JP4112386B2 - Distillation method - Google Patents

Distillation method Download PDF

Info

Publication number
JP4112386B2
JP4112386B2 JP2003020033A JP2003020033A JP4112386B2 JP 4112386 B2 JP4112386 B2 JP 4112386B2 JP 2003020033 A JP2003020033 A JP 2003020033A JP 2003020033 A JP2003020033 A JP 2003020033A JP 4112386 B2 JP4112386 B2 JP 4112386B2
Authority
JP
Japan
Prior art keywords
distillation
column
liquid
raw material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020033A
Other languages
Japanese (ja)
Other versions
JP2004230251A (en
Inventor
秀晃 植岡
修 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003020033A priority Critical patent/JP4112386B2/en
Priority to ZA200400680A priority patent/ZA200400680B/en
Priority to DE200410004530 priority patent/DE102004004530A1/en
Publication of JP2004230251A publication Critical patent/JP2004230251A/en
Application granted granted Critical
Publication of JP4112386B2 publication Critical patent/JP4112386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2成分以上の混合物から成る原料を、蒸留により分離・精製し、所望の組成の製品を得るための改良された蒸留方法に関する。詳しくは、塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用いて上記原料の分離・精製を行うにあたり、運転状態を安定に保つ制御を行うことにより、安定して所望の組成の製品を得ることができ、かつ運転可能な条件範囲を広くすることのできる蒸留方法に関する。
【0002】
【従来の技術】
混合品からなる原料を、蒸留により不要な成分をトップカット(低沸点成分の低減処理)あるいはボトムカット(高沸点成分の低減処理)により除去する、また所望の組成に分離・精製することは公知の技術である。一般に蒸留による分離・精製においては、n個の成分を全て分離するために少なくとも(n−1)本の蒸留塔が必要と考えられている。同時に装置内で加熱・冷却を繰り返す蒸留設備は、さまざまな単位操作の中でもエネルギー多消費型のプロセスである。これらのことから、蒸留プロセスの設備費やエネルギー消費量を低減するための技術開発が継続的に進められている。
【0003】
例えば、設備費を小さくするために、1本の蒸留塔で同時に複数の製品が得られるよう、塔頂部や塔底部以外に塔中間部からも留出液を取り出すサイドカット塔等が用いられている。又、設備費を小さくするとともに、分離性能を高めかつ供給熱量の低減を図るために、蒸留塔内部に垂直分割板を設けたり、同心円柱構造物を挿入し、塔中間部の蒸留部が分割された構造を有するものが提案されている。
【0004】
前者のサイドカット塔では、1本の蒸留塔で複数の製品が得られることから、蒸留塔の総数ならびにリボイラー、コンデンサーの総数を減らすことが可能である。しかし、基本的にサイドカット塔では、分離に必要と考えられる理論段数を縦方向に積み上げた構造となるため、機能の集約によりその塔高は大幅に大きくなる。また、サイドカット塔の場合、塔内部の原料供給段より上方には必ず原料成分のうち最も低沸成分の分布ができることから、塔頂と原料供給段の間に位置する留出口では、得られる製品への該低沸成分の混入防止には限界がある。同様の理由から、原料供給段より下方には必ず原料成分のうち最も高沸成分の分布ができることから、塔底と原料供給段の間に位置する留出口では、得られる製品への該高沸成分の混入防止には限界があるのが実状である。
【0005】
後者の蒸留塔は一般的にはペトリューク式蒸留塔の具現化構造として知られている。例えば特許文献1及び特許文献2にこのような構造を有する蒸留塔についての記載がされている。これら文献記載の発明においては、蒸留塔内部に垂直分割板を設け、内部を2つ以上の蒸留部に分割した構造が提案されており、この構造による分離性能の向上ができることが記載されている。
【0006】
このような構造を有する蒸留塔の運転を考えた場合、分割された各蒸留部に上部から降下させる液量、あるいは下部から上昇させる蒸気量を、供給される原料組成や製造する製品組成に応じて最適量となるよう設定する必要がある。また、安定運転を可能ならしめるための制御方法も必要となる。しかし、これらの課題に対して上記文献では、塔内部での降下液の分配あるいは上昇蒸気の分配について、さらに運転制御方法については記載されておらず、分割型構造を有する蒸留塔の運転方法としては満足の得られるものではない。
【0007】
このような問題を解決するため、塔内分割板を有する蒸留塔の改善された運転方法が、特許文献3、特許文献4、特許文献5、特許文献6及び特許文献7に記載されている。
【0008】
特許文献3には、垂直分割板で仕切られた2つの蒸留部に対して塔内降下液を分配する際に、分割上部に設置された液コレクターに一旦降下液を集め、この降下液の組成分析結果から一方の空間への降下液量を決定するといった、塔内降下液の組成を一定に維持する方法が記載されている。この際に降下液の組成分析は例えばオンライン形式のガスクロマトグラフィ等で実施される。他方の蒸留部への降下液量については、該液コレクターに液面レベル計が設置され、コレクター液面が常に一定となるように降下液量が調整される。
【0009】
前記方法においては、一方の蒸留部への降下液量を決定する際にオンライン形式での組成分析を行っているが、サンプリングから分析結果が得られるまでに要する時間が長くなり、効果的な流量調整が困難になり、かえって塔内降下液の組成を乱すことが予想される。また、設備化を想定した場合においても、高価な分析機器が必要であり、分析結果からのバルブ開度調整といった複雑な制御システムを必要とする。さらに、塔内に液面レベル計を有する液コレクターが必要となるため、蒸留塔そのものの構造が大型化する可能性が考えられる。
【0010】
又、特許文献4、特許文献5及び特許文献7には、上記に示される降下液の分配に対して、分割上部に降下液を分配させるための液ディストリビューターが設置され、予め設定された分配比となるようその孔数等が決められている。あるいは、降下液量が設定された分配比となるよう、分割板の挿入位置を塔内部で偏心させた構造を採用している。この方法によると、分割上部のコレクターで集められた降下液は、該液ディストリビューターにより、あるいは分割された空間の開口部面積に応じて常に一定の比率で分配される。これらの方法により、高価な分析機器や複雑な制御システムを用いることなく設備化が可能になると考えられる。また、液コレクター部に液面レベル計を設置する必要もないため、蒸留塔が大型化することも避けることが可能となる。また、分割部における降下液の分配を上記液ディストリビューターで調整するかわりに、降下液量を流量計等により調整して、その分配比を調整・制御する方法が特許文献6に記載されている。
【0011】
これら文献の記載は、いずれも分割部における降下液の分配を分配比で調整・制御する方法である。このように降下液の分配を分配比で制御した場合、例えば運転中の組成変動といった外乱の影響により全降下液量が変動した場合に、それぞれの降下液流量ともに変動することになる。降下液量を流量計等により調整して、その分配比を調整する場合においても、いったん計測した流量値から分配比を計算し、さらに分配比補正のために各流量を調整しなければならないので、制御の時間遅れがかえって運転の安定化を妨げる可能性が考えられる。
【0012】
また、塔内に分割板を有する蒸留塔は、その構造として多孔板トレイ、泡鐘式トレイ等の棚段、ラシヒリング、ポールリング等の不規則充填物、また金属板型、金網型の規則充填物のいずれを使用しても実施可能であるが、これらいずれの形態を実施する場合においても、降下液量についての制約がある。つまり、いずれの形態を実施するに対しても、その性能を発揮するための必要最小流量を確保しなければならない。例えば不規則充填物や規則充填物では、充填物の表面が降下液によって十分に濡れていないとその性能は発揮されず、所望の分離効率を得ることができない。これに対して、降下液の分配を分配比で制御した場合、先に示した外乱等の要因により、降下液流量が変動し、分離性能を満足するための必要最小流量を満足できない可能性が考えられる。とくに分割板を有する蒸留塔の場合、分割された一方の蒸留部から製品を留出させるため、製品留出側の蒸留部には少なくとも留出量に相当する量の降下液を確保する必要があり、運転条件によっては原料供給側の蒸留部への降下液量が小さくなり、原料供給側での必要最小流量を満足できない場合が考えられる。また、蒸留収率の著しく高い運転を行おうとした場合には、製品留出側の蒸留部のうち、留出部の下部に位置する棚段あるいは充填層への降下液量が極端に小さくなり、この部分での必要最小流量を満足できない場合が考えられる。即ち、これらの方法を用いた場合には、必要最小流量による運転条件の制約と、分配比との組合せから、運転条件範囲が狭くなることになる。
【0013】
これらの現象を回避するためには、予め全降下液量が過剰になるよう、ボトムからのリボイラー加熱量を大きく設定すれば良いが、これは省エネルギーの観点から有利な方法ではない。
【0014】
【特許文献1】
米国特許第2471134号明細書
【特許文献2】
特開昭59−142801号公報
【特許文献3】
米国特許第4230533号明細書
【特許文献4】
特開平9−299701号公報
【特許文献5】
特開平11−314003号公報
【特許文献6】
特開2000−140501号公報
【特許文献7】
特開2001−79302号公報
【0015】
【発明が解決しようとする課題】
本発明の課題は、塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、2成分以上の混合物から成る原料を、分離・精製する方法において、複雑な分析機器や制御システムを使用することなく、安定して所望の組成の製品を得ることのできる蒸留方法、かつ運転状態を安定に保つ制御を行い、運転可能な条件範囲を広くすることのできる蒸留方法を提供することである。
【0016】
【課題を解決するための手段】
本発明は、以下の(1)、(2)及び(3)に示す蒸留方法を提供する。
(1)塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、何れか一方の区分された蒸留部の降下液流量を全凝縮液量によらず設定流量に調整しつつ蒸留を行うことを特徴とする蒸留方法。
(2)塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、少なくとも何れか一方の区分された蒸留部の温度を検知することによって、区分された蒸留部の降下液流量を調整して蒸留を行うことを特徴とする蒸留方法。
(3)塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、何れか一方の区分された蒸留部の降下液流量を全凝縮液量によらず設定流量に調整すると共に、少なくとも何れか一方の区分された蒸留部の温度を検知することによって、区分された蒸留部の降下液流量を調整して蒸留を行うことを特徴とする蒸留方法。
【0017】
【発明の実施の形態】
[蒸留塔]
本発明において使用される蒸留塔は、塔中間部が2つの蒸留部に区分された構造を有する。蒸留部の区分は分割板や内部管を挿入すること等が簡便で一般的である。以下、分割板を用いた場合で説明する。
【0018】
図1に本発明に用いられる蒸留塔の一例を示す。この蒸留塔1の塔中間部3は、分割板5により、2つの蒸留部6,6’に区分され、塔上部2及び塔下部4については分割板5が塔中間部3のみに設置されるため、通常の塔の構造と同じである。塔内の気液接触部の構造については、多孔板トレイ、泡鐘式トレイ等の棚段、ラシヒリング、ポールリング等の不規則充填物、また金属板型、金網型の規則充填物の使用等、いずれにおいても実施可能である。中でも、段効率に優れ、液ホールドアップが小さく、かつ圧力損失が小さいという点から、規則充填物を用いるのが好ましい。
【0019】
蒸留原料は、分割された一方の蒸留部6に供給される。原料供給側の蒸留部6においては、原料供給口7の上下両側に棚段、充填層があっても、また上下どちらか一方にのみ棚段、充填層があってもよい。
【0020】
塔頂及び塔中間部には製品留出口8,9、塔底には缶出液抜出口10が設けられる。塔中間部に設けられる留出口9は、分割された他方(原料供給側とは反対)の蒸留部6’に設けられるが、留出口の数は1つ又は2つ以上あっても良い。
【0021】
図2に本発明に用いられる蒸留塔の別の例を示す。この蒸留塔では、原料供給側とは反対側の製品留出口9の他に、原料供給側にも製品留出口9’を設けており、この製品留出口9’は複数設けても良い。
【0022】
図1及び図2の蒸留塔において、塔頂の留出口8からの留出物は蒸気のまま塔外へ排出し、コンデンサー(凝縮器)にて冷却後、一部を製品として取出し、一部を還流として塔頂に返しても、あるいは塔頂に設けた内部コンデンサーで凝縮液すべてを内部で還流して、一部を留出液として取り出しても良い。
【0023】
塔底の加熱部においては、リボイラーとして自然循環式(サーモサイフォン型)、液を循環させる強制循環型、蒸気のみを返すケトル型等を用いてもよい。中でも、塔底製品の熱履歴による品質劣化を防ぐという点から、流下薄膜式のものが好ましい。
【0024】
[蒸留制御方法]
本発明の第一の態様においては、塔中間部の2つの蒸留部に降下される降下液のうちどちらか一方について、その流量が、全凝縮液量によらず設定流量に調整される。流量を調整する方法は、例えば、図3に示すように、塔中間部の上部に設けた液コレクター11より塔中間部の2つの蒸留部6,6’に降下液ライン12,12’を設け、さらに一方のライン12’に流量計13及び流量調整弁14を設ける。他方のライン12については流量調整弁を設けず、液コレクター11への降下液量と流量調整される側の降下液量の差分だけバランスした流量を降下させる。ここで、15はディストリビューターである。
【0025】
また、別の流量調整方法として、図4に示すように、塔中間部の上部に設けた液コレクター11より、全ての降下液を塔外部に設置された受器16に送り、この受器16からポンプ17により塔中間部の2つの蒸留部6,6’へ降下液を送ってもよい。この場合、一方のライン12には流量計13及び流量調整弁14が、他方のライン12’には流量計を設ける必要はないが、受器16の液面レベルを調整する流量調整弁14’を設けることが好ましい。ここで18は液面計である。
【0026】
流量調整を行う降下液流は、2つの蒸留部のうちの一方だけであり、原料供給側の蒸留部への降下液流か、あるいは製品留出側の蒸留部への降下液流かは、原料組成、製品組成また運転条件によって選択可能である。例えば、原料供給側の蒸留部への降下液量が小さい運転を行う場合は、原料供給側蒸留部への降下液量を調整、制御し、該蒸留部への必要降下液量を安定に確保させる。また、高収率運転を行う場合は、製品留出側蒸留部への降下液量を調整、制御し、該蒸留部への必要降下液量を安定に確保させる。
【0027】
さらに、分割板を有する蒸留塔の運転においては、分割板を境にした2つの蒸留部のそれぞれの組成分布を精密に制御する必要がある。例えば、原料中に含まれる成分のうち、その沸点が中程度の成分について、製品中への混入組成を制御する方法として、(A)原料供給側蒸留部から蒸気の形態で分割板上部を越え、凝縮後に製品留出側蒸留部へ流入する量を制御する方法と、(B)原料供給側蒸留部から蒸気の形態で分割板下部を通り製品留出側蒸留部を上昇する蒸気を制御する方法が考えられる。前者による組成調整を行う場合は、原料供給側蒸留部への降下液量制御が有効である。一方、後者の場合は、製品留出側蒸留部への降下液量制御が有効となる。
【0028】
これら流量調整される一方の降下液量は、原料組成また製品組成に応じて、運転に必要なリボイラー加熱量とあわせ決定される。
【0029】
このように、塔中間部の2つの蒸留部の降下液のうち一方の流量を運転条件に応じて一定に調整することにより、運転中に起こりうる各種の外乱の発生に対しても、各蒸留部への必要降下液量を安定に確保し、かつ所望の製品組成を安定に得ることができる。
【0030】
また、本発明の第二の態様においては、塔中間部の2つの蒸留部のうち、少なくとも何れか一方の蒸留部の温度を検知することによって、区分された蒸留部の降下液流量が調整される。この方法は、蒸留塔の連続運転中に原料組成が大きく変動した場合などに特に好適である。
【0031】
例えば、原料供給側蒸留部の温度が原料組成の変動により適正値よりも高くなった場合は、該蒸留部への降下液量不足による充填層の性能低下や、高沸成分が上昇し、分割板上部から製品留出側蒸留部へ流入する恐れがある。この為、該蒸留部の温度が適正値となるよう、原料供給側蒸留部への降下液量の微調整を行う。同様にして、製品留出側蒸留部の温度が原料組成の変動により適正値よりも高くなった場合は、該蒸留部への降下液量不足による充填層の性能低下や、塔下部から高沸成分が上昇し、製品へ高沸成分が流入する恐れがある。この為、該蒸留部の温度が適正値となるよう、製品留出側蒸留部への降下液量の微調整を行う。
【0032】
また、他の好ましい形態として、製品組成の変化を蒸留塔内部の温度から速やかに検知し、所望の製品組成になるよう蒸留塔塔頂部での全凝縮液量の微調整を行うことが挙げられる。ここで蒸留塔塔頂部の全凝縮液とは、塔頂まで上昇した蒸気が塔頂に設置される内部あるいは外部コンデンサーにて冷却、凝縮したもの(原料成分の一部)を示す。
【0033】
その他、本発明の別の態様は、上記第一、第二の態様を適宜、併用するものである。例えば、原料供給側蒸留部への降下液量を制御している場合、製品留出側蒸留部の温度が原料組成の変動により適正値よりも高くなった場合は、製品留出側蒸留部への降下液量不足による充填層の性能低下や、塔下部から製品留出側蒸留部への高沸成分の上昇による製品への流入が考えられる。このような現象に対して、製品留出側蒸留部の温度が適正値となるよう、蒸留塔塔頂部の全凝縮液量の微調整を行う。同様にして、製品留出側蒸留部への降下液量を制御している場合、原料供給側蒸留部の温度が原料組成の変動により適正値よりも高くなった場合は、原料供給側蒸留部への降下液量不足による充填層の性能低下や、高沸成分の上昇による分割板上部から製品留出側蒸留部への流入が考えられる。このような現象に対して、原料供給側蒸留部の温度が適正値となるよう、蒸留塔塔頂部の全凝縮液量の微調整を行う。
【0034】
なお蒸留塔塔頂部の全凝縮液量の調整については、リボイラー加熱量を調整することにより実施すればよい。
【0035】
[原料]
本発明による蒸留方法では、分離・精製する原料として特に限定されることはなく、例えばメタノール,エタノール,ブタノール,エチレングリコール,グリセリン等のアルコール類、蟻酸,酢酸,プロピオン酸等のカルボン酸類、酢酸メチル,酢酸エチル,プロピオン酸エチル等のエステル類、ペンタン,ヘキサン,オクタン等の炭化水素類の分離に対して実施可能である。また、一般に高真空の条件を必要とする高沸点物の分離に対しても有効であり、例えばラウリン酸,ステアリン酸等の脂肪酸類、ラウリン酸メチル,ラウリン酸エチル,ステアリン酸メチル等の脂肪酸エステル類、あるいはラウリルアルコール,ステアリルアルコール等の高級アルコール類から成る混合原料に対しても実施可能である。さらには香料,潤滑油,燃料油等の有機化合物の分離に対しても実施可能である。
【0036】
【実施例】
以下に示す実施例及び比較例はシミュレーションにより実施した結果である。ここで、シミュレーターはPRO II(SIMSCI社製)を使用した。また原料は、低沸不純物a、主成分b〜e及び高沸不純物fの混合物を用い、これらの各成分の蒸気圧は、下記に示すAntoine式により表現され、非理想性を示す指標として、2成分系活量係数式であるWilson式を用いた。なお、シミュレーションに使用した各成分のAntoine定数A〜Cを表1に、Wilson式の2成分パラメータを表2に、潜熱及び比熱データを表3に示す。
【0037】
【数1】

Figure 0004112386
【0038】
【表1】
Figure 0004112386
【0039】
【表2】
Figure 0004112386
【0040】
【表3】
Figure 0004112386
【0041】
実施例1
塔頂より低沸不純物、塔底より高沸不純物を除去し、塔中間部より2つの留分(留分2及び3という)を留出させることにより、原料の分離・精製を実施する。
【0042】
蒸留塔として図5に示す分割板5による分割型蒸留塔を使用し、また塔中間部上部からの2つの降下液のうち、原料供給側蒸留部6の降下液量を一定となるよう調整を行う。さらに、原料供給側蒸留部6の濃縮部の温度から、原料供給側蒸留部6の降下液量が調整できるよう温度制御を行う。蒸留塔のリボイラー加熱量、原料供給側蒸留部6の降下液量及び温度測定部での制御目標温度は、所望の製品組成と製品収率が得られるよう、表6の状態1に示すように予め決定する。
【0043】
本運転条件において、表4に示す組成の原料を供給する場合、表7の状態1に示すように高純度の製品が得られる。さらに、表5に示す組成からなる原料に切換え、連続運転を継続する。この時、原料供給側蒸留部6の降下液量を塔内温度制御を行わず、当初設定する降下液量で運転を継続する場合(表6の状態2)に得られる留分2の組成を表7の状態2に示す。原料組成の大幅な変化により、当初設定する運転条件のままでは製品の純度が低下する。
【0044】
これに対し、原料供給側蒸留部6の濃縮部の温度が、予め設定された目標値となるよう、原料供給側蒸留部6の降下液量の制御を行う。同時に、原料供給側蒸留部6の降下液量の変化量と同量だけ、塔頂凝縮液量の調整を行う(表6の状態3)。原料供給側蒸留部6の降下液量の調整により、原料供給側蒸留部6の濃縮部の温度は当初設定する温度に戻り、その結果得られる留分2の組成を表7の状態3に示す。本制御方法により、製品純度は元のレベルに改善される。
【0045】
これは、原料組成変動により、原料供給側蒸留部6の上部から分割板5を超えて製品留出側蒸留部6’に流入する主成分dが増加することに対し、原料供給側蒸留部6の濃縮部の温度の上昇からこれを検知し、原料供給側蒸留部6の降下液量を増加させ、主成分dの流入を防止する効果による。
【0046】
【表4】
Figure 0004112386
【0047】
【表5】
Figure 0004112386
【0048】
【表6】
Figure 0004112386
【0049】
【表7】
Figure 0004112386
【0050】
実施例2
塔頂より低沸不純物、塔底より高沸不純物を除去し、塔中間部より2つの留分(留分2及び3という)を留出させることにより、原料の分離・精製を実施する。
【0051】
蒸留塔として図5に示す分割板5による分割型蒸留塔を使用し、また塔中間部上部からの2つの降下液のうち、製品留出側蒸留部6’の降下液量を一定となるよう調整を行う。さらに、原料供給側蒸留部6の濃縮部の温度から、塔頂での全凝縮液量が調整できるよう温度制御を行う。蒸留塔のリボイラー加熱量、製品留出側蒸留部6’の降下液量及び温度測定部での制御目標温度は、所望の製品組成と製品収率が得られるよう、表8の状態1に示すように予め決定する。
【0052】
本運転条件において、表4に示す組成の原料を供給する場合、表9の状態1に示すように高純度の製品が得られる。さらに、表5に示す組成からなる原料に切換え、連続運転を継続する。この時、塔頂の全凝縮液量の塔内温度による制御を行わず、当初設定する塔頂全凝縮液量で運転を継続する場合(表8の状態2)に得られる留分2の組成を表9の状態2に示す。原料組成の変化により、当初設定する運転条件のままでは製品の純度が低下する。
【0053】
これに対し、原料供給側蒸留部6の濃縮部の温度が、予め設定された目標値となるよう、塔頂での全凝縮液量の制御を行う。ここで、塔頂の全凝縮液量の調整は、リボイラー加熱量の調整を行うことにより行う(表8の状態3)。塔頂の全凝縮液量の調整により、原料供給側蒸留部6の濃縮部の温度は当初設定する温度に戻り、その結果得られる留分2の組成を表9の状態3に示す。本制御方法により、製品純度は元のレベルに改善される。
【0054】
これは、原料組成変動により、原料供給側蒸留部6の上部から分割板5を超えて製品留出側蒸留部6’に流入する主成分dが増加することに対し、原料供給側蒸留部6の濃縮部の温度の上昇からこれを検知し、塔頂の全凝縮液量を増加させることで原料供給側蒸留部6への降下液量を増加させ、主成分dの流入を防止する効果による。
【0055】
【表8】
Figure 0004112386
【0056】
【表9】
Figure 0004112386
【0057】
比較例1
塔中間部の2つの蒸留部の降下液量の設定を、分配比が一定となるよう調整し、その他は実施例2と同じ条件として原料の分離・精製を実施する。分割された2つの蒸留部への降下液分配比は、(原料供給側降下液量):(製品留出側降下液量)で示し、所望の製品組成と製品収率が得られるようリボイラー加熱量、温度測定部での制御目標温度とあわせて、表10の状態1に示すように予め決定する。
【0058】
本条件において、表4に示す組成の原料を供給する場合、留分2の組成において不純物混入量の変動は認められるものの表11の状態1に示す運転結果が得られる。さらに、表5に示す組成からなる原料に切換え、連続運転を継続する。この時、原料供給側蒸留部6の降下液量の塔内温度による制御を行わず、当初設定する降下液量で運転を継続する場合(表10の状態2)に得られる留分2の組成を表11の状態2に示す。原料組成の変化により、当初設定する運転条件のままでは製品の純度が低下する。
【0059】
これに対し、原料供給側蒸留部6の濃縮部の温度が、予め設定された目標値となるよう、塔頂での全凝縮液量の制御を行う。ここで、塔頂の全凝縮液量の調整は、リボイラー加熱量の調整を行うことにより行う。なおこの時、2つの蒸留部における降下液量については当初設定する分配比が一定となるよう制御を継続する(表10の状態3)。塔頂の全凝縮液量の調整にもかかわらず、原料供給側蒸留部6の濃縮部の温度は当初設定する温度に戻ることなく、留分2の組成は表11の状態3に示すように改善されない。
【0060】
これは、原料組成変動により、原料供給側蒸留部6の上部から分割板5を超えて製品留出側蒸留部6’に流入する主成分dが増加することに対し、2つの蒸留部での降下液分配比を一定にするままで、塔頂の全凝縮液量を増加すなわちリボイラー加熱量を調整するために、原料供給側、製品留出側蒸留部ともに同じ割合で上昇蒸気と降下液が変化し、両蒸留部ともに塔内組成分布を有効に調整できないことによる。
【0061】
【表10】
Figure 0004112386
【0062】
【表11】
Figure 0004112386
【0063】
【発明の効果】
本発明の蒸留方法により、従来型の蒸留塔と比較して分離性に優れかつ省エネルギー型である内部分割型蒸留塔において、より安定した品質の製品を得ることができる。
【図面の簡単な説明】
【図1】 本発明に用いられる蒸留塔の一例を示す略示断面図である。
【図2】 本発明に用いられる蒸留塔の別の例を示す略示断面図である。
【図3】 本発明の流量調整方法の一例を示す図である。
【図4】 本発明の流量調整方法の別の例を示す図である。
【図5】 実施例及び比較例で用いた蒸留塔の略示断面図である。
【符号の説明】
1 蒸留塔
2 塔上部
3 塔中間部
4 塔下部
5 分割板
6 原料供給側の蒸留部
6’ 製品留出側の蒸留部
7 原料供給口
8 塔頂の製品留出口
9 塔中間部の製品留出口
9’ 原料供給側の製品留出口
10 缶出液抜出口
11 液コレクター
12,12’ 降下液ライン
13 流量計13
14,14’ 流量調整弁
15 ディストリビューター
16 受器
17 ポンプ
18 液面計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved distillation method for obtaining a product having a desired composition by separating and purifying a raw material comprising a mixture of two or more components by distillation. Specifically, when performing separation / purification of the raw material using a distillation column having a structure in which the middle part of the column is divided into two distillation units, a desired operation can be stably performed by controlling the operation state to be stable. The present invention relates to a distillation method capable of obtaining a product having a composition and capable of widening a range of operating conditions.
[0002]
[Prior art]
It is well known that raw materials consisting of mixed products are removed by distillation to remove unnecessary components by top-cut (low-boiling component reduction treatment) or bottom-cut (high-boiling component reduction treatment), and separated and purified to the desired composition. Technology. In general, in separation / purification by distillation, it is considered that at least (n-1) distillation columns are necessary to separate all n components. Distillation equipment that repeats heating and cooling at the same time is an energy-intensive process among various unit operations. For these reasons, technological development for reducing the equipment cost and energy consumption of the distillation process is continuously being advanced.
[0003]
For example, in order to reduce the equipment cost, a side cut tower that takes out distillate from the middle of the tower in addition to the top and bottom of the tower is used so that a plurality of products can be obtained simultaneously in one distillation tower. Yes. In addition, in order to reduce equipment costs, improve separation performance, and reduce the amount of heat supplied, a vertical dividing plate is installed inside the distillation column, or a concentric cylindrical structure is inserted, and the distillation unit in the middle of the column is divided. Those having a structured structure have been proposed.
[0004]
In the former side-cut tower, since a plurality of products can be obtained with one distillation tower, it is possible to reduce the total number of distillation towers and the total number of reboilers and condensers. However, the side-cut tower basically has a structure in which the theoretical plate numbers considered necessary for separation are stacked in the vertical direction, and the tower height is greatly increased due to the concentration of functions. Further, in the case of a side cut tower, since the lowest boiling component of the raw material components can always be distributed above the raw material supply stage inside the tower, it can be obtained at the outlet located between the tower top and the raw material supply stage. There is a limit to preventing the low boiling component from being mixed into the product. For the same reason, the highest boiling component of the raw material components can always be distributed below the raw material supply stage. Therefore, at the outlet located between the bottom of the column and the raw material supply stage, the high boiling point of the resulting product is increased. The reality is that there is a limit to the prevention of mixing of components.
[0005]
The latter distillation column is generally known as an embodiment of a Petrique distillation column. For example, Patent Document 1 and Patent Document 2 describe a distillation column having such a structure. In the inventions described in these documents, a structure in which a vertical dividing plate is provided inside the distillation column and the inside is divided into two or more distillation sections has been proposed, and it is described that the separation performance can be improved by this structure. .
[0006]
When considering the operation of a distillation tower having such a structure, the amount of liquid dropped from the upper part of each divided distillation part or the amount of steam raised from the lower part depends on the raw material composition supplied and the product composition to be manufactured. Therefore, it is necessary to set the optimal amount. In addition, a control method for enabling stable operation is also required. However, with respect to these problems, the above-mentioned document does not describe the operation control method for the distribution of the falling liquid or the distribution of the rising vapor inside the column, and as an operation method for the distillation column having a split structure. Is not satisfactory.
[0007]
In order to solve such a problem, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7 describe an improved operation method of a distillation column having an in-column dividing plate.
[0008]
In Patent Document 3, when the falling liquid in the column is distributed to two distillation sections partitioned by a vertical dividing plate, the falling liquid is once collected in a liquid collector installed at the upper part of the division, and the composition of the falling liquid A method is described in which the composition of the falling liquid in the column is kept constant, such as determining the amount of falling liquid into one space from the analysis result. At this time, the composition analysis of the descending liquid is performed by, for example, an online gas chromatography. About the amount of liquid fall to the other distillation part, a liquid level meter is installed in this liquid collector, and the amount of liquid fall is adjusted so that a collector liquid level may always become constant.
[0009]
In the above method, the composition analysis is performed in an online format when determining the amount of liquid falling to one distillation section, but the time required for obtaining the analysis result from sampling becomes longer, and the effective flow rate is increased. It is expected that the adjustment becomes difficult and the composition of the falling liquid in the column is disturbed. Even when equipment is assumed, expensive analytical equipment is required, and a complicated control system such as valve opening adjustment based on the analysis result is required. Furthermore, since a liquid collector having a liquid level meter is required in the column, the structure of the distillation column itself may be increased in size.
[0010]
In addition, in Patent Document 4, Patent Document 5 and Patent Document 7, a liquid distributor for distributing the falling liquid to the upper part of the divided liquid distribution is provided for the distribution of the falling liquid shown above. The number of holes and the like are determined so as to obtain a ratio. Alternatively, a structure is adopted in which the insertion position of the dividing plate is decentered inside the tower so that the amount of liquid fall is a set distribution ratio. According to this method, the falling liquid collected by the collector at the upper part of the division is always distributed at a constant ratio by the liquid distributor or according to the opening area of the divided space. These methods are considered to enable installation without using expensive analytical instruments or complex control systems. Moreover, since it is not necessary to install a liquid level meter in the liquid collector part, it is possible to avoid an increase in the size of the distillation column. Patent Document 6 describes a method for adjusting and controlling the distribution ratio by adjusting the amount of falling liquid with a flow meter or the like instead of adjusting the distribution of the falling liquid in the dividing section with the liquid distributor. .
[0011]
The descriptions in these documents are all methods for adjusting and controlling the distribution of the descending liquid in the dividing section by the distribution ratio. In this way, when the distribution of the descending liquid is controlled by the distribution ratio, for example, when the total descending liquid amount fluctuates due to the influence of disturbance such as a composition variation during operation, the respective descending liquid flow rates also vary. Even when adjusting the distribution ratio by adjusting the amount of falling liquid with a flow meter, etc., the distribution ratio must be calculated from the flow rate value once measured, and each flow rate must be adjusted to correct the distribution ratio. There is a possibility that the time delay in the control may prevent the operation from being stabilized.
[0012]
In addition, the distillation column having a dividing plate in the column has a structure such as a perforated plate tray, bubble bell tray, etc., irregular packing such as Raschig ring, pole ring, etc., and regular packing of metal plate type and wire mesh type. Although it can be carried out using any of the products, there is a restriction on the amount of liquid fall in any of these forms. That is, even if any form is implemented, it is necessary to secure a necessary minimum flow rate for exhibiting the performance. For example, in the case of irregular packing or regular packing, the performance is not exhibited unless the surface of the packing is sufficiently wetted by the falling liquid, and the desired separation efficiency cannot be obtained. On the other hand, when the distribution of the descending liquid is controlled by the distribution ratio, the falling liquid flow rate may fluctuate due to the factors such as the disturbance described above, and the minimum required flow rate for satisfying the separation performance may not be satisfied. Conceivable. In particular, in the case of a distillation column having a dividing plate, since the product is distilled from one of the divided distillation sections, it is necessary to secure at least an amount of falling liquid corresponding to the distillation amount in the distillation section on the product distillation side. Yes, depending on the operating conditions, the amount of liquid falling to the distillation section on the raw material supply side may be small, and the required minimum flow rate on the raw material supply side may not be satisfied. In addition, when an operation with a significantly high distillation yield is attempted, the amount of liquid falling to the shelf or packed bed located below the distilling portion of the distillation portion on the product distilling side becomes extremely small. There may be a case where the necessary minimum flow rate in this portion cannot be satisfied. In other words, when these methods are used, the operating condition range becomes narrower due to the combination of the operating condition restriction by the minimum required flow rate and the distribution ratio.
[0013]
In order to avoid these phenomena, the reboiler heating amount from the bottom may be set large in advance so that the total amount of liquid falling becomes excessive, but this is not an advantageous method from the viewpoint of energy saving.
[0014]
[Patent Document 1]
US Pat. No. 2,471,134
[Patent Document 2]
JP 59-142801 A
[Patent Document 3]
U.S. Pat. No. 4,230,533
[Patent Document 4]
Japanese Patent Laid-Open No. 9-299701
[Patent Document 5]
JP 11-31003 A
[Patent Document 6]
JP 2000-140501 A
[Patent Document 7]
JP 2001-79302 A
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a complicated analytical instrument and control system in a method for separating and purifying a raw material composed of a mixture of two or more components using a distillation column having a structure in which the middle part of the column is divided into two distillation units. To provide a distillation method capable of stably obtaining a product having a desired composition without using a product, and a distillation method capable of widening the range of operable conditions by performing control to keep the operation state stable. It is.
[0016]
[Means for Solving the Problems]
The present invention provides the distillation methods shown in the following (1), (2) and (3).
(1) When a distillation column having a structure in which the middle part of the column is divided into two distillation parts is used to obtain at least one kind of product from the middle part of the tower, the flow rate of the falling liquid in one of the divided distillation parts A distillation method characterized by performing distillation while adjusting the flow rate to a set flow rate regardless of the total amount of condensate.
(2) When using a distillation column having a structure in which the middle part of the column is divided into two distillation parts, and obtaining at least one kind of product from the middle part of the column, the temperature of at least one of the divided distillation parts is set. A distillation method, wherein the distillation is performed by adjusting the descending liquid flow rate of the divided distillation section by detecting.
(3) When using a distillation column having a structure in which the middle part of the column is divided into two distillation parts, and obtaining at least one kind of product from the middle part of the tower, the falling liquid flow rate in one of the divided distillation parts Is adjusted to the set flow rate regardless of the total amount of condensate, and at least one of the divided distillation sections is detected to adjust the descending liquid flow rate of the divided distillation sections to perform distillation. A distillation method characterized by the above.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
[Distillation tower]
The distillation column used in the present invention has a structure in which an intermediate portion of the column is divided into two distillation portions. As for the division of the distillation section, it is simple and common to insert a dividing plate or an inner tube. Hereinafter, the case where a dividing plate is used will be described.
[0018]
FIG. 1 shows an example of a distillation column used in the present invention. The column intermediate section 3 of the distillation column 1 is divided into two distillation sections 6 and 6 ′ by the dividing plate 5, and the dividing plate 5 is installed only in the column intermediate section 3 with respect to the column upper portion 2 and the column lower portion 4. Therefore, it is the same as a normal tower structure. Regarding the structure of the gas-liquid contact section in the tower, the use of irregular packing such as perforated plate trays, bubble bell trays, etc., Raschig rings, pole rings, etc., and metal plate molds and wire mesh type packings etc. In either case, it can be implemented. Among them, it is preferable to use a regular packing because it has excellent stage efficiency, small liquid hold-up, and small pressure loss.
[0019]
The distillation raw material is supplied to one of the divided distillation units 6. In the distillation section 6 on the raw material supply side, there may be a shelf and a packed bed on both upper and lower sides of the raw material supply port 7, or there may be a shelf and a packed bed on only one of the upper and lower sides.
[0020]
Product outlets 8 and 9 are provided at the top and middle of the column, and a bottom discharge outlet 10 is provided at the bottom. The distillation outlet 9 provided in the middle part of the column is provided in the other divided part (opposite to the raw material supply side) of the distillation part 6 ′, but the number of distillation outlets may be one or two or more.
[0021]
FIG. 2 shows another example of the distillation column used in the present invention. In this distillation column, in addition to the product outlet 9 on the side opposite to the raw material supply side, a product outlet 9 ′ is also provided on the raw material supply side, and a plurality of product outlets 9 ′ may be provided.
[0022]
In the distillation towers of FIGS. 1 and 2, the distillate from the distillation outlet 8 at the top of the tower is discharged out of the tower as a vapor, cooled by a condenser (condenser), and a part is taken out as a product. May be returned to the top of the column as reflux, or all of the condensate may be refluxed with an internal condenser provided at the top of the column, and a part thereof may be taken out as a distillate.
[0023]
In the heating part at the bottom of the column, a natural circulation type (thermosyphon type), a forced circulation type that circulates liquid, a kettle type that returns only steam, or the like may be used as a reboiler. Among these, a falling film type is preferable from the viewpoint of preventing quality deterioration due to the heat history of the bottom product.
[0024]
[Distillation control method]
In the first aspect of the present invention, the flow rate of either one of the descending liquids dropped to the two distillation units in the middle of the column is adjusted to the set flow rate regardless of the total condensate amount. For example, as shown in FIG. 3, the flow rate is adjusted by providing descending liquid lines 12 and 12 ′ in the two distillation sections 6 and 6 ′ in the middle of the tower from the liquid collector 11 provided in the upper part of the middle of the tower. Furthermore, a flow meter 13 and a flow rate adjustment valve 14 are provided on one line 12 ′. The other line 12 is not provided with a flow rate adjustment valve, and the flow rate balanced by the difference between the liquid fall amount to the liquid collector 11 and the liquid fall amount on the side where the flow rate is adjusted is lowered. Here, 15 is a distributor.
[0025]
Further, as another flow rate adjusting method, as shown in FIG. 4, from the liquid collector 11 provided at the upper part of the middle part of the tower, all the descending liquid is sent to the receiver 16 installed outside the tower. The pump 17 may be used to send the falling liquid to the two distillation sections 6 and 6 'in the middle of the column. In this case, it is not necessary to provide a flow meter 13 and a flow rate adjustment valve 14 on one line 12 and a flow meter on the other line 12 ′, but a flow rate adjustment valve 14 ′ for adjusting the liquid level of the receiver 16. Is preferably provided. Here, 18 is a liquid level gauge.
[0026]
The falling liquid flow for adjusting the flow rate is only one of the two distillation sections, and whether the falling liquid flow to the distillation section on the raw material supply side or the falling liquid flow to the distillation section on the product distillation side is: It can be selected depending on the raw material composition, product composition and operating conditions. For example, when performing operation with a small amount of liquid drop to the distillation section on the raw material supply side, the amount of liquid drop to the raw material supply side distillation section is adjusted and controlled to ensure a stable amount of liquid drop to the distillation section. Let Moreover, when performing a high yield operation, the amount of liquid fall to the product distillation side distillation part is adjusted and controlled, and the required amount of liquid fall to this distillation part is ensured stably.
[0027]
Furthermore, in the operation of a distillation column having a dividing plate, it is necessary to precisely control the composition distribution of each of the two distillation sections with the dividing plate as a boundary. For example, among the components contained in the raw material, as a method of controlling the composition mixed into the product for the component having a medium boiling point, (A) the upper part of the dividing plate is passed in the form of steam from the raw material supply side distillation unit , A method of controlling the amount flowing into the product distillation side distillation section after condensation, and (B) controlling the steam rising from the raw material supply side distillation section through the lower part of the dividing plate in the form of steam to the product distillation side distillation section A method is conceivable. In the case of adjusting the composition by the former, it is effective to control the amount of liquid falling to the raw material supply side distillation section. On the other hand, in the latter case, the control of the amount of liquid falling to the product distillation side distillation section is effective.
[0028]
The amount of the falling liquid on which one of the flow rates is adjusted is determined in accordance with the reboiler heating amount necessary for operation depending on the raw material composition or product composition.
[0029]
In this way, by adjusting the flow rate of one of the falling liquids of the two distillation sections in the middle of the column according to the operating conditions, each distillation can be performed against various disturbances that may occur during the operation. It is possible to stably secure a necessary amount of liquid falling to the part and to obtain a desired product composition stably.
[0030]
In the second aspect of the present invention, the flow rate of the descending liquid in the divided distillation section is adjusted by detecting the temperature of at least one of the two distillation sections in the middle of the column. The This method is particularly suitable when the raw material composition greatly fluctuates during continuous operation of the distillation column.
[0031]
For example, when the temperature of the raw material supply side distillation section becomes higher than the appropriate value due to fluctuations in the raw material composition, the performance of the packed bed is reduced due to insufficient amount of liquid falling to the distillation section, and the high boiling component rises. There is a risk of flowing into the product distillation side distillation section from the top of the plate. For this reason, the amount of liquid fall to the raw material supply side distillation part is finely adjusted so that the temperature of the distillation part becomes an appropriate value. Similarly, when the temperature of the distillation section on the product distillation side becomes higher than the appropriate value due to fluctuations in the raw material composition, the performance of the packed bed is reduced due to the insufficient amount of liquid falling to the distillation section, and the high boiling point from the bottom of the column is increased. Ingredients may rise and high boiling components may flow into the product. For this reason, fine adjustment of the amount of liquid fall to the product distillation side distillation part is performed so that the temperature of this distillation part may become an appropriate value.
[0032]
Further, as another preferred embodiment, it is possible to quickly detect a change in product composition from the temperature inside the distillation column and finely adjust the total amount of condensate at the top of the distillation column so as to obtain a desired product composition. . Here, the total condensate at the top of the distillation column refers to a product obtained by cooling and condensing the vapor rising up to the top of the column with an internal or external condenser installed at the top of the column (a part of the raw material components).
[0033]
In addition, in another aspect of the present invention, the first and second aspects are appropriately used in combination. For example, when the amount of liquid falling to the raw material supply side distillation section is controlled, if the temperature of the product distillation side distillation section becomes higher than the appropriate value due to fluctuations in the raw material composition, go to the product distillation side distillation section. It is conceivable that the performance of the packed bed is reduced due to the insufficient amount of falling liquid, and that the high boiling component rises from the bottom of the column to the product distillation side distillation section. For such a phenomenon, the total condensate amount at the top of the distillation column is finely adjusted so that the temperature of the product distillation side distillation section becomes an appropriate value. Similarly, when the amount of liquid falling to the product distillation side distillation section is controlled, if the temperature of the raw material supply side distillation section becomes higher than the appropriate value due to fluctuations in the raw material composition, the raw material supply side distillation section It is conceivable that the performance of the packed bed deteriorates due to insufficient amount of liquid falling to the bottom, and that the flow from the upper part of the dividing plate to the product distillation side distillation section due to the rise of high boiling components. For such a phenomenon, the total amount of condensate at the top of the distillation column is finely adjusted so that the temperature of the distillation section at the raw material supply side becomes an appropriate value.
[0034]
The total condensate amount at the top of the distillation column may be adjusted by adjusting the reboiler heating amount.
[0035]
[material]
In the distillation method according to the present invention, the raw material to be separated and purified is not particularly limited. For example, alcohols such as methanol, ethanol, butanol, ethylene glycol and glycerin, carboxylic acids such as formic acid, acetic acid and propionic acid, and methyl acetate , Separation of esters such as ethyl acetate and ethyl propionate, and hydrocarbons such as pentane, hexane and octane. Further, it is also effective for separation of high-boiling substances that generally require high vacuum conditions. For example, fatty acids such as lauric acid and stearic acid, and fatty acid esters such as methyl laurate, ethyl laurate, and methyl stearate. Or mixed raw materials made of higher alcohols such as lauryl alcohol and stearyl alcohol. Furthermore, it can also be carried out for the separation of organic compounds such as fragrances, lubricating oils and fuel oils.
[0036]
【Example】
The following examples and comparative examples are the results of simulation. Here, PRO II (manufactured by SIMSCI) was used as a simulator. The raw material is a mixture of low boiling impurities a, main components b to e and high boiling impurities f, and the vapor pressure of each of these components is expressed by the following Antoine equation, and as an index indicating non-ideality, The Wilson equation, which is a two-component activity coefficient equation, was used. Table 1 shows the Antoine constants A to C of the components used in the simulation, Table 2 shows the two-component parameters of the Wilson equation, and Table 3 shows the latent heat and specific heat data.
[0037]
[Expression 1]
Figure 0004112386
[0038]
[Table 1]
Figure 0004112386
[0039]
[Table 2]
Figure 0004112386
[0040]
[Table 3]
Figure 0004112386
[0041]
Example 1
Low-boiling impurities are removed from the top of the column and high-boiling impurities are removed from the bottom of the column, and two fractions (referred to as fractions 2 and 3) are distilled from the middle of the column, thereby separating and purifying the raw material.
[0042]
As a distillation column, use a split type distillation column with a dividing plate 5 shown in FIG. 5, and adjust the amount of liquid falling in the raw material supply side distillation unit 6 out of two falling liquids from the upper middle part of the column. Do. Furthermore, temperature control is performed so that the amount of liquid drop of the raw material supply side distillation unit 6 can be adjusted from the temperature of the concentration unit of the raw material supply side distillation unit 6. The reboiler heating amount of the distillation column, the amount of liquid falling in the raw material supply side distillation unit 6 and the control target temperature in the temperature measurement unit are as shown in state 1 of Table 6 so that a desired product composition and product yield can be obtained. Predetermined.
[0043]
When supplying the raw material having the composition shown in Table 4 under the present operating conditions, a high-purity product is obtained as shown in State 1 of Table 7. Furthermore, it switches to the raw material which consists of a composition shown in Table 5, and continues a continuous operation. At this time, the composition of the fraction 2 obtained when the operation is continued with the initially set falling liquid amount (state 2 in Table 6) without controlling the temperature of the falling liquid of the raw material supply side distillation unit 6 in the tower. This is shown in state 2 of Table 7. Due to a significant change in the raw material composition, the purity of the product is lowered under the operation conditions that are initially set.
[0044]
On the other hand, the amount of liquid drop of the raw material supply side distillation unit 6 is controlled so that the temperature of the concentration unit of the raw material supply side distillation unit 6 becomes a preset target value. At the same time, the amount of condensate at the top of the column is adjusted by the same amount as the amount of change in the amount of falling liquid in the raw material supply side distillation section 6 (state 3 in Table 6). By adjusting the amount of falling liquid in the raw material supply side distillation unit 6, the temperature of the concentration unit in the raw material supply side distillation unit 6 returns to the initially set temperature, and the composition of the fraction 2 obtained as a result is shown in state 3 of Table 7. . This control method improves the product purity to the original level.
[0045]
This is because the main component d flowing from the upper part of the raw material supply side distillation part 6 to the product distillation side distillation part 6 ′ from the upper part of the raw material supply side distillation part 6 increases due to the raw material composition fluctuation, whereas the raw material supply side distillation part 6 This is due to the effect of detecting this from the rise in the temperature of the concentrating part and increasing the amount of liquid falling in the raw material supply side distillation part 6 to prevent the inflow of the main component d.
[0046]
[Table 4]
Figure 0004112386
[0047]
[Table 5]
Figure 0004112386
[0048]
[Table 6]
Figure 0004112386
[0049]
[Table 7]
Figure 0004112386
[0050]
Example 2
Low-boiling impurities are removed from the top of the column and high-boiling impurities are removed from the bottom of the column, and two fractions (referred to as fractions 2 and 3) are distilled from the middle of the column, thereby separating and purifying the raw material.
[0051]
As a distillation column, a split type distillation column with a dividing plate 5 shown in FIG. 5 is used, and among the two falling liquids from the upper part of the middle part of the column, the amount of liquid falling in the product distillation side distillation part 6 ′ is made constant. Make adjustments. Furthermore, temperature control is performed so that the total amount of condensate at the top of the column can be adjusted from the temperature of the concentration unit of the raw material supply side distillation unit 6. Table 1 shows the reboiler heating amount of the distillation column, the amount of liquid falling in the product distillation side distillation section 6 ', and the control target temperature in the temperature measurement section, so that the desired product composition and product yield can be obtained. As previously determined.
[0052]
When supplying the raw material having the composition shown in Table 4 under these operating conditions, a high-purity product is obtained as shown in State 1 of Table 9. Furthermore, it switches to the raw material which consists of a composition shown in Table 5, and continues a continuous operation. At this time, the composition of the fraction 2 obtained when the operation is continued with the initially set total amount of condensate at the top of the tower without controlling the total amount of condensate at the top of the tower (state 2 in Table 8). Is shown in state 2 of Table 9. Due to the change in the raw material composition, the purity of the product is lowered under the operation conditions that are initially set.
[0053]
On the other hand, the total condensate amount at the top of the column is controlled so that the temperature of the concentrating unit of the raw material supply side distillation unit 6 becomes a preset target value. Here, the total condensate amount at the top of the column is adjusted by adjusting the reboiler heating amount (state 3 in Table 8). By adjusting the total amount of condensate at the top of the column, the temperature of the concentration section of the raw material supply side distillation section 6 returns to the initially set temperature, and the composition of the fraction 2 obtained as a result is shown in state 3 of Table 9. This control method improves the product purity to the original level.
[0054]
This is because the main component d flowing from the upper part of the raw material supply side distillation part 6 to the product distillation side distillation part 6 ′ from the upper part of the raw material supply side distillation part 6 increases due to the raw material composition fluctuation, whereas the raw material supply side distillation part 6 This is detected from the rise in the temperature of the concentrating part, and by increasing the total amount of condensate at the top of the column, the amount of liquid falling to the raw material supply side distillation part 6 is increased, thereby preventing the inflow of the main component d. .
[0055]
[Table 8]
Figure 0004112386
[0056]
[Table 9]
Figure 0004112386
[0057]
Comparative Example 1
The falling liquid amounts in the two distillation sections in the middle of the column are adjusted so that the distribution ratio is constant, and the other conditions are the same as in Example 2 for separation and purification of raw materials. The falling liquid distribution ratio to the two divided distillation sections is expressed as (raw material supply side falling liquid amount) :( product distillation side falling liquid amount), and reboiler heating is performed to obtain the desired product composition and product yield. It is determined in advance as shown in the state 1 of Table 10 together with the control target temperature in the quantity and temperature measurement unit.
[0058]
In this condition, when the raw material having the composition shown in Table 4 is supplied, the operation result shown in the state 1 in Table 11 is obtained although the fluctuation of the amount of impurities mixed in the composition of the fraction 2 is recognized. Furthermore, it switches to the raw material which consists of a composition shown in Table 5, and continues a continuous operation. At this time, the composition of the fraction 2 obtained when the operation is continued with the initially set falling liquid amount (state 2 in Table 10) without controlling the falling liquid amount of the raw material supply side distillation unit 6 by the tower temperature. Is shown in state 2 of Table 11. Due to the change in the raw material composition, the purity of the product is lowered under the operation conditions that are initially set.
[0059]
On the other hand, the total condensate amount at the top of the column is controlled so that the temperature of the concentrating unit of the raw material supply side distillation unit 6 becomes a preset target value. Here, the total amount of condensate at the top of the column is adjusted by adjusting the reboiler heating amount. At this time, the control is continued so that the initially set distribution ratio is constant for the amount of liquid fall in the two distillation sections (state 3 in Table 10). Despite the adjustment of the total amount of condensate at the top of the column, the temperature of the concentration part of the raw material supply side distillation part 6 does not return to the initially set temperature, and the composition of the fraction 2 is as shown in state 3 of Table 11 Not improved.
[0060]
This is because the main component d flowing from the upper part of the raw material supply side distillation part 6 to the product distillation side distillation part 6 'from the upper part of the raw material supply side distillation part 6 increases due to the raw material composition fluctuation. In order to increase the total amount of condensate at the top of the column, that is, to adjust the reboiler heating amount, with the falling liquid distribution ratio kept constant, the rising steam and the falling liquid are in the same ratio in both the raw material supply side and the product distillation side distillation section. This is because the composition distribution in the tower cannot be effectively adjusted in both distillation sections.
[0061]
[Table 10]
Figure 0004112386
[0062]
[Table 11]
Figure 0004112386
[0063]
【The invention's effect】
According to the distillation method of the present invention, it is possible to obtain a product with more stable quality in an internal division type distillation column which is excellent in separability and energy saving compared to a conventional distillation column.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a distillation column used in the present invention.
FIG. 2 is a schematic cross-sectional view showing another example of a distillation column used in the present invention.
FIG. 3 is a diagram showing an example of a flow rate adjusting method according to the present invention.
FIG. 4 is a diagram showing another example of the flow rate adjustment method of the present invention.
FIG. 5 is a schematic cross-sectional view of a distillation column used in Examples and Comparative Examples.
[Explanation of symbols]
1 Distillation tower
2 Tower top
3 Tower middle
4 Tower bottom
5 division board
6 Distillation section on the raw material supply side
6 'Distillation section on the product distillation side
7 Raw material supply port
8 Product exit at the top of the tower
9 Product exit at the middle of the tower
9 'Product outlet on the raw material supply side
10 Drain outlet
11 Liquid collector
12,12 'Falling liquid line
13 Flow meter 13
14, 14 'Flow control valve
15 Distributor
16 Receiver
17 Pump
18 Level gauge

Claims (5)

塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、何れか一方の区分された蒸留部の降下液流量を全凝縮液量によらず設定流量に調整しつつ蒸留を行うことを特徴とする蒸留方法。  Using a distillation column having a structure in which the middle part of the column is divided into two distillation parts, in order to obtain at least one kind of product from the middle part of the tower, the total flow of the falling liquid in one of the divided distillation parts is condensed. A distillation method characterized by performing distillation while adjusting to a set flow rate regardless of the amount of liquid. 塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、少なくとも何れか一方の区分された蒸留部の温度を検知することによって、区分された蒸留部の降下液流量を調整して蒸留を行うことを特徴とする蒸留方法。  Using a distillation column having a structure in which the middle part of the column is divided into two distillation parts, when obtaining at least one kind of product from the middle part of the tower, the temperature of at least one of the divided distillation parts is detected. The distillation method is characterized in that the distillation is performed by adjusting the flow rate of the falling liquid in the divided distillation section. 塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用い、塔中間部より少なくとも1種類以上の製品を得るにあたり、何れか一方の区分された蒸留部の降下液流量を全凝縮液量によらず設定流量に調整すると共に、少なくとも何れか一方の区分された蒸留部の温度を検知することによって、区分された蒸留部の降下液流量を調整して蒸留を行うことを特徴とする蒸留方法。  Using a distillation column having a structure in which the middle part of the column is divided into two distillation parts, in order to obtain at least one kind of product from the middle part of the tower, the total flow of the falling liquid in one of the divided distillation parts is condensed. Regardless of the amount of liquid, the flow rate is adjusted to a set flow rate, and by detecting the temperature of at least one of the divided distillation sections, the falling liquid flow rate of the divided distillation sections is adjusted to perform distillation. Distillation method to do. 温度を検知することで全凝縮液量を調整し、区分された蒸留部の降下液流量を調整する請求項2又は3記載の蒸留方法。  The distillation method according to claim 2 or 3, wherein the total condensate amount is adjusted by detecting the temperature, and the falling liquid flow rate of the divided distillation section is adjusted. 調整した降下液流量が、該蒸留部の必要降下液量以上である請求項1〜4いずれかに記載の蒸留方法。The distillation method according to any one of claims 1 to 4, wherein the adjusted falling liquid flow rate is equal to or more than a necessary falling liquid amount in the distillation section.
JP2003020033A 2003-01-29 2003-01-29 Distillation method Expired - Fee Related JP4112386B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003020033A JP4112386B2 (en) 2003-01-29 2003-01-29 Distillation method
ZA200400680A ZA200400680B (en) 2003-01-29 2004-01-28 Distillation method.
DE200410004530 DE102004004530A1 (en) 2003-01-29 2004-01-29 Distillation process comprises central distillation region divided into two sections, with controlled, fluid addition at predetermined independent flowrate from one section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020033A JP4112386B2 (en) 2003-01-29 2003-01-29 Distillation method

Publications (2)

Publication Number Publication Date
JP2004230251A JP2004230251A (en) 2004-08-19
JP4112386B2 true JP4112386B2 (en) 2008-07-02

Family

ID=32709263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020033A Expired - Fee Related JP4112386B2 (en) 2003-01-29 2003-01-29 Distillation method

Country Status (3)

Country Link
JP (1) JP4112386B2 (en)
DE (1) DE102004004530A1 (en)
ZA (1) ZA200400680B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271598B2 (en) * 2007-05-09 2013-08-21 花王株式会社 Method for producing oxazoline compound
KR101251176B1 (en) 2008-12-18 2013-04-08 주식회사 엘지화학 Dividing wall column for n-butanol recovery
DE102010053466A1 (en) 2010-11-30 2012-05-31 Maschinenfabrik Reinhausen Gmbh Step switch and vacuum interrupter for such a tap changer
KR101351637B1 (en) 2012-03-23 2014-01-16 (주)에이엠티퍼시픽 Liquid Splitter
US11260317B2 (en) * 2017-11-14 2022-03-01 Koch-Glitsch, Lp Mass transfer assembly and column with dividing wall and methods involving same
CN109260748A (en) * 2018-11-26 2019-01-25 宁夏北控睿源再生资源有限公司 A kind of useless methanol production recyclable device and method
CN114072213A (en) * 2019-06-27 2022-02-18 沙特基础工业全球技术公司 Method for separating ethylene glycol mixtures using a dividing wall distillation column

Also Published As

Publication number Publication date
DE102004004530A1 (en) 2004-08-12
ZA200400680B (en) 2004-08-24
JP2004230251A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
KR100752474B1 (en) Method for distillative separation of mixtures containing tetrahydrofuran, ?-butyrolactone and/or 1,4-butanediol
CN102316949B (en) Dividing wall distillation column
US8414744B2 (en) Continuous process for preparing menthol in pure or enriched form
CN1326586C (en) Purification of N,N-dimethylacetamide
US8282793B2 (en) Continuous process for preparing neral in pure or enriched form
US8419903B2 (en) Method for controlling and cooling a distillation column
TW200416065A (en) Dividing wall column control system
KR101530102B1 (en) Dividing wall column for purification of neopentyl glycol, and purification method of neopentyl glycol
US8420838B2 (en) Process for the rectification of mixtures of high-boiling air- and/or temperature-sensitive useful products
JP2000334201A (en) Continuous isolation of substance having comparatively high melting point by distillation
EP2861314A2 (en) A system to improve distillate quality and recovery in a distillation column
JP4112386B2 (en) Distillation method
US11052324B2 (en) Advanced process control scheme for dividing wall column and dual-dividing wall column with multiple products
US10350510B2 (en) Mass transfer column of cross flow of liquid and gas (vapour) phases
RU2724904C2 (en) Control of extraction column
CN1312105C (en) Method for purifying and refining ethyl acetate in high purity
US5902460A (en) Multi-stage fractional distillation process and apparatus
CN107837552A (en) The operation of rectifying tower with bulkhead and control method
US4295936A (en) Fractionation apparatus providing improved heat recovery from bottom stream
CN113861038A (en) Dicyclohexylamine clapboard tower refining process
CN107837553A (en) The method of controlling operation thereof of divided wall column
JP2003220301A (en) Distillation purifying method
KR20100070485A (en) Dividing wall column for n-butanol recovery
WO2005046831A1 (en) Dividing wall column fractionation tray
JP2010210151A (en) Crude argon tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R151 Written notification of patent or utility model registration

Ref document number: 4112386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees