JP4109693B2 - ノード,rprインタフェースカードおよび光ネットワークシステム - Google Patents

ノード,rprインタフェースカードおよび光ネットワークシステム Download PDF

Info

Publication number
JP4109693B2
JP4109693B2 JP2005507577A JP2005507577A JP4109693B2 JP 4109693 B2 JP4109693 B2 JP 4109693B2 JP 2005507577 A JP2005507577 A JP 2005507577A JP 2005507577 A JP2005507577 A JP 2005507577A JP 4109693 B2 JP4109693 B2 JP 4109693B2
Authority
JP
Japan
Prior art keywords
packet
ring
node
card
rpr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005507577A
Other languages
English (en)
Other versions
JPWO2005015851A1 (ja
Inventor
康之 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2005015851A1 publication Critical patent/JPWO2005015851A1/ja
Application granted granted Critical
Publication of JP4109693B2 publication Critical patent/JP4109693B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、例えばRPR(Resilient Packet Ring:レジリアント[復旧が早い]・パケット・リング)プロトコルが適用されたパケットリングにおけるRPRノード(ノード)のパケットリングインタフェース回路,最短経路の選択および最適経路の選択に用いて好適な、ノード,RPRインタフェースカードおよび光ネットワークシステムに関する。
インターネットにおいて転送されるイーサネット(Ethernet:商標)パケットおよびIP(Internet Protocol)パケット等のトラフィックが増加し、ADSL(Asymmetric Digital Subscriber Line)ネットワークを利用するユーザ(加入者,一般個人又は企業等)数が急増し、また、VoIP(Voice over Internet Protocol)技術を用いたネットワーク等が台頭している。
(X1)光伝送システムおよび光ネットワークシステムの一例
図29は光伝送システムの構成例を示す図である。この図29に示す光伝送システム500は、広範な地域に設けられたノード(通信装置,RPRノード,ノード装置又はリングノード)が光ファイバ等により接続されて構成され、高速かつ大容量のパケット(IPパケット,IPデータグラム又はIPフレーム)を伝送するものであって、基幹系のWDM(Wavelength Division Multiplexing)ネットワーク101と、このWDMネットワーク101に接続されたサブネットワークとしてのADSLネットワーク102a,SONET/SDH(Synchronous Optical NETwork/Synchronous Digital Hierarchy:同期光通信網/同期ディジタルハイアラーキ)ネットワーク102b,インターネット102cおよび光ネットワークシステムとしてのRPRシステム102dをそなえて構成されている。ここで、WDMネットワーク101は、複数のノードが複数本の光ファイバにより接続されて構成された多重パケットリングである。パケットの多重化方法は、例えば時間多重であって、複数のユーザをそれぞれタイムスロットに割り当てるようにしている。また、ADSLネットワーク102aは、電話用メタリックケーブルを用いて、ユーザから電話局への上り伝送速度がその逆の下り伝送速度よりも大きい伝送ネットワークである。また、インターネット102cは、大容量のパケットを多重化して伝送するものである。このインターネット102cを用いて音声データを送受信するVoIP技術が用いられることも多く、これにより、例えば企業が有するLAN(Local Area Network)又はWAN(Wide Area Network)を用いた内線電話およびインターネット電話等が実用化されている。
さらに、SONET/SDHシステム102bは、各ノード(通信装置)が光ファイバを介して接続されたものであり、パケットを双方向に高速伝送可能なものである。このSONET/SDHシステム102bは、各チャネルに帯域を割り当てして伝送サービスを提供し、また、障害発生時には、チャネル切り替えを短時間に行ない、高い信頼性を有する。この半面、SONET/SDHシステム102bは、帯域の利用効率が不便になることがあり、光ファイバを個別に管理することができず、さらに、トラフィック量の増大に応じてシステムを拡張することが費用および技術的の各観点から極めて困難である。
このため、近年、パケットリングネットワークが注目されている。このパケットリングは、リング自身が直接パケットを処理し、かつパケットトラフィックの帯域を管理し統計多重効果(パケットトラフィックに応じてネットワークの資源を効率的に割り当てて負荷を分散させること。)を引き出すことができる。
特に、メトロエリア等の都市圏においては、パケットリングを導入する傾向が顕著である。このため、IEEE(Institute of Electrical and Electronic Engineers)は、2003年12月を目標にIEEE802.17RPR(パケットリングシステムの標準仕様を規定したもの)の標準化作業を進めている。従来から、パケットリングにおいて各ノードがトークンを用いてパケットを送受信する方法は、トークンリング又はFDDI(Fiber−Distributed Data Interface)リングとして知られているが、近年のパケットリングは、トークンリング等と区別するため、一般に、RPRネットワークと呼ばれている。
図29に示すRPRネットワーク102dは、WDMネットワーク101と双方向の2重リングに用いられており、6基のノード#A〜#Fがリング型に接続されて構成されており、例えばノード#Dはパケットリングとインターネット102cとに接続されている。ここで、ノード#Dの機能は、(i)隣接するノード#E又はノード#Cからのリングパケットをドロップして例えばIPパケットに変換しそのIPパケットをインターネット102cに送信する。(ii)ノード#E又はノード#Cからのリングパケットをスルーしてノード#C又はノード#Eに中継する。(iii)インターネット102cのサーバ(図示省略)からのIPパケットをアッドしてリングパケットに変換してパケットリングに送信する。(iv)サーバからのIPパケットを転送する。
また、RPRネットワーク102dは帯域の利用効率が高く、各ノード#A〜#F内に設けられた装置架(図示省略)に後述するRPRカード(RPRインタフェースカード)を差し込むことにより、運用可能になっている(これをプラグアンドプレイ機能と称する。)。また、RPRネットワーク102dがサポートするレイヤはMAC(Media Access Control)レイヤであって、各種の物理レイヤを導入できる。
(X2)パケットフォーマット例
図30(a),図30(b)はそれぞれRPRネットワークに用いられるパケットフォーマットの一例を示す図であり、パケット例としてMACパケットおよびRMAC(RPR MAC)パケットを表す。このMACパケットは、IEEE802.3に規定されたイーサネット(登録商標)のパケットであり、RMACパケットは、IEEE802.17で規定されたRPRMACヘッダを有するものである。ここで、各フィールドに書き込まれる情報について概略的に説明する。図30(a)に示すMACパケットは、よく知られているように、MAC送信先アドレス,MAC送信元アドレス,イーサタイプ,ペイロード(ユーザデータ部)および誤り検出のためのFCS(Frame Check Sequence)の各フィールドを有する。
また、図30(b)に示すRPRヘッダのTime To Live(以下、TTLと表す。)はパケットの活動時間を表し、パケットは1ノードを中継される毎に「−1」され、TTLが「0」になると廃棄される。RI(Ringret Identifier)は双方向のリングのうちの片方のリングに付与された識別ビットであって、そのパケットが本来伝送するリングを表す。例えばパケットが本来、外回り方向のリング又は内回り方向のリングを伝送する場合、それぞれ、0又は1に設定される。FE(Fairness Eligible)はそのパケットがフェアネス制御の対象か否かを表す。PT(Packet Type)はパケット属性を表し例えばRPR制御パケット,データパケット等を表す。SC(Service Class)はクラスを識別するためのものである。WE(Wrap Enable)はラップ(ラッピング)機能の有無を表す。Rは予約用である。ペイロードの前には、ヘッダエラーチェックビット用のフィールドが設けられている。
このように、RMACパケットは、MACパケットに含まれる各情報を網羅し、IPパケットとリングパケットとは相互に変換される。
(X3)ラップおよびステアリングを用いたプロテクション機能
光リングネットワークとしてのRPRネットワーク102dにおいて障害が発生した場合は、各ノード#A〜#Fは、受信したパケットの転送リング(転送ルート)を切り替え処理(折り返し処理)するようになっている。
(X4)RPRネットワーク102dのノード
パケットリングを構成する各ノード#A〜#Fは、RPRネットワーク102dであるパケットリングと、RPRネットワーク102dと異なる外部ネットワーク(例えばインターネット102c)とをインタフェースするものであって、RPRカードを設けている。このRPRカードのハードウェアは主に2種類ある。
図32はRPRネットワーク102dの例えばノード#Dに設けられた分離型カードの構成図である。RPRネットワーク102dの各パケットリングは、一般に、ラップおよびステアリングにおけるプロテクションを実現するために、外部リング103aと内部リング103bとからなるデュアルリング(2重リング伝送路又は2重パケットリング)を形成している。
また、図32に示すノード#Dは、EastポートとWestポートとが分離された構成(以下、分離型ハードウェアと称する。)であり、また、図33に示すノード#Dは、EastポートとWestポートとが一体化された構成(以下、一体型ハードウェアと称する。)である。
(X5)RPRカード
図32に示すノード#Dは、East側のRPRカードと、West側のRPRカードと、スイッチ部(SW部)と、n枚(nは自然数を表す。)のラインカードとをそなえて構成されている。分離型カード(East側のRPRカードおよびWest側のRPRカード)は、East側の終端機能とWest側の終端機能とがそれぞれ別個のRPRカードに設けられている。そして、スイッチ部は、RPRネットワーク102d側のパケットと、外部ネットワーク側のパケットとの各方路を切り替えるものである。ラインカードは、10Mbps,100Mbpsおよび1Gbps等の各種の伝送仕様に対応したものである。
一方、図33に示す一体型カードは、East側とWest側との各終端機能が同一のRPRカードに設けられている。
(X6)RPRカード内のデータパス
図34は従来の分離型RPRカード内のデータパスを示す図であり、図35は従来の一体型RPRカード内のデータパスを示す図であり、それぞれ、パケットリングにおけるデータパスが表示されている。そして、図34に示すRPRカード200a,200bと、図35に示すRPRカード210とは、いずれも、図32,図33にそれぞれ示す外部リング103aと内部リング103bとのデュアルリングの組み合わせになっている。そして、ノード#D(図32)と、ノード#D(図33)とのそれぞれにおいてドロップされないリングパケットは、RPRカード200a,200bと、RPRカード210を介してEast側およびWest側との間においてスルーされパケットリングに送信されるようになっている。
従って、リングからのパケットは、スイッチ部(SW部)7側に送信されず、各RPRカード200a,200bと、RPRカード210においてそれぞれ処理される。このリングスルーパスのルートを一般的にメイトインタフェースと呼ぶ。
分離型カードおよび一体型カードの各構成における特徴を以下の(Y1),(Y2)に示す。
(Y1)分離型カードの特徴
分離型カードのメリットは、RPRカードの障害時にRPRカード単体(Eastカード又はWestカード)毎に保守交換が可能である点である。例えばEastカードの障害等によって保守交換が必要になると、ノード(例えばノード#D)にはWestカードが実装されたままの状態である。このため、ラッププロテクション機能が動作し、システム全体がリングから切り離されずに通信を継続できる。
また、従来の技術を用いると、RPRカードの構成が異なるので、ラインカードとRPRカードとの間のパケット転送においても以下に示す相違点がある。
(Y2)一体型カードの特徴
一体型カードのメリットは、ノードが1枚のRPRカードを用いてパケットリングに接続できる。このため、一体型カードを設けたノードは、分離型カードを設けたノードと比較して、パケットリングおよびノードのコストダウンが可能となる。また、RPRカードを収容するスロットの消費も削減することが可能なため、ラインカードも含めたノード全体のポート数の増加が図れる。
そして、ノードが一体型カードを用いる場合は、その一体型のRPRカードは、リングトポロジテーブル等を設け、このテーブルを用いた送信先リングの選択機能を有する。従って、ラインカードは、外部リング又は内部リングのいずれかのリングに対してパケット送信すべきか否かを特に意識することなく、RPRカードにパケットを送信し、そして、RPRカードがリングトポロジテーブルを用いて最短方路となるリングにパケットを送信していた。すなわち、RPRカードは、パケットを送信すべきEastポート又はWestポートを特に意識することなく、RPRカードに対し単にパケットを送信するだけでよい。
なお、回路基板に関し、2枚のプリント板を設けた回線ドライバ・レシーバ装置が提案されている(例えば、特許文献1参照)。この特許文献1には、回線ドライバ・レシーバ装置に関し、異なるインタフェースに対しても回線制御部を回線制御用のプリントと、ドライバ・レシーバ用プリント板とに分離することにより、これらを共用可能とする。これにより、異なるインタフェース間の変更が極めて簡単になる。
また、PIOユニットとの接続チャネルを2系統以上そなえたバス変換カードが、CPUユニット内に実装されたプログラムコントローラが開示されている(例えば、特許文献2参照)。これにより、PIOインタフェース部とPIOバスの2重化と非2重化の設定とを容易に変更可能となり、用途に応じて、高い信頼性が要求されるシステムと、接続可能なPIOカードを多数必要とするシステムとを自在に構築でき、自由度の高いプログラマブルコントローラが得られる
しかしながら、分離型カードと一体型カードとは、以下の(Y3),(Y4)に示すデメリットを有し、また、全RPRカードがパケットの廃棄処理を行なう場合は(Y5)に示す課題を有する。
(Y3)一体型カード
一体型カードのデメリットは、RPRカードの障害時および保守交換時等において、各ノードが、パケットリングから完全に切り離されてしまう。このため、一体型カードは、信頼性よりもコストダウンを重要視する小規模ネットワーク等に適用される。
(Y4)分離型カード
分離型カードを用いた場合のデメリットは主に2点ある。第1に、RPRカードが分離されており、各ノード#A〜#FがRPRカードを最低2枚実装する必要があるので、一体型カード構成のノードと比較してリングを構成するためのコストがアップする点である。第2の点は、ノードに設けられた全ポート数(ポート収容数)のうちのRPRカードを挿し込む(RPRカードを収容する)ための物理的なスロットに割り当てられたポート数が消費され、加えて、ラインカードを挿し込むための物理スロットに割り当てられたポート数も消費されるので、ノードが使用可能な全ポート数が低下することである。このため、分離型カードは、コストダウンよりも信頼性を重要視する通信事業者(通信キャリア)等が保有するキャリアネットワーク等に適用される。
また、従来技術によると、RPRカードの構成の相違に起因し、ラインカードとRPRカードとの間におけるパケット転送においても以下のような相違がある。
一体型カードを用いた場合、ラインカードがRPRカードに対してパケットを送信するときに、最短方路となるRPRカードを選択する必要がある。このため、ラインカードに送信先リングの選択機能(リングトポロジテーブル等)が設けられ、この選択機能により最短方路となるリングが選択されていた。すなわち、ラインカード自身がパケットを送信すべきEastポート又はWestポートを選択し、選択したポートに接続されたRPRカードへ対してパケットを送信する機能を要する。
一方、分離型カードを用いた場合、ラインカードがRPRカードに対してパケットを送信するときに、最短方路となるRPRカードを選択し、パケットを送信する必要がある。このため、ラインカードは、ラインカードの内部に送信先リングを選択する機能(リングトポロジテーブル等)を有し、最短方路となるリングを選択していた。すなわち、ラインカード自身が、パケットを送信すべきEastポートとWestポートとを判断して適切なRPRカードに対してパケットを送信する機能が必要となる。
(Y5)これらの方法以外に、ラインカードが、2枚又はそれ以上のRPRカードに対してパケットを送信し、RPRカードが自律的に最短方路でないパケットを廃棄する方法もあるが、ラインカードは、常時、両方又は全部のRPRカードに対してパケットをマルチキャスト送信する必要がある。このため、ラインカード,スイッチ(SW)カードおよびRPRカードは、不要なパケットを転送するので、パケット処理部4の負荷が上昇し、ノードのパケット処理能力の低下を引き起こす。
このように、従来のRPRシステムにおけるラインカードおよびRPRカードとの間のパケット転送方法について、一体型カードと分離型カードとは元々違いがあるので、ノード自体のパケット転送方法に関するアーキテクチャーが異なる。
従って、従来、RPRシステムの開発において、RPRカードの構成形態を一体型又は分離型のうちのいずれか一方を採用すると、開発者は、個々のユーザのパケットリングに対して、信頼性および価格面において、必ずしも最適なRPRシステムを提供できない場合が存在するという課題を有する。
本発明は、このような課題に鑑み創案されたもので、パケットリングを構成するノードにおいて、RPRカード交換時に通信断を回避し継続的に通信でき、インタフェースカード数の削減等によるコストダウンが図れるとともに、インタフェースカードの冗長化およびリングの冗長化のいずれの構成を用いた場合においてもネットワーク形態に適した冗長化が可能な、ノード,RPRインタフェースカードおよび光ネットワークシステム提供することを目的とする。
特開平1−129554号公報 特開2000−82018号公報
(1)このため、本発明のノードは、複数のノードが多重リング伝送路を介して接続されたリング伝送路のリングパケットと、複数の第2伝送路の第2パケットとをスイッチするノードであって、リングパケットの送信元ノードを表すノード識別子と、多重リング伝送路の各リング伝送路を表すリング識別子と、第2パケットの送信元装置のアドレス情報と、複数のノードの接続状態を表すリングトポロジとに基づいて、第2伝送路との間において第2パケットを送受信するラインカードと、受信したリングパケットのノード識別子とラインカードにて受信された第2パケットの送信先アドレスとに基づいてリングパケットおよび第2パケットをそれぞれラインカード側又は多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、複数のプロトコル処理部からラインカード側に出力されたリングパケットとラインカードから複数のプロトコル処理部側に出力された第2パケットとの各転送経路をスイッチするパケット処理部とをそなえて構成されたことを特徴としている。
従って、このようにすれば、同一のRPRインタフェースカードにより、RPRノードが分離型カードと一体型カードとを設けることができ、これらのカード構成のいずれの場合においても、冗長化,最短経路選択および最適経路選択が可能となり、また、クワッドリング以上のリング冗長においても最短経路選択と最適経路選択とが可能となる。
さらに、部品数の減少によりノードの低廉化が図れる。RPRインタフェースカード交換時の通信断が回避されて継続的な通信が可能となる。さらに、カードの製造,カードの設置に関し、多数の部品を汎用的に用いることができ、カードのコストを低廉化でき、RPRインタフェースカード数の削減等によりシステム構築のコストダウンが図れる。
そして、RPRインタフェースカードの冗長化およびリングの冗長化のいずれの構成であっても確実に冗長化できる。
(2)そして、複数のプロトコル処理部と、パケット処理部とを設けたRPRインタフェースカードを複数そなえ、上記の複数のRPRインタフェースカードのうちの少なくとも1枚が、多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードとして構成されてもよく、このようにすれば、リングネットワークと接続されるRPRインタフェースカードが、例えばEast(第1方向)ポートと例えばWest(第2方向)ポートとに分離され、保守運用時のRPRインタフェースカードの交換時にパケットリングシステムがリングネットワークから切り離されることなく通信が継続できる。
(3)上記のRPRインタフェースカードは、多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとして構成されてもよく、このようにすれば、信頼性の高いパケットリングネットワークと、EastポートおよびWestポートとが一体化されRPRインタフェースカード数の削減等によるコストダウン効果の高いパケットリングネットワークとの両パケットリングネットワークを共通のハードウェアを用いて実現できる。
(4)複数のプロトコル処理部が、それぞれ、多重リング伝送路のうちの一部のリング伝送路との間においてリングパケットを入出力する第1プロトコル処理部と、多重リング伝送路のうちの残りのリング伝送路との間においてリングパケットを入出力する第2プロトコル処理部とを有し、上記の複数のRPRインタフェースカードのうちの同一のRPRインタフェースカードに設けられた第1プロトコル処理部と第2プロトコル処理部とが内部メイトインタフェースを介して接続されるとともに、複数のRPRインタフェースカードのうちの別個のRPRインタフェースカードに設けられた第1プロトコル処理部と第2プロトコル処理部とが外部メイトインタフェースを介して接続されて構成されてもよく、このようにすれば、分離型カードと一体型カードとのいずれが用いられても、スイッチ部およびラインカードを共用でき、また、コストダウンが図れる。
(5)複数のプロトコル処理部が、それぞれ、リングパケットの送信先アドレスに基づいて、当該リングパケットが自ノード宛であるのか他ノード宛であるのかを判定し、自ノード宛と判定した場合は、当該リングパケットをパケット処理部に転送する一方、他ノード宛と判定した場合は、当該リングパケットを多重リング伝送路にスルーするように構成することもでき、このようにすれば、保守運用時のカード交換時にパケットリングシステムがリングネットワークから切り離されることなく通信を継続でき、システムに対する信頼性が向上し、さらに、RPRインタフェースカードの設置枚数の削減によるコストダウンが図れる。
(6)さらに、ハッシュ演算の演算結果とリング識別子とを対応づけた対応データを保持するハッシュ演算結果保持部を設け、多重リング伝送路における障害発生時に、ハッシュ演算結果保持部に保持された対応データを更新することにより、障害が発生したリング伝送路を介したブロードキャストパケット配信を停止し、かつブロードキャストパケット配信の負荷分散を継続するように構成してもよく、このようにすれば、障害発生リングへのブロードキャストパケット配信が停止しかつブロードキャストパケット配信の負荷分散が継続する。
(7)本発明のRPRインタフェースカードは、受信したリングパケットのノード識別子と複数の第2伝送路から受信された第2パケットの送信先アドレスとに基づいてリングパケットおよび第2パケットをそれぞれ複数の第2伝送路側又は多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、複数のプロトコル処理部から複数の第2伝送路側に出力されたリングパケットと複数の第2伝送路から複数のプロトコル処理部側に出力された第2パケットとの各転送経路をスイッチするパケット処理部とをそなえ、多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードとして構成されたことを特徴としている。
従って、このようにすれば、RPRインタフェースカードの冗長構成およびリング冗長構成のいずれにおいても、ネットワークトポロジに適した冗長機能が得られる。さらに、各ノードが動的にリングトポロジテーブルを管理するので、常時、パケットリングにおいて最短経路でパケットを転送できる。
(8)また、本発明のカードは、受信したリングパケットのノード識別子と複数の第2伝送路から受信された第2パケットの送信先アドレスとに基づいてリングパケットおよび第2パケットをそれぞれ複数の第2伝送路側又は多重リング伝送路側との間において入出力し相互に接続されたプロトコル処理部と、プロトコル処理部から複数の第2伝送路側に出力されたリングパケットと複数の第2伝送路からプロトコル処理部側に出力された第2パケットとの各転送経路をスイッチするパケット処理部とをそなえ、多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとして構成されたことを特徴としている。
従って、このようにすれば、一体型カードと分離型カードとを用いることができ、各ノードは、共通のハードウェアを用いて製造でき、さらに、RPRインタフェースカードの冗長およびリングの冗長のそれぞれについて、ネットワーク形態に適した冗長機能が得られる。
(9)ラインカードが、ノード識別子と、リング識別子と、第2パケットの送信元装置のアドレス情報とを対応づけて保持する学習テーブルと、複数のノードの接続状態を表すリングトポロジを保持するリングトポロジテーブルとをそなえ、学習テーブルが、多重リング伝送路が4重以上の場合において、ブロードキャストパケットの送信元ノードのノード識別子とリングトポロジとに基づいて、最短経路を経由して転送されたリングパケットを取得するとともにブロードキャストパケットを廃棄することにより、ブロードキャストパケットを転送するための最短経路を学習するように構成することもでき、このようにすれば、ラインカードの学習テーブルには最短経路となるパケットリングについて学習可能となり、効率的に伝送可能となる。
(10)本発明の光ネットワークシステムは、上記の複数のノードのうちの少なくとも1基のノード又はリング伝送路が、受信したリングパケットのノード識別子と複数の第2伝送路から受信された第2パケットの送信先アドレスとに基づいてリングパケットおよび第2パケットをそれぞれ複数の第2伝送路側又は多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、複数のプロトコル処理部から複数の第2伝送路側に出力されたリングパケットと複数の第2伝送路から複数のプロトコル処理部側に出力された第2パケットとの各転送経路をスイッチするパケット処理部とを設けたRPRインタフェースカードをそなえ、多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードと、多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとを混在させて構成されたことを特徴としている。
従って、このようにすれば、各ノードにおけるパケット処理に関して共通の処理方法を用いることができ、ラインカードおよびスイッチカードの共用も可能となる。さらに、各ノードはカード冗長,最短経路選択および最適経路選択が可能となる。さらに、4重以上のパケットリングにおいても最短経路選択と最適経路選択とが可能となる
(A)本発明の第1実施形態の説明
図1は本発明の第1実施形態に係る光伝送システムの構成図である。この図1に示す光伝送システム100は、広範な地域間を光ファイバ等により接続された高速および高帯域のネットワークシステムであって、WDMネットワーク101と、RPRネットワーク(光ネットワークシステム)102と、サブネットワーク102a〜102cとをそなえて構成されている。
ここで、WDMネットワーク101は、広範な地域(例えば北米全域)に設けられたノードが光ファイバ等により接続されて構成され、高速かつ大容量のパケットを伝送するものであって、基幹系の光ネットワークとして機能するものである。また、サブネットワーク102a〜102cは、それぞれ、ADSLネットワーク,SONET/SDHネットワーク,インターネット等の各種の仕様のネットワークプロトコルを有するものである。
(1)RPRネットワーク102
RPRネットワーク102は、本発明が適用される光ネットワークシステムであって、例えば大都市間においてパケットを伝送するものである。このRPRネットワーク102は、各大都市におけるギガビットイーサネット等の複数のLANが接続され、ユーザに対してMAN,WAN等の環境を提供するようになっている。ユーザは、RPRネットワーク102を利用することにより、ローカルネットワークの簡便性および利用効率等のサービスを提供される。
さらに、RPRネットワーク102には、例えばインターネット等の外部ネットワーク107(後述)が接続されている。
(1−1)多重パケットリング(多重リング伝送路.多重RPRリング又は多重リングネットワーク)の構成
図2は本発明の第1実施形態に係るRPRネットワーク102の概略的な構成図である。この図2に示すRPRネットワーク102は、例えば6基のノード(RPRノード又はリングノード)#A〜#Fが、2重化された光ファイバ(一対の光ファイバ)を用いてリング状に接続されたデュアルリング(2重リング伝送路)が構成されている。
(1−2)外部ネットワーク107
ノード#A〜#Fに接続された1又は複数の外部ネットワーク107は、例えば、イーサネット,インターネット,LAN,WAN又はMPLS(Multi−protocol Label Switching)ネットワーク(又はユーザ回線,回線ネットワーク)である。なお、MPLSとはMPLSネットワークにおけるルータ(図示省略)が、受信パケットにIPアドレスの代わりにラベルを付与し、MPLSネットワークに設けられた各ルータがそのラベルだけを参照してMPLSパケットを転送する技術である。
これにより、各ノード#A〜#Fは、パケットリングから受信したリングパケットを終端し、その終端したパケットを外部ネットワーク107におけるフォーマットのパケットに変換し、その変換したパケットを外部ネットワーク107に対して送信する。また、各ノード#A〜#Fは、外部ネットワーク107から受信したパケットを終端し、リングパケットのフォーマットに変換して送信する。従って、各ノード#A〜#Fは、パケットリングにおけるパケットと、外部ネットワーク107におけるパケットとをインタフェースし、パケットをスイッチしている。
すなわち、各ノード#A〜#Fは、インタフェースの種別にかかわらずパケットをスイッチでき、また、物理レイヤの種別に依存しないでパケットのスイッチ又はインタフェースを行なえる。
なお、以下、特に断らない場合、外部ネットワーク107をインターネットとして説明する。また、RPRネットワーク102は、物理レイヤのプロトコルに依存せず、MACレイヤのパケットを処理できる。
図1に示すRPRネットワーク102は、複数の外部ネットワーク(イーサネット,インターネット,LAN,WAN又はMPLSネットワーク等)107が接続されており、これらのイーサネット,インターネット,LAN,WAN又はMPLSネットワーク等が処理又は転送するパケットが、複数の第2伝送路の第2パケットとして機能している。
(1−3)リングの多重化および方向の説明
図31(a)〜図31(c)はそれぞれ多重リング伝送路(多重パケットリング)を説明するための図であって、いずれも、「パイプ状」に表示されたものが1本の光ファイバを表す。この図31(a)に示すパケットリングは、外部リング#1(Tx,Rx)と内部リング#2(Tx,Rx)とがデュアルリングとして構成されている。すなわち、1リングは2光ファイバからなる。そして、各ノード#A〜#Fは、リング毎に、パケットの伝送帯域を動的に割り当て可能となっている。なお、Tx,Rxは、各々送信用,受信用を表す。
また、図2に示す外回り(第1方向)の光ファイバが外部リング(外部パケットリング)であり、内回り(第2方向)の光ファイバが内部リング(内部パケットリング)に相当する。このリング多重数は、図31(b)および図31(c)にそれぞれ示すように、3重(後述する図15(a)等参照),4重に拡張可能である。すなわち、各ノード#A〜#Fが2重〜4重のパケットリングを介して接続されている。これにより、トラフィックの増大に応じてパケット量を拡張できる。
さらに、以下の説明において、ノード#Aからみてノード#F側をWest側と称し、ノード#B側をEast側と称する。ノード#B〜#Fについてもノード#Aと同様である。なお、WestおよびEastは逆方向に定義することもできる。
(1−4)冗長構成(プロテクション)
このデュアルリングによってパケットリングが冗長化されており、外部リング#1,内部リング#2が、それぞれ、現用として機能している。ここで、障害発生時、各ノード#A〜#Fは、障害発生リングに対するパケット送信を回避すべく、ラッププロテクションを起動し、また、正常ルートを選択するようにパケットの経路を選択する。なお、外部リング#1,内部リング#2のいずれかに対してパケットを送信するかについては種々変更可能である。
そして、3重および4重の各パケットリングもデュアルリングの切り替えと同様に切り替えられ。これらの冗長構成によって障害時の復旧時間が比較的短く、また、伝送距離の短縮化が図られている。
(1−5)多重パケットリングの特徴
各ノード#A〜#Fは、以下に詳述するRPRカード(RPRインタフェースカード,インタフェースカード又はIF[Interface]カード又はカード)を有し、このRPRカードがパケットリングとインターネット等の外部ネットワーク107との間を接続している。各ノード#A〜#Fは、パケットリングおよび外部ネットワーク107の双方と異なるネットワークと接続されていないので、設置を要するポート数を少なくすることができ、このポート数の削減により低廉化が図れる。
さらに、各ノード#A〜#FのRPRカードはプラグアンドプレイ機能を有するので、RPRネットワーク102は、ノード数の増減が容易になり、また、管理者(オペレータ)による回線設定の手間が軽減され、RPRネットワーク102の維持管理が簡素化される。
加えて、RPRネットワーク102は、統計多重機能を有する。この統計多重機能の定義例は、パケットトラフィックに応じてネットワークの資源を効率的に割り当てて負荷を分散させることである。
(2)分離型カードを設けたノードの構成
各ノード#A〜#Fは、6基のノード#A〜#Fが多重パケットリングを介して接続されたパケットリングのリングパケットと、以下に述べるn枚(nは自然数を表す。)のラインカード8を介して接続された外部ネットワーク107とをスイッチするものである。また、各ノード#A〜#Fに設けられたRPRカードは、それぞれ、RPRカードを2枚設けた分離型カードとして構成されている。
図3は本発明の第1実施形態に係る分離型カードを設けたノード#Aのブロック図である。この図3に示すノード#Aは、パケットリング(リング)#1〜#4が4多重されたクワッドリングを介してノード#B,#Fとリングパケットを送受信するようになっており、第1RPRカード1aと、第2RPRカード1bと、n枚のラインカード8と、スイッチ部(SW部)7と、CPUバス(バスライン)12aと、CPU部12とをそなえて構成されている。また、ノード#B〜#Fの全部又は一部もノード#Aと同一構成であるので、ノード#B〜#Fについて重複説明を省略する。
(2−1−1)RPRカード1a,1b
RPRカード1a,1bは、ともに、2個のRPR部(プロトコル処理部)3a,3bと、パケット処理部4とを設けたものである。
これらのRPRカード1a,1bは、それぞれ、リング#1,#2とリング#3,#4との両方に接続されており、リング#1〜#4からのリングパケットと、ラインカード8からのIPパケットとをスイッチ又はインタフェースする。ここで、第1RPRカード1aのRPR部3aと第2RPRカード1bのRPR部3aとは、メイトインタフェース(後述する外部メイトインタフェース6)を介して相互に接続されており、この点で、カードの内部にメイトインタフェースを設けたRPRカードと異なる。
また、クワッドリングは、2対のデュアルリングによって構成されている。なお、リング#1,#2のみが伝送に使用されている場合、リング#3,#4は未使用とすることも可能である。
また、RPRカード1a,1bの構成については、後述する。
(2−1−2)ラインカード8
n枚のラインカード8は、それぞれ、リングパケットの送信元ノードを表すノードID(ノード識別子)と、2重〜3重等の多重パケットリングの各パケットリングを表すリングID(リング識別子)と、IPパケットの送信元装置のMACアドレス等のアドレス情報と、6基のノード#A〜#Fの接続状態を表すリングトポロジとに基づいて、外部ネットワーク107との間においてIPパケットを送受信するものである。
そして、各ラインカード8は、外部ネットワーク107とも接続されており、外部ネットワーク107のプロトコルとRPRプロトコルとを相互に終端するとともに、リングパケットとIPパケットとをスイッチ又はインタフェースするようになっている。
なお、nの値は加入者の増減に応じて変更可能である。すなわち、1枚のラインカード8が収容(又は多重化)できる回線数とユーザ数とに基づいて枚数が増減される。
各ラインカード8は、例えば回路基板(スイッチカード)であって、回路部品,回路パターン,接続端子等を有するほかに、CPU(Central Processing Unit),ROM(Read Only Memory),RAM(Random Access Memory),IC(Integrated Circuit)およびLSI(Large Scale Integration)等のチップ又はデバイスを設け、これらによってインタフェース機能が発揮される。
また、ラインカード8の構成についても後述する。
(2−1−3)スイッチ部7
スイッチ部7は、RPRカード1a,1bとn枚のラインカード8との間におけるパケット転送においてパケットのスイッチ(インタフェース又は交換)機能を有するものであり、例えばスイッチカードにより実現される。
なお、スイッチ部7は、RPRカード1a,1bとラインカード8とが直接バックボード(図示省略)経由で接続されるノード#A〜#Fにおいては、必ずしも設ける必要はない。また、スイッチ部7の枚数は増減可能であり、各ノード#A〜#Fは、所望の枚数のスイッチカードを設けることもできる。
(2−1−4)CPU部12
CPU部12は、ノード#Aの装置全体を制御するものであって、ノード#Aに設けられたデータ通路のCPUバス12aを介して各インタフェースカード,ラインカード8を制御するものであって、具体的には、CPUバス12aを介して、分離型又は一体型の各RPRカードを設定する。このCPU部12の機能は、例えばCPU(Central Processing Unit)およびROM,RAM(図示省略)等によって実現され、1枚の回路基板上にCPU,ROM又はRAM等が設けられたCPUカードとして形成されている。
なお、ノード#Aは、2枚以上のCPUカードを設けたり、1枚のCPUカードに2個以上のCPU等を設けることもできる。CPUカードの枚数又はCPU自体の個数は増減可能であり、負荷の大きさに応じて処理容量を拡張又は縮小できる。
(2−1−5)パケット伝送の概略的な説明
これにより、図1に示すノード#Aに接続された外部ネットワーク107からノード#Bに接続された外部ネットワーク107に対するパケットは、ノード#Aのラインカード8においてフォーマット処理されてからノード#Aのスイッチ部7においてパケットの送信先に応じて選択されたノード#AのRPRカード1a又はRPRカード1bにスイッチされる。このスイッチされたパケットは、パケットリングを伝送するときのフォーマットに変換されリングに送信される。
ノード#Bは、パケットを受信すると、パケットフォーマットを変換し、変換した例えばIPパケットをノード#Bのスイッチ部7を介して所望のラインカード8に入力し、ノード#Bに接続された外部ネットワーク107に対して送信する。また、RPRカード1bにスイッチされたパケットも同様である。
(3)RPRカード1a,1b
図4は本発明の第1実施形態に係るRPRカード1a,1bのブロック図であり、RPRカード1a,1bは同一構成である。この図4に示すRPRカード1aは、West側のノード#FおよびEast側のノード#Bのそれぞれとポートおよび光ファイバを介して接続されるとともに、1以上の外部ネットワーク107と接続されている。そして、以下に示すスルー機能およびスイッチ機能を用いることにより、パケットリングにおけるRPRパケットをインタフェースする。
(3−1)スルー,スイッチおよび折り返し
上記のパケット転送ルートを用いて、RPRカードは、ともに、スルー,スイッチおよび折り返しの各機能を発揮する。
スルーとは、ノードにてドロップされないパケットをパケットリングに送信することを意味する。すなわち、East側又はWest側からのパケットのうちの自ノード以外のノードの送信先を有するものは、内部メイトインタフェース5又は外部メイトインタフェース6を介して、West側又はEast側に再度送信される。
具体的には、例えばノード#Aが、リングパケットの送信先情報に基づいて、後述するリングトポロジテーブル(図7参照)に保持されたトポロジデータによって認識した隣接するノード#Fからのリングパケットを隣接する他方のノード#Bに対して送信するとともに、外部ネットワーク107からのMACパケットを外部ネットワーク107に対して送信する。
さらに、スイッチとは、外部ネットワーク107からのパケットをフォーマット変換してそのパケットの送信先に基づいて、2本又は4本の光ファイバに対して方路切り替えするとともに、パケットリングからのパケットをフォーマット変換してそのパケットの送信先に基づいて外部ネットワーク107に対して方路切り替えすることを意味する。
そして、折り返しとは、ノード間を接続する光ファイバ又は各ノード#A〜#Fにおいて障害が発生したときのプロテクション動作(プロテクション機能)であって、受信パケットの廃棄又は消失を防止するために、その受信パケットを、受信リングと異なる他の一方のリングに対して折り返すことである。具体的には、プロテクション動作時に、外部リング103a又は内部リング103bの一方から受信されたパケットは、RPRカード1において、他方の内部リング103b又は外部リング103aに再度転送されるようになっている。
これにより、RPR部3aは、例えばパケットリング#1Rxからのパケットを、内部メイトインタフェース5をスルーしては隣接するRPRカード3aに送信し、また、障害時においては、パケットリング#1Rxからのパケットを折り返して再度パケットリング#1Txに送信する。すなわち、パケットの通過および折り返しに用いられる。
また、各ノード#A〜#Fは、内部メイトインタフェース5と外部メイトインタフェース6とを排他制御可能なメイトインタフェース管理部4aを設けており、このメイトインタフェース管理部4aの排他制御管理によって、内部メイトインタフェース5および外部メイトインタフェース6の両方が同時に通電(又は動作)されることが禁止されるようになっている。このメイトインタフェース管理部4aの設置場所は、RPR部3a,3b,パケット処理部4又はRPRカード1a,1bの外側のいずれに設けてもよい。図4に示すメイトインタフェース管理部4aは、パケット処理部4に設けられた場合のものである。
なお、内部メイトインタフェース5又は外部メイトインタフェース6のいずれのものを使用するかについては管理者の設定により選択可能である。
これにより、パケットリングからのパケットは、スイッチ側に送信されず、このリングスルーパスのルートを経由してRPRカード1にて処理される。なお、内部メイトインタフェース5と外部メイトインタフェース6との両方を両メイトインタフェースと称する。
(3−2)RPRカード1a,1bの構成
RPRカード1a,1bは例えばカード型の回路基板であって、回路部品,回路パターン,接続端子,CPU,ROM,RAM,ICおよびLSI等のチップ又はデバイスを設け、これらによってスイッチング機能が発揮される。
RPRカード1a,1bは、2個のPHY部2a,2bと、2個のRPR部3a,3bと、パケット処理部4と、内部メイトインタフェース5と、1又は複数の外部メイトインタフェース6とをそなえて構成されている。また、RPRカード1a,1bは、外部リング103aと内部リング103bとの2重のパケットリングに接続されている。
(3−3)PHY部2a,2b
各PHY部2a,2bは、物理レイヤを制御するものである。本発明のRPRカード1a,1bが処理可能な物理レイヤは各種のプロトコルである。なお、PHY部2a,2bの機能は、いずれも、LSI(Large Scale Integration)又はFPGA(Field Programmable Gate Array)等によって発揮される。
(3−4)RPR部3a,3b
各RPR部3a,3bは、受信したリングパケットのノードIDとラインカード8にて受信されたIPパケットの送信先アドレスとに基づいてリングパケットおよびIPパケットをそれぞれラインカード8側又は多重パケットリング側との間において入出力し相互に接続されている。また、RPR部3a,3bは、RPRレイヤ処理をするものであって、同一のものが設けられている。
なお、RPR部3a,3bは、LSI又はFPGA等によって構成することもでき、このようにすれば、2個のRPR部3a,3bの機能を、物理的に1個のLSI又はFPGAを用いて実現可能である。
図5は本発明の第1実施形態に係る分離型カード構成におけるスイッチ処理を説明するための図である。この図5に示すRPRカード1aのRPR部3aと、RPRカード1bのRPR部3aとは、それぞれ、ノード#Aに設けられており、このノード#Aの内部において、それぞれ外部メイトインタフェース6により接続されるようになっている。また、RPRカード1aのRPR部3bと、RPRカード1bのRPR部3bとがそれぞれ外部メイトインタフェース6を用いて接続されている。また、ノード#B〜#Fについてもこの図5に示すノード#Aと同一構成になっており、重複した説明を省略する。
これにより、ノード#Aに、4本のパケットリング#1〜#4から、パケットリングが入力されると、このノード#Aに設けられた各RPRカード1a,1b,外部メイトインタフェース6をそれぞれ介してスルーされるのである。
具体的には、RPRカード1aがリング#1(Ring #1 Rx)からパケットを受信すると、そのパケットは、RPR部3aにて送信先の例えばノード#BのノードIDが抽出され、その抽出されたノードIDがノード#A自身又は他のノード#Bであるか否かが判定される。そして、パケットの送信先ノードがノード#Bの場合、RPR部3aは、外部メイトインタフェース6を介してRPRカード1bに設けられたRPR部3aに入力される。そして、RPR部3aにてそのパケットがスイッチされて、リング#1に送信されスルーされる。
また、リング#2からパケットがノード#Aに入力された場合においても、RPRカード1aがノード#Aに入力された処理と同一処理をするので、重複した説明を省略する。
さらに、リング#3からのリングパケットがノード#Aに入力されると、RPRカード1aに設けられたRPR部3bが、そのパケットのヘッダを参照して、そのパケットを外部メイトインタフェース6に送信し、RPRカード1bのRPR部3bに入力され、RPR部3bに入力されたパケットは、リング#3に対して再度送信され、これにより、スルー機能が発揮される。
加えて、リング#4からのパケットがノード#Aに入力された場合には、RPRカード1bのRPR部3bから外部メイトインタフェース6を介してRPRカード1aのRPR部3bに入力され、このRPR部3bからリング#4に送信されるのである。
換言すれば、ノード#AのRPR部3a,3bは、それぞれ、PHY部2a,2bからの受信パケットのアドレス情報に基づいて自ノード宛/他ノード宛を判定し、自ノード#A宛と判定した場合はリングパケットの受信パケットリングと異なる他のリングに対してリングパケットを折り返すとともに、他ノード宛と判定した場合はリングパケットを多重パケットリングにスルー処理を行なう。
このように、ノード#Aは、デュアルリングにおいて、いずれかの光ファイバからパケットを受信した場合においても、各パケットのヘッダを参照することにより、各送信先を正確に認識でき、かつスイッチ又はインタフェースを確実に行なえる。
一方、外部ネットワーク107側からリング方向においても、RPR部3a,3bは、パケット処理部4からの受信パケットを各々PHY部2a,2bに送信する。
(3−5)パケット処理部4
パケット処理部4は、例えば2枚のRPR部3a,3bからラインカード8側に出力されたリングパケットとラインカード8から2個のRPR部3a,3b側に出力されたIPパケットとの各転送経路をスイッチするものである。
パケット処理部4は、RPRパケットの生成,分解およびヘッダの付け替え等の終端処理を行なうようになっており、また、リングパケットをパケットリングに送信するためのパケット生成機能と、パケットリングから受信したリングパケットについて分解(解凍,抽出)機能とを有する。
具体的には、リングパケットを送信する例えばノード#Aにおけるパケット処理部4は、リングパケットに、IPパケットの送信元装置のアドレス情報と、ノードIDとを書き込む。一方、パケット処理部4は、ノードID,リングIDおよびIPパケットの送信元装置のアドレス情報と、リングトポロジとに基づいてリングパケットの転送経路をスイッチするとともに、一体型カードおよび分離型カード間において共通のパケット転送処理を行なう。
なお、パケット処理部4は、例えばパケットを保持するメモリ(図示省略),CPU,ROM,RAM,ICおよびLSIからなる。
(3−6)内部メイトインタフェース5
内部メイトインタフェース5のハードウェアは、RPRカード1の回路パターン,接続端子等およびワイヤ線等の導電性部材等(以下、配線と称する。)からなる。内部メイトインタフェース5は、RPRカード1a,1bの2個のRPR部3a,3bを相互に接続するものである。
(3−7)外部メイトインタフェース6
1又は複数の外部メイトインタフェース6は、それぞれ、隣接する他のRPRカード1a,1bのRPR部3a,RPR部3bと接続するものである。
そして、2枚のRPR部3a,3bが、それぞれ、多重パケットリングのうちの一部のパケットリングとの間においてリングパケットを入出力する第1RPR部3aと、多重パケットリングのうちの残りのパケットリングとの間においてリングパケットを入出力する第2RPR部3bとを有し、上記の2枚のRPRカード1のうちの同一のRPRカード1に設けられた第1RPR部3aと第2RPR部3bとが内部メイトインタフェース5を介して接続されるとともに、2枚のRPRカード1のうちの別個のRPRカード1に設けられた第1RPR部3aと第2RPR部3bとが外部メイトインタフェース6を介して接続されている。
(3−8)パケットの転送ルートの説明
次に、RPRカード1について、East側の外部リング#1(Rx)およびリング#2(Tx)間と、West側のリング#2(Rx)およびリング1#(Tx)間とのそれぞれについて説明する。
East側の外部リング#1(Rx)からのパケットは、PHY部2aを介してRPR部3aに入力され、RPR部3aにて受信パケットの送信先が自ノード又は他のノードのいずれか否かが判定される。そして、パケットが自ノードの場合、RPR部3aはパケットを取得し、また、パケットが他ノードの場合はパケットを隣接するRPRカードのRPR部3aに入力される。
さらに、RPR部3aは隣接するRPRカードのEast側のRPR部3aからのパケットを受信すると、パケットの送信先(自ノード又は他ノード)を判定し、自ノード宛のパケットを取得するとともに、隣接するRPRカードからのパケットを外部リング#2(Tx)に対して送信する。
West側の転送についても同様である。
West側の外部リング#2(Rx)からのパケットは、PHY部2bを介してRPR部3bに入力され、RPR部3bにて受信パケットの送信先が自ノード又は他のノードのいずれか否かが判定される。そして、パケットが自ノードの場合はRPR部3bはパケットを取得し、また、パケットが他ノードの場合はパケットを隣接するRPRカードのRPR部3bに入力される。
さらに、RPR部3bは隣接するRPRカードのRPR部3bからのパケットを受信すると、パケットの送信先(自ノード又は他ノード)を判定し、自ノード宛のパケットを取得するとともに、隣接するRPRカードからのパケットを外部リング#1(Tx)に対して送信する。
従って、各外部メイトインタフェース6は、それぞれ、RPRカード1の外部に接続されている。
(4)ラインカード8
ラインカード8は、学習テーブル10と、パケット処理部9と、リングトポロジテーブル11とをそなえて構成されている。
ここで、パケット処理部9は、ラインカード8におけるパケット転送処理を制御するものである。
また、学習テーブル10は、ノードIDと、リングIDと、IPパケットの送信元装置のアドレス情報とを対応づけて保持するものである。そして、学習テーブル10は、RPRカードからラインカード8方向(以下、Ingress方向)のパケット転送において、パケットのクライアント情報を表す送信元アドレス(例えば送信元ノードのMACアドレス)と、RPRパケット情報を表すノードIDおよびリングIDとをリンクさせて学習する。ラインカード8からRPRカード方向(以下、Egress方向)のパケット転送においては、パケットのクライアント情報である送信先アドレス(例えば、送信先MACアドレス)より、学習テーブル10を検索し、学習済みのノードIDとリングIDを取り出す。
リングトポロジテーブル11は6基のノード#A〜#Fの接続状態を表すリングトポロジを保持するものであり、常時、リングのトポロジ状態が管理される。
(5)パケットフォーマット
図6(a)〜図6(c)はいずれも本発明の第1実施形態に係るパケットフオーマットを示す図である。ここで、図6(a)〜図6(c)はそれぞれクライアントパケット,装置内部パケットおよびRPRバケットを表し、各パケットフォーマットの相対関係が表示されている。
図6(a)に示すクライアントパケットは、ラインカード8と外部ネットワーク107との間において入出力されるパケットであり、通常のイーサネットパケット,IPパケット又はMPLSパケット等である。なお、MPLSとは、各種のクライアントパケットについて、ルータが、IPアドレスの代わりにラベルを付与し、各ルータがそのラベルだけを参照してパケットを転送する技術である。
また、図6(b)に示す装置内部パケットは、各ノード#A〜#Fの内部で使用されるものであって、RPRカードとラインカード8との間において送受信される。ここで、装置内部ヘッダはRPRカードとラインカード8との間で必要なパケット情報を格納している。送信先カードビットマップは、スイッチ部7が処理するフィールドであり、収容するインタフェースカードの枚数分のビットが割り当てられている。そして、ビットマップ形式により、マルチキャスト転送が可能となっている。
例えば、8枚のインタフェースカードを設置できる場合、送信先ビットマップのフィールドは8ビットとなり、各ビットは、割り当てられたインタフェースカード送信先のオン又はオフを示す。リングIDとノードIDは、RPRカードからラインカード8方向では、そのパケットの送信元リングIDと送信元ノードIDを示し、ラインカード8からRPRカード方向では、送信先リングIDと送信先ノードIDを示す。
従って、RPRカードからラインカード8方向では、RPRパケットの送信元アドレスに格納されているノードIDが、装置内部パケットのノードIDフィールドに格納され、ラインカード8からRPRカード方向では、装置内部パケットのノードIDが、RPRパケットの送信先アドレスフィールドに格納されることになる。
また、図6(b)に示すE,WはそれぞれEastビット,Westビットを表し、リングIDが示すリングに対して、そのパケットをEast経路を経由した転送と、West経路を経由した転送とを識別する。また、East側およびWest側の両経路に送信可能なようにEとWとは独立したビットマップ形式が用いられている。EとWとの両方のビットがオンの場合は、そのパケットをEast側およびWest側の両方のリングに送信する。
TTL−EastとTTL−Westとはそれぞれ、East経路,West経路に対してパケットを送信するときに使用する活動時間である。ラインカード8からRPRカード方向では、装置内部パケット(図6(b))のTTL−EastとTTL−Westとがパケット送信経路に従い、RPRパケット(図6(c))のTTLフィールドに挿入される。
CRCおよびFCSにはパケットの正常性を示すCRC情報等が格納される。
さらに、図6(c)に示すRPRパケットはパケットリングにおいて送受信されるパケットフォーマットである。RPRパケットヘッダにはRPRパケットの情報が格納されている。送信先アドレスはパケットが到達すべきノードIDが格納されており、ブロードキャスト時はブロードキャストを示す情報が格納される。なお、通常、例えばオール「1」が挿入される。
送信元アドレスは、パケットのクライアント情報である送信元アドレスを表し、例えば、インターネットに接続された各種のサーバ(サーバ装置)の送信元MACアドレスが書き込まれる。
TTLはパケットの活動時間が格納される。ブロードキャストパケットについては、パケット処理部4が、リングパケットの活動時間を表す値を所望の値に設定することにより、ブロードキャストパケットの転送経路を変更するようになっている。
CoS(Class of Service)はパケットのクラスを示している。IPアドレスのToSフィールド,VLAN(Virtual LAN)タグのPriorityおよびMPLSのExperimental Use等が光ネットワークシステムのポリシーに従って格納される。
TypeはRPRパケットのタイプを示すものであり、そのRPRパケットが格納するデータが、例えば情報データ,制御データ,リングトポロジテーブル更新用データ又はプロテクション用データ等の各タイプを表す。HEC(Header Error Check)はRPRパケットヘッダの正常性を示すものであり、CRCビットやパリティビットが格納される。CRCおよびFCSにはパケットの正常性を示すCRC情報量が格納される。
このように、図6(b)に示す装置内部パケットを図6(c)に示すフォーマットにすることによって、一体型でも分離型でも装置内部で同一のパケットフォワーディング処理が可能となる。
なお、これらの情報は、本発明に必要な情報についてのものであり、装置内部パケットおよびRPRパケットの各ヘッダ情報は上記の内容以外にも適用するシステムや適用するRPRプロトコルに応じて他の情報も格納することもできる。
(6)リングトポロジテーブル11
図7は本発明の第1実施形態に係るリングトポロジテーブル11を説明するための図である。この図7に示すリングトポロジテーブル11は図2に示すノード#Aのリングトポロジテーブル11を表し、リングID,ノードID,Eastホップ数,Westホップ数,East経路選択およびWest経路選択の各項目を有する。
ここで、リングIDはリングの識別情報であり、図31(a)〜図31(c)に示すデュアルリング又はクワッドリングの物理的なリングを表す。また、リングトポロジテーブル11は、デュアルリングであるため、ノード#A〜#Fは、全てリングID#1が格納されている。
ノードIDはパケットリングに存在する各ノード#A〜#Fの識別情報であり、各ノード#A〜#Fが、トポロジデータを生成するために送受信するトポロジメッセージに挿入したID(#A〜#F)が格納されている。
Eastホップ数およびWestホップ数はいずれも、ノード#Aを基準(起点)としてノード#Aから他のノード#B〜#Fへのホップ数を表し、各ホップ数はトポロジメッセージのTTLより算出される。例えば、ノード#BのEastホップ数およびWestホップ数はそれぞれ1,5である。この「1」はノード#AのEast側から時計回りにカウントしたノード#Bへのホップ数が1であることを示し、また、「5」はノード#AのWest側から反時計回りにカウントしたノード#Bへのホップ数が5であることを示す。ノード#AのEastホップ数およびWestホップ数はいずれも0が格納されている。
East経路選択およびWest経路選択は、いずれも、ノード#Aがパケットを送信する経路を表す。すなわち、Eastホップ数およびWestホップ数に基づいて、ノード#Aから各ノード#B〜#Fに対するパケットをEastおよびWestのうちのいずれの経路に送信すべきか否かが設定される。例えば、ノード#Bについては、East側が近いのでEast経路選択がオン(ON)に設定され、West経路選択はオフ(OFF)に設定されている。ここで、オンが選択、オフが非選択を表す。
従って、リングトポロジテーブル11は、最短経路を基準にして経路を選択するようになっている。なお、経路選択の基準は種々の方法を用いることができる。
すなわち、パケット処理部4が、ノードID,リングIDおよびIPパケットの送信元装置のアドレス情報と、リングトポロジとに基づいてリングパケットの転送経路をスイッチするとともに、一体型カードおよび分離型カード間において共通のパケット転送処理を行なうのである。
これにより、各ノードは定期的又は障害発生時において、トポロジメッセージをパケットリングにブロードキャスト配信する。このトポロジメッセージには、通常、自分のノードIDとTTL(パケットの活動時間)最大値が格納されている。各ノード#A〜#Fは、このトポロジメッセージを受信して、リングトポロジテーブル11を生成する。
このように、各ノード#A〜#Fが、動的にリングトポロジテーブル11を管理するので、常時、パケットリングにおいて最短経路でパケットを転送できる。
また、本発明のRPRネットワーク(光ネットワークシステム)102は、例えば6基のノード#A〜#Fが多重パケットリングを介して接続されたパケットリングのリングパケットと、複数の外部ネットワーク107のIPパケットとをスイッチするノード#A〜#Fを設けたものである。そして、上記の6基のノード#A〜#Fのうちの1基以上のノード#A〜#Fが、受信したリングパケットのノードIDと複数の外部ネットワーク107から受信されたIPパケットの送信先アドレスとに基づいてリングパケットおよびIPパケットをそれぞれ複数の外部ネットワーク107側又は多重パケットリング側との間において入出力し相互に接続された2個のRPR部3a,3bと、2個のRPR部3a,3bから複数の外部ネットワーク107側に出力されたリングパケットと複数の外部ネットワーク107から2個のRPR部3a,3b側に出力されたIPパケットとの各転送経路をスイッチするパケット処理部4とを設けたRPRカード1を2枚そなえている。そして、RPRネットワーク102は、多重パケットリングの外回りと内回りとのそれぞれに設けられたm個(mは自然数を表す。)のポートのうちの半分のポートに接続された第1RPRカードと、m個のポートのうちの残りの半分のポートに接続された第2RPRカードとが分離して設けられた分離型カードと、多重パケットリングの外回りおよび内回りにそれぞれ設けられたm個のポートの全てに接続された一体型カードとを混在させて構成されている。
これにより、パケットリングと接続されるインタフェースカードが、EastポートとWestポートとに分離され、保守運用時のRPRカードを交換するときに、そのRPRカードを交換されたいずれかのノード#A〜#Fがパケットリングから切り離されることなく通信が継続できる。
さらに、本発明のRPRカード1によれば、信頼性の高いパケットリングネットワークとEastポートおよびWestポートとが一体化され、インタフェースカード数の削減等によるコストダウン効果の高いパケットリングを共通のハードウェアで提供できる。
加えて、本発明のRPRカード1によれば、インタフェースカードの冗長構成およびリング冗長構成のいずれにおいても、ネットワークトポロジに適した冗長機能が提供される。
(7)分離型カードを設けたノードの動作説明
このような構成により、例えばノード#Aの動作を説明する。ノード#B〜Fの動作はノード#Aの動作と同一なので重複説明を省略する。
ノード#Aが、パケットリングからパケットを受信すると、その受信パケットは、PHY部2a,2bからRPR部3a,3bに対して転送される。RPR部3a,3bは、受信パケットの送信先アドレスをチェックして、その送信先アドレスが自ノード宛であれば、パケット処理部4に対してその受信パケットを転送し、自ノード宛でなければ、外部メイトインタフェース6を経由させてパケットをスルーし、再度リングに送信する。
また、ブロードキャストパケットの場合、ノード#Aは、自ノード内にパケットを取り込むとともに、外部メイトインタフェース6を用いてパケットを再度リングに送信する。パケット処理部4において受信パケットは、そのヘッダ等を取り除かれ、スイッチ部7に送信される。
このとき、ノード#Aは、リング上へのパケット送信元である送信元ノードのノードIDと、どのパケットリング(Ring)#1〜4から受信したか否かを示すリングIDを付与してスイッチ部7に送信する。ラインカード8はスイッチ部7からパケットを受信すると、パケット処理部9にてそのパケットのクライアント送信元アドレス(例えば送信元MACアドレス)と、ノードIDとリングIDとをともに学習テーブル10に学習する。
次に、ノード#Aが、パケットリングにパケットを送信する場合は次のようになる。ラインカード8のパケット処理部9が、外部からパケットを受信するとパケットのクライアント送信先アドレス(例えば、送信先MACアドレス)に基づいて学習テーブル10を検索する。そして、この学習テーブル10の検索によって、リングIDとノードIDとが学習テーブル10より取り出される。
パケット処理部9は、学習テーブル10の検索により取り出されたリングIDとノードIDとに基づいて、リングトポロジテーブル11を検索する。これにより、パケット処理部9は、所望のノード#B〜#Fへのパケット送信において、East又はWestのいずれかのRPRカード1に対してパケットを送信すべきか否かについて、East経路選択ビットとWest経路選択ビットとを用いて判断する。そして、パケット処理部9は、East経路選択ビットとWest経路選択ビットとの各情報に基づいてパケットをスイッチ部7に送信する。
スイッチ部7はその情報に従って、パケットを送信すべきRPRカードに対して転送する。ここで、スイッチ部7は、パケットに、そのパケットがEast宛かWest宛か否かを示す情報も付したままで送信する。
一方、パケットを受信したRPRカード1は自カード宛のパケットであることを確認した後、パケットをリングに送信する。
これにより、パケットは最短経路となるリングを経由して目的のノードに到着する。
なお、学習テーブル10の検索において、所望の送信先アドレスが学習テーブル10に保持されていない場合は、送信先不明のパケットとしてフラッディング処理の対象となる。このフラッディングとは、ルータ等のスイッチ装置が、未知の送信先アドレスを有するパケットを受信した場合に、パケットが入力されたポートを除き、そのスイッチ装置自身に設けられた全ての出力ポートにそのパケットを複製して送信することを意味する。
また、ラインカード8は、フラッディング時において、両方のRPRカード1a,1bにブロードキャストパケットとしてパケットを送信する。そして、受信したRPRカード1a,1bのうちのいずれか一方のRPRカードがブロードキャストパケットをリングに対して転送する。一方、両方のRPRカードがリングへブロードキャストパケットを転送した場合は、受信側のノードがパケットを2重に受信することを回避するため、いずれか一方のRPRカードのみがブロードキャストパケットを受信するようになっている。また、2種類のRPRカードのうちの転送処理するRPRカードは、装置内部パケットヘッダの設定に基づいて選択される。
(8)一体型カードを設けたノードの構成
図8は本発明の第1実施形態に係る一体型カードを設けたノードのブロック図である。この図8に示すノード#Aの一体型のRPRカード1cが、図3に示す分離型のRPRカード1と異なる点は、一体型カード1cの外部メイトインタフェース6が他のRPRカードと接続されていない点であり、この点以外の点については同一である。ここで、上述したものと同一符号を有するものは、それらと同一のもの又は同一機能を有するものである。
ノード#Aは、クワッドリングの外回りおよび内周りにそれぞれにm個のポート(図示省略)を設けている。一体型カード1cは、そのm個のポートの全てに接続された一体型カードとして構成されている。換言すれば、ノード#Aは、2個のRPR部3a,3bと、パケット処理部4とを設けたRPRカード1cをそなえ、RPRカード1cが、多重パケットリングの外回りおよび内回りにそれぞれ設けられたm個のポートの全てに接続された一体型カードとして構成されているのである。また、ノード#B〜#Fもこのノード#Aと同一構成であるので、重複した説明を省略する。
さらに、上記の一体型のRPRカード1cと上記の分離型のRPRカード1a,1bとが、例えばバックボード(図示省略)等の装置架に脱着可能に挿入するための結合部を共用するようにもなっている。これにより、カードの製造,カードの設置に関し、多数の部品を汎用的に用いることができ、カードのコストを低廉化できる。
従って、本発明の一体型カード1cは、例えば6基のノード#A〜#Fが多重パケットリングを介して接続されたパケットリングのリングパケットと、複数の外部ネットワーク107のIPパケットとをスイッチするRPRカードであって、受信したリングパケットのノードIDと複数の外部ネットワーク107から受信されたIPパケットの送信先アドレスとに基づいてリングパケットおよびIPパケットをそれぞれ複数の外部ネットワーク107側又は多重パケットリング側との間において入出力し相互に接続された2個のRPR部3a,3bと、2個のRPR部3a,3bから複数の外部ネットワーク107側に出力されたリングパケットと複数の外部ネットワーク107から2個のRPR部3a,3b側に出力されたIPパケットとの各転送経路をスイッチするパケット処理部4とをそなえている。そして、一体型カードは、多重パケットリングの外回りおよび内回りにそれぞれ設けられたm個のポートの全てに接続された一体型カードとして構成されたことになる。
このように、ノード#Aは、2枚のRPRカード1a,1bの代わりに、1枚のRPRカード1cをそなえ、分離型の2枚のRPRカード1a,1bが有する機能を一体化して形成されている。従って、RPRカード1cは、一体型と分離型との両機能を提供できる。
また、このように、本発明は、同一のパケット転送機能が実現するアーキテクチャーを採用することより、分離型カードと一体型カードとのいずれが用いられても、スイッチ部7およびラインカード8を共用できる。これにより、コストダウンが図れる。
(9)変形例
(A1)第1変形例
なお、分離型カードと一体型カードとを組み合わせることにより、各ノード#A〜#Fは、種々の構成をとることができる。図9〜図11を参照して説明する。なお、図9〜図11において上述したものと同一符号を有するものは、それらと同一のもの又は同一機能を有する。
図9は本発明の第1実施形態の第1変形例に係るノード#Aのブロック図である。この図9に示すノード#Aは、図8に示す一体型カード1cを2枚設け、クワッドリングに用いられるものである。従って、一体型カード1cを用いて冗長化することも可能である。
図10は本発明の第1実施形態の第1変形例に係るRPRカードのブロック図である。この図10に示すRPRカード1dとしての機能を有する回路基板は、図3に示す2枚のRPRカード1a,1bのうちの1ポート分に相当する部品だけが設けられており、PHY部2b,RPR部3bに相当する部品は設けられていない。そして、East又はWestいずれか一方(例えばEast側)のPHY部2aおよびRPR部3aだけが動作するようになっている。さらに、ノード#Aは、2枚のRPRカード1c間を接続する外部メイトインタフェース6のうちの一方が用いられておらず、又は外部メイトインタフェース6の一方が元々設けられていない。加えて、ノード#Aは、外部メイトインタフェース6以外のものを代用して他のRPRカードと接続されていない。図9に示すノード#Aは、図3に示すノード#Aに設けられた2枚のRPRカード1a,1b間に外部メイトインタフェース6が設けられている点で異なる。
これにより、図10に示すRPRカード1dは、部品数が少なくなり、ノードの低廉化が図れる。
次に、このRPRカード1dを用いて構成したノードを図11に示す。
図11は本発明の第1実施形態の第1変形例に係るノード#Aのブロック図である。この図11に示すノード#Aは図10に示す分離型カード1dを2枚設けて構成されている。この分離型カード1dは、他のRPRカードと接続されていないので、リングの冗長化が不要となる。
従って、リング冗長が行なわれない場合には、分離型カード1dを設けることにより、コストダウン効果のあるデュアルリングを構成可能である。
(A2)第2変形例
同一ノード又は光ネットワークシステムに一体型カードと分離型カードとの2種類のインタフェースカードを混在させることもでき、さらに、同一リングに一体型カードと分離型カードとを混在させることもできる。
具体的には、2個のRPR部3a,3bと、パケット処理部4とを設けた2枚のRPRカード1が、多重パケットリングの外回りと内回りとのそれぞれに設けられたm個のポートのうちの外回りのポートに接続された第1RPRカードと、m個のポートのうちの内回りのポートに接続された第2RPRカードとが分離して設けられた分離型カードとして、あるいは、多重パケットリングの外回りおよび内回りにそれぞれ設けられたm個のポートの全てに接続された一体型カードとして構成することもできる。
この場合、パケット処理部4が、センターラップとエッジラップとを含むm1(m1は自然数を表す。)種類の障害復旧手順を、一体型カード又は分離型カードに応じて選択するように構成することができる。
さらに、本発明の光ネットワークシステムは、多重パケットリングのうちの同一のパケットリングに一体型カードと分離型カードとを混在させて構成されたことになる。
このように、RPRカード交換時の通信断が回避されて継続的な通信が可能となる。さらに、RPRカード数の削減等によりシステム構築のコストダウンが図れるとともに、RPRカードの冗長化およびリングの冗長化のいずれの構成であっても確実に冗長化が可能となる。
そして、このようにして、RPR冗長方法により同一のRPRカードが分離型と一体型とにおいてもRPRカード冗長、最短経路選択、最適経路選択を可能とし、さらに、4重以上のパケットリングにおいても最短経路選択と最適経路選択との双方が可能になる。
(B)本発明の第2実施形態の説明
第2実施形態の各ノード#A〜#Fは、パケットの転送経路(East側又はWest側)を動的に変更するようにしている。また、第2実施形態の光ネットワークシステムは、図1に示す光伝送システム100と同一である。
図12は本発明の第2実施形態に係るパケットリングの構成図である。この図12に示すパケットリングは、例えば6基の偶数個のノード#A〜#Fが設けられたものである。第1実施形態における各ノード#A〜#Fは、リングトポロジテーブル11(図7参照)のEast経路選択およびWest経路選択のうちのいずれか一方を排他的に選択している。この場合、ノード#Aは、例えばホップ数3に相当するノード#Dについての選択経路を固定しており、選択されたEast側又はWest側の一方だけの負荷が重くなる。例えば、ノード#Dがセンター局の場合、大量のパケットについての処理負荷が固定的に選択された側だけが高まる。
このため、第2実施形態におけるノード#A〜#Fの一部又は全部は、転送経路を選択するために、ハッシュ演算を用いてパケット転送処理の負荷を分散させるようになっている。例えば、ノード#Aがハッシュ演算機能を有する場合、ノード#Aは、ハッシュ演算結果に基づいて、リングパケットの送信元ノード(例えばノード#A)を基準として、East側からのホップ数とWest側からのホップ数とが等しいノード(例えばノード#D)に対してパケットを転送するのである。
図13は本発明の第2実施形態に係るハッシュ演算部のブロック図である。この図13に示すハッシュ演算部50は、ハッシュ演算に用いる生成多項式とハッシュ演算方法とを複数保持する生成多項式保持部50aと、リングパケットの転送処理に関する負荷を監視する監視部50bと、監視部50bにて監視された負荷が分散されるように生成多項式保持部50aに保持された生成多項式およびハッシュ演算方法を選択する選択部50cとをそなえて構成されている。なお、ブロードキャストレジスタ50fについては、図19等を参照して後述する。
選択部50cは、送信元ノードの例えばノード#Aを起点としデュアルリング又はクワッドリング等の多重パケットリングの外回りと内回りとのそれぞれについて、ノード#Aと送信先ノード(例えばノード#D)との間におけるリングパケットの中継ノードのホップ数が等しいノード#Dについてハッシュ演算により生成多項式を選択するようになっている。ここで、中継ノードは、ノード#B,#C又はノード#E,#Fが相当し、ホップ数は3である。
ハッシュ演算に用いる生成多項式はm2(m2は自然数を表す。)種類があるので、各ノード#A〜#Fは、例えばパケット処理部4又はハッシュ演算に特化した生成多項式保持部50aを設け、ハッシュ演算に用いるm1種の生成多項式をこの生成多項式保持部50aに予め登録する。そして、各ノード#A〜#Fは、リングに送信されるパケット量を統計情報として監視し、その負荷分散結果に大きな偏りが発生している場合(および発生する可能性が高い場合)は、ハッシュ演算に用いる生成多項式を別の生成多項式に変更し、動的に生成多項式およびハッシュ演算に必要な値に変更するようになっている。
なお、リングセレクトテーブル(ハッシュ演算結果保持部)50dは、図15(a)等を参照して後述する。また、図13に示すハッシュ演算部50は、パケット処理部4に設けられているが、RPRカード1内においてパケット処理部4とは別に設けてもよい。なお、第2実施形態におけるRPRカード1は、上述したRPRカード1と同一又は同様のものであり、また、RPRカード1a,1b,1c,1dを用いることができる。
以下、ノード数は6として説明するが、ノード数が8,10等の偶数の場合においても、ノード数6の場合と同様のパケット送信についての負荷分散処理が行なわれる。なお、各ノード#A〜#Fのうちの一部のノードにリングトポロジテーブル11aが設けられるようにもできる。そして、第2実施形態においても、RPRカード1は、一体型と分離型とのうちの一方の機能又は両機能を有する。
図14は本発明の第2実施形態に係るリングトポロジテーブルの一例を示す図であり、第2実施形態における各ノード#A〜#Fは、この図14に示すリングトポロジテーブル11aに追加した「ハッシュ演算」の項目を参照して、ハッシュ演算実施の有無を選択している。
また、East方路選択,West方路選択およびハッシュ演算の各項目はそれぞれ排他的に設定されるようになっている。具体的には、East方路選択がオフ,West方路選択がオフ,ハッシュ演算がオンの場合に、ノード#Aは、リングパケットの送信先アドレスおよび送信元アドレスを対象としてハッシュ演算を行ない、そのハッシュ演算の結果に基づいてEast又はWestのいずれかの方路を選択する。
また、各ノード#A〜#Fがハッシュ演算に要する情報は、リングパケットに含まれる各種のフィールド情報のうちの一情報に固定せずに、所望の情報を用いるようにしている。この理由は、各ノード#A〜#Fが、光ネットワークシステム100および各種のサブネットワークシステムの仕様に応じて、ハッシュ演算に適する情報を用いて演算するためである。演算対象の情報は、例えばMACアドレス又はIPアドレス等であり、これらのうちのいずれをも選択できる。
これにより、各ノード#A〜#Fは、等しいホップ数のノードに対してパケットを送信するときに、一方向だけの負荷が過大となることを回避し、負荷分散可能となる。さらに、各ノード#A〜#Fは、リングネットワークにおける負荷分散を動的に制御できる。
以上の説明は、ハッシュ演算の演算結果を用いて、通常のパケットについて転送経路を選択する方法である。
一方、ハッシュ演算の演算結果は、ブロードキャストパケットの経路選択およびブロードキャストパケットの転送リングの選択についても利用可能である。
各ノード#A〜#Fは、ブロードキャストパケットの配信についても、ハッシュ演算を用いて負荷を分散させることができる。また、ハッシュ演算は多重数に依存しない。以下、3重のパケットリングが用いられた場合におけるハッシュ演算について説明する。
図15(a)は本発明の第2実施形態に係る3重パケットリングの構成図である。この図15(a)に示す3重パケットリングは、リング#1,#2,#3を有する。
ここで、ハッシュ演算部50(図13参照)に設けられたリングセレクトテーブル50dは、ハッシュ演算の演算結果とリングIDとを対応づけた対応データを保持するものであり、ハッシュ演算結果保持部として機能している。
また、図15(b)は本発明の第2実施形態に係るリングセレクトテーブルの一例を示す図であり、この図15(b)に示すリングセレクトテーブル50dは、ハッシュ演算により得られた演算結果(余り)を表す「0」と、リングID「リング#1」とを対応付けて保持している。そして、各ノード#A〜#Fに設けられたパケット処理部4は、多重パケットリングにおける障害発生時に、リングセレクトテーブル50dに保持された対応データを更新することにより、障害が発生したパケットリングを介したブロードキャストパケット配信を停止し、かつブロードキャストパケット配信の負荷分散を継続するようになっている。
換言すれば、本発明のノード#A〜#Fは、例えば6基等の偶数個のノード#A〜#Fがパケットリングに存在する場合において、ハッシュ演算の演算結果は、ブロードキャストパケットの経路選択に用いられるようになっている。
また、本発明のノード#A〜#Fは、例えば3重等の多重パケットリングが構成されている場合において、ハッシュ演算の演算結果が、ブロードキャストパケットの転送リングの選択に用いられている。
本発明のノード#A〜#Fは、例えば6基等の偶数個のノード#A〜#Fがパケットリングに存在する場合において、ハッシュ演算の演算結果は、ブロードキャストパケットの経路選択に用いられるようになっている。
負荷分散におけるハッシュ演算方法は、パケットヘッダに含まれるアドレスフィールドの値が、生成多項式を用いて除算され、その計算で得られた余り値を用いてパケットの方路振り分け等が行なわれる。ここで、3重パケットリングの場合、パケット処理部4は余り値が最大「2」となる生成多項式を使用してアドレスフィールドを除算し、リングセレクトテーブル50dに余り値とリングIDとを1対1にリンクさせて保持する。例えば、ブロードキャストパケットのハッシュ演算結果の余り値が「1」の場合、リング#2がブロードキャストパケットの転送先リングとして使用されるのである。
さらに、パケット処理部4は、生成多項式保持部50aに保持された生成多項式およびハッシュ演算方法を動的に更新することにより、障害が発生したパケットリングを介したブロードキャストパケット配信を停止し、かつブロードキャストパケット配信の負荷分散を継続する。
これにより、各ノード#A〜#Fは、パケットリングにおいて障害発生時、リングセレクトテーブル50dに対応付けて保持されたハッシュ演算結果とリングIDとを動的に更新する。
次に、複数箇所において障害が発生したときの処理を図16(a),図16(b)を参照して説明する。
図16(a)は本発明の第2実施形態に係る障害発生時の3重パケットリングを説明するための図である。この図16(a)に示すノード#Cおよびノード#D間と、ノード#Dおよびノード#E間とにおいてリング#2に障害が発生した場合のものである。
ここで、ノード#Cおよびノード#D間だけの障害であれば、リング#2における障害箇所を回避するために、各ノード#A〜#Fは、リングトポロジテーブル11aを更新すればよい。一方、ノード#Dおよびノード#E間においても障害が発生し複合的に障害が発生した場合は、ノード#Dはリング#2に対するパケット送信を避け、リング#1,#3に対してブロードキャストパケットを配信することにより、他ノードに対して新たにリングIDを学習させる必要がある。
図16(b)は本発明の第2実施形態に係るリングセレクトテーブルの一例を示す図である。各ノード#A〜#Fは、この図16(b)に示すリングセレクトテーブル50dに、リング#2への送信を避けるために、演算結果の余りが「1」についてリング#1をリンクさせたデータを書き込む。
これにより、ハッシュ演算結果を用いて、ノードは、リング#2に対するブロードキャストパケットを送信せず、また、リング#1とリング#3とに対してパケットを送信する。
このように、各ノード#A〜#Fは、パケットリングにおいて障害発生時、ハッシュ演算に使用する生成多項式およびハッシュ演算方法を動的に変更し、またリンクセレクトテーブル50dを更新する。これにより、障害発生リングへのブロードキャストパケット配信が停止し、かつブロードキャストパケット配信の負荷分散が継続する。
また、図17(a),図17(b)〜図18(a),図18(b)を参照して上述したパターンと異なる他のパターンについて説明する。
図17(a)は本発明の第2実施形態に係る他の3重パケットリングの一例を示す図である。この図17(a)に示す3重パケットリングは、リング#1〜#3を用いて接続されている。
図17(b)は本発明の第2実施形態に係る他のリングセレクトテーブルの一例を示す図である。この図17(b)に示すリンクセレクトテーブル50dは、ハッシュ演算により得られた演算結果とリングIDとをリンクさせて保持している。これにより、図15(a),図15(b)に示すパケットリングにおける処理と同様に処理される。
次に、パケットリングの2カ所に障害が発生した場合について説明する。
図18(a)は本発明の第2実施形態に係る障害発生時における3重パケットリングの一例を示す図である。この図18(a)に示すノード#Cおよびノード#D間と、ノード#Dおよびノード#E間とにおいてリング#2に障害が発生した場合のものである。そして、各ノード#A〜#Fは、障害が発生すると生成多項式自体を変更するようになっている。
ここで、障害発生時において、ノード#A〜#Fは、設定量を少なくするために、生成多項式を変更せずに、リングセレクトテーブル50d自体を更新することもできるが、例えば図16(b)に示すリングセレクトテーブル50d内においてリング#1への偏りが大きくなり負荷が集中する可能性がある。このため、負荷を分散するために、障害が発生すると、ノード#A〜#Fは、「演算結果の余り値=全ノード−障害発生ノード」となるように生成多項式自体を動的に変更するのである。
図18(b)は本発明の第2実施形態に係るリングセレクトテーブル50dの一例を示す図であり、この図18(b)に示すリングセレクトテーブル50dのデータが更新され、障害が発生した場合において、最適な負荷分散が可能となる。
このように、図16(a),図16(b)に示すノード又はRPRパケットの転送方法によれば、生成多項式を変更せず、リングセレクトテーブル50d自体を更新するため、障害発生時の設定量は少なくて済む。
また、図18(a),図18(b)に示すノード#A〜#Fによれば、障害が発生したときに、パケット振り分け(負荷分散)の結果が均等化される。
(B1)第1変形例
図19は本発明の第2実施形態の第1変形例に係るパケットリングの構成図である。この図19に示す6基のノード#A〜#Fは、ブロードキャストパケットのTTL値を制御し、EastおよびWestの両方のパケットリングに対してブロードキャストパケットを送信し、これにより、ブロードキャストパケット転送処理について負荷を分散するようになっている。
第1実施形態においては、ブロードキャストパケットはEast又はWestのいずれか一方のリングに送信されている。そして、第1実施形態の各ノード#A〜#Fは、リング型という特性を利用し、いずれか一方の方向又はいずれか一方のリングにパケットを送信しており、ブロードキャストパケットはパケットリングを周回し、各ノード#A〜#Fにて受信され、最終的に送信元ノードがそのブロードキャストパケットをリングから削除している。
この場合、特定のリングにおけるブロードキャストパケットの負荷が重くなる。
このため、本変形例における各ノード#A〜#Fは、図13に示すブロードキャストレジスタ50fを設けている。このブロードキャストレジスタ50fは、以下に示す各項目を保持可能なものであり、この機能は例えばレジスタにより発揮される。なお、図13に示す選択部50cにはブロードキャストレジスタ50fを読み書き可能な読み書き処理部(図示省略)が設けられている。
ブロードキャストレジスタの項目は、East経路選択,West経路選択,EastTTL,WestTTLおよびハッシュ演算である。各ノード#A〜#Fは、ブロードキャストパケットの送信時において、ブロードキャストレジスタ50fの内容を毎回参照し、そのブロードキャストレジスタ50fの設定内容に応じてパケットを転送する。
図20(a)は本発明の第2実施形態の第1変形例に係るブロードキャストレジスタの項目を示す図である。この図20(a)に示すブロードキャストレジスタ50fは、ノード#Aからのブロードキャストパケットを転送する場合のものであって、East経路選択がオフ,West経路選択がオフ,ハッシュ演算がオフになっている。この場合、EastTTL値とWestTTL値とが有効と認識され、これらのTTL値(EastTTLが3,WestTTLが2)に基づいてブロードキャストパケットが転送される。具体的には、ブロードキャストパケットは、それぞれノード#A,ノード#B,ノード#C,ノード#D,ノード#A,ノード#F,ノード#Eをそれぞれ経由してパケットリングから外部ネットワーク107に送信される。
図20(b)は本発明の第2実施形態の第1変形例に係るブロードキャストレジスタ50fの設定例を示す図である。この図20(b)に示す例1(図20(a)と同一)から例4に示す各設定内容に基づいてパケットが送信される。East方路選択,West方路選択およびハッシュ演算の各項目はそれぞれ排他的に設定され、全てがオフの場合にTTL設定が有効にされるようになっている。
さらに、East経路選択,West経路選択はともにブロードキャストパケットを送信するリングを固定する場合に使用される。例えば、ノード数が6の場合、EastTTL値,WestTTL値にはそれぞれ3,2と設定され、最短方路選択によるブロードキャストパケットが可能となる。すなわち、パケット処理部4が、多重パケットリングが4重以上の場合において、ブロードキャストパケットを送信するための専用伝送路を多重パケットリングのうちから選択するようになっている。
なお、この場合もリングに存在するノード数が偶数個の場合、EastおよびWestのいずれかの方向からカウントして等しいホップ数のノードへの負荷が固定されることを防止するために、ハッシュ演算がオンと設定されることにより、ハッシュ演算によるブロードキャスト転送の負荷分散も可能となる。
また、このブロードキャストレジスタ50fは、ラインカード8又はRPRカード1(又はRPRカード1a〜1d)のいずれかに設けることができる。ラインカード8に設けられた場合、分離型カードは、East側カードとWest側カードとの両方にブロードキャストパケットをTTL情報と一緒に送信する必要がある。
一方、ブロードキャストレジスタ50fがRPRカード1に設けられた場合、分離型カードは、ラインカード8はEast側カードとWest側カードとの両方にブロードキャストパケットが転送され、East側カードとWest側カードとのそれぞれが、ブロードキャストレジスタ50fを参照し、その設定内容に応じて、ブロードキャストパケットをパケットリングに送信する。
また、各ノード#A〜#FのRPRカード1がブロードキャストパケットを転送する必要がない場合は、RPRカード1がブロードキャストパケットを廃棄する。例えば、East経路選択がオンかつWest経路選択がオフの場合は、West側のRPRカード1(又はRPRカード1a〜1d)が廃棄する。
このように、本発明のノード#A〜#Fは、偶数個のノード#A〜#Fがパケットリングに存在する場合において、ハッシュ演算の演算結果は、ブロードキャストパケットの経路選択に用いられる。
また、本発明のノード#A〜#Fは、例えば3重等の多重パケットリングが構成されている場合において、ハッシュ演算の演算結果が、ブロードキャストパケットの転送リングの選択に用いられる。
このように、ハッシュ演算を用いることにより、第1実施形態における効果と同一の効果を得られるほかに、各ノード#A〜#Fの負荷を分散できる。
(B2)第2変形例
第2変形例においては、クワッドリング構成時のブロードキャスト転送処理の負荷分散に関するものである。本変形例においては、パケットリングがクワッドリング以上の場合、パケットリングを構成する各ノード#A〜#Fは、ブロードキャストパケットを送信するパケットリングを選択する機能を付与されるようになっており、各ノード#A〜#Fのブロードキャストパケット送信処理の負荷を分散させるようにしている。
一方、ブロードキャストパケットを送信するパケットリングがノード単位に固定的に設定されると、特定のノードに着目した場合に、特定のリングのブロードキャストパケットの負荷が過大になる。
このため、第2変形例の各ノード#A〜#Fのパケット処理部4は、リングパケットの最短経路に依存しないリング選択機能を有すること(リング選択機能の付与)により、最短経路の選択と多重パケットリングの利用帯域とに応じてリングパケットの最適経路を選択する。
ここで、クワッドリング(4重リング)を構成する態様は、ノードが分離型カードを用いる方法と、ノードが一体型カードを2枚用いる方法とがある。
図21は本発明の第2実施形態の第2変形例に係るクワッドリングの構成図であって、ノード#A〜#Fが全て、リング#1とリング#2とに接続されており、リングを構成する全のノード#A〜#Fが両リング#1,#2に接続されている。なお、全ノード#A〜#Fがリング#1,#2に接続されていない場合は後述する。
図22は本発明の第2実施形態の第2変形例に係るブロードキャストレジスタの一例を示す図であり、この図22に示すブロードキャストレジスタ60は、ブロードキャストパケットを送信するためのリング番号を表す「リング選択」の項目が設けられており、各ノード#A〜#Fがこの「リング選択」を参照してブロードキャストパケットを送信するパケットリングを選択するようになっている。なお、図22に示すブロードキャストレジスタ60の例えば「East経路選択」等の各項目は、図20(a),図20(b)に示す項目と同一である。
また、図23は本発明の第2実施形態の第2変形例に係るブロードキャストレジスタの第2の例を示す図である。この図23に示すブロードキャストレジスタ61は、ハッシュ演算を用いて「リング選択」し、また、「経路選択」するようになっている。
このような構成によって、図21に示す例えばノード#Aが、ブロードキャストパケットをリング#1とリング#2との両方に送信すると、各ノード#A〜#Fはブロードキャストパケットを2重に受信する。そして、各ノード#A〜#Fは、例えば、リング#1,#2をそれぞれプライマリリング,セカンダリリングとして各リング#1,#2に優先クラスを付与して監視および管理する。すなわち、各ノード#A〜#Fは、プライマリリングから受信したブロードキャストパケットを有効とし、セカンダリリングから受信したブロードキャストパケットを廃棄するのである。なお、優先クラスはリング数が3以上の場合はそのリング数に応じて付与される。
これにより、各ノード#A〜#Fは、ブロードキャストパケットを送信するリングを選択し、各ノード#A〜#Fはブロードキャストレジスタ60,61に設定された「East方路選択」,「West方路選択」,「ハッシュ演算」,EastTTL」および「WestTTL」の各項目に基づいて、選択したリングにおいて、ブロードキャストパケットの最適なルートを選択するのである。
従って、各ノード#A〜#Fのブロードキャストパケット送信処理の負荷が分散される。
なお、この方法は、ノードからのブロードキャストパケットはいずれか一方のリングにしか送信されないため、受信側ノードはプライマリリングおよびセカンダリリング等を意識せず、受信パケットをそのまま処理することができ、負荷が分散される。さらに各ノード#A〜#F単位にブロードキャストパケットを送信すべきリングを設定可能なため、ノード#Aがリング#1を用いるとともに、他のノード#Bはリング#2を使用でき、これにより、クワッドリングにおけるブロードキャストパケット送信の負荷分散が可能となる。
(B3)第3変形例
第3変形例においては、学習テーブルに関し、クワッドリング以上のリング冗長構成時、かつ各リングのリングトポロジデータ状態が異なるリング冗長構成時におけるものである。この場合、各ノード#A〜#Fは、ブロードキャストパケットの送信元ノードIDとリングトポロジテーブル11aとを参照してチェックし、リングトポロジにて設定された最短経路を介して転送されたパケットのみ受信し、それ以外のブロードキャストパケットを廃棄するようになっている。これにより、ブロードキャストパケット転送の最短経路学習が可能となる。
換言すれば、第3変形例における学習テーブルは、多重パケットリングが4重以上の場合において、ブロードキャストパケットの送信元ノードのノードIDとリングトポロジとに基づいて、最短経路を経由して転送されたリングパケットを取得するとともにブロードキャストパケットを廃棄することにより、ブロードキャストパケットを転送するための最短経路を学習するようになっている。
図24は本発明の第2実施形態の第3変形例に係るクワッドリングの構成図である。この図24に示すノード#A,#C,#D,#Fはリング#1,#2の両方に接続されており、ノード#Bはリング#1のみに接続され、ノード#Eはリング#2のみに接続されている。このため、リング#1とリング#2との各リングトポロジは異なる。従って、各ノード#A〜#Fがブロードキャストパケットをリング#1又はリング#2のいずれか一方のリングに送信するだけの処理は、ブロードキャストパケットを受信できないノード(ノード#A〜#Fのうちのいずれかのノード)の発生を引き起こす。
このため、第3変形例の各ノード#A〜#Fは、ブロードキャストパケットを両方のリング#1,#2に送信し、両方のリング#1,#2に接続されている各ノードが自律的に選択したパケットリングからのみブロードキャストパケットを受信し、また、選択したリング以外のリングから受信したブロードキャストパケットを廃棄するようになっている。
図25は本発明の第2実施形態の第3変形例に係るリングトポロジテーブルの一例を示す図である。この図25に示すリングトポロジテーブル11bは、各ノード#A〜#Fにおいて、RPRカード1(又はRPRカード1a〜1d)にリング#1とリング#2とについてそれぞれ作成されたものである。そして、各ノード#A〜#Fはブロードキャストパケットを両リング#1,#2に送信する。
このような構成によって、ノード#Aを例として処理方法を説明する。なお、ノード#B〜#Fはノード#Aと同一処理を行なうので重複説明を省略する。
ノード#Aはブロードキャストパケットを受信すると、パケット処理部4が、その受信パケットの送信元リングのノード番号を参照しリングトポロジテーブル11bを検索する。この結果、受信パケットが、最短方路となるリングから受信したブロードキャストパケットである場合は、パケット処理部4は、そのリングパケットを受信し、ラインカード8(図3参照)にブロードキャストパケットを送信する。また、受信パケットが、ブロードキャストパケットでない場合は、そのブロードキャストパケットは廃棄される。
ここで、ノード#Aは、リング#1をマスターリングと設定する。すなわち、ノード#Aは、スレーブリングとしてのノード#B〜#Fと異なるようにされるのである。そして、ノード#Aは、ノード#Cからのブロードキャストパケットをリング#1から受信し、リング#2からのパケットを廃棄する。
この場合、ノード#Aにおいて、ブロードキャストパケットを受信したリング番号がラインカード8の学習テーブル10に学習されるため、ノード#Aとノード#Cとの間においてリング#1が学習される。従って、ノード#Aは、次にノード#Aからノード#Cに対してパケットを送信する場合、リング#1を選択することになる。従って、ノード#Aとノード#Cとの間において、ノード#Aの学習テーブルが、最短方路となるリング#2を学習することが、リング使用効率を考慮すると好ましい。
また、ノード#Aは、ブロードキャストパケットの送信元ノード番号が例えばノード#Cである場合、リングトポロジテーブル11bを検索することにより、リング#2のEastポートから受信が最短経路(ホップ数が1)であることを認識する。従って、このブロードキャストパケットがリング#2のEastポートから受信されたものである場合、ノード#Aは、そのブロードキャストパケットを取り込み、取り込みしたパケットをラインカード8に送信し、リング#2のEastポート以外からのパケットを廃棄する。
このように、ラインカード8の学習テーブル10には最短経路となるパケットリングについて学習可能となり、効率的に伝送可能となる。
(B4)第4変形例
第4変形例における光ネットワークシステムは、第3変形例の最短経路の選択機能に、最適経路の選択機能が加えられたものである。すなわち、光ネットワークシステムの最短経路の学習は、第3変形例と同様に、クワッドリング以上のリング冗長構成時、かつ各パケットリングのリングトポロジデータ状態が異なるリング冗長構成時において、各ノード#A〜#Fは、ブロードキャストパケットの送信元ノードIDとリングトポロジテーブル11aとを参照してチェックし、リングトポロジにて設定された最短経路を介して転送されたリングパケットのみ受信し、それ以外のブロードキャストパケットを廃棄する。
そして、本変形例においては、各ノード#A〜#Fが、最短経路に依存しないリング選択機能を付与され、これにより、最短経路選択とネットワークの帯域利用状態に応じて最適経路を選択する。
図24に示すクワッドリングにおいて、各リングの各回線容量が例えば1Gbpsの場合、各ノード#A〜#Fは、各ノード#A〜#F自身間のパケット転送量を割り当てるようになっている。具体的には、ノード#Aからノード#B宛のパケット転送量を200Mbpsとし、ノード#Aからノード#C宛のパケット転送量を600Mbpsとし、さらに、ノード#Aからノード#D宛のパケット転送量を600Mbpsとする。
ここで、ノード#Aからノード#C宛パケットとノード#Aからノード#D宛のパケットとが、それぞれ、最短経路であるリング#2のEastを利用するので、1Gbpsの回線容量を超える。従って、例えばノード#Aからノード#C宛のパケットはリング#1のEastを利用することが好ましい。
なお、パケットリングにおいて、回線,システムのトラフィック量又は使用帯域等により動的なパケット送信リングの切り替えは、経路切り替え前後のパケットの順序逆転を発生させる。従って、各ノード#A〜#Fは、以下の図26に示すリングトポロジテーブル11aを静的に設定することが好ましい。
図26は本発明の第2実施形態の第4変形例に係るリングトポロジテーブルの一例を示す図である。この図26に示すリングトポロジテーブル11cは、リング強制選択ビットが設けられており、最短経路に関わらず、最適なパケットリングが選択可能になっている。
例えば、ノード#Aがノード#Cからのブロードキャストパケットを受信するとノード#Aはリングトポロジテーブル11cを参照する。ここで、ホップ数は、リング#2が最短経路であるが、ノード#Aは、リング強制選択ビットがオンとなっているリング#1を選択するようになっており、また、リング強制選択ビットがオフとなっている例えばノード#Dに対し、ノード#Aは、最短経路となるパケットリングを選択する。
これにより、クワッドリング構成時において、最短経路と最適経路との両方の選択が可能となる。
このように、第2実施形態および第2実施形態の第1変形例〜第4変形例に係るRPRカード1a〜1dによれば、各ノード#A〜#Fが同一のRPRカードを用いて一体型と分離型との両機能を実現できるほかに、分離型カードおよび一体型カードのパケットリングが、共通のハードウェアを用いて実現できる。
また、このように、各ノード#A〜#Fにおけるパケット処理に関して共通の処理方法を用いることができ、ラインカード8およびスイッチ部7(例えば図3参照)の共用も可能となる。
そして、パケットリングは、カード冗長およびリング冗長のいずれの冗長方法を用いても、各ノード#A〜#Fの接続トポロジに適した冗長化が可能となり、パケットリングの信頼性向上に寄与する。
これらに加えて、パケットリングは、一体型カードおよび分離型カードのいずれが設けられた場合において、各ノード#A〜#Fはカード冗長,最短経路選択および最適経路選択が可能となる。さらに、4重以上のパケットリングにおいても最短経路選択と最適経路選択とが可能となる。
(C)本発明の第3実施形態の説明
第3実施形態においては、一体型および分離型の各ノード#A〜#F構成についてそれぞれプロテクション方法について説明する。パケットリングのノード又はリング(伝送路)において、障害が発生すると、通常、障害が発生した箇所に最も近いノードが障害発生メッセージをリングに送信し、各ノード#A〜#Fは、ラッププロテクション(Wrap Protection)動作を開始する。各RPRカード(特に断らない限り上述のRPRカード1a,1b)のパケットリングを切り替えることにより、リングが閉ループを形成するようにしている。
また、第3実施形態においては、一体型および分離型の各ノード#A〜#Fの構成に応じて、各ノード#A〜#Fがセンターラップとエッジラップとのラッププロテクション機能を選択するようになっている。このセンターラップとは、2枚のRPRカード1a,1bの間においてパケットを折り返すプロテクションであり、エッジラップとは、RPRカード1a,1bがリングと接続する部分においてパケットを折り返すプロテクションである。すなわち、センターラップとエッジラップとの違いは、ラップを起動する箇所が異なる。
図27は本発明の第3実施形態に係るセンターラップを説明するための図である。この図27に示すノード#Aに設けられた2枚のRPRカード1a,1bのうちの一方のRPRカード1aが故障又は維持管理等によって動作が停止した場合、ノード#Aは、装置全体としてのラッププロテクションを起動する。例えばEast側のRPRカード1aに障害が発生すると、ノード#Aは、West側のRPRカード1bがラッププロテクションを起動し、センターラップを開始する。また、ノード#Bがラップを起動することより、ノード#AのRPRカード1a(East)が保守交換でシステムから抜かれた場合においても、ラッププロテクションを用いた閉ループの形成が可能となる。
図28は本発明の第3実施形態に係るエッジラップを説明するための図である。この図28に示すノード#Aとノード#Bとの間において回線障害が発生した場合は、ノード#Aがエッジラップを起動し、ノード#Bがラッププロテクションを起動することより閉ループの形成が可能となる。
従って、センターラップとエッジラップとの両方のラッププロテクション機能を有し、一体型および分離型の各構成に応じて、各ノード#A〜#Fがセンターラップとエッジラップとのラッププロテクション機能を選択できる。
従来、一体型カードを設けたノードは、エッジラップのみをサポートしていた。この理由は、一体型カードは保守交換時、RPRカード(図33、図35参照)ごと除去されるため、センターラップを実装していてもプロテクションができないからである。
これに対して、本発明のノード#A〜#Fは、一体型カードおよび分離型カードのいずれのRPRカードを設けた場合においても、RPRカード1c,1dにセンターラップとエッジラップとの両方のラッププロテクションを実装することより、一体型又は分離型の各構成に応じて所望のラッププロテクションが可能となる。
(D)その他
本発明は上述した実施態様およびその変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々変形して実施することができる。
パケットリングを構成するノード数は例えば2,4,6,8および8以上など種々変更可能である。
以上、詳述したように、本発明のノードによれば、一体型カードおよび分離型カードの光ネットワークシステムが共通のハードウェアを用いて実現でき、各ノード#A〜#Fにおけるパケット処理に関して共通の処理方法を用いることができ、また、ラインカードおよびスイッチカードの共用も可能となり、これにより、システム構築のコストを低減できる。
一体型カードの場合は、ノードが1枚のRPRカードを用いてパケットリングに接続でき、分離型カードの場合と比較して、パケットリングおよびノードのコストダウンが可能となる。また、RPRカードを収容するスロットの消費も削減することが可能なため、ラインカードも含めたノード全体のポート数の増加が図れる。
特に、信頼性よりもコストダウン化を重要視する小規模ネットワーク等に用いられると顕著である。従って、コストダウンよりも信頼性を重要視する通信事業者(通信キャリア)が保有するキャリアネットワーク等についてサービスが向上する。
本発明の第1実施形態に係る光ネットワークシステムの構成図である。 本発明の第1実施形態に係るRPRネットワークの概略的な構成図である。 本発明の第1実施形態に係る分離型カードを設けたノードのブロック図である。 本発明の第1実施形態に係るRPRインタフェースカードのブロック図である。 本発明の第1実施形態に係る分離型カード構成におけるスイッチ処理を説明するための図である。 (a)〜(c)はいずれも本発明の第1実施形態に係るパケットフォーマットを示す図である。 本発明の第1実施形態に係るリングトポロジテーブルを説明するための図である。 本発明の第1実施形態に係る一体型カードを設けたノードのブロック図である。 本発明の第1実施形態の第1変形例に係るノードのブロック図である。 本発明の第1実施形態の第1変形例に係るRPRインタフェースカードのブロック図である。 本発明の第1実施形態の第1変形例に係るノードのブロック図である。 本発明の第2実施形態に係るパケットリングの構成図である。 本発明の第2実施形態に係るハッシュ演算部のブロック図である。 本発明の第2実施形態に係るリングトポロジテーブルの一例を示す図である。 (a)は本発明の第2実施形態に係る3重パケットリングの構成図であり、(b)は本発明の第2実施形態に係るリングセレクトテーブルの一例を示す図である。 (a)は本発明の第2実施形態に係る障害発生時の3重パケットリングを説明するための図であり、(b)は本発明の第2実施形態に係るリングセレクトテーブルの一例を示す図である。 (a)は本発明の第2実施形態に係る他の3重パケットリングの一例を示す図であり、(b)は本発明の第2実施形態に係る他のリングセレクトテーブルの一例を示す図である。 (a)は本発明の第2実施形態に係る障害発生時における3重パケットリングの一例を示す図であり、(b)は本発明の第2実施形態に係るリングセレクトテーブルの一例を示す図である。 本発明の第2実施形態の第1変形例に係るパケットリングの構成図である。 (a)は本発明の第2実施形態の第1変形例に係るブロードキャストレジスタの項目を示す図であり、(b)は本発明の第2実施形態の第1変形例に係るブロードキャストレジスタの設定例を示す図である。 本発明の第2実施形態の第2変形例に係るクワッドリングの構成図である。 本発明の第2実施形態の第2変形例に係るブロードキャストレジスタの一例を示す図である。 本発明の第2実施形態の第2変形例に係るブロードキャストレジスタの第2の例を示す図である。 本発明の第2実施形態の第3変形例に係るクワッドリングの構成図である。 本発明の第2実施形態の第3変形例に係るリングトポロジテーブルの一例を示す図である。 本発明の第2実施形態の第4変形例に係るリングトポロジテーブルの一例を示す図である。 本発明の第3実施形態に係るセンターラップを説明するための図である。 本発明の第3実施形態に係るエッジラップを説明するための図である。 光ネットワークシステムの構成例を示す図である。 (a),(b)はそれぞれRPRネットワークに用いられるパケットフォーマットの一例を示す図である。 (a)〜(c)はそれぞれ多重リング伝送路を説明するための図である。 RPRネットワークのノードに設けられた分離型RPRインタフェースカードの構成図である。 RPRネットワークのノードに設けられた一体型RPRインタフェースカードの構成図である。 従来の分離型RPRインタフェースカード内のデータパスを示す図である。 従来の一体型RPRインタフェースカード内のデータパスを示す図である。

Claims (10)

  1. 複数のノードが多重リング伝送路を介して接続されたリング伝送路のリングパケットと、複数の第2伝送路の第2パケットとをスイッチするノードであって、
    該リングパケットの送信元ノードを表すノード識別子と、該多重リング伝送路の各リング伝送路を表すリング識別子と、該第2パケットの送信元装置のアドレス情報と、該複数のノードの接続状態を表すリングトポロジとに基づいて、該第2伝送路との間において該第2パケットを送受信するラインカードと、
    受信した該リングパケットのノード識別子と該ラインカードにて受信された該第2パケットの送信先アドレスとに基づいて該リングパケットおよび該第2パケットをそれぞれ該ラインカード側又は該多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、
    該複数のプロトコル処理部から該ラインカード側に出力された該リングパケットと該ラインカードから該複数のプロトコル処理部側に出力された該第2パケットとの各転送経路をスイッチするパケット処理部とをそなえて構成されたことを特徴とする、ノード。
  2. 該複数のプロトコル処理部と、該パケット処理部とを設けたRPRインタフェースカードを複数そなえ、
    上記の複数のRPRインタフェースカードのうちの少なくとも1枚が、
    該多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、該複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードとして構成されたことを特徴とする、請求項1記載のノード。
  3. 該複数のプロトコル処理部と、該パケット処理部とを設けたRPRインタフェースカードをそなえ、
    上記のRPRインタフェースカードが、
    該多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとして構成されたことを特徴とする、請求項1記載のノード。
  4. 該複数のプロトコル処理部が、それぞれ、該多重リング伝送路のうちの一部のリング伝送路との間において該リングパケットを入出力する第1プロトコル処理部と、該多重リング伝送路のうちの残りのリング伝送路との間において該リングパケットを入出力する第2プロトコル処理部とを有し、
    上記の複数のRPRインタフェースカードのうちの同一のRPRインタフェースカードに設けられた該第1プロトコル処理部と該第2プロトコル処理部とが内部メイトインタフェースを介して接続されるとともに、該複数のRPRインタフェースカードのうちの別個のRPRインタフェースカードに設けられた該第1プロトコル処理部と該第2プロトコル処理部とが外部メイトインタフェースを介して接続されて構成されたことを特徴とする、請求項2又は記載のノード。
  5. 該複数のプロトコル処理部が、それぞれ、
    該リングパケットの送信先アドレスに基づいて、当該リングパケットが自ノード宛であるのか他ノード宛であるのかを判定し、
    自ノード宛と判定した場合は、当該リングパケットを該パケット処理部に転送する一方、他ノード宛と判定した場合は、当該リングパケットを該多重リング伝送路にスルーするように構成されたことを特徴とする、請求項4記載のノード。
  6. ハッシュ演算の演算結果と該リング識別子とを対応づけた対応データを保持するハッシュ演算結果保持部を設け、
    該多重リング伝送路における障害発生時に、該ハッシュ演算結果保持部に保持された該対応データを更新することにより、障害が発生したリング伝送路を介したブロードキャストパケット配信を停止し、かつ該ブロードキャストパケット配信の負荷分散を継続するように構成されたことを特徴とする、請求項1記載のノード。
  7. 該ラインカードが、
    該ノード識別子と、該リング識別子と、該第2パケットの送信元装置のアドレス情報とを対応づけて保持する学習テーブルと、該複数のノードの接続状態を表すリングトポロジを保持するリングトポロジテーブルとをそなえ、
    該学習テーブルが、
    該多重リング伝送路が4重以上の場合において、ブロードキャストパケットの送信元ノードのノード識別子と該リングトポロジとに基づいて、最短経路を経由して転送されたリングパケットを取得するとともにブロードキャストパケットを廃棄することにより、該ブロードキャストパケットを転送するための最短経路を学習するように構成されたことを特徴とする、請求項1項記載のノード。
  8. 複数のノードが多重リング伝送路を介して接続されたリング伝送路のリングパケットと、複数の第2伝送路の第2パケットとをスイッチするRPRインタフェースカードであって、
    受信した該リングパケットのノード識別子と該複数の第2伝送路から受信された該第2パケットの送信先アドレスとに基づいて該リングパケットおよび該第2パケットをそれぞれ該複数の第2伝送路側又は該多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、
    該複数のプロトコル処理部から該複数の第2伝送路側に出力された該リングパケットと該複数の第2伝送路から該複数のプロトコル処理部側に出力された該第2パケットとの各転送経路をスイッチするパケット処理部とをそなえ、
    該多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、該複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードとして構成されたことを特徴とする、RPRインタフェースカード。
  9. 複数のノードが多重リング伝送路を介して接続されたリング伝送路のリングパケットと、複数の第2伝送路の第2パケットとをスイッチするRPRインタフェースカードであって、
    受信した該リングパケットのノード識別子と該複数の第2伝送路から受信された該第2パケットの送信先アドレスとに基づいて該リングパケットおよび該第2パケットをそれぞれ該複数の第2伝送路側又は該多重リング伝送路側との間において入出力し相互に接続されたプロトコル処理部と、
    該プロトコル処理部から該複数の第2伝送路側に出力された該リングパケットと該複数の第2伝送路から該プロトコル処理部側に出力された該第2パケットとの各転送経路をスイッチするパケット処理部とをそなえ、
    該多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとして構成されたことを特徴とする、RPRインタフェースカード。
  10. 複数のノードが多重リング伝送路を介して接続されたリング伝送路のリングパケットと、複数の第2伝送路の第2パケットとをスイッチするノードを設けた光ネットワークシステムであって、
    上記の複数のノードのうちの少なくとも1基のノード又は該リング伝送路が、
    受信した該リングパケットのノード識別子と該複数の第2伝送路から受信された該第2パケットの送信先アドレスとに基づいて該リングパケットおよび該第2パケットをそれぞれ該複数の第2伝送路側又は該多重リング伝送路側との間において入出力し相互に接続された複数のプロトコル処理部と、該複数のプロトコル処理部から該複数の第2伝送路側に出力された該リングパケットと該複数の第2伝送路から該複数のプロトコル処理部側に出力された該第2パケットとの各転送経路をスイッチするパケット処理部とを設けたRPRインタフェースカードをそなえ、
    該多重リング伝送路の第1方向と第2方向とのそれぞれに設けられた複数のポートのうちの第1方向のポートに接続された第1カードと、該複数のポートのうちの第2方向のポートに接続された第2カードとが分離して設けられた分離型カードと、該多重リング伝送路の第1方向および第2方向にそれぞれ設けられた複数のポートの全てに接続された一体型カードとを混在させて構成されたことを特徴とする、光ネットワークシステム。
JP2005507577A 2003-08-06 2003-08-06 ノード,rprインタフェースカードおよび光ネットワークシステム Expired - Fee Related JP4109693B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/010002 WO2005015851A1 (ja) 2003-08-06 2003-08-06 ノード,rprインタフェースカードおよび光ネットワークシステム

Publications (2)

Publication Number Publication Date
JPWO2005015851A1 JPWO2005015851A1 (ja) 2006-10-12
JP4109693B2 true JP4109693B2 (ja) 2008-07-02

Family

ID=34131268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507577A Expired - Fee Related JP4109693B2 (ja) 2003-08-06 2003-08-06 ノード,rprインタフェースカードおよび光ネットワークシステム

Country Status (2)

Country Link
JP (1) JP4109693B2 (ja)
WO (1) WO2005015851A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556747B2 (ja) * 2005-04-06 2010-10-06 Kddi株式会社 ソフトウェア無線通信装置及びハードウェア設計言語プログラム
CN100389577C (zh) * 2005-05-30 2008-05-21 华为技术有限公司 在弹性分组环上实现广播或组播的方法及装置
JP5152642B2 (ja) * 2005-05-31 2013-02-27 日本電気株式会社 パケットリングネットワークシステム、パケット転送方法、およびノード
JP2006345339A (ja) 2005-06-10 2006-12-21 Fujitsu Ltd リングネットワークを構成するノード装置およびデータフレーム制御方法
CN101194474B (zh) * 2005-06-10 2010-12-01 Ut斯达康通讯有限公司 弹性分组环的互联方法以及***
JP2007274305A (ja) * 2006-03-31 2007-10-18 Nec Corp リングネットワーク、通信装置及びそれらに用いる運用管理方法
CN1852211B (zh) * 2006-04-11 2010-04-07 华为技术有限公司 去除环网上出现的环id错误报文的方法及设备
JP4887897B2 (ja) 2006-05-12 2012-02-29 富士通株式会社 パケット伝送装置、パケット転送方法及びパケット伝送システム
JP5086585B2 (ja) 2006-08-11 2012-11-28 アラクサラネットワークス株式会社 ネットワーク中継装置
JP5115033B2 (ja) * 2007-05-30 2013-01-09 富士通株式会社 パケット中継方法及び装置
JP4983438B2 (ja) * 2007-06-29 2012-07-25 富士通株式会社 パケット伝送負荷分散制御方法及び装置
JP5292892B2 (ja) 2008-03-31 2013-09-18 富士通株式会社 回線収容装置および制御方法
JP5178636B2 (ja) * 2009-06-17 2013-04-10 アラクサラネットワークス株式会社 情報処理装置、パケット振り分け方法および装置
CN112737956A (zh) * 2019-10-28 2021-04-30 华为技术有限公司 报文的发送方法和第一网络设备
CN113938420B (zh) * 2021-10-26 2023-06-20 新华三信息安全技术有限公司 一种rpr相交环的环路避免方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556057A (ja) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd ループネツトワークシステム
JP2812268B2 (ja) * 1995-09-29 1998-10-22 日本電気株式会社 リングネットワークシステムにおける障害回避制御方法

Also Published As

Publication number Publication date
JPWO2005015851A1 (ja) 2006-10-12
WO2005015851A1 (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
JP5158369B2 (ja) 通信システム、ノード、端末、通信方法、およびプログラム
US7619987B2 (en) Node device
JP4034782B2 (ja) リング間接続装置、及びデータ転送制御方法
US8854975B2 (en) Scaling OAM for point-to-point trunking
US6952397B2 (en) Communication in a bidirectional ring network with single-direction receiving
JP5152642B2 (ja) パケットリングネットワークシステム、パケット転送方法、およびノード
JP4109693B2 (ja) ノード,rprインタフェースカードおよび光ネットワークシステム
US7986619B2 (en) Packet network system
US20080130490A1 (en) Method For Implementing on-Ring Process, Off-Ring Process and Data Forwarding in Resilience Packet Data Ringnet and a Network Device Thereof
JPWO2006092915A1 (ja) パケットリングネットワークシステム、パケットリング間の接続方法、およびリング間接続ノード
JP2004504734A (ja) ブロードバンド網内でデータパケットを高利用度で、直接的に、フレキシブルにかつ拡張可能に交換するシステムおよび方法
WO2009045608A1 (en) Providing an abstraction layer in a cluster switch that includes plural switches
WO2002065306A1 (en) System and method for fault notification in a data communication network
JP2006087107A (ja) 回復力のあるパケット・リング・ネットワークにおいてトラフィックをブリッジする方法及びシステム
JP2003046547A (ja) パケット転送方法およびパケット送受信装置
JP4705492B2 (ja) リングノード装置及びリングノード冗長方法
US20080316919A1 (en) Trunk interface in resilient packet ring, method and apparatus for realizing the trunk interface
JP2007519377A (ja) ノードを通したパケット送信方法
US20150172173A1 (en) Communication system, communication apparatus and path switching method
WO2007080831A1 (ja) パケットリングネットワークシステム、パケット転送方法、冗長化ノード、およびパケット転送プログラム
EP2079195B1 (en) Packet ring network system, packet transfer method and interlink node
US6785725B1 (en) Signaling address resolution in a communication network
JP4883317B2 (ja) 通信システム、ノード、端末、プログラム及び通信方法
JP5089363B2 (ja) 通信システムおよびリングノード装置
CN100396022C (zh) 监听网络业务的实现方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees