JP4113191B2 - Electronic equipment using anisotropic conductive film - Google Patents

Electronic equipment using anisotropic conductive film Download PDF

Info

Publication number
JP4113191B2
JP4113191B2 JP2005068536A JP2005068536A JP4113191B2 JP 4113191 B2 JP4113191 B2 JP 4113191B2 JP 2005068536 A JP2005068536 A JP 2005068536A JP 2005068536 A JP2005068536 A JP 2005068536A JP 4113191 B2 JP4113191 B2 JP 4113191B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
resin
organic solvent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005068536A
Other languages
Japanese (ja)
Other versions
JP2006252980A (en
Inventor
智絵 山代
政和 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005068536A priority Critical patent/JP4113191B2/en
Publication of JP2006252980A publication Critical patent/JP2006252980A/en
Application granted granted Critical
Publication of JP4113191B2 publication Critical patent/JP4113191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、異方導電性フィルムを用いた電子機器に関する。 The present invention relates to an electronic device using an anisotropic conductive fill beam.

近年、液晶ディスプレイ(LCD)とテープキャリアパッケージ(TCP)との接続、TCPと印刷回路基板(PCB)との接続等の微細な回路接続の必要性が増大してきている。その接続方法には、接着性樹脂中に導電性粒子を分散させたフィルム状の異方導電性フィルムを使用する方法が用いられている。   In recent years, the need for fine circuit connection such as connection between a liquid crystal display (LCD) and a tape carrier package (TCP) and connection between a TCP and a printed circuit board (PCB) has increased. As the connection method, a method of using a film-like anisotropic conductive film in which conductive particles are dispersed in an adhesive resin is used.

この方法は、接続したい部材間に異方導電性フィルムのフィルムを挟み加熱加圧することにより、面方向の隣接端子間では電気的絶縁性を保ちつつ、上下端子間では電気的に導通させるものである。   In this method, a film of an anisotropic conductive film is sandwiched between members to be connected, and heated and pressed to maintain electrical insulation between adjacent terminals in the plane direction, while electrically conducting between upper and lower terminals. is there.

異方導電性フィルム中の接着剤樹脂は、熱可塑性樹脂タイプのものと熱硬化性樹脂タイプのものに分類される。最近では、これらのうち、熱可塑性樹脂タイプのものよりも信頼性に優れた熱硬化性樹脂タイプのものが広く用いられつつある(特許文献1)。   The adhesive resin in the anisotropic conductive film is classified into a thermoplastic resin type and a thermosetting resin type. Recently, among these, a thermosetting resin type that is more reliable than a thermoplastic resin type is being widely used (Patent Document 1).

特開平05−021094JP 05-021094 A

しかしながら上記背景技術は次の点で課題があった。低温で速硬化性を実現しようとすると保存性が低下し、逆に保存性を向上させると低温で速硬化性が実現できないという課題を生じていた。本発明によれば、保存性を維持しつつ低温速硬化性を実現させることができる。   However, the background art has problems in the following points. When trying to achieve fast curability at low temperatures, the storage stability decreases, and conversely, when the storage stability is improved, there is a problem that fast curability cannot be achieved at low temperatures. According to the present invention, low temperature rapid curability can be realized while maintaining storability.

本願発明は、複数の部材が接着剤により電気的に接合されてなる電子機器において、前記接着剤が、(A)反応性エラストマー、(B)エポキシ樹脂、(C)マイクロカプセル化イミダゾール誘導体エポキシ化合物、および(D)導電性粒子を必須成分とする異方導電性フィルムであって、当該異方導電性フィルム中の有機溶媒含有量が0.2重量%以上2.0重量%以下であり、前記有機溶媒のSP値が7以上11以下であり、当該異方導電性フィルムの、3MPaにて170℃まで15秒間で昇温する条件で圧着した後の接続抵抗が2.0Ω未満であることを特徴とする電子機器である。
The present invention relates to an electronic device in which a plurality of members are electrically joined with an adhesive, wherein the adhesive is: (A) a reactive elastomer, (B) an epoxy resin, (C) a microencapsulated imidazole derivative epoxy compound And (D) an anisotropic conductive film containing conductive particles as an essential component, wherein the organic solvent content in the anisotropic conductive film is 0.2 wt% or more and 2.0 wt% or less, wherein Ri der SP value of 7 to 11 of the organic solvent, the anisotropic conductive film, in connection resistance after compression under conditions of raising the temperature at 15 seconds to 170 ° C. is 3MPa less than 2.0Ω This is an electronic device .

従来の異方導電性フィルムは有機溶媒を乾燥工程においてほとんど揮発させて製品化しており、そのフィルム中の有機溶媒量は0.1%未満であった。乾燥条件が若干変動することにより、有機溶媒の量も変動することは知られていたが、それは有機溶媒量が0.1%未満の範囲であった。本願発明のようにある一定量含有させることにより保存性を維持しつつ低温速硬化性を実現させることができる。   Conventional anisotropic conductive films are made into a product by almost evaporating an organic solvent in the drying step, and the amount of the organic solvent in the film is less than 0.1%. It was known that the amount of the organic solvent also fluctuated due to a slight variation in the drying conditions, but it was in the range where the amount of the organic solvent was less than 0.1%. By containing a certain amount as in the present invention, low temperature rapid curability can be realized while maintaining storability.

本発明は、(A)反応性エラストマー、(B)エポキシ樹脂、(C)潜在性硬化剤、および(D)導電性粒子を必須成分とする異方導電性フィルムであって、当該異方導電性フィルム中の有機溶媒含有量が0.1〜5重量%であることを特徴とする異方導電性フィルムに関するものである。なお下記は例示であり、本発明は何ら下記に限定されるものではない。以下に本発明の異方導電フィルムの各成分について詳細に説明する。   The present invention is an anisotropic conductive film comprising (A) a reactive elastomer, (B) an epoxy resin, (C) a latent curing agent, and (D) conductive particles as essential components, and the anisotropic conductive film. The present invention relates to an anisotropic conductive film, wherein the organic solvent content in the conductive film is 0.1 to 5% by weight. The following is an example, and the present invention is not limited to the following. Below, each component of the anisotropic conductive film of this invention is demonstrated in detail.

本発明で用いる(A)反応性エラストマーを含むことにより、フィルム形成を確実に行うことができる。反応性とは、異方導電フィルム中の他の樹脂成分と反応する官能基を有することを示す。また反応性エラストマーとすることにより、異方導電性接着剤を確実にフィルム化し、シート状にすることができる。また、硬化後の樹脂の弾性率を下げ接着力を向上させ、接続時の残留応力を小さくすることができる。このため、接続信頼性を向上することができる。   By including the reactive elastomer (A) used in the present invention, film formation can be reliably performed. Reactivity means having a functional group that reacts with other resin components in the anisotropic conductive film. Moreover, by using a reactive elastomer, the anisotropic conductive adhesive can be reliably formed into a film and formed into a sheet. In addition, the elastic modulus of the cured resin can be lowered to improve the adhesive force, and the residual stress at the time of connection can be reduced. For this reason, connection reliability can be improved.

反応性エラストマーの材料は、特に限定するものではないが、フィルム形成性があるもの、たとえば、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリブタジエン、ポリプロピレン、スチレン−ブタジエン−スチレン共重合体、ポリアセタール樹脂、ポリビニルブチラール樹脂、ブチルゴム、クロロプレンゴム、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−メタクリル酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル樹脂、ナイロン、スチレン−イソプレン共重合体、スチレン−ブチレン−スチレンブロック共重合体などを用いることができ、単独でまたは2種以上を混合して用いることができる。   The material of the reactive elastomer is not particularly limited, but has a film-forming property, for example, phenoxy resin, polyester resin, polyurethane resin, polyimide resin, polybutadiene, polypropylene, styrene-butadiene-styrene copolymer, polyacetal. Resin, polyvinyl butyral resin, butyl rubber, chloroprene rubber, polyamide resin, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-methacrylic acid copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl acetate resin, nylon, styrene-isoprene A copolymer, a styrene-butylene-styrene block copolymer, etc. can be used, and it can use individually or in mixture of 2 or more types.

反応性エラストマーの配合量は特に限定されないが、エポキシ樹脂とマイクロカプセル化イミダゾール誘導体エポキシ化合物の合計100部に対して10部以上300部以下であることが好ましい。配合量が上限値以下であると、異方導電性フィルムの流動性が向上し、接続信頼性が向上する。また、各種被着体との濡れ性が向上し、密着性が向上する。また配合量が下限値以上であると、異方導電性フィルムとした時の製膜性が向上する。また、硬化物の弾性率が高くなるため、各種被着体に対する密着性が向上したり、熱衝撃試験後の接続信頼性が向上したりするメリットがある。   Although the compounding quantity of a reactive elastomer is not specifically limited, It is preferable that it is 10 parts or more and 300 parts or less with respect to a total of 100 parts of an epoxy resin and a microencapsulated imidazole derivative epoxy compound. When the blending amount is not more than the upper limit value, the fluidity of the anisotropic conductive film is improved, and the connection reliability is improved. Moreover, wettability with various adherends is improved, and adhesion is improved. Moreover, the film forming property when it is set as an anisotropic conductive film as a compounding quantity is more than a lower limit will improve. Moreover, since the elasticity modulus of hardened | cured material becomes high, there exists a merit that the adhesiveness with respect to various to-be-adhered bodies improves, or the connection reliability after a thermal shock test improves.

また、反応性エラストマーとして、ニトリル基、エポキシ基、水酸基を有する樹脂を用いることができる。このような樹脂として、たとえばアクリルゴムを用いることができる。アクリルゴムとしては、アクリル酸、アクリル酸エステル、メタクリル酸エステルまたはアクリロニトリルのうち少なくともひとつをモノマー成分とした重合体または共重合体があげられ、中でもグリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムが好適に用いられる。   Further, as the reactive elastomer, a resin having a nitrile group, an epoxy group, or a hydroxyl group can be used. As such a resin, for example, acrylic rubber can be used. Examples of the acrylic rubber include a polymer or copolymer having at least one of acrylic acid, acrylic acid ester, methacrylic acid ester or acrylonitrile as a monomer component, including glycidyl acrylate or glycidyl methacrylate containing a glycidyl ether group. A copolymer acrylic rubber is preferably used.

アクリルゴムは、具体的には、たとえば、下記一般式(1)で示される化合物とすることができる。   Specifically, the acrylic rubber can be, for example, a compound represented by the following general formula (1).

Figure 0004113191
Figure 0004113191

ただし、上記一般式(1)において、R1は、水素、メチル基、エチル基、プロピル基、ブチル基のいずれかを示し、R2は、水素、メチル基、エチル基、プロピル基、ブチル基のいずれかを示す。また、R1とR2とが同じ基であっても異なる基であってもよい。また、上記一般式(1)において、Xは40mol%以上98.5mol%以下、Yは1mol%以上50mol%以下、Zは0.5mol%以上10mol%以下である。また、上記一般式(1)に示したアクリルゴムの分子量は、たとえば、10000以上1500000以下である。上記一般式(1)に示したアクリルゴムを用いることにより、密着性および接続信頼性をさらに向上させることができる。 However, in the general formula (1), R 1 represents any one of hydrogen, methyl group, ethyl group, propyl group, and butyl group, and R 2 represents hydrogen, methyl group, ethyl group, propyl group, and butyl group. Indicates one of the following. R 1 and R 2 may be the same group or different groups. Moreover, in the said General formula (1), X is 40 mol% or more and 98.5 mol% or less, Y is 1 mol% or more and 50 mol% or less, Z is 0.5 mol% or more and 10 mol% or less. The molecular weight of the acrylic rubber represented by the general formula (1) is, for example, 10,000 or more and 1500,000 or less. By using the acrylic rubber represented by the general formula (1), the adhesion and connection reliability can be further improved.

本発明で用いられる(B)エポキシ樹脂は、1分子中に少なくとも2個以上のエポキシ基を有するものであれば、特に限定されるものではない。たとえば、グリシジルエステル型エポキシ樹脂グリシジルアミン型エポキシ樹脂またはナフタレン骨格を有するエポキシ樹脂とすることができる。こうすることにより、短時間硬化を確実に得ることができる。また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等を用いてもよい。エポキシ樹脂は、これらに限定されるものではなく、単独でも混合して用いても差し支えない。耐湿信頼性の点から、エポキシ樹脂中のイオン性不純物であるNaイオンやClイオンが極力少ない方が好ましく、硬化性の点からエポキシ当量を、たとえば100g/eq以上500g/eq以下とすることができる。   The (B) epoxy resin used in the present invention is not particularly limited as long as it has at least two epoxy groups in one molecule. For example, a glycidyl ester type epoxy resin or a epoxy resin having a naphthalene skeleton can be used. By carrying out like this, hardening for a short time can be obtained reliably. Further, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, or the like may be used. The epoxy resin is not limited to these, and may be used alone or in combination. From the viewpoint of moisture resistance reliability, it is preferable that Na ions and Cl ions, which are ionic impurities in the epoxy resin, be as small as possible. From the viewpoint of curability, the epoxy equivalent is, for example, 100 g / eq or more and 500 g / eq or less. it can.

(B)エポキシ樹脂の配合量は、マイクロカプセル化イミダゾール誘導体エポキシ化合物100重量部に対して50重量部以上2000重量部以下であることが好ましい。配合量が上限値以下であると異方導電性フィルムとした時の硬化性が向上する。また、配合量が下限値以上であると耐熱性および耐湿性が向上し、異方導電性フィルムとした時の接続信頼性が向上する。   (B) It is preferable that the compounding quantity of an epoxy resin is 50 to 2000 weight part with respect to 100 weight part of microencapsulated imidazole derivative epoxy compounds. When the blending amount is not more than the upper limit value, the curability when the anisotropic conductive film is obtained is improved. Moreover, heat resistance and moisture resistance improve that a compounding quantity is more than a lower limit, and the connection reliability when it is set as an anisotropic conductive film improves.

ここで、ナフタレン骨格を有するナフタレン系エポキシ樹脂は、1分子内に少なくとも1個以上のナフタレン環を含んだ骨格を有しており、ナフトール系、ナフタレンジオール系等がある。ナフタレン系エポキシ樹脂を用いることにより、異方導電性フィルムの硬化物のガラス転移温度Tgを向上させることができる。また、硬化物の高温域での線膨張係数を低下させることができる。ナフタレン系エポキシ樹脂の添加量は、異方導電性フィルム中のエポキシ樹脂成分全体に対してたとえば5重量%以上80重量%以下、好ましくは10重量%以上50重量%以下とすることができる。こうすることにより、フィルム形成性や硬化反応性を向上させることができる。   Here, the naphthalene type epoxy resin having a naphthalene skeleton has a skeleton containing at least one naphthalene ring in one molecule, and includes a naphthol type and a naphthalene diol type. By using a naphthalene type epoxy resin, the glass transition temperature Tg of the cured product of the anisotropic conductive film can be improved. Moreover, the linear expansion coefficient in the high temperature range of hardened | cured material can be reduced. The amount of the naphthalene-based epoxy resin added may be, for example, 5% by weight to 80% by weight, preferably 10% by weight to 50% by weight, based on the entire epoxy resin component in the anisotropic conductive film. By doing so, film formability and curing reactivity can be improved.

本発明で用いる(C)潜在性硬化剤とは、エポキシ樹脂と硬化剤の混合物において、一定温度条件下で特性が変わることなく長時間貯蔵可能で、例えば所定の温度に加熱した場合等に速やかに硬化させる機能をもつような硬化剤のことである。このような潜在性硬化剤はひとつには硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化することによって得られる。この場合には可使時間が延長されるために好ましい。   The (C) latent curing agent used in the present invention is a mixture of an epoxy resin and a curing agent, which can be stored for a long time without changing its characteristics under a constant temperature condition. For example, when it is heated to a predetermined temperature, It is a curing agent that has a function of curing. Such a latent curing agent can be obtained, for example, by coating the curing agent with a polyurethane-based or polyester-based polymer material and encapsulating it. This is preferable because the pot life is extended.

前記硬化剤の具体例としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。これらは、単独または混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。   Specific examples of the curing agent include imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide and the like. These can be used alone or in combination, and may be used by mixing a decomposition accelerator, an inhibitor and the like.

本発明で用いる(D)導電性粒子の組成は限定されるものではない。導電粒子の粒径や材質、配合量は接続したい回路のピッチやパターン、回路端子の厚みや材質等に応じて適宜選択することができる。たとえば、金属粒子や高分子核材に金属被覆をした粒子を用いることができる。   The composition of the conductive particles (D) used in the present invention is not limited. The particle size, material, and blending amount of the conductive particles can be appropriately selected according to the pitch and pattern of the circuit to be connected, the thickness and material of the circuit terminal, and the like. For example, metal particles or particles obtained by coating a polymer core material with metal can be used.

金属粒子としては、金、銀、亜鉛、錫、半田、インジウム、パラジウム等の単体もしくは2種以上を組み合わせてもよい。   As the metal particles, gold, silver, zinc, tin, solder, indium, palladium or the like may be used alone or in combination of two or more.

また、高分子核材に金属被覆をした粒子としては、高分子核材に、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、ポリスチレン樹脂、スチレン−ブタジエン共重合体などのポリマーの中から1種あるいは2種以上組み合わせたもの、金属薄膜皮膜に、金、ニッケル、銀、銅、亜鉛、錫、インジウム、パラジウム、アルミニウムなどの中から1種あるいは2種以上組み合わせてよい。   In addition, as the particles obtained by metal coating the polymer core material, the epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, polystyrene resin, styrene-butadiene copolymer, etc. You may combine 1 type (s) or 2 or more types from gold | metal | money, nickel, silver, copper, zinc, tin, indium, palladium, aluminum, etc. to the thing which combined 1 type (s) or 2 or more types from a polymer, and a metal thin film film.

金属薄膜皮膜の厚さに特に制限はないが、たとえば0.01μm以上1μm以下とすることができる。金属薄膜皮膜の厚さが薄すぎると異方導電性フィルムとした場合接続が不安定になり、厚すぎると凝集が生じるため、異方導電性フィルムとした場合絶縁不良を起こす可能性がある。また、金属薄膜皮膜は、高分子核材の表面に均一に被覆されていることが好ましい。均一に被覆することにより、皮膜のむらや欠けをなくし、電気的接続性を向上させることができる。   Although there is no restriction | limiting in particular in the thickness of a metal thin film membrane | film | coat, For example, they can be 0.01 micrometer or more and 1 micrometer or less. If the thickness of the metal thin film is too thin, the connection becomes unstable when the anisotropic conductive film is formed, and if it is too thick, aggregation occurs. Therefore, when the anisotropic thin film is formed, insulation failure may occur. The metal thin film is preferably uniformly coated on the surface of the polymer core material. By coating uniformly, unevenness and chipping of the film can be eliminated and electrical connectivity can be improved.

本発明で用いる(D)導電性粒子の配合量は、(A)反応性エラストマー、(B)エポキシ樹脂、(C)潜在性硬化剤の合計に対してたとえば0.05体積%以上5体積%以下とすることができる。配合量が上限値以下だと、異方導電性フィルム中の導電性粒子絶対量が適量になるため、被着体接続端子間の絶縁性が向上する。また、配合量が下限値以上だと、異方導電性フィルム中の導電性粒子絶対量が適量となり、被着体接続端子上の導電性粒子が向上し、接続抵抗値が低下する。   The blending amount of (D) conductive particles used in the present invention is, for example, 0.05% by volume or more and 5% by volume with respect to the total of (A) reactive elastomer, (B) epoxy resin, and (C) latent curing agent. It can be as follows. When the blending amount is less than or equal to the upper limit value, the absolute amount of conductive particles in the anisotropic conductive film becomes an appropriate amount, so that the insulation between the adherend connection terminals is improved. On the other hand, if the blending amount is at least the lower limit value, the absolute amount of conductive particles in the anisotropic conductive film becomes an appropriate amount, the conductive particles on the adherend connection terminal are improved, and the connection resistance value is lowered.

本発明の異方導電性フィルムには、必要に応じてカップリング剤を適量添加してもよい。カップリング剤を添加することにより、異方導電性フィルムの接着界面の接着性を改質することができる。また、異方導電性フィルムの耐熱性、耐湿性を向上することができる。   An appropriate amount of a coupling agent may be added to the anisotropic conductive film of the present invention as necessary. By adding the coupling agent, it is possible to modify the adhesion property of the anisotropic conductive film. Moreover, the heat resistance and moisture resistance of the anisotropic conductive film can be improved.

カップリング剤としては特に限定するものではないが、シランカップリング剤を好適に使用することができ、たとえば、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ―メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン等が挙げられるが、1種あるいは2種以上混合してもよい。   Although it does not specifically limit as a coupling agent, A silane coupling agent can be used conveniently, for example, (gamma) -glycidoxy propyl triethoxysilane, (beta)-(3,4 epoxy cyclohexyl) ethyl trimethoxy. Examples include silane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, γ-ureidopropyltriethoxysilane, and the like. You may mix above.

さらに、本発明に係る異方導電性接着剤には、樹脂の相溶性、安定性、作業性等の各種特性向上のため、各種添加剤、たとえば、非反応性希釈剤、反応性希釈剤、揺変性付与剤、増粘剤、無機充填剤等を適宜添加してもよい。   Furthermore, the anisotropic conductive adhesive according to the present invention has various additives such as a non-reactive diluent, a reactive diluent, etc. for improving various properties such as resin compatibility, stability, and workability. A thixotropic agent, a thickener, an inorganic filler and the like may be added as appropriate.

本発明に使用することのできる溶媒の例をそのSP値とともに以下に列挙する。なお、SP値(溶解度パラメータ)とは、物質の極性を示す指標である。
ジメチルシロキサン(5.5)、ジクロロジフルオロメタン(5.5)、ネオペンタン(6.3)、ジイソプロピルエーテル(6.9)、1−ニトロオクタン(7.0)、n−ペンタン(7.0)、n−ヘキサン(7.3)、ジエチルエーテル(7.4)、n−オクタン(7.6)、酢酸イソアミル(7.8)、ジイソブチルケトン(7.8)、シクロヘキサン(8.2)、酢酸イソブチル(8.3)、酢酸イソプロピル(8.4)、メチルイソプロピルケトン(8.5)、酢酸ブチル(8.5)、四塩化炭素(8.6)、プロピルベンゼン(8.6)メチルプロピルケトン(8.7)、エチルベンゼン(8.8)、キシレン(8.8)、p−クロロトルエン(8.8)、トルエン(8.9)、酢酸エチル(9.1)、テトラヒドロフラン(9.1)、ベンゼン(9.2)、トリクロロエチル(9.2)、スチレン(9.3)、メチルエチルケトン(9.3)、クロロホルム(9.3)、塩化メチレン(9.7)、アセトン(9.9)、シクロヘキサノン(9.9)、二硫化炭素(10.0)、酢酸(10.1)、m−クレゾール(10.2)、アニリン(10.3)、1−オクタノール(10.3)、シクロペンタノン(10.4)、エチレングリコールモノエチルエーテル(10.5)、t−ブチルアルコール(10.6)、ピリジン(10.7)、n−ヘキサノール(10.7)、1−ペンタノール(10.9)、シクロヘキサノール(11.4)、n−ブタノール(11.4)、イソプロピルアルコール(11.5)、アセトニトリル(11.9)、ジメチルホルムアミド(12.0)、ベンジルアルコール(12.1)、ジエチレングリコール(12.1)、ニトロメタン(12.7)、エタノール(12.7)、メタノール(14.5)、エチレングリコール(14.6)、グリセロール(16.5)、ホルムアミド(19.2)などを用いることができ、これらは単独でまたは2種以上を混合して用いることができる。
Examples of solvents that can be used in the present invention are listed below together with their SP values. The SP value (solubility parameter) is an index indicating the polarity of a substance.
Dimethylsiloxane (5.5), dichlorodifluoromethane (5.5), neopentane (6.3), diisopropyl ether (6.9), 1-nitrooctane (7.0), n-pentane (7.0) N-hexane (7.3), diethyl ether (7.4), n-octane (7.6), isoamyl acetate (7.8), diisobutyl ketone (7.8), cyclohexane (8.2), Isobutyl acetate (8.3), isopropyl acetate (8.4), methyl isopropyl ketone (8.5), butyl acetate (8.5), carbon tetrachloride (8.6), propylbenzene (8.6) methyl Propyl ketone (8.7), ethylbenzene (8.8), xylene (8.8), p-chlorotoluene (8.8), toluene (8.9), ethyl acetate (9.1), tetrahydrofuran ( .1), benzene (9.2), trichloroethyl (9.2), styrene (9.3), methyl ethyl ketone (9.3), chloroform (9.3), methylene chloride (9.7), acetone ( 9.9), cyclohexanone (9.9), carbon disulfide (10.0), acetic acid (10.1), m-cresol (10.2), aniline (10.3), 1-octanol (10. 3), cyclopentanone (10.4), ethylene glycol monoethyl ether (10.5), t-butyl alcohol (10.6), pyridine (10.7), n-hexanol (10.7), 1 -Pentanol (10.9), cyclohexanol (11.4), n-butanol (11.4), isopropyl alcohol (11.5), acetonitrile (11.9), dimethylformamide 12.0), benzyl alcohol (12.1), diethylene glycol (12.1), nitromethane (12.7), ethanol (12.7), methanol (14.5), ethylene glycol (14.6), glycerol (16.5), formamide (19.2) and the like can be used, and these can be used alone or in admixture of two or more.

本発明において、異方導電性フィルム中の有機溶媒のSP値は、好ましくは7以上、より好ましくは8以上であり、好ましくは11以下、より好ましくは10以下である。有機溶媒のSP値がこの範囲であると、成分(C)潜在性硬化剤の被覆樹脂を効率的に膨潤させることができ、その結果、硬化性を適度に向上させることができる。   In the present invention, the SP value of the organic solvent in the anisotropic conductive film is preferably 7 or more, more preferably 8 or more, preferably 11 or less, more preferably 10 or less. When the SP value of the organic solvent is within this range, the coating resin of the component (C) latent curing agent can be efficiently swollen, and as a result, the curability can be appropriately improved.

本発明において、異方導電性フィルム中の有機溶媒含有量は、好ましくは0.3〜3重量%である。下限値以上だと硬化性が向上し、上限値以下だと保存性が向上する。   In the present invention, the organic solvent content in the anisotropic conductive film is preferably 0.3 to 3% by weight. When it is at least the lower limit, the curability is improved, and when it is at most the upper limit, the preservability is improved.

従来の異方導電性フィルムは有機溶媒を乾燥工程においてほとんど揮発させて製品化しており、そのフィルム中の有機溶媒量は0.1%未満であった。乾燥条件は常に一定ではないため、異方導電性フィルム中の有機溶媒の量が変動することはあったものの、それは有機溶媒量が0.1%未満の範囲であり、本願発明のようにある一定量以上の有機溶媒をフィルム中に含有させることはなされていなかった。その理由として、有機溶媒を異方導電性フィルム中に多く含有させるとフィルムにタックが生じ、作業性が低下することに加えて、潜在性硬化剤を不必要に活性化させるために保存性をも低下させると考えられてきたからである。本願発明者らは、特に特定のSP値を有する有機溶媒を一定量フィルム中に含有させることにより、保存性を維持しつつ低温速硬化性を実現できることに着目し、本願発明を完成させた。   Conventional anisotropic conductive films are made into a product by almost evaporating an organic solvent in the drying step, and the amount of the organic solvent in the film is less than 0.1%. Since the drying conditions are not always constant, the amount of the organic solvent in the anisotropic conductive film may vary, but the amount of the organic solvent is less than 0.1%, as in the present invention. A certain amount or more of the organic solvent was not included in the film. The reason for this is that if an organic solvent is contained in a large amount in the anisotropic conductive film, tackiness occurs in the film, and workability is lowered, and in addition, storage stability is increased in order to activate the latent curing agent unnecessarily. It is because it has been thought that it will also reduce. The inventors of the present application have completed the present invention by paying attention to the fact that, by containing a certain amount of an organic solvent having a specific SP value in the film, it is possible to achieve low-temperature rapid curability while maintaining storability.

本発明における有機溶媒量は異方導電性フィルムを製造する中間段階のものではなく、最終製品における量である。   The amount of the organic solvent in the present invention is not an intermediate stage for producing the anisotropic conductive film but an amount in the final product.

本発明に係る異方導電性フィルムは、たとえば以下のようにして得られる。まず原料樹脂を均一に分散させ得られた樹脂ワニスを、離型処理を施したポリエチレンテレフタレート上に乾燥後の厚さが45μmになるように塗布し、乾燥する。このときの乾燥温度、乾燥時間を変えることによって、有機溶媒量の調節を行うことができる。その後、乾燥物を、たとえば幅2.0mmに切断して異方導電性フィルムが得られる。   The anisotropic conductive film according to the present invention is obtained, for example, as follows. First, a resin varnish obtained by uniformly dispersing a raw material resin is applied onto a polyethylene terephthalate subjected to a release treatment so that the thickness after drying is 45 μm and dried. The amount of organic solvent can be adjusted by changing the drying temperature and drying time at this time. Thereafter, the dried product is cut into, for example, a width of 2.0 mm to obtain an anisotropic conductive film.

(実施例1)
表1に示したように、ビスフェノールA型フェノキシ樹脂(酢酸エチル20%溶液)を150重量部、ポリビニルブチラール樹脂(酢酸エチル20%溶液)50重量部、上記一般式(1)で示されるエポキシ基含有アクリルゴム(酢酸エチル20%溶液、上記一般式(1)中のR=CH、R=CH、分子量700,000)50重量部、ビスフェノールA型エポキシ樹脂を20重量部、マイクロカプセル化-2-メチルイミダゾール誘導体エポキシ化合物を30重量部、ニッケル/金メッキ被覆ベンゾグアナミン樹脂粒子を2重量部、シランカップリング剤を5重量部、をトルエン350重量部、酢酸エチル150重量部中に均一に分散させた。また、得られた樹脂ワニスを、離型処理を施したポリエチレンテレフタレート上に乾燥後の厚さが45μmになるように塗布し、乾燥した。乾燥は、塗布面を、庫内温度60℃、風速15m/minの乾燥機中に360秒間曝して行った。乾燥物を幅2.0mmに切断して異方導電性フィルムを得た。
(Example 1)
As shown in Table 1, bisphenol A type phenoxy resin (ethyl acetate 20% solution) 150 parts by weight, polyvinyl butyral resin (ethyl acetate 20% solution) 50 parts by weight, epoxy group represented by the above general formula (1) Containing acrylic rubber (ethyl acetate 20% solution, R 1 = C 2 H 5 , R 2 = CH 3 , molecular weight 700,000 in the above general formula (1)) 50 parts by weight, bisphenol A type epoxy resin 20 parts by weight 30 parts by weight of microencapsulated 2-methylimidazole derivative epoxy compound, 2 parts by weight of nickel / gold plated benzoguanamine resin particles, 5 parts by weight of silane coupling agent, 350 parts by weight of toluene, and 150 parts by weight of ethyl acetate Were uniformly dispersed. Moreover, the obtained resin varnish was apply | coated so that the thickness after drying might be set to 45 micrometers on the polyethylene terephthalate which gave the mold release process, and it dried. Drying was performed by exposing the coated surface for 360 seconds in a drier having an internal temperature of 60 ° C. and a wind speed of 15 m / min. The dried product was cut into a width of 2.0 mm to obtain an anisotropic conductive film.

(異方導電性フィルム中の有機溶媒の測定方法)
異方導電性樹脂試料約5mgをパージ&トラップ(日本分析化学 JHS−100A型)の試料管に入れ、流速50ml/minのヘリウムガスで揮発分を追い出しながら、200℃×15分で試料を加熱した。この時発生した揮発分を−80℃でトラップし、試料加熱終了後トラップした成分をGC/MS(GC:ヒューレットパッカード HP−5890型ガスクロマトグラフ、MS:ヒューレットパッカード HP−5970B型質量検出器)に導入した。クロマトグラム中の各ピークの帰属は、それぞれのマススペクトルに基づいて行った。なお、検出成分の定量については、既知濃度の標準サンプルのアセトン希釈溶液を0.5μl注入し、試料と同様に測定しピーク面積値を用いて定量を行った。
(Measurement method of organic solvent in anisotropic conductive film)
About 5 mg of anisotropic conductive resin sample is placed in a purge & trap (Nippon Analytical Chemistry JHS-100A type) sample tube, and the sample is heated at 200 ° C. for 15 minutes while expelling volatiles with helium gas at a flow rate of 50 ml / min. did. The volatile matter generated at this time is trapped at −80 ° C., and the components trapped after the heating of the sample are applied to GC / MS (GC: Hewlett Packard HP-5890 gas chromatograph, MS: Hewlett Packard HP-5970B mass detector). Introduced. Assignment of each peak in the chromatogram was performed based on the respective mass spectrum. In addition, about the fixed_quantity | quantitative_assay of a detection component, 0.5 microliters of acetone dilution solutions of the standard sample of a known density | concentration were inject | poured, measured like the sample, and quantified using the peak area value.

(評価サンプルの作製)
評価用のサンプルを次のように予め作製した。銅箔/ポリイミド=25/75μmに0.5μmの錫メッキを施したTCP(ピッチ0.30mm、端子数60本)と、0.8mm厚4層板(FR−4)内層、外層銅箔18μmフラッシュ金メッキPCB(ピッチ0.30mm、端子数60本)とを、各実験例で得られた異方導電性フィルムで接合した。
(Preparation of evaluation sample)
A sample for evaluation was prepared in advance as follows. Copper foil / polyimide = 25/75 μm with 0.5 μm tin plated TCP (pitch 0.30 mm, 60 terminals), 0.8 mm thick 4-layer board (FR-4) inner layer, outer layer copper foil 18 μm Flash gold-plated PCB (pitch 0.30 mm, number of terminals 60) was joined with the anisotropic conductive film obtained in each experimental example.

(接着強度)
3MPaにて170℃まで15秒間で昇温する条件で圧着し、引っ張り速度50mm/分で90度剥離試験によって評価を行った。サンプル作製直後の接着力を測定した。
(Adhesive strength)
Pressure bonding was performed under the condition that the temperature was increased to 170 ° C. for 15 seconds at 3 MPa, and evaluation was performed by a 90 ° peel test at a pulling speed of 50 mm / min. The adhesive force immediately after sample preparation was measured.

(接続信頼性)
3MPaにて170℃まで15秒間で昇温する条件で圧着し、サンプル作製直後および温度85℃、湿度85%、500時間放置処理後(HH処理後)の接続抵抗を測定した。接続抵抗が2.0Ω未満である場合を○(導通良好)、2.0Ω以上5.0Ω未満である場合を△、5.0Ω以上である場合を×(導通不良)とした。
(Connection reliability)
Bonding was performed under the condition that the temperature was raised to 170 ° C. for 15 seconds at 3 MPa, and the connection resistance was measured immediately after the sample was prepared and after being left at a temperature of 85 ° C. and a humidity of 85% for 500 hours (after HH treatment). A case where the connection resistance was less than 2.0Ω was evaluated as “Good” (conducting good), a case where it was 2.0Ω or more and less than 5.0Ω, and a case where it was 5.0Ω or more were evaluated as “Poor” (conducting failure).

(保存性)
異方導電性フィルムを40℃の雰囲気中に3日間放置後、3MPaにて170℃まで15秒間で昇温する条件で圧着し、接続抵抗を測定した。接続抵抗が2.0Ω未満である場合を○(導通良好)、2.0Ω以上5.0Ω未満である場合を△、5.0Ω以上である場合を×(導通不良)とした。
(Storability)
The anisotropic conductive film was allowed to stand in an atmosphere of 40 ° C. for 3 days, and then pressure-bonded at 3 MPa to 170 ° C. for 15 seconds, and the connection resistance was measured. A case where the connection resistance was less than 2.0Ω was evaluated as “Good” (conducting good), a case where it was 2.0Ω or more and less than 5.0Ω, and a case where it was 5.0Ω or more were evaluated as “Poor” (conducting failure).

(作業性)
製品をリールから引き出す際に、樹脂のべたつきが強く、基材からの逆転写や浮きが起きるものを×、起きないものを○とした。
(Workability)
When the product was pulled out from the reel, the stickiness of the resin was strong, and the case where reverse transfer or floating from the base material occurred was rated as x, and the case where it did not occur was marked as ◯.

(実施例2〜5、比較例1)
実施例1の溶剤及び乾燥条件を表1のように変えて実験を行った。結果を表1に示す。
(Examples 2 to 5, Comparative Example 1)
The experiment was conducted by changing the solvent and drying conditions of Example 1 as shown in Table 1. The results are shown in Table 1.

Figure 0004113191
Figure 0004113191

表1において、用いた原料を以下に示す。
(1)ビスフェノールA型フェノキシ樹脂、インケム社製PKHC(酢酸エチル20%溶液)
(2)ポリビニルブチラール樹脂、積水化学社製BX−1(酢酸エチル20%溶液)
(3)エポキシ基含有アクリルゴム(酢酸エチル20%溶液、上記一般式(1)中のR=CH、R=CH、分子量700,000)
(4)ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製エピコート828
(5)マイクロカプセル化-2-メチルイミダゾール誘導体エポキシ化合物、旭化成ケミカルズ社製HX−3941HP
(6)ニッケル/金メッキ被覆ベンゾグアナミン樹脂粒子、日本化学工業社製20GNR4.6−EH
(7)シランカップリング剤、信越化学社製KBM―403E
In Table 1, the raw materials used are shown below.
(1) Bisphenol A type phenoxy resin, PKHC manufactured by Inchem (20% ethyl acetate solution)
(2) Polyvinyl butyral resin, BX-1 manufactured by Sekisui Chemical Co., Ltd. (20% ethyl acetate solution)
(3) Epoxy group-containing acrylic rubber (20% ethyl acetate solution, R 1 = C 2 H 5 , R 2 = CH 3 in the above general formula (1), molecular weight 700,000)
(4) Bisphenol A type epoxy resin, Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
(5) Microencapsulated-2-methylimidazole derivative epoxy compound, HX-3941HP manufactured by Asahi Kasei Chemicals
(6) Nickel / gold plating coated benzoguanamine resin particles, 20GNR4.6-EH manufactured by Nippon Chemical Industry Co., Ltd.
(7) Silane coupling agent, Shin-Etsu Chemical KBM-403E

表1より、実施例1〜6では、接着強度、保存性、作業性に優れる異方導電性フィルムが得られることがわかった。
比較例1は、従来製品であり、有機溶媒量が0.03%と低いものである。保存性、作業性には問題がなかったものの、接着強度が低く、またHH処理後の接続信頼性で不良が発生した。更に有機溶媒量が5.0%のサンプルを作製し評価したところ、実施例3の有機溶媒量2.0%の結果よりも劣るものの、接着強度、接続信頼性、保存性、作業性のいずれにおいても問題のない結果であった。
From Table 1, in Examples 1-6, it turned out that the anisotropic conductive film which is excellent in adhesive strength, preservability, and workability | operativity is obtained.
Comparative Example 1 is a conventional product with a low organic solvent content of 0.03%. Although there was no problem in storage stability and workability, the adhesive strength was low, and defects occurred in connection reliability after HH treatment. Furthermore, when a sample having an organic solvent amount of 5.0% was prepared and evaluated, it was inferior to the result of the organic solvent amount of 2.0% in Example 3, but any of adhesive strength, connection reliability, storage stability, and workability. However, there was no problem.

(電子機器への使用例)
また、実験例1〜6に係る異方導電性フィルムを用いてPCBとTCPを接続し、表示装置部材を得た。異方導電性フィルムの接着条件は、3MPaにて170℃まで15秒間で昇温する条件とした。得られた表示装置部材に、電源、バックライトなどの周辺部材を設けて液晶表示装置を得た。
(Example of use in electronic equipment)
Moreover, PCB and TCP were connected using the anisotropic conductive film which concerns on Experimental Examples 1-6, and the display apparatus member was obtained. The anisotropic conductive film was bonded under conditions of 3 MPa at 170 ° C. for 15 seconds. The obtained display device member was provided with peripheral members such as a power source and a backlight to obtain a liquid crystal display device.

得られた液晶表示装置においては、PCBとTCPとの良好な接着性が得られた。これより、実験例1〜6に係る異方導電性フィルムは、入力用の異方導電性フィルムとして好適に利用できることがわかった。   In the obtained liquid crystal display device, good adhesion between PCB and TCP was obtained. From this, it turned out that the anisotropic conductive film which concerns on Experimental Examples 1-6 can be utilized suitably as an anisotropic conductive film for input.

本発明は、異方導電性フィルム及びそれを用いた電子機器に用いられる。   The present invention is used for anisotropic conductive films and electronic devices using the same.

Claims (1)

複数の部材が接着剤により電気的に接合されてなる電子機器において、
前記接着剤が、
(A)反応性エラストマー、
(B)エポキシ樹脂、
(C)マイクロカプセル化イミダゾール誘導体エポキシ化合物、および
(D)導電性粒子
を必須成分とする異方導電性フィルムであって、
当該異方導電性フィルム中の有機溶媒含有量が0.2重量%以上2.0重量%以下であり、前記有機溶媒のSP値が7以上11以下であり、
当該異方導電性フィルムの、3MPaにて170℃まで15秒間で昇温する条件で圧着した後の接続抵抗が2.0Ω未満であることを特徴とする電子機器
In an electronic device in which a plurality of members are electrically joined by an adhesive,
The adhesive is
(A) a reactive elastomer,
(B) epoxy resin,
(C) an anisotropic conductive film comprising a microencapsulated imidazole derivative epoxy compound and (D) conductive particles as essential components,
The anisotropically conductive organic solvent content in the film is 2.0 wt% or less than 0.2 wt% state, and are SP value of 7 to 11 of the organic solvent,
An electronic device characterized in that the anisotropic conductive film has a connection resistance of less than 2.0Ω after being pressure-bonded under the condition that the temperature is raised to 170 ° C. for 15 seconds at 3 MPa .
JP2005068536A 2005-03-11 2005-03-11 Electronic equipment using anisotropic conductive film Expired - Fee Related JP4113191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068536A JP4113191B2 (en) 2005-03-11 2005-03-11 Electronic equipment using anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068536A JP4113191B2 (en) 2005-03-11 2005-03-11 Electronic equipment using anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2006252980A JP2006252980A (en) 2006-09-21
JP4113191B2 true JP4113191B2 (en) 2008-07-09

Family

ID=37093235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068536A Expired - Fee Related JP4113191B2 (en) 2005-03-11 2005-03-11 Electronic equipment using anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP4113191B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658011B2 (en) * 2010-11-25 2015-01-21 電気化学工業株式会社 Polychloroprene adhesive composition and method for producing the same
JP2012136697A (en) * 2010-12-08 2012-07-19 Sekisui Chem Co Ltd Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP6142612B2 (en) * 2013-03-27 2017-06-07 デクセリアルズ株式会社 Anisotropic conductive film
KR101908185B1 (en) 2016-04-29 2018-10-15 삼성에스디아이 주식회사 An anisotropic adhesive film and display devices connected by using the same
CN106297967B (en) * 2016-08-26 2018-01-16 京东方科技集团股份有限公司 Flexible conductive film and preparation method thereof, flexible touch screen and display panel

Also Published As

Publication number Publication date
JP2006252980A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US8034261B2 (en) Anisotropic conductive film composition, anisotropic conductive film including the same, and associated methods
US20070215838A1 (en) Circuit Connecting Adhesive
WO2010047200A1 (en) Anisotropic electroconductive film
JP3503740B2 (en) Anisotropic conductive adhesive and electronic device using the same
US8766443B2 (en) Anisotropic conductive film composition, anisotropic conductive film, and semiconductor device bonded by the same
CN1242403A (en) Anisotropic conductive adhesive and method for preparation thereof and electronic apapratus using said adhesive
US20010021547A1 (en) Bonding materials
TW201038703A (en) Film adhesive and anisotropic conductive adhesive
JP4113191B2 (en) Electronic equipment using anisotropic conductive film
US7727423B2 (en) Anisotropic conductive film composition and film including the same
US20030027942A1 (en) Resin composition , adhesive prepared therewith for bonding circuit members,and circuit boards
JP3947532B2 (en) Anisotropic conductive adhesive film
JP2002285103A (en) Anisotropic electroconductive adhesive
JPH11209713A (en) Anisotropically electroconductive adhesive
TWI423267B (en) Composition for anisotropic conductive film
JP4730215B2 (en) Anisotropic conductive adhesive film
JPH07173448A (en) Anisotropically conductive film
KR100477914B1 (en) Resin Composition for Anisotropic Adhesive Having Conductivity
JP3981341B2 (en) Anisotropic conductive adhesive
CN113429890B (en) Composite curing agent, adhesive, conductive adhesive, preparation method and application thereof
JP2012097226A (en) Anisotropically electroconductive adhesive film and connection structure
TWI649399B (en) Composition for anisotropic conductive film, anisotropic conductive film and display device using the same
JP2000044905A (en) Anisotropic, electrically conductive adhesive and electronic equipment using the same
JP2010024384A (en) Anisotropically electroconductive composition
JP3447201B2 (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees