JP4113281B2 - Method for producing cyclopentenone derivative - Google Patents

Method for producing cyclopentenone derivative Download PDF

Info

Publication number
JP4113281B2
JP4113281B2 JP10686598A JP10686598A JP4113281B2 JP 4113281 B2 JP4113281 B2 JP 4113281B2 JP 10686598 A JP10686598 A JP 10686598A JP 10686598 A JP10686598 A JP 10686598A JP 4113281 B2 JP4113281 B2 JP 4113281B2
Authority
JP
Japan
Prior art keywords
group
ligand
general formula
nmr
cyclopentenone derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10686598A
Other languages
Japanese (ja)
Other versions
JPH11263743A (en
Inventor
高橋  保
Original Assignee
日本ポリオレフィン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリオレフィン株式会社 filed Critical 日本ポリオレフィン株式会社
Priority to JP10686598A priority Critical patent/JP4113281B2/en
Publication of JPH11263743A publication Critical patent/JPH11263743A/en
Application granted granted Critical
Publication of JP4113281B2 publication Critical patent/JP4113281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、シクロペンテノン誘導体の製造方法に関するものである。シクロペンテノン誘導体は医薬品や農薬、重合触媒配位子の合成中間体として有用な物質である。
【0002】
【従来の技術】
従来、周期律表4族の遷移金属存在下アセチレン類2分子又はジインと一酸化炭素との反応によってシクロペンテノン誘導体を直接合成する方法は知られていない。また遷移金属存在下、異なるアセチレン2分子と一酸化炭素との反応によってシクロペンテノン誘導体を直接高選択的に合成する方法は知られていない。
【0003】
【発明が解決しようとする課題】
本発明は、上記実情を鑑み鋭意努力して達成されたもので、その目的はアセチレン2分子又はジインと一酸化炭素から直接特定の構造を有するシクロペンテノン誘導体を製造する新規な製造方法を提供することにあり、特に異なるアセチレン2分子を用いても高選択的にシクロペンテノン誘導体を製造することのできる方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明の要旨は、まず、下記一般式(1)で表されるメタラシクロペンタジエンと下記一般式(2)で表される金属化合物存在下、一酸化炭素と反応させ、ついでブレンステッド酸と反応させることを特徴とする下記一般式(3)で表されるシクロペンテノン誘導体の製造方法に存する。
【0005】
【化2】

Figure 0004113281
【0006】
(一般式(1)〜(3)中、R1〜R4、およびRは、それぞれ、アルキル基、アルケニル基、アルキニル基、芳香族基、シリル基、アルコキシ基、エステル基、アミノ基、を表す。但しこれらの基は、炭素数が1〜20でありかつ置換基を有していてもよい。またR1〜R4のうち2つ以上が結合して環を形成していてもよい。一般式(1)中、Mはジルコニウム、M'はリチウム、Lはシクロペンタジエニル基、インデニル基、フルオレニル基、アズレニル基、炭化水素オキシ基、アミド基、アセチルアセトナート基、カルボキシ基、ホスフィン配位子、アミン配位子、エーテル配位子、およびこれらが適当な架橋基により連結した配位子から選択されるものであって、各基はいずれも置換基を有していてもよい配位子、nはを表す。)
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。まず、下記一般式(1)で表されるメタラシクロペンタジエンについて説明する。
【0008】
【化3】
Figure 0004113281
【0009】
一般式(1)中、Mは遷移金属を表す。遷移金属は周期律表上の3〜10族の金属を意味する。遷移金属としては、特に制限されないが、好ましくは3〜6族の遷移金属、更に好ましくは、チタン、ジルコニウム、ハフニウム等の4族の遷移金属およびバナジウム、ニオブ、タンタル等の5族の遷移金属である。
【0010】
一般式(1)中、Lは配位子を表し、その具体例としては、シクロペンタジエニル基、インデニル基、フルオレニル基、アズレニル基、炭化水素オキシ基、アミド基、アセチルアセトナート基、カルボキシ基、ホスフィン配位子、アミン配位子、エーテル配位子、及びこれらが適当な架橋基により、連結した配位子、を有する化合物が挙げられる。なお、上記の各基は、いずれも、置換基を有していてもよい。また、一般式(1)中、nは0〜8、好ましくは1〜4の整数を表す。そして、nが2以上の場合における各配位子は、同一であっても異なっていてもよい。
【0011】
一般式(1)中、R〜Rはそれぞれ、アルキル基、アルケニル基、芳香族基、シリル基、アルコキシ基、エステル基を表す。但し、これらの基は、炭素数が1〜20であり、かつ置換基を有していてもよい。
【0012】
上記のR〜Rの具体例としては、メチル、エチル、プロピル、イソプロピル、、ブチル、イソブチル、t−ブチル、ペンチル、ネオペンチル、ヘキシル、オクチル、ノニル、デシル、シクロペンチル、シクロヘキシル、シクロオクチル等のアルキル基、ビニル、アリル、1−プロペニル、1、2又は3−ブテニル、1〜5−ヘキセニル、シクロペンテニル、シクロヘキセニル、シクロオクテニル等のアルケニル基、フェニル、ナフチル、トリル、キシリル等の芳香族基、トリメチルシリル、トリエチルシリル、トリメトキシシリル、トリエトキシシリル、ジフェニルメチルシリル、ジメチルフェニルシリル、トリフェニルシリル等のシリル基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、t−ブトキシなどのアルコキシ基、フェノキシ、ナフトキシ等のアリロキシ基、メチルカルボキシレート、エチルカルボキシレート、プロピルカルボキシレート、イソプロピルカルボキシレート、ブチルカルボキシレート、イソブチルカルボキシレート、t−ブチルカルボキシレート、フェニルカルボキシレート等のエステル基が挙げられる。
【0013】
上記中では、メチル、エチル、n−ブチル、t−ブチル、ヘキシル、フェニル、トリメチルシリル、メチルカルボキシレート、エチルカルボキシレート、t−ブチルカルボキシレート、フェニルカルボキシレートが好ましく、エチル、n−ブチル、t−ブチル、ヘキシル、トリメチルシリル、メチルカルボキシレートが更に好ましい。
【0014】
一般式(1)で表されるメタラシクロペンタジエンは、対応する遷移金属化合物と2分子のアセチレン化合物あるいは1分子のジインとの反応で得ることができる。
【0015】
一般式(2)で表される金属化合物のRの意義は、前記一般式(1)中のR〜Rにおけるのと同義である。用いる金属化合物(2)の金属は通常遷移金属でも典型金属でもよいし、2つ以上の金属を含んだ複合金属化合物でもよい。
【0016】
用いる金属化合物としては有機リチウム、有機マグネシウム化合物およびそれらと銅、亜鉛などとのアート型化合物、有機アルミニウム化合物、有機マンガン化合物、有機亜鉛化合物、有機銅化合物等であり、好ましくは有機リチウム、有機マグネシウム化合物である。
【0017】
これらの一般式(2)で表される金属化合物の量は通常0.001〜10当量、好ましくは0.1〜3当量用いるのがよい。
【0018】
各工程は非プロトン性溶媒の存在下、窒素やアルゴン等の不活性ガス下で行うのが好ましい。非プロトンの溶媒としては、例えば、トルエンのような炭化水素溶媒、クロロベンゼン、メチレンクロリドのようなハロゲン化炭化水素溶媒、エチルエーテル、テトラヒドロフラン、ジメトキシメタンのようなエーテル系溶媒が挙げられる。これらの中で好ましくはテトラヒドロフランが好ましい。
【0019】
【実施例】
次に実施例により、本発明の内容を具体的に説明するが、本発明はこれらのみに限定されるべきものではない。
【0020】
実施例1
2,3,4,5−テトラエチルシクロペンテノン
【0021】
【化4】
Figure 0004113281
【0022】
窒素下にしたシュレンク反応管に5mlのテトラヒドロフランを加え、ジルコノセンジクロリドを0.292g(1mmol)溶解させる。−78℃に冷却した後、n−ブチルリチウムを2mmol加え、1時間撹拌する。この溶液に3−ヘキシン0.164g(2mmol)加え、1時間室温で撹拌して生成するジルコナシクロペンタジエンを再び−78℃に冷却する。この溶液にn−ブチルリチウムを1mmol加え10分撹拌したのち、一酸化炭素をゆっくりと反応液に吹き込みながら30分間撹拌する。この液を希塩酸で処理して生成物を単離すると収率75%で2,3,4,5−テトラエチルシクロペンテノンが得られた。生成物はH−NMRと13C−NMR及び元素分析で確認した。
【0023】
H NMR(CDCl,TMS)δ for major isomer:0.63(t,J=7.4Hz,3H),0.98(t,J=7.6Hz,3H),1.05(t,J=7.4Hz,3H),1.12(t,J= 7.7Hz,3H),1.32−1.45(m,1H),1.55−1.73(m,2H),1.78−1.90(m.1H),2.15−2.32(m,4H),2.52−2.62(m,1H),2.97−3.00(m,1H). 13C NMR(CDCl,TMS)δ 10.72, 12.10, 13.36,13.52, 16.34 ,18.68, 20.69, 21.87, 43.11, 51.63, 140.76, 173.40, 210.50. Anal.calcd forC1322O:C,80.35;H,11.41. Found:C,79.92;H.11.38.
【0024】
実施例2
2,3,4,5−テトラプロピルシクロペンテノン
【0025】
【化5】
Figure 0004113281
【0026】
実施例1においての3−ヘキシンの代わりに4−オクチンを用いたところ2,3,4,5−テトラプロピルシクロペンテノンが収率72%で得られた。生成物は13C−NMR及びハイマス、元素分析で確認した。
【0027】
13C NMR(CDCl,TMS)δ 14.17, 14.31, 14.35, 19.83, 20.88, 21.90, 22.03, 25.24, 27.87, 30.78, 30.88. 42.88, 49.87. 139.51, 173.13, 210.77. HRMS calcd for C1730O: 250.2295; Found: 250.2300. Anal. calcd for C1730O: C,81.54; H,12.07. Found:C 81.33;H,12.13.
【0028】
実施例3
2,3,4,5−テトラブチルシクロペンテノンの合成
【0029】
【化6】
Figure 0004113281
【0030】
実施例1において3−ヘキシンの代わりに5−デシンを用いたところ2,3,4,5−テトラブチルシクロペンテノンを収率66%で得た。生成物はH−NMRと13C−NMR及びハイマスで確認した。
【0031】
H NMR(CDCl,TMS)δ 0.84−0.97(m,12H),1.19−1.74(m,20H), 2.08−2.15(m,2H), 2.22−2.29(m,2H), 2.44−2.52(m,1H), 2.96(dd,J=5.8, 9.6Hz,1H). 13C NMR(CDCl,TMS)δ 14.15, 14.30, 14.33, 14.38, 20.08, 20.91, 21.20, 23.38, 26.57, 28.10, 28.30, 30.26, 32.19, 32.46, 34.25, 36.55, 42.88, 49.65, 139.81, 173.32, 211.09. HRMS calcd for C2138 O306.2921,found306.2923.
【0032】
実施例4
2,3,4,5−テトラフェニルシクロペンテノンの合成
【0033】
【化7】
Figure 0004113281
【0034】
実施例1において3−ヘキシンの代わりにジフェニルアセチレンを用いたところ2,3,4,5−テトラフェニルシクロペンテノンを収率89%で得た。生成物はH−NMRと13C−NMR及びハイマスで確認した。
【0035】
H NMR(CDCl,TMS)δ cis:4.45(d,J=7.3Hz,1H), 4.90(d,J=7.4Hz,1H), 6.84−7.41(m,20H). trans:3.75(d,J=2.0Hz,1H),4.56(d,J=2.2Hz,1H), 6.84−7.40(m,20H). 13C NMR(CDCl3,TMS)δ cis:54.78, 59.82, 126.38, 126.74, 127.68, 128.17, 128.26, 128.51, 128.92, 129.02, 129.47, 129.81, 130.09, 132.09, 135.15, 136.23.138.85,140.83, 166.27,205.81. trans: 57.64, 63.11, 131.78, 134.65,139.32, 140.08, 141.47, 168.95, 182.7. HRMS calcd for C2922O: 386.1670;Found: 386.1671.
【0036】
実施例4
7,9−ジエチルビシクロ[4,3,0]−6−ノネ−8−ノン
【0037】
【化8】
Figure 0004113281
【0038】
実施例2において3−ヘキシン(2mmol)の代わりに3,8−ドデカジイン(1mmol)を用いたところ収率48%で2,4−ジエチルビシクロ[4,3,0]−1−ノネ−3−ノンを得た。生成物はH−NMRと13C−NMR及びハイマスで確認した。
【0039】
H NMR(CDCl,TMS)δ cis:0.97 (t,J=7.6Hz,3H), 1.06(t,J=7.6Hz,3H), 1.24−1.58(m,3H), 1.69−2.22(m,8H), 2.66(m,1H), 2.87(dt,J=13.3,2.0Hz,1H). 13C NMR(CDCl,TMS)δ cis:13.61, 13.66, 15.87, 19.22, 25.83, 27.62, 28.79, 30.74.44.00, 50.13, 137.27, 174.51, 210.51trans:11.77, 15.92, 23.85, 25.68, 26.70, 28.37, 35.05, 46.87, 53.69, 138.16, 173.69, 210.25. HRMS calcd for C1320O: 192.1513; Found:192.1510.
【0040】
実施例5
2,3−ジメチルインダン−1−オンの合成
【0041】
【化9】
Figure 0004113281
【0042】
窒素下にしたシュレンク反応管に5mlのテトラヒドロフランを加え、ジルコノセンジクロリドを0.292g(1mmol)溶解させる。−78℃に冷却した後、フェニルリチウムを2mmol加え、1時間撹拌する。この溶液に2−ブチン(1mmol)加え、1時間80℃で撹拌するとジルコナインデンが生成する。この溶液を再び−78℃に冷却し、この溶液にn−ブチルリチウムを1mmol加え10分撹拌したのち、一酸化炭素をゆっくりと反応液に吹き込みながら30分間撹拌する。この液を希塩酸で処理して生成物を単離すると収率70%で2,3−ジメチルインダン−1−オンが得られた。生成物はH−NMRと13C−NMR及びハイマスで確認した。
【0043】
H NMR(CDCl,TMS)δ cis:1.21(d,J=7.8Hz,3H), 1.23(d,J= 7.5Hz,3H), 2.78−2.85(m,1H). 3.48−3.54(m,1H), 7.36, 7.49, 7.59, 7.74 (4H). trans:1.31(d,J= 7.3Hz,3 H), 1.45 (d, J= 7.1 Hz, 3H), 2.19−2.26(m,1H), 2.90−2.95(m,1H), 7.36, 7.49, 7.59, 7.74(4H). 13C NMR(CDCl,TMS) δ cis:11.10, 17.31, 36.86,46.30, 123.70, 125.42, 127.44,134.64, 135.35, 159.25, 209.10. trans: 14.14, 19.15, 41.74, 51.45, 123.59, 124.84, 127.44, 134.75, 135.91, 157.73,208.24. HRMS calcd for C1112O:160.0889;Found:160.0894.
【0044】
実施例6
2,3,4,5−テトラエチル−4,5−ジデュ−テロ−2−シクロペンテ−1−オンの合成
【0045】
【化10】
Figure 0004113281
【0046】
実施例1において希塩酸の代わりに重塩酸を用いたところ収率72%で2,3,4,5−テトラエチル−4,5−ジデューテロ−2−シクロペンテ−1−オンを得た。生成物はH−NMRと13C−NMR及びハイマスで確認した。
【0047】
H NMR(CDCl,TMS)δ 0.63 (t,J=7.4Hz,3H), 0.98(t,J=7.6Hz, 3H), 1.05(t,J=7.4Hz,3H), 1.12(t,J=7.7Hz,3H), 1.32−1.45(m,1H), 1.55−1.73(m,2H), 1.78−1.90(m,1H), 2.15−2.32(m,3H), 2.52−2.62(m,1H). 13C NMR (CDCl, TMS)δ 10.72, 12.10, 13.36, 13.52, 16.34, 18.68, 20.69, 21.87, 42.60, 51.05, 140.76, 173.40, 210.50. HRMS calcd for C1320O:196.1793; Found:196.1792.
【0048】
【発明の効果】
本発明の製造法はアセチレン類2分子又はジイン1分子と一酸化炭素からメタラシクロペンタジエンを経由してワンポットでシクロペンテノン誘導体を製造できる方法であり、特に2つの異なったアセチレン分子から高選択的にシクロペンテノン誘導体を製造できる方法であり、簡便で効率の良い製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cyclopentenone derivative. Cyclopentenone derivatives are useful substances as synthetic intermediates for pharmaceuticals, agricultural chemicals, and polymerization catalyst ligands.
[0002]
[Prior art]
Conventionally, a method for directly synthesizing a cyclopentenone derivative by reacting two molecules of acetylenes or diyne with carbon monoxide in the presence of a transition metal of Group 4 of the periodic table is not known. In addition, there is no known method for directly and selectively synthesizing a cyclopentenone derivative by reacting two different acetylene molecules with carbon monoxide in the presence of a transition metal.
[0003]
[Problems to be solved by the invention]
The present invention has been accomplished with diligent efforts in view of the above circumstances, and its object is to provide a novel production method for producing a cyclopentenone derivative having a specific structure directly from two acetylene molecules or diyne and carbon monoxide. In particular, it is to provide a method capable of producing a cyclopentenone derivative with high selectivity even when two different acetylene molecules are used.
[0004]
[Means for Solving the Problems]
The gist of the present invention is to first react a metallacyclopentadiene represented by the following general formula (1) with carbon monoxide in the presence of a metal compound represented by the following general formula (2), and then react with a Bronsted acid. The present invention resides in a method for producing a cyclopentenone derivative represented by the following general formula (3).
[0005]
[Chemical 2]
Figure 0004113281
[0006]
(In the general formulas (1) to (3), R 1 to R 4 and R represent an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a silyl group, an alkoxy group, an ester group, and an amino group, respectively. However, these groups each have 1 to 20 carbon atoms and may have a substituent, or two or more of R 1 to R 4 may be bonded to form a ring. In general formula (1), M is zirconium , M ′ is lithium , L is cyclopentadienyl group, indenyl group, fluorenyl group, azulenyl group, hydrocarbon oxy group, amide group, acetylacetonate group, carboxy group, A phosphine ligand, an amine ligand, an ether ligand, and a ligand in which these are linked by an appropriate bridging group, each group having a substituent A good ligand , n represents 2. )
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. First, the metallacyclopentadiene represented by the following general formula (1) will be described.
[0008]
[Chemical Formula 3]
Figure 0004113281
[0009]
In general formula (1), M represents a transition metal. The transition metal means a metal of group 3 to 10 on the periodic table. The transition metal is not particularly limited, but is preferably a group 3-6 transition metal, more preferably a group 4 transition metal such as titanium, zirconium or hafnium, and a group 5 transition metal such as vanadium, niobium or tantalum. is there.
[0010]
In the general formula (1), L represents a ligand, and specific examples thereof include cyclopentadienyl group, indenyl group, fluorenyl group, azulenyl group, hydrocarbon oxy group, amide group, acetylacetonate group, carboxy group. And a compound having a group, a phosphine ligand, an amine ligand, an ether ligand, and a ligand in which these are linked by an appropriate crosslinking group. Each of the above groups may have a substituent. Moreover, in general formula (1), n represents 0-8, Preferably the integer of 1-4 is represented. And each ligand in the case where n is 2 or more may be the same or different.
[0011]
In the general formula (1), R 1 to R 4 each represents an alkyl group, an alkenyl group, an aromatic group, a silyl group, an alkoxy group, or an ester group. However, these groups have 1 to 20 carbon atoms and may have a substituent.
[0012]
Specific examples of R 1 to R 4 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, neopentyl, hexyl, octyl, nonyl, decyl, cyclopentyl, cyclohexyl, cyclooctyl and the like. Alkyl groups, vinyl, allyl, 1-propenyl, 1,2 or 3-butenyl, alkenyl groups such as 1-5-hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl, aromatic groups such as phenyl, naphthyl, tolyl, xylyl, Silyl groups such as trimethylsilyl, triethylsilyl, trimethoxysilyl, triethoxysilyl, diphenylmethylsilyl, dimethylphenylsilyl, triphenylsilyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy Alkoxy groups such as phenoxy, naphthoxy, etc., ester groups such as methyl carboxylate, ethyl carboxylate, propyl carboxylate, isopropyl carboxylate, butyl carboxylate, isobutyl carboxylate, t-butyl carboxylate, phenyl carboxylate Is mentioned.
[0013]
Among the above, methyl, ethyl, n-butyl, t-butyl, hexyl, phenyl, trimethylsilyl, methyl carboxylate, ethyl carboxylate, t-butyl carboxylate, and phenyl carboxylate are preferable, and ethyl, n-butyl, t- Butyl, hexyl, trimethylsilyl and methylcarboxylate are more preferred.
[0014]
The metallacyclopentadiene represented by the general formula (1) can be obtained by reacting the corresponding transition metal compound with two molecules of acetylene compound or one molecule of diyne.
[0015]
The meaning of R in the metal compound represented by the general formula (2) is the same as that in R 1 to R 4 in the general formula (1). The metal of the metal compound (2) to be used may be a transition metal or a typical metal, or a composite metal compound containing two or more metals.
[0016]
Examples of metal compounds to be used include organolithium, organomagnesium compounds and art-type compounds of these with copper, zinc, etc., organoaluminum compounds, organomanganese compounds, organozinc compounds, organocopper compounds, etc., preferably organolithium, organomagnesium A compound.
[0017]
The amount of the metal compound represented by the general formula (2) is usually 0.001 to 10 equivalents, preferably 0.1 to 3 equivalents.
[0018]
Each step is preferably performed in the presence of an aprotic solvent under an inert gas such as nitrogen or argon. Examples of the aprotic solvent include hydrocarbon solvents such as toluene, halogenated hydrocarbon solvents such as chlorobenzene and methylene chloride, and ether solvents such as ethyl ether, tetrahydrofuran and dimethoxymethane. Of these, tetrahydrofuran is preferred.
[0019]
【Example】
Next, the content of the present invention will be specifically described by way of examples. However, the present invention should not be limited to these examples.
[0020]
Example 1
2,3,4,5-tetraethylcyclopentenone
[Formula 4]
Figure 0004113281
[0022]
5 ml of tetrahydrofuran is added to a Schlenk reaction tube under nitrogen to dissolve 0.292 g (1 mmol) of zirconocene dichloride. After cooling to −78 ° C., 2 mmol of n-butyllithium is added and stirred for 1 hour. To this solution, 0.164 g (2 mmol) of 3-hexyne is added, and the resulting zirconacyclopentadiene produced by stirring at room temperature is cooled to -78 ° C again. After adding 1 mmol of n-butyllithium to this solution and stirring for 10 minutes, it is stirred for 30 minutes while blowing carbon monoxide slowly into the reaction solution. When this solution was treated with dilute hydrochloric acid to isolate the product, 2,3,4,5-tetraethylcyclopentenone was obtained in a yield of 75%. The product was confirmed by 1 H-NMR, 13 C-NMR and elemental analysis.
[0023]
1 H NMR (CDCl 3 , TMS) δ for major isomer: 0.63 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.6 Hz, 3H), 1.05 (t, J = 7.4 Hz, 3H), 1.12 (t, J = 7.7 Hz, 3H), 1.32-1.45 (m, 1H), 1.55-1.73 (m, 2H), 1.78-1.90 (m.1H), 2.15-2.32 (m, 4H), 2.52-2.62 (m, 1H), 2.97-3.00 (m, 1H) ). 13 C NMR (CDCl 3 , TMS) δ 10.72, 12.10, 13.36, 13.52, 16.34, 18.68, 20.69, 21.87, 43.11, 51.63 140.76, 173.40, 210.50. Anal. calcd forC 13 H 22 O: C , 80.35; H, 11.41. Found: C, 79.92; 11.38.
[0024]
Example 2
2,3,4,5-tetrapropylcyclopentenone
[Chemical formula 5]
Figure 0004113281
[0026]
When 4-octyne was used instead of 3-hexyne in Example 1, 2,3,4,5-tetrapropylcyclopentenone was obtained in a yield of 72%. The product was confirmed by 13 C-NMR, high mass and elemental analysis.
[0027]
13 C NMR (CDCl 3 , TMS) δ 14.17, 14.31, 14.35, 19.83, 20.88, 21.90, 22.03, 25.24, 27.87, 30.78, 30.88. 42.88, 49.87. 139.51, 173.13, 210.77. HRMS calcd for C 17 H 30 O : 250.2295; Found: 250.2300. Anal. calcd for C 17 H 30 O: C, 81.54; H, 12.07. Found: C 81.33; H, 12.13.
[0028]
Example 3
Synthesis of 2,3,4,5-tetrabutylcyclopentenone
[Chemical 6]
Figure 0004113281
[0030]
When 5-decine was used instead of 3-hexyne in Example 1, 2,3,4,5-tetrabutylcyclopentenone was obtained in a yield of 66%. The product was confirmed by 1 H-NMR, 13 C-NMR and high mass.
[0031]
1 H NMR (CDCl 3 , TMS) δ 0.84-0.97 (m, 12H), 1.19-1.74 (m, 20H), 2.08-2.15 (m, 2H), 2 .22-2.29 (m, 2H), 2.44-2.52 (m, 1H), 2.96 (dd, J = 5.8, 9.6 Hz, 1H). 13 C NMR (CDCl 3 , TMS) δ 14.15, 14.30, 14.33, 14.38, 20.08, 20.91, 21.20, 23.38, 26.57, 28.10, 28.30, 30.26, 32.19, 32.46, 34.25, 36.55, 42.88, 49.65, 139.81, 173.32, 211.09. HRMS calcd for C 21 H 38 O 306.2921, found 306.2923.
[0032]
Example 4
Synthesis of 2,3,4,5-tetraphenylcyclopentenone
[Chemical 7]
Figure 0004113281
[0034]
When diphenylacetylene was used instead of 3-hexyne in Example 1, 2,3,4,5-tetraphenylcyclopentenone was obtained in 89% yield. The product was confirmed by 1 H-NMR, 13 C-NMR and high mass.
[0035]
1 H NMR (CDCl 3 , TMS) δ cis: 4.45 (d, J = 7.3 Hz, 1H), 4.90 (d, J = 7.4 Hz, 1H), 6.84-7.41 ( m, 20H). trans: 3.75 (d, J = 2.0 Hz, 1H), 4.56 (d, J = 2.2 Hz, 1H), 6.84-7.40 (m, 20H). 13C NMR (CDCl 3, TMS) δ cis: 54.78, 59.82, 126.38, 126.74, 127.68, 128.17, 128.26, 128.51, 128.92, 129.02, 129.47, 129.81, 130.09, 132.09, 135.15, 136.23.138.85, 140.83, 166.27, 205.81. trans: 57.64, 63.11, 131.78, 134.65, 139.32, 140.08, 141.47, 168.95, 182.7. HRMS calcd for C 29 H 22 O: 386.1670; Found: 386.1671.
[0036]
Example 4
7,9-diethylbicyclo [4,3,0] -6-none-8-non
[Chemical 8]
Figure 0004113281
[0038]
In Example 2, when 3,8-dodecadiine (1 mmol) was used instead of 3-hexyne (2 mmol), 2,4-diethylbicyclo [4,3,0] -1-none-3-y was obtained in a yield of 48%. Got non. The product was confirmed by 1 H-NMR, 13 C-NMR and high mass.
[0039]
1 H NMR (CDCl 3 , TMS) δ cis: 0.97 (t, J = 7.6 Hz, 3H), 1.06 (t, J = 7.6 Hz, 3H), 1.24-1.58 ( m, 3H), 1.69-2.22 (m, 8H), 2.66 (m, 1H), 2.87 (dt, J = 13.3, 2.0 Hz, 1H). 13 C NMR (CDCl 3 , TMS) δ cis: 13.61, 13.66, 15.87, 19.22, 25.83, 27.62, 28.79, 30.74.44.00, 50. 13, 137.27, 174.51, 210.51 trans: 11.77, 15.92, 23.85, 25.68, 26.70, 28.37, 35.05, 46.87, 53.69, 138.16, 173.69, 210.25. HRMS calcd for C 13 H 20 O : 192.1513; Found: 192.1510.
[0040]
Example 5
Synthesis of 2,3-dimethylindan-1-one
[Chemical 9]
Figure 0004113281
[0042]
5 ml of tetrahydrofuran is added to a Schlenk reaction tube under nitrogen to dissolve 0.292 g (1 mmol) of zirconocene dichloride. After cooling to −78 ° C., 2 mmol of phenyl lithium is added and stirred for 1 hour. When 2-butyne (1 mmol) is added to this solution and stirred at 80 ° C. for 1 hour, zirconaindene is produced. This solution is cooled again to -78 ° C., 1 mmol of n-butyllithium is added to this solution and stirred for 10 minutes, and then stirred for 30 minutes while carbon monoxide is slowly blown into the reaction solution. When this liquid was treated with dilute hydrochloric acid to isolate the product, 2,3-dimethylindan-1-one was obtained in a yield of 70%. The product was confirmed by 1 H-NMR, 13 C-NMR and high mass.
[0043]
1 H NMR (CDCl 3 , TMS) δ cis: 1.21 (d, J = 7.8 Hz, 3H), 1.23 (d, J = 7.5 Hz, 3H), 2.78-2.85 ( m, 1H). 3.48-3.54 (m, 1H), 7.36, 7.49, 7.59, 7.74 (4H). trans: 1.31 (d, J = 7.3 Hz, 3 H), 1.45 (d, J = 7.1 Hz, 3H), 2.19-2.26 (m, 1H), 2.90 -2.95 (m, 1H), 7.36, 7.49, 7.59, 7.74 (4H). 13 C NMR (CDCl 3 , TMS) δ cis: 11.10, 17.31, 36.86, 46.30, 123.70, 125.42, 127.44, 134.64, 135.35, 159. 25, 209.10. trans: 14.14, 19.15, 41.74, 51.45, 123.59, 124.84, 127.44, 134.75, 135.91, 157.73, 208.24. HRMS calcd for C 11 H 12 O : 160.0889; Found: 160.0894.
[0044]
Example 6
Synthesis of 2,3,4,5-tetraethyl-4,5-didutero-2-cyclopent-1-one
[Chemical Formula 10]
Figure 0004113281
[0046]
When deuterated hydrochloric acid was used in place of dilute hydrochloric acid in Example 1, 2,3,4,5-tetraethyl-4,5-dideutero-2-cyclopent-1-one was obtained in a yield of 72%. The product was confirmed by 1 H-NMR, 13 C-NMR and high mass.
[0047]
1 H NMR (CDCl 3 , TMS) δ 0.63 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.6 Hz, 3H), 1.05 (t, J = 7. 4 Hz, 3H), 1.12 (t, J = 7.7 Hz, 3H), 1.32-1.45 (m, 1H), 1.55-1.73 (m, 2H), 1.78- 1.90 (m, 1H), 2.15-2.32 (m, 3H), 2.52-2.62 (m, 1H). 13 C NMR (CDCl 3 , TMS) δ 10.72, 12.10, 13.36, 13.52, 16.34, 18.68, 20.69, 21.87, 42.60, 51.05 140.76, 173.40, 210.50. HRMS calcd for C 13 H 20 D 2 O: 196.1793; Found: 196.1792.
[0048]
【The invention's effect】
The production method of the present invention is a method in which a cyclopentenone derivative can be produced from two acetylene molecules or one diyne molecule and carbon monoxide via a metallacyclopentadiene in one pot, and particularly highly selective from two different acetylene molecules. In addition, a cyclopentenone derivative can be produced, and a simple and efficient production method can be provided.

Claims (2)

下記一般式(1)で表されるメタラシクロペンタジエンと下記一般式(2)で表される金属化合物と一酸化炭素とを反応させ、次いでブレンステッド酸を反応させることを特徴とする下記一般式(3)で表されるシクロペンテノン誘導体の製造方法。
Figure 0004113281
(一般式(1)〜(3)中、R1〜R4、およびRは、それぞれ、アルキル基、アルケニル基、アルキニル基、芳香族基、シリル基、アルコキシ基、エステル基、アミノ基、を表す。但しこれらの基は、炭素数が1〜20でありかつ置換基を有していてもよい。またR1〜R4のうち2つ以上が結合して環を形成していてもよい。一般式(1)中、Mはジルコニウム、M'はリチウム、Lはシクロペンタジエニル基、インデニル基、フルオレニル基、アズレニル基、炭化水素オキシ基、アミド基、アセチルアセトナート基、カルボキシ基、ホスフィン配位子、アミン配位子、エーテル配位子、およびこれらが適当な架橋基により連結した配位子から選択されるものであって、各基はいずれも置換基を有していてもよい配位子、nはを表す。)。
A metallacyclopentadiene represented by the following general formula (1), a metal compound represented by the following general formula (2) and carbon monoxide are reacted, and then a Bronsted acid is reacted. (3) The manufacturing method of the cyclopentenone derivative represented by.
Figure 0004113281
(In the general formulas (1) to (3), R 1 to R 4 and R represent an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a silyl group, an alkoxy group, an ester group, and an amino group, respectively. However, these groups each have 1 to 20 carbon atoms and may have a substituent, or two or more of R 1 to R 4 may be bonded to form a ring. In general formula (1), M is zirconium , M ′ is lithium , L is cyclopentadienyl group, indenyl group, fluorenyl group, azulenyl group, hydrocarbon oxy group, amide group, acetylacetonate group, carboxy group, A phosphine ligand, an amine ligand, an ether ligand, and a ligand in which these are linked by a suitable bridging group, each group having a substituent good ligand, n represents represents 2.)
一般式(1)中のLがシクロペンタジエニルである請求項に記載のシクロペンテノン誘導体の製造方法。The method for producing a cyclopentenone derivative according to claim 1 , wherein L in the general formula (1) is cyclopentadienyl.
JP10686598A 1998-03-13 1998-03-13 Method for producing cyclopentenone derivative Expired - Fee Related JP4113281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10686598A JP4113281B2 (en) 1998-03-13 1998-03-13 Method for producing cyclopentenone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10686598A JP4113281B2 (en) 1998-03-13 1998-03-13 Method for producing cyclopentenone derivative

Publications (2)

Publication Number Publication Date
JPH11263743A JPH11263743A (en) 1999-09-28
JP4113281B2 true JP4113281B2 (en) 2008-07-09

Family

ID=14444456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10686598A Expired - Fee Related JP4113281B2 (en) 1998-03-13 1998-03-13 Method for producing cyclopentenone derivative

Country Status (1)

Country Link
JP (1) JP4113281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153097B1 (en) 2008-12-18 2012-07-03 주식회사 엘지화학 Group 4 Transition Metal Complexes Based On New Cyclopentadienone Ligand

Also Published As

Publication number Publication date
JPH11263743A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3694371B2 (en) Novel synthesis method of metallocene compounds
JP5276043B2 (en) Ruthenium complex having aromatic ring substituted with silicon-containing substituent as ligand and method for producing the same
US4433160A (en) Process for producing α-arylalkanoic acid ester
JP2003252845A (en) Method for producing nitrile and catalyst for nitrile production
JP4113281B2 (en) Method for producing cyclopentenone derivative
JP2000256321A (en) Production of pyridine compounds by reactions of azametallacyclopentadine compounds with alkyne compounds
JPH11263737A (en) Production of benzene derivative
JP2003292495A (en) Copper complex and method for producing copper- containing thin film using the same
JP3905340B2 (en) New preparation method of organometallic compounds
JP7168161B2 (en) Method for producing heterol multimer
JP2000026339A (en) Multiply substituted condensed polycyclic compound and its production
JP4092448B2 (en) Method for producing organic compound using organic bismuth compound
JPH04283589A (en) Production of vinyl silane compounds
JP4156857B2 (en) 3-chloro-3-butenoic acid ester derivative and method for producing the same
JP4542657B2 (en) Polysubstituted indene derivative and method for producing the same
JP2003300993A (en) New zero-valent ruthenium complex and method for producing the same
JP2952355B1 (en) Method for producing polysilane compound
WO2008059960A1 (en) Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative
JPH11263794A (en) Production of stannacyclopentadiene derivative
JPH11255676A (en) Production of eight-membered and nine-membered ring compound
JP3589932B2 (en) Betastanyl acrylamide derivative and method for producing the same
JP2000026321A (en) Production of cyclopentadiene derivative
JP2773362B2 (en) Quinoxaline-palladium complex and method for producing the same
JP3385355B2 (en) Tetrakis (dialkoxysilyl) benzene and method for producing the same
JPH1180041A (en) Production of triene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees