JP4111522B2 - Sn coated copper material and terminal - Google Patents

Sn coated copper material and terminal Download PDF

Info

Publication number
JP4111522B2
JP4111522B2 JP2004346323A JP2004346323A JP4111522B2 JP 4111522 B2 JP4111522 B2 JP 4111522B2 JP 2004346323 A JP2004346323 A JP 2004346323A JP 2004346323 A JP2004346323 A JP 2004346323A JP 4111522 B2 JP4111522 B2 JP 4111522B2
Authority
JP
Japan
Prior art keywords
layer
plating
metal
thickness
intermediate alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004346323A
Other languages
Japanese (ja)
Other versions
JP2006152389A (en
Inventor
篤志 児玉
静男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004346323A priority Critical patent/JP4111522B2/en
Publication of JP2006152389A publication Critical patent/JP2006152389A/en
Application granted granted Critical
Publication of JP4111522B2 publication Critical patent/JP4111522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は端子等に用いられるSn被覆銅系材料及び端子に関する。   The present invention relates to a Sn-coated copper-based material and terminals used for terminals and the like.

従来、電子機器や自動車用コネクタの端子部品として、銅や銅合金からなる基体にSnめっきした材料が用いられている。Snはハンダ付性に優れるが、熱によって基体のCuが表面に拡散してCu−Sn合金を形成すること、及び、その合金表面で酸化されることによって接触抵抗が増大する問題があった。例えば、自動車用コネクタは、高温環境下やエンジンの熱等で長時間加熱されることがある。又、Snめっき材からなる端子部品は、Snの摩擦力が大きいためにコネクタへの端子の挿入が困難であった。
そこで、基体とSnめっき層との間にNi層やCu−Sn拡散層を設け、Cuの拡散を防止したり、基体の硬さの向上を図る改良技術が開発されている。しかしながら、これらの技術を用いても、材料が長時間加熱されるとNi−Sn合金が形成されたり、下地Cuが表面に拡散してSnと合金化し、純Sn層が薄くなって、接触抵抗の増大を防止することはできなかった。
Conventionally, Sn-plated material is used for a base made of copper or copper alloy as a terminal component of an electronic device or an automobile connector. Sn is excellent in solderability, but there is a problem that contact resistance increases due to the fact that Cu of the base body diffuses to the surface by heat to form a Cu—Sn alloy and is oxidized on the surface of the alloy. For example, an automobile connector may be heated for a long time under a high temperature environment or engine heat. In addition, since the terminal component made of the Sn plating material has a large frictional force of Sn, it is difficult to insert the terminal into the connector.
Therefore, an improved technique has been developed in which a Ni layer or a Cu—Sn diffusion layer is provided between the base and the Sn plating layer to prevent the diffusion of Cu or to increase the hardness of the base. However, even when these techniques are used, when the material is heated for a long time, a Ni—Sn alloy is formed, or the underlying Cu diffuses to the surface and forms an alloy with Sn, so that the pure Sn layer becomes thin, and the contact resistance It was not possible to prevent the increase.

このようなことから、下地上にNi層、Cu−Sn合金層、Sn(合金)層をこの順に設けた技術が開示されている(例えば、特許文献1参照)。又、基体表面にCu−Niバリヤ層、Cu−Sn金属間化合物層、Sn(合金)層をこの順に設けた技術が開示されている(例えば、特許文献2参照)。これらの技術においては、長時間加熱後も接触抵抗の増大が抑制される。   For this reason, a technique is disclosed in which a Ni layer, a Cu—Sn alloy layer, and a Sn (alloy) layer are provided in this order on a base (see, for example, Patent Document 1). Further, a technique is disclosed in which a Cu—Ni barrier layer, a Cu—Sn intermetallic compound layer, and a Sn (alloy) layer are provided in this order on the substrate surface (see, for example, Patent Document 2). In these techniques, an increase in contact resistance is suppressed even after prolonged heating.

特開2002-226982号公報Japanese Patent Laid-Open No. 2002-226982 特表2001-526734号公報Special Table 2001-526734

しかしながら、上記特許文献記載の技術の場合、これらの皮膜構成を有する接続端子をメス側に挿入する際、端子表面がめくれてバリが発生し易いという問題がある。特に、基板の穴部に端子を一旦挿入すると取り外さないプレスフィット端子のような端子の場合では、端子がきつく挿入されるため、上記したバリ発生が顕著である。なお、バリは端子表面の柔らかいSnめっきが穴の縁で削れることにより発生すると考えられる。
本発明は上記の課題を解決するためになされたものであり、バリの発生を抑制することができるとともに、加熱後の接触抵抗、ハンダ付性、低挿入力性の特性にも優れたSn被覆銅系材料及び端子の提供を目的とする。
However, in the case of the technique described in the above-mentioned patent document, there is a problem that when the connection terminal having such a film structure is inserted into the female side, the terminal surface is turned over and burrs are likely to occur. In particular, in the case of a terminal such as a press-fit terminal that is not removed once the terminal is inserted into the hole of the substrate, the above-described burrs are prominent because the terminal is inserted tightly. In addition, it is thought that a burr | flash generate | occur | produces when soft Sn plating of a terminal surface is scraped off by the edge of a hole.
The present invention has been made in order to solve the above-described problems, and can suppress the generation of burrs, and can also be Sn coated with excellent contact resistance, solderability, and low insertion force characteristics after heating. The purpose is to provide copper-based materials and terminals.

本発明者らは種々検討した結果、所定の組成を有する合金層をSn層の下層に形成させることにより、上記課題を解決できることを突き止めた。
すなわち、上記の目的を達成するために、本発明のSn被覆銅系材料は、銅または銅合金から成る基体の表面に金属Ni層が形成され、該金属Ni層の表面にSn,Ni,並びにCu,Ag及びAuの群から選ばれる1種以上の第3元素からなる厚み0.1〜1.5μmの中間合金層が形成され、該中間合金層の表面に厚み0.01〜1.0μmの金属Sn層が形成され、前記中間合金層をX線光電子分光法により深さ方向に分析した際、該中間合金層全体で積算した各元素の強度が、Ni>Sn>前記第3元素、の順になっていることを特徴とする。
As a result of various studies, the present inventors have found that the above problem can be solved by forming an alloy layer having a predetermined composition under the Sn layer.
That is, in order to achieve the above object, the Sn-coated copper-based material of the present invention has a metal Ni layer formed on the surface of a base made of copper or a copper alloy, and Sn, Ni, and An intermediate alloy layer having a thickness of 0.1 to 1.5 μm made of one or more third elements selected from the group consisting of Cu, Ag and Au is formed, and a thickness of 0.01 to 1.0 μm is formed on the surface of the intermediate alloy layer. When the intermediate alloy layer is analyzed in the depth direction by X-ray photoelectron spectroscopy, the intensity of each element accumulated in the entire intermediate alloy layer is Ni>Sn> the third element, characterized in that it has been of the order.

前記中間合金層をX線光電子分光法により深さ方向に分析した際の各元素の強度が、Ni>Sn>前記第3元素、の順になっているので、バリの発生をさらに抑制でき
The intensity of each element when the intermediate alloy layer was analyzed in the depth direction by X-ray photoelectron spectroscopy, Ni>Sn> the third element, since in order of, Ru can further suppress the occurrence of burrs.

本発明の端子は、前記Sn被覆銅系材料を含むことを特徴とする。   The terminal of this invention is characterized by including the said Sn covering copper-type material.

本発明によれば、バリの発生を抑制することができるとともに、加熱後の接触抵抗、ハンダ付性、低挿入力性の特性にも優れたSn被覆銅系材料及び端子が得られる。   According to the present invention, it is possible to obtain a Sn-coated copper-based material and a terminal that can suppress the generation of burrs and are excellent in contact resistance after heating, solderability, and low insertion force characteristics.

以下、本発明に係るSn被覆銅系材料の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
<基体>
基体は、銅又は銅合金からなる。通常、本発明の銅系材料は電気・電子機器の接続端子等に用いられるので、電気伝導率の高いもの(例えば、IACS(International Anneild Copper Standerd:国際標準軟銅の導電率を100としたときの値)が15〜80%程度)を用いることができる。
Hereinafter, embodiments of the Sn-coated copper-based material according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
<Substrate>
The substrate is made of copper or a copper alloy. Usually, since the copper-based material of the present invention is used for connection terminals of electric / electronic devices, it has a high electric conductivity (for example, IACS (International Anneild Copper Standerd: when the electric conductivity of international standard soft copper is 100). Value) of about 15 to 80%).

<金属Ni層>
金属Ni層は基体表面に形成され、基体からSnへのCuの拡散を防止する。これにより、長時間加熱後であってもSn−Cu金属間化合物が成長して材料表面に露出することがないので、ハンダ付性や接触抵抗が劣化しにくい。又、以下の中間合金層を熱処理によって形成する場合には、金属Ni層は中間合金層のNi成分の供給源となる。
金属Ni層の厚みは0.1〜3μmであることが好ましく、より好ましくは0.5〜1.5μmである。
<Metal Ni layer>
The metallic Ni layer is formed on the surface of the substrate and prevents Cu from diffusing from the substrate to Sn. Thereby, even after heating for a long time, the Sn—Cu intermetallic compound does not grow and is not exposed on the surface of the material, so that the solderability and the contact resistance are hardly deteriorated. Further, when the following intermediate alloy layer is formed by heat treatment, the metal Ni layer becomes a supply source of the Ni component of the intermediate alloy layer.
The thickness of the metal Ni layer is preferably 0.1 to 3 μm, more preferably 0.5 to 1.5 μm.

<中間合金層>
中間合金層は上記金属Ni層の表面に形成され、Sn,Ni,及び第3元素からなる。第3元素は、Cu,Ag及びAuの群から選ばれる1種以上である。中間合金層を熱処理によって形成するには、上記金属Ni層及び以下の金属Sn層の間に第3元素からなる層を形成させればよく、熱処理によって第3元素層側へNi及びSnが拡散して中間合金層となる。第3元素のうち、製造コストの点からも好ましいのはCuである。
この中間合金層は、上記金属Ni層から金属Sn層へのNiの拡散を防止する。これにより、金属Sn層がSn−Ni合金とならず、長時間加熱後であっても材料表面に金属Snが残存し、ハンダ付性や接触抵抗が劣化することがない。又、この中間合金層は比較的硬いため、被覆層全体が硬質になり、例えば本発明の材料をコネクタ端子に用いた場合に、コネクタの挿入力を低減することができる。
<Intermediate alloy layer>
The intermediate alloy layer is formed on the surface of the metal Ni layer and is made of Sn, Ni, and a third element. The third element is at least one selected from the group consisting of Cu, Ag and Au. In order to form the intermediate alloy layer by heat treatment, a layer made of a third element may be formed between the metal Ni layer and the following metal Sn layer, and Ni and Sn diffuse to the third element layer side by the heat treatment. Thus, an intermediate alloy layer is formed. Of the third elements, Cu is preferable from the viewpoint of manufacturing cost.
This intermediate alloy layer prevents the diffusion of Ni from the metal Ni layer to the metal Sn layer. As a result, the metal Sn layer does not become a Sn—Ni alloy, and the metal Sn remains on the surface of the material even after heating for a long time, and solderability and contact resistance do not deteriorate. Further, since this intermediate alloy layer is relatively hard, the entire coating layer becomes hard. For example, when the material of the present invention is used for a connector terminal, the insertion force of the connector can be reduced.

該中間合金層がNiの拡散を防止する理由は明確ではないが、Sn−Ni−第3元素の3元系(又は4元系、5元系)合金が形成されることにより、Niが該中間合金層に安定して存在し、加熱環境下でも上層のSn層に拡散し難いことが考えられる。
中間合金層の厚みは0.1〜1.5μmとする。中間合金層の厚みが0.1μm未満であると、上記したNiの拡散を防止する効果が消失し、1.5μmを超えても上記効果が飽和しコスト増となる。好ましくは、中間合金層の厚みを0.7〜1.2μmとする。
The reason why the intermediate alloy layer prevents the diffusion of Ni is not clear, but by forming a ternary (or quaternary, quinary) alloy of Sn—Ni—third element, Ni becomes It can be considered that the intermediate alloy layer stably exists and hardly diffuses into the upper Sn layer even in a heating environment.
The thickness of the intermediate alloy layer is 0.1 to 1.5 μm. When the thickness of the intermediate alloy layer is less than 0.1 μm, the effect of preventing the above-described diffusion of Ni disappears. Preferably, the thickness of the intermediate alloy layer is 0.7 to 1.2 μm.

<金属Sn層>
金属Sn層は上記中間合金層の表面に形成されている。金属Sn層の厚みは0.01〜1.0μmとする。金属Sn層厚みが0.01μm未満であると、長時間加熱によって金属Snが合金化又は酸化され、金属Snが残存しないので、ハンダ付性や接触抵抗が劣化する。金属Sn層厚みが1.0μmを超えると、硬い中間合金層の表面への影響が小さくなり、層が柔らかくなってコネクタの挿入力が増大するとともに、コネクタを穴部に挿入する際にバリが顕著に発生する。なお、金属Snが中間層と接する部分はSn合金になっていると考えられる。
なお、単に金属Sn層厚みを低減すると、バリ発生は抑制できるが、長時間加熱後に残存する金属Snが少なくなるため、長時間加熱後の特性(接触抵抗、ハンダ付性)が劣化する。本発明においては、上記中間合金層により、表面の金属Sn層厚みが少なくても、長時間加熱後の特性を改善することができる。特に、金属Sn厚みを0.01〜0.5μmとすると、バリの発生をさらに抑制できるので好ましい。
<Metal Sn layer>
The metal Sn layer is formed on the surface of the intermediate alloy layer. The thickness of the metal Sn layer is 0.01 to 1.0 μm. When the thickness of the metal Sn layer is less than 0.01 μm, the metal Sn is alloyed or oxidized by heating for a long time, and the metal Sn does not remain, so solderability and contact resistance deteriorate. If the thickness of the metal Sn layer exceeds 1.0 μm, the influence on the surface of the hard intermediate alloy layer is reduced, the layer becomes soft and the insertion force of the connector increases, and burrs are not generated when the connector is inserted into the hole. It occurs remarkably. In addition, it is thought that the part which metal Sn contacts with an intermediate | middle layer is Sn alloy.
Note that, if the thickness of the metal Sn layer is simply reduced, the generation of burrs can be suppressed, but the amount of metal Sn remaining after heating for a long time decreases, and the characteristics (contact resistance, solderability) after long-time heating deteriorate. In the present invention, the intermediate alloy layer can improve the characteristics after long-time heating even if the thickness of the surface metal Sn layer is small. In particular, it is preferable that the thickness of the metal Sn is 0.01 to 0.5 μm because the generation of burrs can be further suppressed.

<中間合金層の元素分析>
なお、中間合金層をX線光電子分光法により深さ方向に分析した際の各元素の強度が、Ni>Sn>第3元素、の順になっていることが好ましい。このようにすると、バリの発生をさらに抑制することができる。ここで、元素の強度がNi≦Snであるとバリの発生が目立つことがある。又、元素の強度がSn≦第3元素である場合、第3元素がめっき最表面まで拡散し,Snと合金を形成する等により接触抵抗等を悪化させることがある。各元素の強度が上記関係を満たすとバリの発生を抑制できる理由は明確ではないが、中間合金層中のSnの割合が多過ぎると層が柔らかくなってバリを発生し易くなることが考えられる。
<Elemental analysis of intermediate alloy layer>
In addition, it is preferable that the strength of each element when the intermediate alloy layer is analyzed in the depth direction by X-ray photoelectron spectroscopy is in the order of Ni>Sn> third element. In this way, the generation of burrs can be further suppressed. Here, when the element strength is Ni ≦ Sn, the occurrence of burrs may be conspicuous. Further, when the element strength is Sn ≦ third element, the third element may diffuse to the outermost surface of the plating and may deteriorate the contact resistance or the like by forming an alloy with Sn. The reason why the generation of burrs can be suppressed when the strength of each element satisfies the above relationship is not clear, but it is considered that when the proportion of Sn in the intermediate alloy layer is too large, the layers become soft and burrs are likely to be generated. .

ここで、X線光電子分光法による深さ方向の元素分析は、その層に含まれる各元素の含有割合(層全体の合計値)を示すと考えられる。例えば、中間層の表層ではSnが多く、深部ではNiが多いと考えられるが、X線光電子分光法による各元素の強度値は、中間層の深さ方向における強度の合計値となる。
X線光電子分光法を用いる方法としては、例えば、まず試料をX線光電子分光装置内にセットし、試料表面を深さ(厚み)方向へ一定時間スパッタし、その時間中に検出される各元素のシグナル数を積算してカウントし、各元素の強度とする。ここで、「一定時間」とは、以下のようにして求めた金属Sn層及び中間層の厚みと、深さ方向へのスパッタ速度から、中間層の最下層まで到達するものと計算した時間である。
Here, the elemental analysis in the depth direction by the X-ray photoelectron spectroscopy is considered to indicate the content ratio (total value of the entire layer) of each element contained in the layer. For example, it is considered that the surface layer of the intermediate layer has a large amount of Sn and the deep portion has a large amount of Ni. However, the intensity value of each element by the X-ray photoelectron spectroscopy is a total value of the intensity in the depth direction of the intermediate layer.
As a method using X-ray photoelectron spectroscopy, for example, a sample is first set in an X-ray photoelectron spectrometer, and the surface of the sample is sputtered in the depth (thickness) direction for a certain time, and each element detected during that time is detected. The number of signals is integrated and counted to obtain the intensity of each element. Here, the “certain time” is the time calculated to reach the lowest layer of the intermediate layer from the thickness of the metal Sn layer and intermediate layer and the sputtering rate in the depth direction obtained as follows. is there.

<厚みの測定>
金属Ni層、中間合金層、及び金属Sn層の厚みは、以下のようにして測定することができる。例えば、金属Sn層の厚みは、電解式膜厚計(コクール:金属膜を溶かしながら、電解式(ファラデーの法則)により厚さを求めるもの)により測定できる。中間合金層及び金属Ni層の厚みは、電子顕微鏡を用い、層断面の各元素の組成マッピング像(厚み方向の組成プロファイル)を撮影し、この像をもとに算出する。例えば中間合金層厚みは第3元素プロファイルのピークの半値幅を終端として測定し,同様にNi層の厚みもNiプロファイルのピークの半値幅を終端とすることで算出できる。
<Measurement of thickness>
The thicknesses of the metal Ni layer, the intermediate alloy layer, and the metal Sn layer can be measured as follows. For example, the thickness of the metal Sn layer can be measured by an electrolytic film thickness meter (Cool: a method for obtaining the thickness by electrolytic method (Faraday's law) while melting the metal film). The thicknesses of the intermediate alloy layer and the metal Ni layer are calculated based on the image of the composition mapping image (composition profile in the thickness direction) of each element in the layer cross section using an electron microscope. For example, the thickness of the intermediate alloy layer can be calculated by measuring the half-value width of the peak of the third element profile as an end, and similarly the thickness of the Ni layer can be calculated by using the half-value width of the peak of the Ni profile as the end.

図1、2は、本実施形態に係るSn被覆銅材料の中間合金層を、Ar+ガスを用いてX線光電子分光装置により厚み方向へスパッタリングした時の、各元素濃度の深さ方向プロファイルを示す。ここで、Sn被覆銅材料は、銅素材にNi、Au(第3元素)、Snを順にめっきした後、リフロー処理して得られ、中間合金層の成分はNi−Au−Snである。そして、図1はリフロー前の深さ方向プロファイルであり、図2はリフロー処理後の本実施形態に係るSn被覆銅材料の深さ方向プロファイルである。
図2より、中間合金層における各元素の強度が、Ni>Sn>Auの順になっていることがわかる。なお、この例では、中間層の最下層まで到達するとした時間(スパッタリング時間)は35分である。なお、スパッタリング時間が35分から40分で生じるピークは、金属Ni層である。又、図の縦軸は、所定の検量線に基づき、各元素の強度を濃度(原子%)に変換した値である。
1 and 2 show the depth profile of each element concentration when the intermediate alloy layer of the Sn-coated copper material according to the present embodiment is sputtered in the thickness direction with an X-ray photoelectron spectrometer using Ar + gas. Show. Here, the Sn-coated copper material is obtained by reflow treatment after sequentially plating Ni, Au (third element) and Sn on a copper material, and the component of the intermediate alloy layer is Ni—Au—Sn. 1 is a depth direction profile before reflow, and FIG. 2 is a depth direction profile of the Sn-coated copper material according to the present embodiment after reflow processing.
2 that the strength of each element in the intermediate alloy layer is in the order of Ni>Sn> Au. In this example, the time required to reach the lowermost layer of the intermediate layer (sputtering time) is 35 minutes. In addition, the peak which arises in sputtering time from 35 minutes to 40 minutes is a metal Ni layer. The vertical axis in the figure is a value obtained by converting the intensity of each element into a concentration (atomic%) based on a predetermined calibration curve.

なお、上記した金属Ni層、中間合金層、及び金属Sn層には、本発明の作用効果を奏する限り、他の元素が含まれていてもよい。   In addition, as long as there exists an effect of this invention, the above-mentioned metal Ni layer, intermediate alloy layer, and metal Sn layer may contain other elements.

<Sn被覆銅系材料の製造方法>
上記基体の表面に上記各層を形成する方法は特に限定されないが、以下の各層を形成した後、リフロー処理することで、中間合金層を形成するのが生産性の点で好ましい。
まず、基体の表面に金属Ni層を形成する。金属Ni層の形成方法としては電解めっき又は無電解めっきが好ましいが、蒸着等であってもよく特に限定されない。
次に、金属Ni層の表面に第3元素からなる層を形成する。この層の形成方法としては電解めっき又は無電解めっきが好ましいが、蒸着等であってもよく特に限定されない。例えば、Cuめっき、Agめっき、Auめっき等をフラッシュめっき(ストライクめっき)することができる。もちろん、Cu−Agめっき等の合金めっきとすることもできる。又、例えば、CuめっきとAgめっきをそれぞれ行うことも可能である。
<Method for producing Sn-coated copper-based material>
The method for forming each layer on the surface of the substrate is not particularly limited, but it is preferable from the viewpoint of productivity to form an intermediate alloy layer by forming the following layers and then performing a reflow treatment.
First, a metal Ni layer is formed on the surface of the substrate. As a method for forming the metal Ni layer, electrolytic plating or electroless plating is preferable, but it may be vapor deposition or the like, and is not particularly limited.
Next, a layer made of the third element is formed on the surface of the metal Ni layer. The method for forming this layer is preferably electrolytic plating or electroless plating, but may be vapor deposition or the like and is not particularly limited. For example, Cu plating, Ag plating, Au plating or the like can be flash plating (strike plating). Of course, alloy plating such as Cu-Ag plating may be used. Also, for example, Cu plating and Ag plating can be performed, respectively.

次に、第3元素を含む層の表面に金属Sn層を形成する。金属Sn層の形成方法としては電解めっき又は無電解めっきが好ましいが、蒸着等であってもよく特に限定されない。例えば、光沢Snめっき,半光沢Snめっきを好適に用いることができる。なお、以下のリフロー処理を行う場合は、金属Sn層中のSnの一部が下地層の元素と合金化するので、最終的に残存する金属Sn量(金属Sn層の厚み)は金属Sn層形成直後に比べて減少する。   Next, a metal Sn layer is formed on the surface of the layer containing the third element. As a method for forming the metal Sn layer, electrolytic plating or electroless plating is preferable, but it may be vapor deposition or the like and is not particularly limited. For example, glossy Sn plating or semi-glossy Sn plating can be suitably used. In addition, when performing the following reflow processing, since a part of Sn in the metal Sn layer is alloyed with the element of the base layer, the amount of metal Sn (the thickness of the metal Sn layer) remaining finally is the metal Sn layer. Reduced compared to immediately after formation.

次に、全体をリフロー処理する。これにより基体からCuが金属Ni層の下層側に拡散し、金属Ni層の下層側にNi−Cu合金層が形成されるが、金属Ni層も残存する。又、金属Ni層からNiが第3元素を含む層に拡散し、金属Sn層からSnが第3元素を含む層に拡散し、Sn、Ni、及び第3元素からなる中間合金層が形成される。又、最表面には、他の元素と合金化せずに残ったフリーの金属Sn層が残存する。リフロー条件は、通常のSnメッキ等で行う場合と同様でよい。   Next, the whole is reflow processed. Thereby, Cu diffuses from the base to the lower layer side of the metal Ni layer, and a Ni—Cu alloy layer is formed on the lower layer side of the metal Ni layer, but the metal Ni layer also remains. Further, Ni diffuses from the metal Ni layer to the layer containing the third element, and Sn diffuses from the metal Sn layer to the layer containing the third element, so that an intermediate alloy layer made of Sn, Ni, and the third element is formed. The In addition, a free metal Sn layer that remains without being alloyed with other elements remains on the outermost surface. The reflow conditions may be the same as when performing normal Sn plating or the like.

<端子>
本発明の端子は、上記したSn被覆銅系材料から構成される。端子の構造、形状等は特に限定されないが、例えば、プレスフィット端子に本発明を適用することができる。このプレスフィット端子は、複数の端子(多ピン)が並列に並び、基部で固定されているものであり、プリント基板上の対応する複数の穴部に各端子が挿入され、電気的に接続される。プレスフィット端子は一旦穴部に挿入されると取り外すことがなく、そのため、端子が穴部にきつく挿入されることから、めっきのバリは端子挿入時に発生しやすい。このように、バリの発生も顕著になる場合、特に本発明が有効となる。
<Pin>
The terminal of the present invention is composed of the above-described Sn-coated copper-based material. The structure and shape of the terminal are not particularly limited, but the present invention can be applied to, for example, a press-fit terminal. In this press-fit terminal, a plurality of terminals (multiple pins) are arranged in parallel and fixed at the base, and each terminal is inserted into a corresponding plurality of holes on the printed circuit board and electrically connected. The Once the press-fit terminal is inserted into the hole, the terminal is not removed. Therefore, since the terminal is inserted into the hole tightly, plating burrs are likely to occur when the terminal is inserted. As described above, the present invention is particularly effective when the occurrence of burrs becomes significant.

端子の製造方法としては、予めプレス成形等により端子形状としたCu基体の表面に上記したNiめっき、第3元素めっき、Snめっき等をした後リフローする「後めっき材」と、Cu条(Cu板)等に上記各種めっき及びリフローし、これを端子形状にする「前めっき材」とがある。前めっき材の場合、上記各層を形成したCu板等をプレス成形等して端子形状とするため、端子のうち、各層が形成されていないCu板の側面に該当する部分にCuが露出する。一方、後めっき材の場合、前めっき材に比べて生産性に劣る。したがって、用途やコスト等に応じて両者を選択すればよい。なお、後めっきで端子を製造する場合、端子先端のみめっきしてもよい。   As a method for manufacturing a terminal, a “post-plating material” that is reflowed after the above-described Ni plating, third element plating, Sn plating, etc. are applied to the surface of a Cu base that has been previously formed into a terminal shape by press molding or the like, and Cu strip (Cu There is a “pre-plated material” that is subjected to the above-described various plating and reflowing to form a terminal shape. In the case of a pre-plated material, since the Cu plate or the like on which the above layers are formed is formed into a terminal shape by press molding or the like, Cu is exposed at a portion corresponding to the side surface of the Cu plate on which the layers are not formed. On the other hand, in the case of a post-plating material, productivity is inferior compared with a pre-plating material. Therefore, both may be selected according to the use and cost. In addition, when manufacturing a terminal by post-plating, you may plate only a terminal tip.

なお、端子としては、上記プレスフィット端子に限定されることはなく、あらゆる形状、構造の端子を用いることができる。   In addition, as a terminal, it is not limited to the said press fit terminal, The terminal of all shapes and structures can be used.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

<実施例1〜11>
厚み0.64mmの黄銅板に、Niめっき(スルファミン酸浴、陰極電流密度:4A/dm、めっき直後のめっき厚み:1.2〜1.3μm),以下の第3元素めっき、及びSnめっき(有機酸浴,陰極電流密度4A/dm,めっき直後のめっき厚み:0.7〜0.8μm)を順に行った。次に、この試料をリフロー加熱処理(350〜400℃で20秒程度)し,中間合金層を形成させ、評価に供した。
<Examples 1 to 11>
Ni plating (sulfamic acid bath, cathode current density: 4 A / dm 2 , plating thickness immediately after plating: 1.2 to 1.3 μm), 0.63 mm thick brass plate, the following third element plating, and Sn plating (organic acid bath) , Cathode current density 4 A / dm 2 , plating thickness immediately after plating: 0.7 to 0.8 μm). Next, this sample was subjected to reflow heat treatment (at 350 to 400 ° C. for about 20 seconds) to form an intermediate alloy layer for evaluation.

なお、実施例1〜5は、第3元素めっきとしてCuめっき(市販の硫酸浴、陰極電流密度:2A/dm、めっき直後のめっき厚み:0.2〜0.3μm)を行った。
実施例6は、第3元素めっきとしてAgめっき(市販のシアン浴、陰極電流密度:5A/dm、めっき直後のめっき厚み:0.2〜0.3μm)を行った。
実施例7は、第3元素めっきとしてAuめっき(市販のシアン浴、陰極電流密度:5A/dm、めっき直後のめっき厚み:0.2〜0.3μm)を行った。
又、実施例8は、第3元素めっきとして上記Cuめっき、上記Agめっきの順で行った。実施例9は、第3元素めっきとして上記Cuめっき、上記Auめっきの順で行った。実施例10は、第3元素めっきとして上記Agめっき、上記Auめっきの順で行った。実施例11は、第3元素めっきとして上記Cuめっき、上記Agめっき、上記Auめっきの順で行った(実施例8〜11の第3元素めっきのめっき条件は実施例1〜7に準じた)。
In Examples 1 to 5, Cu plating (commercially available sulfuric acid bath, cathode current density: 2 A / dm 2 , plating thickness immediately after plating: 0.2 to 0.3 μm) was performed as the third element plating.
In Example 6, Ag plating (commercial cyan bath, cathode current density: 5 A / dm 2 , plating thickness immediately after plating: 0.2 to 0.3 μm) was performed as the third element plating.
In Example 7, Au plating (commercial cyan bath, cathode current density: 5 A / dm 2 , plating thickness immediately after plating: 0.2 to 0.3 μm) was performed as the third element plating.
In Example 8, the third element plating was performed in the order of the Cu plating and the Ag plating. In Example 9, the third element plating was performed in the order of the Cu plating and the Au plating. In Example 10, the third element plating was performed in the order of the Ag plating and the Au plating. Example 11 was performed in the order of the Cu plating, the Ag plating, and the Au plating as the third element plating (the plating conditions of the third element plating in Examples 8 to 11 were in accordance with Examples 1 to 7). .

リフロー加熱前(めっき直後)のめっき厚測定は、Snについては蛍光X線を用い、Au,Ag及びCuについてはSn層を電解除去した後蛍光X線を用い,Ni層については断面観察して行った。
リフロー加熱処理後の各層の厚みは,試料断面の電子顕微鏡観察,蛍光X線およびコクールを用いて測定した。
金属Ni層、中間合金層、及び金属Sn層の厚みは、以下のようにして測定した。金属Sn層の厚みは、電解式膜厚計(コクール)により測定した。中間合金層及び金属Ni層の厚みは、電子顕微鏡を用い、層断面の各元素の組成マッピング像(厚み方向の組成プロファイル)を撮影し、この像をもとに算出した。中間合金層厚みは第3元素プロファイルのピークの半値幅を終端として測定し,同様にNi層の厚みもNiプロファイルのピークの半値幅を終端とすることで算出した。
Plating thickness measurement before reflow heating (immediately after plating) was performed using fluorescent X-rays for Sn, using an X-ray fluorescence after removing the Sn layer for Au, Ag and Cu, and observing a cross section for the Ni layer. went.
The thickness of each layer after the reflow heat treatment was measured using an electron microscope observation of a sample cross section, fluorescent X-rays and a co-cool.
The thicknesses of the metal Ni layer, the intermediate alloy layer, and the metal Sn layer were measured as follows. The thickness of the metal Sn layer was measured with an electrolytic film thickness meter (Cool). The thicknesses of the intermediate alloy layer and the metal Ni layer were calculated based on images obtained by photographing composition mapping images (composition profiles in the thickness direction) of each element in the layer cross section using an electron microscope. The thickness of the intermediate alloy layer was measured with the half-value width of the peak of the third element profile as the end, and similarly the thickness of the Ni layer was calculated by using the half-value width of the peak of the Ni profile as the end.

又、中間合金層の各元素の濃度は、X線光電子分光装置(アルバック・ファイ製)を用い,試料表面をアルゴンでスパッタしながら深さ方向の元素分析を行い、評価した。まず試料をX線光電子分光装置内にセットし、試料表面を深さ方向へ一定時間スパッタし、その時間中に検出される各元素のシグナル数を積算してカウントし、各元素の強度とした。ここで、「一定時間」は、以下のようにして求めた金属Sn層及び中間層の厚みと、深さ方向へのスパッタ速度から、中間層の最下層まで到達するものと計算した時間である。   The concentration of each element in the intermediate alloy layer was evaluated by performing elemental analysis in the depth direction while sputtering the sample surface with argon using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI). First, the sample was set in an X-ray photoelectron spectrometer, the sample surface was sputtered in the depth direction for a certain time, and the number of signals of each element detected during that time was integrated and counted to obtain the intensity of each element. . Here, the “certain time” is a time calculated to reach the lowermost layer of the intermediate layer from the thicknesses of the metal Sn layer and the intermediate layer and the sputtering rate in the depth direction obtained as follows. .

<比較例1>
比較のため、黄銅板上にNiめっきを行わなかったこと以外は実施例1と全く同様にして比較例1の試料を得た。
<比較例2>
又、第3元素めっきを行わなかったこと以外は実施例1と全く同様にして比較例2の試料を得た。
<比較例3>
Snめっきを行わなかったこと以外は実施例1と全く同様にして比較例3の試料を得た。
<比較例4>
第3元素めっきとしてCuめっきの厚みをめっき直後で約0.02μmとしたこと以外は実施例1と全く同様にして比較例4の試料を得た。
<比較例5>
Snめっきの厚みをめっき直後で約0.3μmとしたこと以外は実施例1と全く同様にして比較例5の試料を得た。
<比較例6>
Snめっきの厚みめっき直後で約1.8μmとしたこと以外は実施例1と全く同様にして比較例5の試料を得た。
<Comparative Example 1>
For comparison, a sample of Comparative Example 1 was obtained in the same manner as in Example 1 except that Ni plating was not performed on the brass plate.
<Comparative Example 2>
A sample of Comparative Example 2 was obtained in the same manner as in Example 1 except that the third element plating was not performed.
<Comparative Example 3>
A sample of Comparative Example 3 was obtained in the same manner as Example 1 except that Sn plating was not performed.
<Comparative Example 4>
A sample of Comparative Example 4 was obtained in the same manner as in Example 1 except that the thickness of Cu plating as the third element plating was about 0.02 μm immediately after plating.
<Comparative Example 5>
A sample of Comparative Example 5 was obtained in the same manner as in Example 1 except that the thickness of Sn plating was about 0.3 μm immediately after plating.
<Comparative Example 6>
A sample of Comparative Example 5 was obtained in the same manner as in Example 1 except that the thickness was about 1.8 μm immediately after the thickness plating of Sn plating.

<試料の評価>
各実施例、比較例の各試料について、以下の評価を行った。
(1)長時間加熱後の特性
(1−1)接触抵抗
各試料を大気中で155℃,16時間加熱し,接点シミュレータ(山崎精機製)を用い,接点荷重0.49N ,電流10mAの条件で、各試料表面の接触抵抗を測定した。なお、通常、接触抵抗が10mΩを超えるものは好ましくない
(1−2)ハンダ付性
上記長時間加熱後,フラックスとしてロジンフラックスを使用し,JIS−C0050(235 ハンダ槽法)でハンダ付けを行った。ハンダ付け部を実体顕微鏡で観察し、画像処理してハンダはじき部の面積割合を求め、以下の基準でハンダ付性を評価した。
○:ハンダはじき部がハンダ面積全体の5%以下
×:ハンダはじき部がハンダ面積全体の5%を超える
<Sample evaluation>
The following evaluation was performed for each sample of each example and comparative example.
(1) Characteristics after long-time heating (1-1) Contact resistance Each sample was heated in the atmosphere at 155 ° C for 16 hours, using a contact simulator (manufactured by Yamazaki Seiki) under the conditions of contact load 0.49N and current 10mA. The contact resistance of each sample surface was measured. In general, contact resistance exceeding 10 mΩ is not preferred. (1-2) Solderability After heating for a long time, rosin flux is used as the flux, and soldering is performed using JIS-C0050 (235 solder bath method). It was. The soldered portion was observed with a stereomicroscope, image-processed to determine the area ratio of the solder repelling portion, and the solderability was evaluated according to the following criteria.
○: The solder repelling part is 5% or less of the entire solder area. X: The solder repelling part exceeds 5% of the entire solder area.

(2)動摩擦係数
各試料表面の動摩擦係数を測定し、実際の端子の挿入力の代替特性として評価した。表面性測定機(薪東科学製)を用い,接触荷重4.9N,移動速度50mm/min,移動距離100mm、相手材を球状接触子とする条件で測定した。なお、通常、動摩擦係数が0.5を超えるものは、端子の挿入力が大きくなるので好ましくない。
(2) Dynamic friction coefficient The dynamic friction coefficient of each sample surface was measured and evaluated as an alternative characteristic of the actual terminal insertion force. Using a surface property measuring machine (manufactured by Pingtung Science), the measurement was performed under the conditions that the contact load was 4.9 N, the moving speed was 50 mm / min, the moving distance was 100 mm, and the mating material was a spherical contactor. In general, it is not preferable that the coefficient of dynamic friction exceeds 0.5 because the terminal insertion force increases.

(3)バリの発生評価
上記した表面性測定機を用い,試料表面に圧子を接触させ,接触荷重1N,移動距離10mmの条件で引掻いた際に発生するバリの高さを測定し、以下の基準で評価した。
○:バリの高さが1mm以下
×:バリの高さが1mmを超える
(3) Evaluation of burr generation Using the surface property measuring instrument described above, the height of the burr generated when the indenter is brought into contact with the sample surface and scratched under conditions of a contact load of 1 N and a moving distance of 10 mm is measured. Evaluation based on the criteria.
○: Burr height is 1mm or less ×: Burr height exceeds 1mm

得られた結果を表1に示す。   The obtained results are shown in Table 1.

表1から明らかなように、各実施例においては、長時間加熱後も接触抵抗が低いとともにハンダ付性も良好であり、又、動摩擦係数が低く、バリの発生も抑制することができた。   As is apparent from Table 1, in each example, the contact resistance was low and the solderability was good even after heating for a long time, the dynamic friction coefficient was low, and the occurrence of burrs could be suppressed.

一方、金属Ni層を形成しなかった比較例1の場合、長時間加熱後の特性(接触抵抗およびハンダ付性)に劣り、耐熱性が不充分であるとともに、動摩擦係数も高かった。中間合金層が第3元素(Cu,Ag,Auの1種以上)を含まない比較例2の場合、長時間加熱後の特性に劣り、動摩擦係数も高かった。金属Sn層を形成しなかった比較例3の場合、長時間加熱後の特性に劣った。   On the other hand, in the case of Comparative Example 1 in which the metal Ni layer was not formed, the properties after prolonged heating (contact resistance and solderability) were inferior, the heat resistance was insufficient, and the dynamic friction coefficient was high. In the case of Comparative Example 2 in which the intermediate alloy layer did not contain the third element (one or more of Cu, Ag, and Au), the characteristics after prolonged heating were inferior and the dynamic friction coefficient was high. In the case of Comparative Example 3 in which the metal Sn layer was not formed, the properties after heating for a long time were inferior.

中間合金層の厚みが0.1μm未満である比較例4の場合、長時間加熱後の特性に劣り、動摩擦係数も高かった。金属Sn層の厚みが0.01μm未満である比較例5の場合、長時間加熱後の特性に劣った。金属Sn層の厚みが1.0μmを超えた比較例6の場合、バリの発生が顕著になった。   In the case of Comparative Example 4 in which the thickness of the intermediate alloy layer was less than 0.1 μm, the characteristics after prolonged heating were inferior and the dynamic friction coefficient was high. In the case of Comparative Example 5 in which the thickness of the metal Sn layer was less than 0.01 μm, the characteristics after heating for a long time were inferior. In the case of Comparative Example 6 in which the thickness of the metal Sn layer exceeded 1.0 μm, the occurrence of burrs became significant.

Sn被覆銅材料の各元素濃度の深さ方向プロファイルを示す図である。It is a figure which shows the depth direction profile of each element density | concentration of Sn covering copper material. Sn被覆銅材料の各元素濃度の深さ方向プロファイルを示す別の図である。It is another figure which shows the depth direction profile of each element density | concentration of Sn covering copper material.

Claims (2)

銅または銅合金から成る基体の表面に金属Ni層が形成され、該金属Ni層の表面にSn,Ni,並びにCu,Ag及びAuの群から選ばれる1種以上の第3元素からなる厚み0.1〜1.5μmの中間合金層が形成され、該中間合金層の表面に厚み0.01〜1.0μmの金属Sn層が形成され、前記中間合金層をX線光電子分光法により深さ方向に分析した際、該中間合金層全体で積算した各元素の強度が、Ni>Sn>前記第3元素、の順になっていることを特徴とするSn被覆銅系材料。 A metal Ni layer is formed on the surface of a substrate made of copper or a copper alloy, and the thickness of the metal Ni layer is made of Sn, Ni, and one or more third elements selected from the group consisting of Cu, Ag, and Au. An intermediate alloy layer having a thickness of 1 to 1.5 μm is formed, and a metal Sn layer having a thickness of 0.01 to 1.0 μm is formed on the surface of the intermediate alloy layer, and the intermediate alloy layer is deepened by X-ray photoelectron spectroscopy. An Sn-coated copper-based material characterized in that, when analyzed in the direction, the strength of each element accumulated in the entire intermediate alloy layer is in the order of Ni>Sn> the third element . 請求項1記載のSn被覆銅系材料を含むことを特徴とする端子。 Terminals, characterized in that it comprises a Sn-coated copper-based material according to claim 1.
JP2004346323A 2004-11-30 2004-11-30 Sn coated copper material and terminal Active JP4111522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346323A JP4111522B2 (en) 2004-11-30 2004-11-30 Sn coated copper material and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346323A JP4111522B2 (en) 2004-11-30 2004-11-30 Sn coated copper material and terminal

Publications (2)

Publication Number Publication Date
JP2006152389A JP2006152389A (en) 2006-06-15
JP4111522B2 true JP4111522B2 (en) 2008-07-02

Family

ID=36631024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346323A Active JP4111522B2 (en) 2004-11-30 2004-11-30 Sn coated copper material and terminal

Country Status (1)

Country Link
JP (1) JP4111522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685101A (en) * 2012-10-04 2015-06-03 Jx日矿日石金属株式会社 Metal material for use in electronic component, and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174733B2 (en) * 2009-04-21 2013-04-03 三菱伸銅株式会社 Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JP5479789B2 (en) * 2009-07-03 2014-04-23 古河電気工業株式会社 Metal materials for connectors
JP2011233527A (en) * 2011-05-31 2011-11-17 Jx Nippon Mining & Metals Corp Terminal with solder rising barrier portion, and its manufacturing method
JP5086485B1 (en) 2011-09-20 2012-11-28 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5284526B1 (en) 2011-10-04 2013-09-11 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5278630B1 (en) * 2012-01-26 2013-09-04 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
TWI493798B (en) 2012-02-03 2015-07-21 Jx Nippon Mining & Metals Corp Push-in terminals and electronic parts for their use
JP5968668B2 (en) * 2012-04-13 2016-08-10 Jx金属株式会社 Metal materials for electronic parts
JP6050664B2 (en) 2012-06-27 2016-12-21 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP6029435B2 (en) 2012-06-27 2016-11-24 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
FR2993579B1 (en) * 2012-07-20 2015-09-25 Tyco Electronics France Sas COATING AND COATING PROCESS FOR FORCE-INSERT CONTACT
JP5761218B2 (en) 2013-01-30 2015-08-12 株式会社デンソー Press-fit pin, connection structure, and electronic device
JP6012564B2 (en) * 2013-08-27 2016-10-25 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685101A (en) * 2012-10-04 2015-06-03 Jx日矿日石金属株式会社 Metal material for use in electronic component, and method for producing same
CN104685101B (en) * 2012-10-04 2017-06-30 Jx日矿日石金属株式会社 Electronic component metal material and its manufacture method

Also Published As

Publication number Publication date
JP2006152389A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP6304447B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
KR101682791B1 (en) A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP6183543B2 (en) Terminal pair and connector pair with terminal pair
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
JP4814552B2 (en) Surface treatment method
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP4111522B2 (en) Sn coated copper material and terminal
WO2017195768A1 (en) Tinned copper terminal material, terminal, and electrical wire end part structure
KR20140051408A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
KR20150024252A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
KR20140117274A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
WO2018139628A1 (en) Terminal material for connectors, terminal, and electric wire end part structure
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
CN113597480B (en) Metal material and connection terminal
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
WO2018074255A1 (en) Connection terminal and method for producing connection terminal
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP5419737B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP7080942B2 (en) Plating materials for electronic components and electronic components
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP2020056090A (en) Anticorrosive terminal material, manufacturing method therefor, and anticorrosive terminal and wire terminal part structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

R150 Certificate of patent or registration of utility model

Ref document number: 4111522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250