46.4 g (0.8 mol) of propylene oxide Was dissolved in dry and peroxide-free 200 ml of diethyl ether, and the flask was then cooled in a −14 ° C. ice bath.
Next, a 60% by mass aqueous solution of 97 g of HPF 6 was dropped in 10 minutes. The reaction mixture became slightly cloudy. The reaction was then allowed to react overnight at room temperature and the next morning the clear reaction mixture was refluxed for 3 hours.
Thereafter, diethyl ether was distilled off from the resin solution, and the product was washed with an aqueous solution of 2.8 g of KOH and 400 ml of water. The isolated organic layer was then washed with 400 ml of non-ionized water and again diethyl ether was removed to obtain 136 g of a transparent and highly viscous multi-branched polyether polyol. The yield was 94%.
This multi-branched polyether polyol has Mn = 1,390 g / mol, Mw = 2,520 g / mol, OHV = 320 mg · KOH / g, and 3-hydroxymethyl-3-ethyloxetane on a molar basis from proton NMR. : Propylene oxide = 1: 1. The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups was 27.6%. FIG. 1 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 2 shows a proton NMR chart.

実施例2<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した2リットル三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 348g(3モル)と、プロピレンオキサイド 348g(6モル)とを、乾燥かつ過酸化物フリーの1リットルのジエチルエーテルに溶解し、次いで、このフラスコを−14℃のアイスバスで冷却した。
次いで、HPF 5.5gの60質量%水溶液を10分で滴下した。反応混合物は僅かに白濁した。次いで、室温で一晩反応させ、翌朝、透明な反応混合物を3時間還流した。次いで、前記開始剤は、NaOMe9gの30質量%メタノール溶液を加えて失活させた。濾過した後、メンブレンポンプ吸引機でバス温度75℃でジエチルエーテルを除去した。ジエチルエーテルを完全に除去した後、多分岐ポリエーテルポリオール667gを得た。収率89%であった。
この多分岐ポリエーテルポリオールは、Mn=1,440g/mol、Mw=3,350g/mol、OHV=265mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:1.9であることが判明した。また、全水酸基数に対する2級水酸基(H2)の割合は、39.0%であった。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第3図に、プロトンNMRのチャート図を第4図に示す。
Example 2 <Synthesis of Multibranched Polyether Polyol>
In a 2-liter three-necked flask equipped with a reflux condenser, a magnetic stirring bar, and a thermometer, 348 g (3 mol) of 3-hydroxymethyl-3-ethyloxetane and 348 g (6 mol) of propylene oxide were dried and filtered. It was dissolved in 1 liter of diethyl ether free of oxide and then the flask was cooled in a −14 ° C. ice bath.
Then, a 60% by mass aqueous solution of 5.5 g of HPF 6 was dropped in 10 minutes. The reaction mixture became slightly cloudy. The reaction was then allowed to react overnight at room temperature and the next morning the clear reaction mixture was refluxed for 3 hours. Next, the initiator was deactivated by adding a 30 mass% methanol solution of 9 g of NaOMe. After filtration, diethyl ether was removed with a membrane pump suction device at a bath temperature of 75 ° C. After the diethyl ether was completely removed, 667 g of a multi-branched polyether polyol was obtained. The yield was 89%.
This multi-branched polyether polyol has Mn = 1,440 g / mol, Mw = 3,350 g / mol, OHV = 265 mg · KOH / g, and 3-hydroxymethyl-3-ethyloxetane on a molar basis from proton NMR. : Propylene oxide = 1: 1.9. The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups was 39.0%. FIG. 3 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 4 shows a proton NMR chart.

実施例3<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した500ml三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 69.6g(0.6モル)と、プロピレンオキサイド 104.4g(1.8モル)とを、乾燥かつ過酸化物フリーの250mlのジエチルエーテルに溶解し、次いで、このフラスコを−10℃のアイスバスで冷却した。
次いで、HPF 1.46gの60質量%水溶液を10分で滴下した。反応混合物は僅かに白濁した。次いで、室温で一晩反応させ、翌朝、透明な反応混合物を4時間還流した。その後、樹脂溶液からジエチルエーテル300mlを留去し、生成物をKOH2.8gと水400mlの水溶液で洗浄した。
単離した有機層は、次いで、非イオン水400mlで2回洗浄し、再度、ジエチルエーテルを除去し、低粘性の透明多分岐ポリエーテルポリオール163.2gを得た。収率94%であった。
この多分岐ポリエーテルポリオールは、Mn=1,750g/mol、Mw=3,630g/mol、OHV=199mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:2.9であることが判明した。また、全水酸基数に対する2級水酸基(H2)の割合は、46.3%であった。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第5図に、プロトンNMRのチャート図を第6図に示す。
Example 3 <Synthesis of Multibranched Polyether Polyol>
In a 500 ml three-necked flask equipped with a reflux condenser, a magnetic stirring bar and a thermometer, 69.6 g (0.6 mol) of 3-hydroxymethyl-3-ethyloxetane and 104.4 g (1.8 mol) of propylene oxide Was dissolved in 250 ml of dry and peroxide-free diethyl ether, and the flask was then cooled in an ice bath at -10 ° C.
Then, a 60% by mass aqueous solution of 1.46 g of HPF 6 was added dropwise over 10 minutes. The reaction mixture became slightly cloudy. The reaction was then allowed to react overnight at room temperature and the next morning the clear reaction mixture was refluxed for 4 hours. Thereafter, 300 ml of diethyl ether was distilled off from the resin solution, and the product was washed with an aqueous solution of 2.8 g of KOH and 400 ml of water.
The isolated organic layer was then washed twice with 400 ml of non-ionized water, and diethyl ether was removed again to obtain 163.2 g of a low viscosity transparent multi-branched polyether polyol. The yield was 94%.
This multi-branched polyether polyol has Mn = 1,750 g / mol, Mw = 3,630 g / mol, OHV = 199 mg · KOH / g, and 3-hydroxymethyl-3-ethyloxetane on a molar basis from proton NMR. : Propylene oxide = 1: 2.9. The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups was 46.3%. FIG. 5 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 6 shows a proton NMR chart.

実施例4<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した500ml三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 139.2g(1.2モル)と、プロピレンオキサイド 208.8g(3.6モル)とを、乾燥かつ過酸化物フリーの500mlのジエチルエーテルに溶解し、次いで、このフラスコを−10℃のアイスバスで冷却した。
次いで、HPF 2.92gの60質量%水溶液を10分で滴下した。反応混合物は僅かに白濁した。次いで、室温で一晩反応させ、翌朝、透明な反応混合物を4時間還流した。次いで、前記開始剤は、NaOMe3.2gの30質量%メタノール溶液を加えて失活させた。ジエチルエーテルを完全に除去した後、粘性の多分岐ポリエーテルポリオール310gを得た。収率89%であった。
この多分岐ポリエーテルポリオールは、Mn=1,580g/mol、Mw=3,710g/mol、OHV=224mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:3であることが判明した。また、全水酸基数に対する2級水酸基(H2)の割合は、45.0%であった。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第7図に、プロトンNMRのチャート図を第8図に示す。
Example 4 <Synthesis of Multibranched Polyether Polyol>
In a 500 ml three-necked flask equipped with a reflux condenser, a magnetic stirring bar and a thermometer, 139.2 g (1.2 mol) of 3-hydroxymethyl-3-ethyloxetane and 208.8 g (3.6 mol) of propylene oxide Was dissolved in dry and peroxide-free 500 ml of diethyl ether, and the flask was then cooled in an ice bath at -10 ° C.
Next, a 60% by mass aqueous solution of 2.92 g of HPF 6 was added dropwise in 10 minutes. The reaction mixture became slightly cloudy. The reaction was then allowed to react overnight at room temperature and the next morning the clear reaction mixture was refluxed for 4 hours. Subsequently, the initiator was deactivated by adding a 30% by mass methanol solution of NaOMe 3.2 g. After the diethyl ether was completely removed, 310 g of a viscous multi-branched polyether polyol was obtained. The yield was 89%.
This multi-branched polyether polyol has Mn = 1,580 g / mol, Mw = 3,710 g / mol, OHV = 224 mg · KOH / g, and 3-hydroxymethyl-3-ethyloxetane on a molar basis from proton NMR. : Propylene oxide = 1: 3. The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups was 45.0%. FIG. 7 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 8 shows a proton NMR chart.

実施例5<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した250ml三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 11.6g(0.1モル)と、プロピレンオキサイド 11.6g(0.2モル)とを、50mlの乾燥シクロヘキサンに溶解し、次いで、このフラスコを10℃のアイスバスで冷却した。
次いで、HPF 0.76g(モノマー成分に対して0.25モル%)の60質量%水溶液を10mlのジエチルエーテルに溶解し、これを一度にフラスコに加えた。その後、反応混合物は直ちに白濁した。HPFを加えて1時間内に、反応温度は36℃に上昇した。次いで、該反応混合物はオイルバスで54〜60℃に1時間加熱し、更に、室温で一晩攪拌した。
次いで、前記開始剤は、NaOMe0.3gの30質量%メタノール溶液を加えて失活させた。次いで、この白濁した反応混合物をpH6になるまで4時間攪拌した。
反応混合物の下層の白濁層を分離し、シクロヘキサンを完全に除去した後、透明で低粘性の多分岐ポリエーテルポリオール18.7gを得た。収率79%であった。この多分岐ポリエーテルポリオールは、Mn=2,160g/mol、Mw 6,310g/mol、OHV=224mgKOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:1.9であることが判明した。
一方、反応混合物中、透明シクロヘキサン層を乾燥し、低粘性の多分岐ポリエーテルポリオール1.2gを得た。この多分岐ポリエーテルポリオールは、Mn=500g/mol、Mw=950g/molであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:2.1であることが判明した。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第9図に、プロトンNMRのチャート図を第10図に示す。
Example 5 <Synthesis of Multibranched Polyether Polyol>
In a 250 ml three-necked flask equipped with a reflux condenser, a magnetic stirring bar and a thermometer, 11.6 g (0.1 mol) of 3-hydroxymethyl-3-ethyloxetane and 11.6 g (0.2 mol) of propylene oxide Was dissolved in 50 ml of dry cyclohexane and the flask was then cooled in a 10 ° C. ice bath.
Next, 0.76 g of HPF 6 (0.25 mol% based on the monomer component) of a 60% by mass aqueous solution was dissolved in 10 ml of diethyl ether, and this was added to the flask all at once. Thereafter, the reaction mixture immediately became cloudy. Within 1 hour of adding HPF 6 , the reaction temperature rose to 36 ° C. The reaction mixture was then heated in an oil bath to 54-60 ° C. for 1 hour and further stirred overnight at room temperature.
Next, the initiator was deactivated by adding a 30 mass% methanol solution of 0.3 g of NaOMe. The cloudy reaction mixture was then stirred for 4 hours until pH 6 was reached.
The white turbid layer under the reaction mixture was separated and cyclohexane was completely removed, and 18.7 g of a transparent and low-viscosity multi-branched polyether polyol was obtained. The yield was 79%. This multi-branched polyether polyol has Mn = 2,160 g / mol, Mw 6,310 g / mol, OHV = 224 mgKOH / g, and 3-hydroxymethyl-3-ethyloxetane: propylene oxide on a molar basis from proton NMR = 1: 1.9.
On the other hand, in the reaction mixture, the transparent cyclohexane layer was dried to obtain 1.2 g of a low viscosity multi-branched polyether polyol. This multi-branched polyether polyol has Mn = 500 g / mol, Mw = 950 g / mol, and from proton NMR, it is 3-hydroxymethyl-3-ethyloxetane: propylene oxide = 1: 2.1 on a molar basis. There was found. FIG. 9 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 10 shows a proton NMR chart.

実施例6<多分岐ポリエーテルポリオールの合成>
リフラックスコンデンサー、マグネット式攪拌棒、温度計を具備した500ml三口フラスコ中で、3−ヒドロキシメチル−3−エチルオキセタン 58.0g(0.5モル)と、プロピレンオキサイド 106.0g(1.5モル)とを、乾燥かつ過酸化物フリーの500mlのジエチルエーテルに溶解し、次いで、このフラスコを−10℃のアイスバスで冷却した。
次いで、HPF 1.0g(モノマー成分に対して0.25モル%)の60質量%水溶液を30分かけて滴下した。その後、反応混合物は僅かに白濁した。反応混合物を室温で一晩攪拌した。ついで、反応溶液をジエチルエーテル250mlで希釈し、次いで、200mlの水で、エーテル層が透明になるまで3回洗浄した。有機層を分離した後、該有機層をNaSOで乾燥し、次いで、エーテルを留去し、目的とするポリエーテルポリオール149.3gを得た。収率90%であった。
この多分岐ポリエーテルポリオールは、Mn=1,540g/モル、Mw=3,200g/モル、OHV=178mg・KOH/gであり、プロトンNMRから、モル基準で3−ヒドロキシメチル−3−エチルオキセタン:プロピレンオキサイド=1:3であることが判明した。また、全水酸基数に対する2級水酸基(H2)の割合は、47.0%であった。この多分岐ポリエーテルポリオールの13C−NMRのチャート図を第11図に、プロトンNMRのチャート図を第12図に示す。
Example 6 <Synthesis of Multibranched Polyether Polyol>
In a 500 ml three-necked flask equipped with a reflux condenser, a magnetic stirring bar and a thermometer, 58.0 g (0.5 mol) of 3-hydroxymethyl-3-ethyloxetane and 106.0 g (1.5 mol) of propylene oxide Was dissolved in dry and peroxide-free 500 ml of diethyl ether, and the flask was then cooled in an ice bath at -10 ° C.
Next, a 60% by mass aqueous solution of 1.0 g of HPF 6 (0.25 mol% relative to the monomer component) was added dropwise over 30 minutes. Thereafter, the reaction mixture became slightly cloudy. The reaction mixture was stirred at room temperature overnight. The reaction solution was then diluted with 250 ml of diethyl ether and then washed 3 times with 200 ml of water until the ether layer became clear. After the organic layer was separated, the organic layer was dried over Na 2 SO 4 and then the ether was distilled off to obtain 149.3 g of the target polyether polyol. The yield was 90%.
This multi-branched polyether polyol has Mn = 1,540 g / mol, Mw = 3,200 g / mol, OHV = 178 mg · KOH / g, and 3-hydroxymethyl-3-ethyloxetane on a molar basis from proton NMR. : Propylene oxide = 1: 3. The ratio of secondary hydroxyl groups (H2) to the total number of hydroxyl groups was 47.0%. FIG. 11 shows a 13 C-NMR chart of this multi-branched polyether polyol, and FIG. 12 shows a proton NMR chart.

参考例1<ポリオール成分の調製>
前記実施例2で得られた多分岐ポリエーテルポリオール212部と水酸基当量350のひまし油788部を混合し、平均水酸基当量が316のポリオール成分(A−1)を得た。
Reference Example 1 <Preparation of polyol component>
212 parts of the multi-branched polyether polyol obtained in Example 2 and 788 parts of castor oil having a hydroxyl equivalent weight of 350 were mixed to obtain a polyol component (A-1) having an average hydroxyl equivalent weight of 316.

参考例2<ポリオール成分の調製>
前記実施例2で得られた多分岐ポリエーテルポリオール120部と水酸基当量350のひまし油880部を混合し、平均水酸基当量が325のポリオール成分(A−2)を得た。
Reference Example 2 <Preparation of polyol component>
120 parts of the multi-branched polyether polyol obtained in Example 2 and 880 parts of castor oil having a hydroxyl equivalent weight of 350 were mixed to obtain a polyol component (A-2) having an average hydroxyl equivalent weight of 325.

参考例3<ポリオール成分の調製>
前記実施例5の白濁層から抽出された多分岐ポリエーテルポリオール438部と水酸基当量350のひまし油562部を混合し、平均水酸基当量が256のポリオール成分(A−3)を得た。
Reference Example 3 <Preparation of polyol component>
438 parts of the hyperbranched polyether polyol extracted from the cloudy layer of Example 5 and 562 parts of castor oil having a hydroxyl equivalent weight of 350 were mixed to obtain a polyol component (A-3) having an average hydroxyl equivalent weight of 256.

参考例4<ポリオール成分の調製>
エポキシ当量が188なるビスフェノールA型エポキシ樹脂の40重量部と、ひまし油脂肪酸の60重量部とを、トリフェニルフォスフィンの0.2重量部の存在下に、窒素バブリングしながら110℃で15時間反応させて得られる酸価0.1、水酸基当量265のエポキシエステルの340重量部と、水酸基当量350のひまし油の660重量部をブレンドして、平均水酸基当量316のポリオール成分(A−4)を得た。
Reference Example 4 <Preparation of polyol component>
Reaction of 40 parts by weight of bisphenol A type epoxy resin having an epoxy equivalent of 188 and 60 parts by weight of castor oil fatty acid in the presence of 0.2 parts by weight of triphenylphosphine at 110 ° C. for 15 hours while bubbling nitrogen. 340 parts by weight of an epoxy ester having an acid value of 0.1 and a hydroxyl group equivalent of 265 obtained by blending 660 parts by weight of castor oil having a hydroxyl group equivalent of 350 to obtain a polyol component (A-4) having an average hydroxyl group equivalent of 316 It was.

参考例5<ポリオール成分の調製>
ソルビトールのプロピレンオキサイド付加物である水酸基当量112、官能基数6のエクセノール500SO(旭硝子(株)社製)330部と水酸基当量350のひまし油670部を混合し、平均水酸基当量206のポリオール成分(A−5)を得た。
Reference Example 5 <Preparation of polyol component>
A sorbitol propylene oxide adduct, a hydroxyl group equivalent of 112, a functional group number of Exenol 500SO (manufactured by Asahi Glass Co., Ltd.) (330 parts) and a hydroxyl group equivalent of 350 castor oil were mixed to obtain a polyol component (A- 5) was obtained.

参考例6<ポリオール成分の調製>
トリメチロールプロパンのプロピレンオキサイド付加物である水酸基当量138、官能基数3のエクセノール400MP(旭硝子(株)社製)240部と水酸基当量350のひまし油760部を混合し、平均水酸基当量256のポリオール成分(A−6)を得た。
Reference Example 6 <Preparation of polyol component>
A propylene oxide adduct of trimethylolpropane having a hydroxyl group equivalent of 138, 240 functional parts of Exenol 400MP (manufactured by Asahi Glass Co., Ltd.) and 760 parts of castor oil having a hydroxyl group equivalent of 350 are mixed, and a polyol component having an average hydroxyl group equivalent of 256 ( A-6) was obtained.

参考例7<ポリオール成分の調製>
芳香環を持つ水酸基当量200のポリオール型キシレンホルムアルデヒド樹脂ニカノールK−140(三菱ガス化学(株)社製)490部と水酸基当量350のひまし油510部を混合し、平均水酸基当量256のポリオール成分(A−7)を得た。
Reference Example 7 <Preparation of polyol component>
490 parts of a polyol type xylene formaldehyde resin Nikanol K-140 (Mitsubishi Gas Chemical Co., Ltd.) having a hydroxyl group equivalent of 200 having an aromatic ring and 510 parts of castor oil having a hydroxyl group equivalent of 350 are mixed to obtain a polyol component having an average hydroxyl equivalent of 256 (A -7) was obtained.

参考例8<イソシアネート成分の調製>
MDIが40質量%、MDI中の4,4’−MDIが97質量%である市販のクルードMDI(ミリオネートMR200:日本ポリウレタン工業(株)製)100重量部、
4,4’−MDIが50質量%、2,4’−MDIが50質量%であるMDI(ルプラネートMI:BASF INOACポリウレタン(株)製)を26重量部、及び、
4,4’−MDI(ミリオネートMT:日本ポリウレタン工業(株)製)を24重量部加え、イソシアネート成分(B)を得た。
Reference Example 8 <Preparation of Isocyanate Component>
100 parts by weight of a commercially available crude MDI (Millionate MR200: manufactured by Nippon Polyurethane Industry Co., Ltd.) having 40% by mass of MDI and 97% by mass of 4,4′-MDI in MDI,
26 parts by weight of MDI (Lupranate MI: manufactured by BASF INOAC Polyurethane Co., Ltd.) having 50% by mass of 4,4′-MDI and 50% by mass of 2,4′-MDI, and
24 parts by weight of 4,4′-MDI (Millionate MT: manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to obtain an isocyanate component (B).

実施例7
参考例1で得られたポリオール成分(A−1)500部、炭酸カルシウム460部、顔料25部をプラネタリーミキサーを用い真空脱泡しながら均一混合したコンパウンドと、、参考例8で得られたイソシアネート成分(B)とをイソシアネート当量と水酸基当量の比率1.15となる割合で用いて、下記の各種性能試験を行った。結果を第1表に示す。
Example 7
A compound obtained by uniformly mixing 500 parts of the polyol component (A-1) obtained in Reference Example 1, 460 parts of calcium carbonate and 25 parts of pigment while vacuum degassing using a planetary mixer, and obtained in Reference Example 8 The following various performance tests were conducted using the isocyanate component (B) at a ratio of 1.15 of isocyanate equivalent and hydroxyl equivalent. The results are shown in Table 1.

<混合粘度及び可使時間評価試験>
(A)成分を含む前記コンパウンドと(B)成分を混合し、25℃の恒温水層につけた。BM型粘度計ローターNo.4、6rpmにて5分後の粘度を測定し、その値を混合粘度とした。その後測定を続け、50,000mPa・sに到達した時間を可使時間とした。
<Mixed viscosity and pot life evaluation test>
The compound containing the component (A) and the component (B) were mixed and applied to a constant temperature water layer at 25 ° C. BM viscometer rotor No. The viscosity after 5 minutes was measured at 4 and 6 rpm, and the value was defined as the mixed viscosity. Thereafter, the measurement was continued, and the time for reaching 50,000 mPa · s was defined as the pot life.

<塗膜の物性評価試験>
(A)成分を含む前記コンパウンドと(B)成分を混合後、25℃×7日間養生したシートを用いて、ショアーD硬度(JIS K−6253)、引張強度(JIS K−6251)、伸び率(JIS K−6251)、引裂強度(JIS K−6252)の評価を行った。
<Physical property evaluation test of coating film>
After mixing the compound containing the component (A) and the component (B), a sheet cured at 25 ° C. for 7 days was used for Shore D hardness (JIS K-6253), tensile strength (JIS K-6251), elongation. (JIS K-6251) and tear strength (JIS K-6252) were evaluated.

<被覆面の表面発泡性の試験>
スレート板上に湿気硬化型ウレタン系プライマー(プライアデックT−150−35、大日本インキ化学工業(株)製)を塗布、乾燥後、(A)成分を含む前記コンパウンドと(B)成分を混合後、塗布量1.5kg/mとなるようにプライマー層上にコテ塗りで塗工、35℃80%の条件下で硬化させて、その表面に発生する気泡の有無の評価を行った。
<Surface foamability test of coated surface>
Apply moisture-curable urethane primer (Priadec T-150-35, manufactured by Dainippon Ink & Chemicals, Inc.) on the slate plate, and after drying, mix the compound containing component (A) and component (B) Thereafter, the primer layer was coated with a trowel so that the coating amount was 1.5 kg / m 2 and cured under conditions of 35 ° C. and 80%, and the presence or absence of bubbles generated on the surface was evaluated.

実施例8
参考例2のポリオール成分(A−2)を用いた以外は、実施例7と同様にして各種性能試験を行った。結果を第1表に示す。
Example 8
Various performance tests were performed in the same manner as in Example 7 except that the polyol component (A-2) of Reference Example 2 was used. The results are shown in Table 1.

比較例1
参考例3のポリオール成分(A−4)を用いた以外は、実施例7と同様にして各種性能試験を行った。結果を第1表に示す。
Comparative Example 1
Various performance tests were performed in the same manner as in Example 7 except that the polyol component (A-4) of Reference Example 3 was used. The results are shown in Table 1.

比較例2
参考例4のポリオール成分(A−5)を用いた以外は、実施例7と同様にして各種性能試験を行った。結果を第1表に示す。
Comparative Example 2
Various performance tests were performed in the same manner as in Example 7 except that the polyol component (A-5) of Reference Example 4 was used. The results are shown in Table 1.

Figure 0004114012
Figure 0004114012

第1表に示す通り、本発明のウレタン系樹脂組成物は、低粘度であり、かつ、高温、多湿環境下でも発泡せず平滑性に優れ、更に硬質の被覆面を形成する。これに対し、芳香族系ポリオールを含有する硬質ウレタン被覆材の場合(比較例1)、混合粘度が高く、ローラー塗布には適さない。また、線状多官能ポリオールを用いた場合(比較例2)も、混合粘度が高く、さらには、高温多湿下において被覆面に発泡が見られ、平滑性という点においても乏しい。   As shown in Table 1, the urethane-based resin composition of the present invention has a low viscosity, does not foam even under high temperature and high humidity, has excellent smoothness, and forms a hard coating surface. On the other hand, in the case of a hard urethane coating material containing an aromatic polyol (Comparative Example 1), the mixing viscosity is high and is not suitable for roller coating. Further, when a linear polyfunctional polyol is used (Comparative Example 2), the mixing viscosity is high, and further, foaming is observed on the coated surface under high temperature and high humidity, and the smoothness is poor.

実施例9
参考例3で得られたポリオール成分(A−3)500部、炭酸カルシウム460部、顔料25部、コンパウンド中625ppmとなるジブチル錫ジラウレートをプラネタリーミキサーを用い真空脱泡しながら均一混合したコンパウンドにノルボルネンジイソシアネート(以下、「NBDI」と略記する。)をイソシアネート当量と水酸基当量の比率1.15となる割合で用いて、実施例7と同様にして混合粘度及び可使時間の評価、並びに塗膜の物性評価試験を行った。更に、下記の方法に従い、ひび割れ追従性評価試験、及び耐候性試験を行った。これらの結果を第2表に示す。
Example 9
A compound obtained by uniformly mixing 500 parts of the polyol component (A-3) obtained in Reference Example 3, 460 parts of calcium carbonate, 25 parts of pigment, and dibutyltin dilaurate having a concentration of 625 ppm in the compound using a planetary mixer while vacuum degassing. Using norbornene diisocyanate (hereinafter abbreviated as “NBDI”) at a ratio of isocyanate equivalent to hydroxyl equivalent of 1.15, evaluation of mixing viscosity and pot life and coating film in the same manner as in Example 7. The physical property evaluation test was conducted. Furthermore, according to the following method, the crack followability evaluation test and the weather resistance test were done. These results are shown in Table 2.

<ひび割れ追従性評価試験>
日本道路公団コンクリート塗装材の品質規格試験法に準拠し、ひび割れ追従性試験を実施した。評価結果は、ひび割れ追従性が0.8mm以上を◎、0.4mm以上を○、0.4mm未満を×とした。
<Crack followability evaluation test>
In accordance with the quality standard testing method for Japan Highway Public Corporation concrete coating material, a crack follow-up test was conducted. The evaluation results were as follows: crack followability was 0.8 mm or more, ◎, 0.4 mm or more was ◯, and less than 0.4 mm was x.

<耐候性試験>
物性評価方法にて作製したシートから20mm×50mmの試験片を切り出し、耐候試験片を作製した。耐候試験法としては、サンシャインウエザメーター(スガ試験機(株)製WEL-SUN-HCH-B型)を用いて促進耐候試験を行った。
試験条件:温度 63±3℃、 サイクル 120分中18分降雨、時間1000hrs
評価項目:色差(ΔE)、被覆材はグレー色を使用
<Weather resistance test>
A test piece of 20 mm × 50 mm was cut out from the sheet prepared by the physical property evaluation method to prepare a weather resistance test piece. As a weather resistance test method, an accelerated weather resistance test was performed using a sunshine weather meter (WEL-SUN-HCH-B type manufactured by Suga Test Instruments Co., Ltd.).
Test conditions: temperature 63 ± 3 ° C, cycle 18 minutes rain during 120 minutes, time 1000 hrs
Evaluation item: Color difference (ΔE), Cover material uses gray color

実施例10
イソシアネート成分として水添MDIである「デスモジュールW」(住友バイエルウレタン(株)製)を用いた以外は、実施例9と同様にして各種の評価を行った。結果を第2表に示す。
Example 10
Various evaluations were performed in the same manner as in Example 9 except that “Desmodur W” (manufactured by Sumitomo Bayer Urethane Co., Ltd.), which is a hydrogenated MDI, was used as the isocyanate component. The results are shown in Table 2.

比較例3
参考例6のポリオール成分(A−6)を用いた以外は、実施例9と同様に各種の評価を行った。結果を第2表に示す。
Comparative Example 3
Various evaluations were performed in the same manner as in Example 9 except that the polyol component (A-6) in Reference Example 6 was used. The results are shown in Table 2.

比較例4
参考例7のポリオール成分(A−7)を用い、イソシアネート成分としてポリメチレンポリフェニルポリイソシアネートであるミリオネートMR200(日本ポリウレタン(株)製)を使用し、ジブチルチンジラウレートを添加しない以外は、実施例9と同様に各種の評価を行った。結果を第2表に示す。
Comparative Example 4
Example except that the polyol component (A-7) of Reference Example 7 was used, and polymethylene polyphenyl polyisocyanate Millionate MR200 (manufactured by Nippon Polyurethane Co., Ltd.) was used as the isocyanate component, and no dibutyltin dilaurate was added. Various evaluations were performed in the same manner as in Example 9. The results are shown in Table 2.

Figure 0004114012

第2表に示す通り、本発明のウレタン系樹脂組成物は、低粘度であり、硬質の被覆面を形成し、更に、ひび割れ追従性に優れる。また、紫外線劣化による黄変を低減し、意匠性にも優れるという特長を有する。これに対して、多官能ポリオールの官能基数が少ない場合(比較例3)、ひび割れ追従性は優れているものの、硬質化は困難であり、硬質被覆材としての性能を満たさない。また、芳香族イソシアネートを使用した場合(比較例4)、ポリオール成分に問わずひび割れ追従性に乏しく、被覆面が極度に黄変し、意匠性を損なう。
Figure 0004114012

As shown in Table 2, the urethane resin composition of the present invention has a low viscosity, forms a hard coating surface, and is excellent in crack followability. In addition, it has the feature of reducing yellowing due to ultraviolet degradation and being excellent in design. On the other hand, when the number of functional groups of the polyfunctional polyol is small (Comparative Example 3), although the crack followability is excellent, it is difficult to make it hard and the performance as a hard coating material is not satisfied. Moreover, when aromatic isocyanate is used (Comparative Example 4), the crack followability is poor regardless of the polyol component, and the coated surface is extremely yellowed, thereby impairing the design.

第1図は、実施例1で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 1 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 1. 第2図は、実施例1で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 2 is a proton NMR chart of the multibranched polyether polyol obtained in Example 1. 第3図は、実施例2で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 3 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 2. 第4図は、実施例2で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 4 is a proton NMR chart of the multi-branched polyether polyol obtained in Example 2. 第5図は、実施例3で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 5 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 3. 第6図は、実施例3で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 6 is a proton NMR chart of the multi-branched polyether polyol obtained in Example 3. 第7図は、実施例4で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 7 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 4. 第8図は、実施例4で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 8 is a proton NMR chart of the multi-branched polyether polyol obtained in Example 4. 第9図は、実施例5で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 9 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 5. 第10図は、実施例5で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 10 is a proton NMR chart of the multi-branched polyether polyol obtained in Example 5. 第11図は、実施例6で得られた多分岐ポリエーテルポリオールの13C−NMRのチャート図である。FIG. 11 is a 13 C-NMR chart of the multibranched polyether polyol obtained in Example 6. 第12図は、実施例6で得られた多分岐ポリエーテルポリオールのプロトンNMRのチャート図である。FIG. 12 is a proton NMR chart of the multi-branched polyether polyol obtained in Example 6.

Claims (2)

ヒドロキシアルキルオキセタン(a1)と、1官能性エポキシ化合物(a2)とを(a1)/(a2)=1/1〜1/3(モル比)で開環反応させて得られる多分岐ポリエーテルポリオールであって、その分子構造中に1級水酸基(H1)と2級水酸基(H2)とを有しており、かつ、その分子構造中に2級水酸基(H2)を、全水酸基数に対して20〜70%の割合で有しており、前記多分岐ポリエーテルポリオールの数平均分子量(Mn)が1000〜3500、水酸基価が150〜350mg・KOH/gであることを特徴とする多分岐ポリエーテルポリオール。 Multi-branched polyether polyol obtained by ring-opening reaction of hydroxyalkyl oxetane (a1) and monofunctional epoxy compound (a2) at (a1) / (a2) = 1/1 to 1/3 (molar ratio) And having a primary hydroxyl group (H1) and a secondary hydroxyl group (H2) in the molecular structure , and having a secondary hydroxyl group (H2) in the molecular structure with respect to the total number of hydroxyl groups. The multi-branched poly , wherein the multi-branched polyether polyol has a number average molecular weight (Mn) of 1000 to 3500 and a hydroxyl value of 150 to 350 mg · KOH / g. Ether polyol. 前記1官能性エポキシ化合物(a2)が、オレフィンエポキサイドである請求項1記載の多分岐ポリエーテルポリオール。 The multi-branched polyether polyol according to claim 1, wherein the monofunctional epoxy compound (a2) is an olefin epoxide.
JP2005100813A 2005-03-31 2005-03-31 Multi-branched polyether polyol Expired - Fee Related JP4114012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005100813A JP4114012B2 (en) 2005-03-31 2005-03-31 Multi-branched polyether polyol
TW095121593A TWI370144B (en) 2005-03-31 2006-06-16 Hyperbranched polyetherpolyol and urethane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100813A JP4114012B2 (en) 2005-03-31 2005-03-31 Multi-branched polyether polyol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007284650A Division JP4129696B2 (en) 2007-11-01 2007-11-01 Urethane resin composition

Publications (3)

Publication Number Publication Date
JP2006282698A JP2006282698A (en) 2006-10-19
JP2006282698A5 JP2006282698A5 (en) 2007-12-20
JP4114012B2 true JP4114012B2 (en) 2008-07-09

Family

ID=37404954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100813A Expired - Fee Related JP4114012B2 (en) 2005-03-31 2005-03-31 Multi-branched polyether polyol

Country Status (2)

Country Link
JP (1) JP4114012B2 (en)
TW (1) TWI370144B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918976B2 (en) 1999-11-15 2011-04-05 Abbott Diabetes Care Inc. Transition metal complexes with bidentate ligand having an imidazole ring
US8268143B2 (en) 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310696B1 (en) * 2006-09-29 2013-09-25 디아이씨 가부시끼가이샤 Cation-polymerizable resin composition containing multi-branched polyether polyol, adhesive agent comprising the composition, and laminate and polarizing plate using the adhesive agent
JP5512971B2 (en) * 2006-10-31 2014-06-04 三井化学株式会社 Polyether polyol, rigid polyurethane foam and production method thereof
KR100862048B1 (en) 2007-02-06 2008-10-09 주식회사 부일건화 Three-component type polyurethane flooring composition and method for constructing flooring of building using the same
JP2009040916A (en) * 2007-08-09 2009-02-26 Nippon Polyurethane Ind Co Ltd Composition for forming water-expanded rigid polyisocyanurate foam, method for production of water-expanded rigid polyisocyanurate foam using the composition, and water-expanded rigid polyisocyanurate foam produced by the method
JP5145925B2 (en) * 2007-12-27 2013-02-20 Dic株式会社 Two-component urethane primer composition, construction method for civil engineering building, and civil engineering building structure
US8529377B2 (en) * 2010-07-01 2013-09-10 Nike, Inc. Golf ball incorporating thermoplastic polyurethane
WO2015098703A1 (en) * 2013-12-25 2015-07-02 Dic株式会社 Polyarylene sulfide resin composition, and molded product thereof
CN115368550B (en) * 2021-05-20 2024-01-26 常州强力先端电子材料有限公司 Oxetane fluorine-containing polymer and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918976B2 (en) 1999-11-15 2011-04-05 Abbott Diabetes Care Inc. Transition metal complexes with bidentate ligand having an imidazole ring
US8092662B2 (en) 1999-11-15 2012-01-10 Abbott Diabetes Care Inc. Redox polymers
US8268143B2 (en) 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
US8512534B2 (en) 1999-11-15 2013-08-20 Abbott Diabetes Care Inc. Redox polymers
US8795490B2 (en) 1999-11-15 2014-08-05 Abbott Diabetes Care Inc. Redox polymers
US8828204B2 (en) 1999-11-15 2014-09-09 Abbott Diabetes Care Inc. Redox polymers

Also Published As

Publication number Publication date
TWI370144B (en) 2012-08-11
TW200801059A (en) 2008-01-01
JP2006282698A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4114012B2 (en) Multi-branched polyether polyol
US8703898B2 (en) Hyperbranched polyether polyol and urethane resin composition
TWI481633B (en) Polyisocyanate composition and two-pack coating composition using the same
JP2011052187A (en) Two-pack type polyurethane film-forming material
KR20130040833A (en) Aqueous anionic polyurethane dispersions
JP4952984B2 (en) Urethane flooring
CN109843952A (en) Polyisocyantates composition, blocked polyisocyanates composition, hydrophilic polyisocyanate composition, coating composition and film
JP4129696B2 (en) Urethane resin composition
JP2017524747A (en) Silylated polyurethane
KR102011592B1 (en) Urethane coating composition
CN112679687B (en) Hydroxysulfonic acid hydrophilic monomer and preparation method and application thereof
CN102216363A (en) Polyisocyanate composition and two-pack type coating composition using the same
JP2008050397A (en) Urethane-based waterproof material
JP2008222792A (en) Two-component urethane resin composition
JP7308723B2 (en) silylamine compound
JP2008081544A (en) Two-pack type urethane-based resin composition
JP5522506B2 (en) Curing agent for two-component polyurethane resin paint, method for producing the same, and two-component polyurethane resin paint
CN114574080B (en) Single-component semi-polyurea waterproof coating and preparation method thereof
JP7358916B2 (en) Latent curing agent containing silylamine compounds
WO2010024330A1 (en) Polyisocyanate composition and two-liquid type paint composition utilizing same
JP5146116B2 (en) Polyurethane elastomer composition and molded article thereof
JP2008081543A (en) Non-solvent type urethane-based coating material
US9518144B2 (en) Masked polyisocyanate and uses thereof
US20240158664A1 (en) Coating composition, for metal, with improved oil resistance and adhesiveness and a preparation method therefor, and a metal article coated with composition
JP2004051925A (en) Urethane-based coating resin composition and coating material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071101

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees