JP4110637B2 - Battery remaining capacity calculation device - Google Patents

Battery remaining capacity calculation device Download PDF

Info

Publication number
JP4110637B2
JP4110637B2 JP30596098A JP30596098A JP4110637B2 JP 4110637 B2 JP4110637 B2 JP 4110637B2 JP 30596098 A JP30596098 A JP 30596098A JP 30596098 A JP30596098 A JP 30596098A JP 4110637 B2 JP4110637 B2 JP 4110637B2
Authority
JP
Japan
Prior art keywords
discharge
current
previous
discharge amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30596098A
Other languages
Japanese (ja)
Other versions
JP2000131403A (en
Inventor
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30596098A priority Critical patent/JP4110637B2/en
Publication of JP2000131403A publication Critical patent/JP2000131403A/en
Application granted granted Critical
Publication of JP4110637B2 publication Critical patent/JP4110637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば電気自動車に搭載する電池の残存容量を演算する電池特性演算装置に関する。
【0002】
【従来の技術】
たとえば、電気自動車に用いる二次電池は充放電を繰り返すことにより、劣化により放電可能な容量が徐々に低下していくので、電池劣化を加味した残存容量(本明細書では放電可能電力量(ワット)又は放電量(アンペアアワー)を言うものとする)を正確に知ることが要望されている。
【0003】
このため、放電電圧Vと残存容量との関係をマップに記憶しておき、検出した放電電圧Vをこのマップに代入して残存容量を求める手法が従来より採用されている。
更に、特開平7−55903号公報は、電流積算によって求めた放電量Ahを、あらかじめ記憶する満充電容量(満充電状態から所定の放電終止条件までの放電で得られる放電量)から差し引いて、残存容量を求めることを提案している。
【0004】
ところが、上述した前者の残存容量演算方式では、放電電圧Vと残存容量との関係すなわち放電特性の変化が電池劣化により生じたのかメモリ効果により生じたのかを区別できないため、正確に残存容量を演算することが困難であり、誤差が大きいという問題があった。
また、上述した後者の残存容量演算方式でも、電池劣化による残存容量低下を検出できないため、正確に残存容量を演算することが困難であった。
【0005】
そこで、本出願人の出願になる特開平10−246760号公報は、放電電圧Vと放電量Ahとの関係を示す初期特性マップをメモリ効果及び電池劣化に基づいてそれぞれ別々に修正して現在の放電電圧Vと放電量Ahとの関係を示す放電特性を形成し、この放電特性により決定される放電領域の面積を積分して残存放電可能電力量を求め、この残存放電可能電力量を残存容量として推定する方式(残存放電可能電力量推定式残存容量演算方式)を提案した。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した残存放電可能電力量推定方式においても、充放電を繰り返すうちに放電特性の形状、特に放電電圧の変化が顕著となる放電終期における放電特性の形状が、初期放電特性の形状からずれた残存容量演算誤差が大きくなるという問題があった。
【0007】
また、放電特性の書き換えを行うと、電池の放電状態が急変するので、たとえば電気自動車などでは望ましくないという問題があった。
本発明は上記問題点に鑑み、演算誤差がすくなく、電池の放電状態の急変を回避可能な電池の残存容量演算装置を提供することをその目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の電池の残存容量演算装置によれば、前回放電時に求めた前回放電電圧及び前回放電量の関係を示す前回の放電特性と、今回放電時に求めた今回放電電圧及び今回放電量とに基づいて今回の放電特性を演算し、この今回の放電特性に基づいて電池の残存容量を演算するので、充放電を繰り返しても直近の放電特性の修正により今回の放電特性を演算でき、初期放電特性と今回放電電圧及び今回放電量とに基づいて今回の放電特性を演算する上記従来の残存放電可能電力量推定式残存容量演算方式よりも正確に残存容量を推定することができる。
【0011】
請求項記載の構成によれば更に、充電後、今回放電量が充電直前の最終の前回放電量Qdoに達した以降は、今回放電量Qd1と最終前回放電量Qd0との差である今回充電量差ΔQpを求め、今回放電量Qd1に対応する今回放電電圧に前回の放電特性上で対応する推定の前回放電量Qdxを求め、推定の前回放電量Qdxと最終の前回放電量Qd0との差である前回充電量差ΔQbを求め、容量圧縮率P=ΔQp/ΔQbを求め、前回の放電特性の前回放電量に容量圧縮率Pを掛ける容量圧縮操作を行って今後の前記今回の放電特性を推定する。
【0012】
このようにすれば、最終の前回放電量以降の残存容量を正確に推定することができる。
請求項記載の構成によれば請求項記載の電池の残存容量演算装置において更に、充電直前の最終の前回放電量に達した以降における放電特性の推定に際し、容量圧縮率Pより小さい緩学習容量圧縮率P’を求め、前回の放電特性の前回放電量にこの緩学習容量圧縮率P’を掛ける容量圧縮操作を行って今後の前記今回の放電特性を推定する。
【0013】
このようにすれば、容量圧縮率Pが大きい場合でも容量圧縮操作を小さくするので、放電特性の書き換えが徐々に行われることになり、残存容量の急変による放電状態の急変を回避することができる。
請求項記載の電池の残存容量演算装置では、上記従来の初期放電特性に基づく残存放電可能電力量推定式残存容量演算方式においても、請求項5記載の構成による緩学習容量圧縮率P’による緩慢な放電特性の書き換えを行う。
【0014】
この場合でも、残存容量の急変による放電状態の急変を回避することができる。
たとえば、充電後、今回放電量が充電直前の最終の前回放電量Qdoに達した以降は、今回放電量Qd1と最終前回放電量Qd0との差である今回充電量差ΔQpを求め、今回放電量Qd1に対応する今回放電電圧に初期放電特性上で対応する初期放電量Qdx’を求め、初期放電量Qdx’と最終の前回放電量Qd0との差である前回充電量差ΔQb’を求め、容量圧縮率P=ΔQp/ΔQb’を求め、更にたとえば容量圧縮率Pに定数を掛けるなどして容量圧縮率Pより小さい緩学習容量圧縮率P’を求め、初期放電特性の初期放電量にこの緩学習容量圧縮率P’を掛ける容量圧縮操作を行って今後の前記今回の放電特性を推定する。なお、充電後、今回放電量が充電直前の最終の前回放電量に達するまでは、今回放電量に初期放電特性上で対応する初期放電電圧と今回放電電圧との電圧差を求め、この電圧差だけ初期放電特性を放電電圧軸方向に電圧シフト操作を行って今回の放電特性とすればよい。
【0015】
請求項記載の構成によれば請求項又は記載の構成において更に、最終放電量Qdoが満充電容量の所定割合以上であった場合にのみ、上記緩学習容量圧縮率P’に基づく容量圧縮操作を行って今回の放電特性を求める。
このようにすれば、最終放電量Qdoが満充電容量の所定割合未満の場合には、言い換えれば放電特性の変化が大きい(放電量変化に対する放電電圧変動が大きい)深放電時以外では、上記緩学習容量圧縮率P’による緩やかな放電特性書き換えを禁止するので、浅い放電時には書き換えにより放電特性の変化が小さいため、この書き換えによる放電制御の大きな変動なしに残存容量に正確に適合した放電制御へ速やかに移行することができる。
【0016】
請求項記載の構成によれば請求項のいずれか記載の電池の残存容量演算装置において更に、今回放電量が最終放電量Qdoを超えた場合にのみ上記容量圧縮操作を行う。このようにすれば、放電が最終放電量Qd0に達するまでにメモリ効果や充電分極による生じる誤差が上記容量圧縮操作に影響するのを回避することができる。
【0017】
【発明の実施の形態】
本発明の電池特性演算装置の好適な実施形態を図面に沿って以下に説明する。
【0018】
【実施例】
(装置構成)
図1は、本発明に係る電気自動車用の残存容量演算装置の一例を示すブロック図である。
1は電池、2は回転電機を含む動力伝達手段であって、車両駆動軸に連結されてそれらと電池との間で電力の形態でエネルギー授受を行う。3は、電池1に対して入出力する直流電力と、動力伝達手段2に対して入出力する交流電力との変換を行う双方向電力変換装置である。これら動力伝達手段2や双方向電力変換装置3の構成は周知であり、かつ、本発明の要旨でもないので更に詳しい説明は省略する。
【0019】
電池1は、多数のNiーMH電池を直列接続してなる組み電池からなり、個々の電圧V1〜Vnはコントローラ4に入力される。また、電流センサ5はその充放電電流を検出し、検出した電流は前記電圧と同様にマイコン構成のコントローラ4に入力される。
以下、図2に示すフローチャートを参照して、この実施例の残存容量算出ルーチンを説明する。下記に示す放電電圧Vは個々の各NiーMH電池の電圧のうちの最小値を示す。これは電池の転極などを防止するためである。
【0020】
まず、放電電圧V、充放電電流Aを検出し、充放電電流Aを積分して今回の放電量Qd1を累算し、満充電かどうかを調べ、満充電の場合にだけ放電量Qd1を0にセットする。更に、検出した上記放電電圧Vは、必ずしも基準放電電力の放電により得られる放電電圧とは限らず、放電電力が基準放電電力より小さければ高く、大きければ小さく検出されるので、この放電電力による放電電圧Vの誤差を修正してこのステップ以降ではこの修正した放電電圧Vを用いる(S100)。
【0021】
なお、満充電の判定には種々の方式があるが、dV/dAhがピークに達した場合に満充電と判定する方法を採用する。
また、上記放電電圧Vの修正は次のように行うことができる。まず、電池の内部抵抗rと開放電圧とを求める。内部抵抗rは、たとえば放電電圧Vと放電電流Aとの特性上におけるV−I特性におけるΔV/ΔAとして求めることができる。次に、検出した放電電流Aと内部抵抗rを掛けて電池の内部抵抗rを掛けてその電圧降下を求め、開放電圧を求める。このようにして求めたモデル電池が所定の基準放電電力(ここでは2kW)を放電する場合の電池の出力電圧を今回の放電電圧Vとして算出する。
【0022】
次のS101では、今回の放電は終了したかどうかをすなわち充電開始指令がだされたかどうかを調べ、そうであれば現在の放電量を最終放電量Qd0として記憶し(S102)、そうでなければS103に進んで現在満充電かどうかを調べ(S103)、そうであれば最終放電量Qd0を0にリセットして(S104)、S105へ進む。
【0023】
S105では、S100で求めた今回放電量Qd1が前回の最終放電量Qd0より大きく、かつ、前回の最終放電量Qd0が前回の放電特性を積分して求めた満充電容量の所定定数H(1未満)倍よりも大きいかどうかを求め、そうであればS106以下へ進んで緩学習容量圧縮率P’による容量圧縮作業を行い、そうでなければS107Aへ進んで上記緩学習容量圧縮率P’ではなく通常の容量圧縮率Pによる容量圧縮作業を行う。
【0024】
なお、ここでいう満充電容量Ah0は、上記基準放電電力放電における満充電状態から前記基準放電電力値の放電ができる範囲内での電池の初期時の容量とするが現時点の上記条件で求めた満充電容量としてもよい。上記定数Hはたとえば0.5とされる。
S105は、前回走行時の最終放電量Qd0よりも深い放電を行った場合に前回走行時の放電特性に後述の圧縮変換を行って今回の放電特性とする処理をこの実施例では後述のごとく実施するので、残存容量が十分大きい場合になんどもこの圧縮変換による放電特性の書き換えを行うと電圧検出誤差や計算誤差などが累積してしまうのを防止するために行う。
【0025】
S106では、前回走行時に学習した後述する放電特性上において、今回の放電量Qd1に等しい放電量に対応する前回放電電圧Vbeforeを求め、この前回放電電圧Vbeforeと、今回の放電量Qd1に対応する今回放電電圧Vとの差ΔV(=Vbefore−Vqdo)を求める。更に、S106では、上記前回放電電圧Vbeforeから差ΔVを減算した電圧、すなわち、今回放電電圧Vに等しい放電電圧における放電量Qdxを前回放電特性上において求める。
【0026】
次のS107では、まず前回放電した最終放電量Qd0以降の放電特性のみを書き換えるために容量圧縮比率Pを算出する。容量圧縮比率Pは次の式で算出する。
P=(Qd1−Qd0)/(Qdx−Qdo)
ただし、放電特性の変更は電池の放電状態の変化を招くので、その急激な変化を防止するために、容量圧縮率Pに放電特性書き換えのためのゲインG(1未満、ここでは0.3)を掛けて今回の緩学習容量圧縮率P’として設定する。
【0027】
次のS108では、前回の放電特性における前回の最終放電量Qd0より大きい放電量の範囲を上記圧縮比率Pで圧縮乃至拡大して放電特性を書き換えて、今回の放電特性とする。更に説明すると、所定の放電電圧Vxに対応する前回の放電特性上の任意の放電量Qxに、上記緩学習容量圧縮率P’を掛けて求めた今回の放電量Qdxが今回の放電特性上における放電電圧Vxに対応する放電量となる。したがって、前回の最終放電量Qd0より大きい放電量の範囲の今回の放電特性は最終放電量Qd0で計測した今回放電電圧の値からスタートする。
【0028】
次のS109では、求めた今回の放電特性を示す曲線と、所定の放電終了電圧Vendを示す直線と、今回放電量Qd1を示す以上の残存容量を演算する直線とに囲まれる面積を積分して残存容量とする。
次に、S105で、今回放電量Qd1が前回の最終放電量Qd0より大きくなく、又は、前回の最終放電量Qd0が前回の放電特性を積分して求めた満充電容量の所定定数H(1未満)倍よりも大きいくない場合には、S107Aにて通常の容量圧縮率Pによる容量圧縮作業サブルーチンを行う。
【0029】
このサブルーチンを図3を参照して説明する。
まず、前回完全放電がなされたかまたは前回の放電が電池の実用上の最初の放電であったかどうかを調べ(S1070)、そうであれば、あらかじめ記憶する初期放電特性を前回放電特性として書き換える(S1071)。
なお、ここでいう初期放電特性とは、新品で最初に所定回数の初期活性化充放電を実施した電池の放電量Ahと放電電圧Vとの関係を示す特性であり、あらかじめマップとして記憶されている。ただし、この初期放電特性は、所定の基準放電電力(ここでは2kW)を放電する場合における初期放電特性である。
【0030】
次に、今回放電量Qd1が前回放電時の最終放電量Qd0より大きいか(深いか)どうかを調べ(S1072)、そうであれば、S106と同じく、前回走行時に学習した後述する放電特性上において、今回の放電量Qd1に等しい放電量に対応する前回放電電圧Vbeforeを求め、この前回放電電圧Vbeforeと、今回の放電量Qd1に対応する今回放電電圧Vqdoとの差ΔV(=Vbefore−V)を求める。更に、S106では、上記前回放電電圧Vbeforeから差ΔVを減算した電圧、すなわち、今回放電電圧Vに等しい放電電圧における放電量Qdxを前回放電特性上において求める(S1073)。
【0031】
次のS1074では、S107の容量圧縮率P算出と同じ方法で容量圧縮率Pを求める。具体的に説明すれば、まず前回放電した最終放電量Qd0以降の放電特性のみを書き換えるために容量圧縮比率Pを算出する。容量圧縮比率Pは次の式で算出する。
P=(Qd1−Qd0)/(Qdx−Qdo)
次のS1075では、前回の放電特性における前回の最終放電量Qd0より大きい放電量の範囲を上記圧縮比率Pで圧縮乃至拡大して放電特性を書き換えて、今回の放電特性とする。更に説明すると、所定の放電電圧Vxに対応する前回の放電特性上の任意の放電量Qxに、上記緩学習容量圧縮率P’を掛けて求めた今回の放電量Qdxが今回の放電特性上における放電電圧Vxに対応する放電量となる。したがって、前回の最終放電量Qd0より大きい放電量の範囲の今回の放電特性は最終放電量Qd0で計測した今回放電電圧の値からスタートする。
【0032】
また、S1072において、今回放電量Qd1が前回放電時の最終放電量Qd0より大きくなければ、S1076へ進んで、今回の放電量Qd1に等しい放電量に対応する前回放電電圧Vbeforeを前回の放電特性上で求め、この前回放電電圧Vbeforeと今回放電電圧Vqdoとの差だけ前回の放電特性をシフトして今回の放電特性とする(S1077)。
【0033】
以上説明したこの実施例の放電特性書き換えについて以下にまとめる。
S107で説明した緩学習容量圧縮を行わない通常の放電特性書き換えでは、今回の放電量Qd1が前回の最終放電量Qd0に達するまでは(S1072で判断)、言い換えれば直前に充電した充電量を完全に放電するまでは、現時点の今回放電量から前回の最終放電量Qd0に達するまでの放電量を、前回放電特性を同一放電量における今回放電と前回放電との電圧差ΔVだけ放電電圧と放電量との二次元平面で前回放電特性を放電電圧軸に沿って平行移動して推定する(S1077)。そして、今回の放電量Qd1が前回の最終放電量Qd0に達した後は(S1072で判断)、言い換えれば直前に充電した充電量を完全に放電した後は、最終放電量Qd0に対応する今回放電電圧の値からS1073〜S1075で示すステップで容量圧縮を行って今回放電特性を求め、それを積分して残存容量を推定すればよい。
【0034】
なお、追加説明すると、S100では、求めた今回放電量Qd1と今回放電電圧Vとのデータのペアで前回放電特性を書き換えていく。 この実施例によれば、直近の測定データである前回放電特性を用いて、その修正により今後の今回の放電特性を推定し、この今回の放電特性の積分操作により残存容量を推定するので、誤差が少ない利点がある。
【0035】
また、放電特性の変化が大きい深放電時には放電特性の書き換えを徐々に行うので、この書き換えによる放電制御における制御状態の変動が少ないという利点がある。
S108のステップでの今回放電特性の書き換えを図4に示す放電特性図に模式的に図示する。
【0036】
(変形態様1)
変形態様1を図2及び図3に示すフローチャートを参照して説明する。
この実施例では、図2及び図3に示すフローチャートにおいて前回放電特性を用いる部位をすべてその代わりに初期特性を用いるものである。
このようにしても正確に残存容量を推定することができる。
【0037】
(変形態様2)
この変形態様2は、実施例2において図2に示すフローチャートにおいてのみ前回の放電特性を初期放電特性に変更せず、図3に示すフローチャートにおいては前回の放電特性を初期放電特性に変更するものである。
このようにしても正確に残存容量を推定することができる。
【0038】
(変形態様3)
この変形態様3は、実施例3において図2に示すフローチャートにおけるS1076、S1077のみを変更するものである。
詳しく説明すると、この実施例では、今回の放電量Qd1が前回の最終放電量Qd0に達するまでは(S1072で判断)、言い換えれば直前に充電した充電量を完全に放電するまでは、前回特性又は初期特性のΔVだけのスライドではなく、初期特性の容量圧縮により求めた今回放電特性を用いて残存容量を推定するものである。
【0039】
詳しく説明すると、放電電圧軸と放電量軸とで規定される二次元平面上で、S100で求めた今回放電電圧Vを示す直線と交差する初期放電特性上の前回放電量を求め、この前回放電量とS100で求めた今回放電量との比率で上述の容量圧縮操作で初期放電特性を放電容量軸に沿って圧縮して今回の放電特性とし、この今回の放電特性を積分して今後放電可能な残存容量を求めることができる。
【0040】
なお、この今回の放電特性の放電量0の点は、放電量0における初期放電特性上の初期放電電圧Vfとしてもよく、今回の放電において放電量0において求めた放電電圧Vpfが初期放電電圧VfよりΔvだけ小さい場合には、初期放電特性をまず放電電圧軸に沿ってΔVだけ放電電圧軸に沿ってスライドさせた後、上記容量圧縮を行ってもよい。
【0041】
(変形態様4)
この変形態様4は、上述した変形態様3における初期放電特性の代わりに前回の放電特性を用いて変形態様3での処理を行うものである。このようにしても残存容量を良好に算出することができる。
なお、上述した初期放電特性に対する容量圧縮操作により今回の放電特性を良好に推定できることは、本出願人になされた実験結果およびその解析を基礎とする知見に基づくものである。なお、この実験結果およびその解析については、本出願人により出願中の特開平10−246760号を参照されたい。
【0042】
なお、上述した初期放電特性をΔVだけ電圧をシフトする操作によりメモリ効果による放電電圧の低下を伴う放電特性の変化を良好に検出できることは、充電直前の所定の放電量における放電電圧Vの値と、この放電量における充電後の再検出放電電圧の値との差をメモリ効果による電池の起電力の低下とみなすことができるという本出願人になされた実験結果およびその解析を基礎とする知見に基づくものである。すなわち、本出願の実験結果およびその解析を基礎とする知見によれば、電池劣化による容量低下は電池の内部抵抗の増大に起因し、メモリ効果による容量低下は電池の起電力の低下に起因すると考えることができる。なお、この実験結果およびその解析については、本出願人により出願中の特開平10−246760号を参照されたい。
【図面の簡単な説明】
【図1】本発明の電池特性演算装置の一実施例を示すブロック図である。
【図2】実施例1の残存容量演算動作を示すフローチャートである。
【図3】実施例1の残存容量演算動作を示すフローチャートである。
【図4】実施例1の残存容量演算動作の要部を示す放電特性図である。
【符号の説明】
1は電池、4はコントローラ、5は電流センサ(検出手段)、
S100は放電量算出手段、S108は放電特性演算手段、S109は残存容量演算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery characteristic calculation device that calculates the remaining capacity of a battery mounted on, for example, an electric vehicle.
[0002]
[Prior art]
For example, a secondary battery used in an electric vehicle is repeatedly charged and discharged, so that the dischargeable capacity gradually decreases due to deterioration. Therefore, the remaining capacity taking into account battery deterioration (in this specification, the dischargeable electric energy (wattage ) Or discharge amount (ampere hour)) is required to be known accurately.
[0003]
For this reason, a method of storing the relationship between the discharge voltage V and the remaining capacity in a map and substituting the detected discharge voltage V into the map to obtain the remaining capacity has been conventionally employed.
Further, JP-A-7-55903 discloses subtracting the discharge amount Ah obtained by current integration from the full charge capacity stored in advance (discharge amount obtained from discharge from a fully charged state to a predetermined discharge termination condition), It proposes to determine the remaining capacity.
[0004]
However, in the former remaining capacity calculation method described above, the relationship between the discharge voltage V and the remaining capacity, that is, whether the change in the discharge characteristics is caused by the battery deterioration or the memory effect cannot be distinguished. There was a problem that it was difficult to do and the error was large.
In addition, even with the latter remaining capacity calculation method described above, it is difficult to accurately calculate the remaining capacity because a decrease in remaining capacity due to battery deterioration cannot be detected.
[0005]
Japanese Patent Application Laid-Open No. 10-246760, filed by the present applicant, corrected the initial characteristic map indicating the relationship between the discharge voltage V and the discharge amount Ah separately based on the memory effect and the battery deterioration. A discharge characteristic indicating the relationship between the discharge voltage V and the discharge amount Ah is formed, and the remaining dischargeable electric energy is obtained by integrating the area of the discharge region determined by the discharge characteristic, and the remaining dischargeable electric energy is determined as the remaining capacity. We proposed a method (estimated remaining discharge energy estimation formula remaining capacity calculation method).
[0006]
[Problems to be solved by the invention]
However, even in the above-described method for estimating the remaining dischargeable electric energy, the shape of the discharge characteristics, particularly the shape of the discharge characteristics at the end of discharge where the change in the discharge voltage becomes noticeable as charging and discharging are repeated, deviates from the shape of the initial discharge characteristics. There is a problem that the residual capacity calculation error becomes large.
[0007]
In addition, when the discharge characteristics are rewritten, the discharge state of the battery changes suddenly, which is not desirable for an electric vehicle, for example.
In view of the above problems, an object of the present invention is to provide a battery remaining capacity calculation device that has few calculation errors and can avoid a sudden change in the discharge state of the battery.
[0008]
[Means for Solving the Problems]
According to the battery remaining capacity calculation device according to claim 1, the previous discharge characteristics indicating the relationship between the previous discharge voltage and the previous discharge amount obtained at the previous discharge, the current discharge voltage and the current discharge amount obtained at the current discharge, The current discharge characteristics are calculated based on the current discharge characteristics, and the remaining battery capacity is calculated based on the current discharge characteristics. Therefore, the current discharge characteristics can be calculated by correcting the most recent discharge characteristics even after repeated charging and discharging. The remaining capacity can be estimated more accurately than the above-described conventional remaining dischargeable power amount estimation formula remaining capacity calculation method that calculates the current discharge characteristics based on the discharge characteristics, the current discharge voltage, and the current discharge amount.
[0011]
According further to the first aspect, wherein, after charging, since the current discharge amount reaches the last of the previous discharge amount Qdo of charge immediately before, the difference in a charging current between the current discharge amount Qd1 and final previous discharge amount Qd0 An amount difference ΔQp is obtained, an estimated previous discharge amount Qdx corresponding to the current discharge voltage corresponding to the current discharge amount Qd1 on the previous discharge characteristics is obtained, and a difference between the estimated previous discharge amount Qdx and the final previous discharge amount Qd0 is obtained. A previous charge amount difference ΔQb is obtained, a capacity compression rate P = ΔQp / ΔQb is obtained, and a capacity compression operation of multiplying the previous discharge amount of the previous discharge characteristic by the capacity compression rate P is performed to determine the current discharge characteristic in the future. presume.
[0012]
In this way, the remaining capacity after the last previous discharge amount can be accurately estimated.
According to the second aspect of the present invention, in the battery remaining capacity calculation device according to the first aspect, when the discharge characteristic is estimated after reaching the last previous discharge amount immediately before charging, the learning is less than the capacity compression rate P. The capacity compression rate P ′ is obtained, and a capacity compression operation is performed by multiplying the previous discharge amount of the previous discharge characteristic by the slow learning capacity compression rate P ′, thereby estimating the current discharge characteristic in the future.
[0013]
In this way, since the capacity compression operation is reduced even when the capacity compression rate P is large, the discharge characteristics are rewritten gradually, and a sudden change in the discharge state due to a sudden change in the remaining capacity can be avoided. .
According to a third aspect of the present invention, there is provided a remaining capacity calculation device for a battery, which is based on the slow learning capacity compression ratio P ′ according to the configuration of the fifth aspect, even in the remaining discharge capacity estimation formula remaining capacity calculation method based on the conventional initial discharge characteristics. Rewrite slow discharge characteristics.
[0014]
Even in this case, a sudden change in the discharge state due to a sudden change in the remaining capacity can be avoided.
For example, after charging, after the current discharge amount reaches the final previous discharge amount Qdo immediately before charging, a current charge amount difference ΔQp that is the difference between the current discharge amount Qd1 and the final previous discharge amount Qd0 is obtained, and the current discharge amount The initial discharge amount Qdx ′ corresponding to the current discharge voltage corresponding to Qd1 on the initial discharge characteristics is obtained, the previous charge amount difference ΔQb ′ which is the difference between the initial discharge amount Qdx ′ and the final previous discharge amount Qd0 is obtained, and the capacity The compression rate P = ΔQp / ΔQb ′ is obtained, and further, for example, a slow learning capacity compression rate P ′ smaller than the capacity compression rate P is obtained by multiplying the capacity compression rate P by a constant, for example. A capacity compression operation by multiplying the learning capacity compression rate P ′ is performed to estimate the current discharge characteristics in the future. After charging, until the current discharge amount reaches the final previous discharge amount immediately before charging, the voltage difference between the initial discharge voltage corresponding to the current discharge amount on the initial discharge characteristics and the current discharge voltage is obtained. Therefore, the initial discharge characteristic may be changed to the current discharge characteristic by performing a voltage shift operation in the discharge voltage axis direction.
[0015]
According to the configuration of claim 4, in the configuration of claim 2 or 3 , the capacity based on the slow learning capacity compression rate P ′ is further only when the final discharge amount Qdo is equal to or greater than a predetermined ratio of the full charge capacity. Perform the compression operation to obtain the current discharge characteristics.
In this way, when the final discharge amount Qdo is less than the predetermined ratio of the full charge capacity, in other words, the discharge characteristics change greatly (except when the discharge voltage fluctuation is large with respect to the discharge amount change) and during the deep discharge. Since gradual discharge characteristic rewriting by the learning capacity compression ratio P ′ is prohibited, since the change in discharge characteristics is small due to rewriting at shallow discharge, the discharge control can be accurately adapted to the remaining capacity without large fluctuations in discharge control due to this rewriting. You can move quickly.
[0016]
According to the fifth aspect of the present invention, the capacity compression operation is further performed only when the current discharge amount exceeds the final discharge amount Qdo in the battery remaining capacity calculation device according to any one of the second to fourth aspects. In this way, it is possible to avoid the error caused by the memory effect and the charge polarization from affecting the capacity compression operation until the discharge reaches the final discharge amount Qd0.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a battery characteristic calculation device of the present invention will be described below with reference to the drawings.
[0018]
【Example】
(Device configuration)
FIG. 1 is a block diagram showing an example of a remaining capacity calculation device for an electric vehicle according to the present invention.
1 is a battery, 2 is a power transmission means including a rotating electrical machine, and is connected to the vehicle drive shaft to transfer energy between them and the battery in the form of electric power. Reference numeral 3 denotes a bidirectional power converter that performs conversion between DC power input / output with respect to the battery 1 and AC power input / output with respect to the power transmission means 2. Since the structures of the power transmission means 2 and the bidirectional power converter 3 are well known and are not the gist of the present invention, further detailed description is omitted.
[0019]
The battery 1 is an assembled battery formed by connecting a large number of Ni-MH batteries in series, and individual voltages V <b> 1 to Vn are input to the controller 4. The current sensor 5 detects the charging / discharging current, and the detected current is input to the controller 4 having a microcomputer configuration in the same manner as the voltage.
The remaining capacity calculation routine of this embodiment will be described below with reference to the flowchart shown in FIG. The discharge voltage V shown below shows the minimum value among the voltages of the individual Ni-MH batteries. This is to prevent battery inversion.
[0020]
First, the discharge voltage V and the charge / discharge current A are detected, the charge / discharge current A is integrated, and the current discharge amount Qd1 is accumulated to check whether or not the battery is fully charged. Set to. Further, the detected discharge voltage V is not necessarily a discharge voltage obtained by discharging the reference discharge power, and is detected to be high if the discharge power is smaller than the reference discharge power, and smaller if the discharge power is larger. The error of the voltage V is corrected, and the corrected discharge voltage V is used after this step (S100).
[0021]
There are various methods for determining full charge, and a method of determining full charge when dV / dAh reaches a peak is adopted.
The discharge voltage V can be corrected as follows. First, the internal resistance r and open circuit voltage of the battery are obtained. The internal resistance r can be obtained, for example, as ΔV / ΔA in the VI characteristic on the characteristics of the discharge voltage V and the discharge current A. Next, the detected discharge current A is multiplied by the internal resistance r, and the internal resistance r of the battery is multiplied to obtain the voltage drop, thereby obtaining the open circuit voltage. The output voltage of the battery when the model battery thus obtained discharges a predetermined reference discharge power (here 2 kW) is calculated as the current discharge voltage V.
[0022]
In the next S101, it is checked whether or not the current discharge has ended, that is, whether or not a charge start command has been issued. If so, the current discharge amount is stored as the final discharge amount Qd0 (S102). The process proceeds to S103 to check whether or not the battery is currently fully charged (S103). If so, the final discharge amount Qd0 is reset to 0 (S104), and the process proceeds to S105.
[0023]
In S105, the current discharge amount Qd1 obtained in S100 is larger than the previous final discharge amount Qd0, and the previous final discharge amount Qd0 is a predetermined constant H (less than 1) obtained by integrating the previous discharge characteristics. ), If so, the process proceeds to S106 and thereafter, and the capacity compression work is performed by the slow learning capacity compression ratio P ′. Otherwise, the process proceeds to S107A and the above-mentioned slow learning capacity compression ratio P ′ The capacity compression work is performed at the normal capacity compression rate P.
[0024]
Here, the full charge capacity Ah0 is the initial capacity of the battery within a range in which the discharge of the reference discharge power value can be performed from the full charge state in the reference discharge power discharge. It is good also as a full charge capacity. The constant H is set to 0.5, for example.
In S105, in the present embodiment, when the discharge deeper than the final discharge amount Qd0 at the previous travel is performed, the discharge characteristics at the previous travel are subjected to compression conversion described later to obtain the current discharge characteristics as described later in this embodiment. Therefore, when the remaining capacity is sufficiently large, rewriting of the discharge characteristics by this compression conversion is performed to prevent accumulation of voltage detection errors and calculation errors.
[0025]
In S106, the previous discharge voltage Vbefore corresponding to the discharge amount equal to the current discharge amount Qd1 is obtained on the discharge characteristics to be described later learned during the previous travel, and the previous discharge voltage Vbefore and the current discharge amount Qd1 are corresponded to this time. A difference ΔV (= Vbefore−Vqdo) from the discharge voltage V is obtained. Further, in S106, the voltage obtained by subtracting the difference ΔV from the previous discharge voltage Vbefore, that is, the discharge amount Qdx at the discharge voltage equal to the current discharge voltage V is obtained on the previous discharge characteristics.
[0026]
In the next S107, first, the capacity compression ratio P is calculated in order to rewrite only the discharge characteristics after the last discharge amount Qd0 discharged last time. The capacity compression ratio P is calculated by the following formula.
P = (Qd1-Qd0) / (Qdx-Qdo)
However, since the change in the discharge characteristic causes a change in the discharge state of the battery, in order to prevent the rapid change, the gain G for rewriting the discharge characteristic in the capacity compression ratio P (less than 1, here 0.3) And set as the current slow learning capacity compression rate P ′.
[0027]
In the next S108, the discharge characteristic is rewritten by compressing or expanding the range of the discharge amount larger than the previous final discharge amount Qd0 in the previous discharge characteristic at the compression ratio P to obtain the current discharge characteristic. More specifically, the current discharge amount Qdx obtained by multiplying the arbitrary discharge amount Qx on the previous discharge characteristic corresponding to the predetermined discharge voltage Vx by the slow learning capacity compression rate P ′ is the current discharge characteristic on the discharge characteristic. The discharge amount corresponds to the discharge voltage Vx. Therefore, the current discharge characteristic in the range of the discharge amount larger than the previous final discharge amount Qd0 starts from the value of the current discharge voltage measured with the final discharge amount Qd0.
[0028]
In the next S109, the area surrounded by the obtained curve indicating the current discharge characteristic, the straight line indicating the predetermined discharge end voltage Vend, and the straight line for calculating the remaining capacity indicating the current discharge amount Qd1 is integrated. Remaining capacity.
Next, in S105, the current discharge amount Qd1 is not greater than the previous final discharge amount Qd0, or the previous final discharge amount Qd0 is a predetermined constant H (less than 1) obtained by integrating the previous discharge characteristics. If it is not larger than 2), a capacity compression work subroutine with a normal capacity compression rate P is performed in S107A.
[0029]
This subroutine will be described with reference to FIG.
First, it is checked whether the previous complete discharge has been performed or whether the previous discharge was the practical first discharge of the battery (S1070). If so, the initial discharge characteristic stored in advance is rewritten as the previous discharge characteristic (S1071). .
Here, the initial discharge characteristic is a characteristic indicating the relationship between the discharge amount Ah and the discharge voltage V of a battery that has been initially activated and charged a predetermined number of times and is stored in advance as a map. Yes. However, this initial discharge characteristic is an initial discharge characteristic when a predetermined reference discharge power (here, 2 kW) is discharged.
[0030]
Next, it is checked whether or not the current discharge amount Qd1 is larger (deeper) than the final discharge amount Qd0 at the previous discharge (S1072). The previous discharge voltage Vbefore corresponding to the discharge amount equal to the current discharge amount Qd1 is obtained, and a difference ΔV (= Vbefore−V) between the previous discharge voltage Vbefore and the current discharge voltage Vqdo corresponding to the current discharge amount Qd1 is obtained. Ask. Further, in S106, a voltage obtained by subtracting the difference ΔV from the previous discharge voltage Vbefore, that is, a discharge amount Qdx at a discharge voltage equal to the current discharge voltage V is obtained on the previous discharge characteristics (S1073).
[0031]
In the next S1074, the capacity compression rate P is obtained by the same method as the calculation of the capacity compression rate P in S107. More specifically, the capacity compression ratio P is calculated to rewrite only the discharge characteristics after the last discharge amount Qd0 discharged last time. The capacity compression ratio P is calculated by the following formula.
P = (Qd1-Qd0) / (Qdx-Qdo)
In the next S1075, the discharge characteristic is rewritten by compressing or expanding the range of the discharge amount larger than the previous final discharge amount Qd0 in the previous discharge characteristic by the compression ratio P to obtain the current discharge characteristic. More specifically, the current discharge amount Qdx obtained by multiplying the arbitrary discharge amount Qx on the previous discharge characteristic corresponding to the predetermined discharge voltage Vx by the slow learning capacity compression rate P ′ is the current discharge characteristic on the discharge characteristic. The discharge amount corresponds to the discharge voltage Vx. Therefore, the current discharge characteristic in the range of the discharge amount larger than the previous final discharge amount Qd0 starts from the value of the current discharge voltage measured with the final discharge amount Qd0.
[0032]
In S1072, if the current discharge amount Qd1 is not larger than the final discharge amount Qd0 at the previous discharge, the process proceeds to S1076, and the previous discharge voltage Vbefore corresponding to the discharge amount equal to the current discharge amount Qd1 is set on the previous discharge characteristics. The previous discharge characteristic is shifted by the difference between the previous discharge voltage Vbefore and the current discharge voltage Vqdo to obtain the current discharge characteristic (S1077).
[0033]
The discharge characteristic rewriting of this embodiment described above will be summarized below.
In the normal discharge characteristic rewriting without performing the slow learning capacity compression described in S107, until the current discharge amount Qd1 reaches the previous final discharge amount Qd0 (determined in S1072), in other words, the charge amount charged immediately before is completely Until the current discharge amount at the present time reaches the previous final discharge amount Qd0, the discharge voltage and the discharge amount by the voltage difference ΔV between the current discharge and the previous discharge with the same discharge amount as the previous discharge characteristic. The previous discharge characteristic is estimated by parallel translation along the discharge voltage axis on the two-dimensional plane (S1077). After the current discharge amount Qd1 reaches the previous final discharge amount Qd0 (determined in S1072), in other words, after the charge amount charged immediately before is completely discharged, the current discharge corresponding to the final discharge amount Qd0. What is necessary is just to obtain a discharge characteristic this time by performing capacity | capacitance compression by the step shown by S1073-S1075 from the value of voltage, and just to estimate the remaining capacity by integrating it.
[0034]
In addition, in additional explanation, in S100, the previous discharge characteristic is rewritten with the data pair of the obtained current discharge amount Qd1 and the current discharge voltage V. According to this embodiment, using the previous discharge characteristic that is the latest measurement data, the current discharge characteristic in the future is estimated by the correction, and the remaining capacity is estimated by the integration operation of the current discharge characteristic. There are few advantages.
[0035]
In addition, since the rewriting of the discharge characteristics is performed gradually during deep discharge with a large change in the discharge characteristics, there is an advantage that the control state in the discharge control due to the rewriting is small.
The rewriting of the current discharge characteristic in step S108 is schematically shown in the discharge characteristic diagram shown in FIG.
[0036]
(Modification 1)
Modification 1 will be described with reference to the flowcharts shown in FIGS.
In this embodiment, in the flowcharts shown in FIGS. 2 and 3, all the parts using the previous discharge characteristics are used instead of the initial characteristics.
Even in this way, the remaining capacity can be accurately estimated.
[0037]
(Modification 2)
This modification 2 does not change the previous discharge characteristics to the initial discharge characteristics only in the flowchart shown in FIG. 2 in the second embodiment, but changes the previous discharge characteristics to the initial discharge characteristics in the flowchart shown in FIG. is there.
Even in this way, the remaining capacity can be accurately estimated.
[0038]
(Modification 3)
In the third modification, only S1076 and S1077 in the flowchart shown in FIG.
More specifically, in this embodiment, until the current discharge amount Qd1 reaches the previous final discharge amount Qd0 (determined in S1072), in other words, until the previous charged amount is completely discharged, The remaining capacity is estimated by using the current discharge characteristic obtained by the initial characteristic capacity compression instead of the initial characteristic ΔV slide.
[0039]
More specifically, the previous discharge amount on the initial discharge characteristic intersecting with the straight line indicating the current discharge voltage V obtained in S100 on the two-dimensional plane defined by the discharge voltage axis and the discharge amount axis is obtained. The initial discharge characteristics are compressed along the discharge capacity axis by the above-described capacity compression operation by the ratio of the current amount and the current discharge amount obtained in S100 to obtain the current discharge characteristics, and the current discharge characteristics can be integrated to discharge in the future. The remaining capacity can be determined.
[0040]
The point of the discharge amount 0 in this discharge characteristic may be the initial discharge voltage Vf on the initial discharge characteristic at the discharge amount 0, and the discharge voltage Vpf obtained at the discharge amount 0 in the current discharge is the initial discharge voltage Vf. If it is smaller by Δv, the initial discharge characteristic may be first slid along the discharge voltage axis by ΔV along the discharge voltage axis, and then the capacity compression may be performed.
[0041]
(Modification 4)
In this modified embodiment 4, the process in the modified embodiment 3 is performed using the previous discharge characteristics instead of the initial discharge characteristics in the modified embodiment 3 described above. Even in this way, the remaining capacity can be calculated satisfactorily.
The fact that the current discharge characteristics can be satisfactorily estimated by the capacity compression operation for the initial discharge characteristics described above is based on the results of experiments made by the present applicant and knowledge based on the analysis thereof. For the results of this experiment and its analysis, refer to Japanese Patent Application Laid-Open No. 10-246760 filed by the present applicant.
[0042]
In addition, the fact that the change in the discharge characteristic accompanied by the decrease in the discharge voltage due to the memory effect can be satisfactorily detected by the operation of shifting the voltage by ΔV in the initial discharge characteristic described above, Based on the experimental results made by the present applicant and the analysis based on the analysis that the difference between the discharge amount and the re-detection discharge voltage after charging in this amount of discharge can be regarded as a decrease in the electromotive force of the battery due to the memory effect. Is based. That is, according to the experimental results of the present application and knowledge based on the analysis thereof, the capacity reduction due to the battery deterioration is caused by the increase in the internal resistance of the battery, and the capacity reduction due to the memory effect is caused by the decrease in the electromotive force of the battery. Can think. For the results of this experiment and its analysis, refer to Japanese Patent Application Laid-Open No. 10-246760 filed by the present applicant.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a battery characteristic calculation device of the present invention.
FIG. 2 is a flowchart showing a remaining capacity calculation operation according to the first embodiment.
FIG. 3 is a flowchart illustrating a remaining capacity calculation operation according to the first embodiment.
FIG. 4 is a discharge characteristic diagram illustrating a main part of a remaining capacity calculation operation according to the first embodiment.
[Explanation of symbols]
1 is a battery, 4 is a controller, 5 is a current sensor (detection means),
S100 is a discharge amount calculating means, S108 is a discharge characteristic calculating means, and S109 is a remaining capacity calculating means.

Claims (5)

充放電可能な電池の放電電圧及び放電電流を検出する検出手段、
前記放電電流に基づいて放電量を算出する放電量算出手段、
前回放電時に求めた前記前回放電電圧及び前回放電量の関係を示す前回の放電特性と、今回放電時に求めた前記今回放電電圧及び今回放電量とに基づいて今回の放電特性を演算する放電特性演算手段、及び、
前記今回の放電特性に基づいて前記電池の残存容量を演算する残存容量演算手段と、
を備え
前記放電特性演算手段は、
充電後、前記今回放電量が前記充電直前の最終の前記前回放電量Qdoに達した以降は、
その後の更なる放電時に求めた前記今回放電量Qd1と前記最終の前回放電量Qd0との差である今回充電量差ΔQpを求め、
前記今回放電量Qd1に対応する前記今回放電電圧に前記前回の放電特性上で対応する推定の前回放電量Qdxを求め、
前記推定の前回放電量Qdxと前記最終の前回放電量Qd0との差である前回充電量差ΔQbを求め、
容量圧縮率P=ΔQp/ΔQbを求め、
前記前回の放電特性の前回放電量に前記容量圧縮率Pを掛ける容量圧縮操作を行って今後の前記今回の放電特性を推定し、
前記残存容量演算手段は、前記今回の放電特性を積分して前記電池の残存容量を演算することを特徴とする電池の残存容量演算装置。
Detecting means for detecting a discharge voltage and a discharge current of a chargeable / dischargeable battery;
A discharge amount calculating means for calculating a discharge amount based on the discharge current;
Discharge characteristic calculation that calculates the current discharge characteristic based on the previous discharge characteristic indicating the relationship between the previous discharge voltage and the previous discharge amount obtained at the previous discharge and the current discharge voltage and the current discharge amount obtained at the current discharge. Means and
A remaining capacity calculating means for calculating the remaining capacity of the battery based on the current discharge characteristics;
Equipped with a,
The discharge characteristic calculating means includes
After the current discharge amount reaches the last previous discharge amount Qdo just before the charge after charging,
Thereafter, a current charge amount difference ΔQp, which is a difference between the current discharge amount Qd1 and the final previous discharge amount Qd0 obtained at the time of further discharge, is obtained.
Obtaining an estimated previous discharge amount Qdx corresponding to the current discharge voltage corresponding to the current discharge amount Qd1 on the previous discharge characteristics;
Obtaining a previous charge amount difference ΔQb which is a difference between the estimated previous discharge amount Qdx and the final previous discharge amount Qd0;
The capacity compression rate P = ΔQp / ΔQb is obtained,
Performing a capacity compression operation of multiplying the previous discharge amount of the previous discharge characteristics by the capacity compression rate P to estimate the current discharge characteristics in the future,
The battery remaining capacity calculating device calculates the remaining capacity of the battery by integrating the current discharge characteristics .
請求項記載の電池の残存容量演算装置において、
前記放電特性演算手段は、
前記充電直前の前記最終の前回放電量に達した以降における前記放電特性の推定に際し、前記容量圧縮率Pより小さい緩学習容量圧縮率P’を求め、
前記前回の放電特性の前回放電量に前記緩学習容量圧縮率P’に基づく容量圧縮操作を行って今後の前記今回の放電特性を推定することを特徴とする電池の残存容量演算装置。
In the battery remaining capacity calculation device according to claim 1 ,
The discharge characteristic calculating means includes
In estimating the discharge characteristics after reaching the final previous discharge amount just before the charging, a slow learning capacity compression ratio P ′ smaller than the capacity compression ratio P is obtained,
A battery remaining capacity calculation device that estimates a current discharge characteristic in the future by performing a capacity compression operation based on the slow learning capacity compression rate P ′ on a previous discharge amount of the previous discharge characteristic.
充放電可能な電池の放電電圧及び放電電流を検出する検出手段、
前記放電電流に基づいて放電量を算出する放電量算出手段、
初期時の初期放電電圧及び初期放電量の関係を示す初期放電特性と、今回放電時に求めた前記今回放電電圧及び今回放電量とに基づいて今回の放電特性を演算する放電特性演算手段、及び、
前記今回の放電特性に基づいて前記電池の残存容量を演算する残存容量演算手段と、
を備え、
前記放電特性演算手段は、
充電後、前記今回放電量が前記充電直前の最終の前記前回放電量Qdoに達した以降は、
その後の更なる放電時に求めた前記今回放電量Qd1と前記最終の前回放電量Qd0との差である今回充電量差ΔQpを求め、
前記今回放電量Qd1に対応する前記今回放電電圧に前記初期放電特性上で対応する推定の初期放電量Qdx’を求め、
前記推定の初期放電量Qdx’と前記最終の前回放電量Qd0との差である前回充電量差ΔQb’を求め、
容量圧縮率P=ΔQp/ΔQb’を求め、
前記容量圧縮率Pより小さい緩学習容量圧縮率P’を求め、
前記初期放電特性の前記初期放電量に前記緩学習容量圧縮率P’に基づく容量圧縮操作を行って今後の前記今回の放電特性を推定することを特徴とする電池の残存容量演算装置。
Detecting means for detecting a discharge voltage and a discharge current of a chargeable / dischargeable battery;
A discharge amount calculating means for calculating a discharge amount based on the discharge current;
A discharge characteristic calculation means for calculating a current discharge characteristic based on an initial discharge characteristic indicating a relationship between an initial initial discharge voltage and an initial discharge amount, and the current discharge voltage and the current discharge amount obtained at the time of the current discharge; and
A remaining capacity calculating means for calculating the remaining capacity of the battery based on the current discharge characteristics;
With
The discharge characteristic calculating means includes
After the current discharge amount reaches the last previous discharge amount Qdo just before the charge after charging,
Thereafter, a current charge amount difference ΔQp, which is a difference between the current discharge amount Qd1 and the final previous discharge amount Qd0 obtained at the time of further discharge, is obtained.
An estimated initial discharge amount Qdx ′ corresponding to the current discharge voltage corresponding to the current discharge amount Qd1 on the initial discharge characteristics is obtained,
A previous charge amount difference ΔQb ′ which is a difference between the estimated initial discharge amount Qdx ′ and the final previous discharge amount Qd0;
The capacity compression rate P = ΔQp / ΔQb ′ is obtained,
Obtaining a slow learning capacity compression ratio P ′ smaller than the capacity compression ratio P;
A battery remaining capacity calculation device characterized in that a capacity compression operation based on the slow learning capacity compression rate P ′ is performed on the initial discharge amount of the initial discharge characteristics to estimate the current discharge characteristics in the future.
請求項又は記載の電池の残存容量演算装置において、
前記放電特性演算手段は、
前記最終放電量Qdoが満充電容量の所定割合以上であった場合にのみ前記容量圧縮操作を行うことを特徴とする電池の残存容量演算装置。
In the battery remaining capacity calculation device according to claim 2 or 3 ,
The discharge characteristic calculating means includes
The battery remaining capacity calculation device, wherein the capacity compression operation is performed only when the final discharge amount Qdo is equal to or greater than a predetermined ratio of a full charge capacity.
請求項乃至のいずれか記載の電池の残存容量演算装置において、
前記放電特性演算手段は、
前記今回放電量が前記最終放電量Qdoを超えた場合にのみ、前記容量圧縮操作を行うことを特徴とする電池の残存容量演算装置。
The battery remaining capacity calculation device according to any one of claims 2 to 4 ,
The discharge characteristic calculating means includes
The battery remaining capacity calculation device, wherein the capacity compression operation is performed only when the current discharge amount exceeds the final discharge amount Qdo.
JP30596098A 1998-10-27 1998-10-27 Battery remaining capacity calculation device Expired - Fee Related JP4110637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30596098A JP4110637B2 (en) 1998-10-27 1998-10-27 Battery remaining capacity calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30596098A JP4110637B2 (en) 1998-10-27 1998-10-27 Battery remaining capacity calculation device

Publications (2)

Publication Number Publication Date
JP2000131403A JP2000131403A (en) 2000-05-12
JP4110637B2 true JP4110637B2 (en) 2008-07-02

Family

ID=17951378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30596098A Expired - Fee Related JP4110637B2 (en) 1998-10-27 1998-10-27 Battery remaining capacity calculation device

Country Status (1)

Country Link
JP (1) JP4110637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157317B2 (en) * 2002-04-10 2008-10-01 株式会社日立製作所 Status detection device and various devices using the same

Also Published As

Publication number Publication date
JP2000131403A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP5240320B2 (en) Secondary battery charge state estimation device and charge state estimation method
US6107779A (en) Apparatus for detecting remaining capacity of battery
JP5442583B2 (en) State detection device for power supply and power supply device
JP3506916B2 (en) Charging device
CN108885242B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
US7317299B2 (en) Method of calculating aging factor of battery for hybrid vehicle
EP1889325A1 (en) Method of estimating soc of battery for hybrid electric vehicle
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
JP2006194789A (en) Residual capacity detecting method of buttery, and power supply device
WO2005036192A1 (en) Secondary battery residual capacity calculating apparatus and calculating method
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
JP4110639B2 (en) Battery remaining capacity calculation device
JP3432463B2 (en) Battery capacity measurement device
JP2000306613A (en) Battery state monitoring device
JP4304923B2 (en) Secondary battery remaining capacity estimating apparatus and remaining capacity estimating method
JP3397187B2 (en) Battery state of charge determination device
JP3997646B2 (en) Battery remaining capacity calculation method
JP2004251744A (en) Apparatus and method for controlling secondary battery
JP4110637B2 (en) Battery remaining capacity calculation device
KR100384160B1 (en) Method for modeling operation the charge/discharge characteristics of a battery according to a status of capacitance
JP2002354703A (en) Secondary battery control device for vehicles
JP2000131404A (en) Cell deterioration degree determining apparatus
JP3220797B2 (en) Rechargeable battery charging method
JP2000221249A (en) Detecting apparatus for charging state of battery
JP4872513B2 (en) Battery current-voltage characteristic detection device and internal resistance detection device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees