JP4108509B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4108509B2
JP4108509B2 JP2003060273A JP2003060273A JP4108509B2 JP 4108509 B2 JP4108509 B2 JP 4108509B2 JP 2003060273 A JP2003060273 A JP 2003060273A JP 2003060273 A JP2003060273 A JP 2003060273A JP 4108509 B2 JP4108509 B2 JP 4108509B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
oil
vehicle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060273A
Other languages
Japanese (ja)
Other versions
JP2004270999A (en
Inventor
浩 濱本
肇 山本
洋一 宮崎
雄一 薬丸
文俊 西脇
秀樹 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Japan Climate Systems Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Japan Climate Systems Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Japan Climate Systems Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003060273A priority Critical patent/JP4108509B2/en
Publication of JP2004270999A publication Critical patent/JP2004270999A/en
Application granted granted Critical
Publication of JP4108509B2 publication Critical patent/JP4108509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置に関するものである。
【0002】
【従来の技術】
従来、車両用空調装置として、冷凍サイクルで二酸化炭素を循環させるようにしたものがある。このような空調装置では、サイクル効率を高めるため、冷媒を超臨界状態で循環させると共に、車外側熱交換器の出口側にオイル分離器を設けるようにしている(例えば、特許文献1,2参照)。
【0003】
【特許文献1】
特開2000−274844号公報
【特許文献2】
特開2000−274890号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記車両用空調装置では、外気温度が低い場合(例えば、10℃前後)、車外側熱交換器での放熱量が大きくなり、冷媒が亜臨界状態となって車外側熱交換器の出口側で液相となる。このため、オイル分離器を設けているにも拘わらず、オイルの分離を行うことができず、所望のサイクル効率で運転することが困難となる。そして、コンプレッサ内でオイルが不足し、異常停止する等の不具合が発生する恐れがある。逆に、オイル分離器でオイルを分離できるように、冷媒を超臨界状態に維持しようとすれば、車内側熱交換器での冷却能力を抑制しなければならず、車室内を十分に冷却することが不可能となる。
【0005】
そこで、本発明は、所望の冷却能力を維持しつつ、コンプレッサから漏出するオイルを適切に還流して所望の動作を確保することのできる車両用空調装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、
コンプレッサから吐出させた冷媒を、車外側熱交換器、第1冷媒減圧手段、及び、車内側熱交換器を介してコンプレッサに戻して循環させる冷凍サイクルを備えた車両用空調装置において、
前記コンプレッサから吐出された冷媒と、エンジン冷却水との間で熱交換させる水−冷媒熱交換器と、
該水−冷媒熱交換器から流出する冷媒からオイルを分離するオイル分離手段と、
該オイル分離手段で分離したオイルを減圧して前記コンプレッサに戻すオイル減圧手段とを備え、
前記水−冷媒熱交換器は、一対のヘッダに、熱交換可能に配置した一対のチューブをそれぞれ接続してなる構成とし、前記車外側熱交換器へと冷媒を流出させる出口側ヘッダ内を、第1遮蔽板で分離して前記オイル分離手段となるオイル分離室と冷媒室とを形成し、前記遮蔽板に、前記チューブでの冷媒の流動方向に対して平行に位置をずらせて貫通孔を形成したものである。
【0007】
この構成により、コンプレッサから吐出された高温の冷媒は、水−冷媒熱交換器を通過することによりエンジン冷却水に放熱され、気体の状態を維持したままオイル分離器へと流入する。このため、オイル分離器では、オイルと冷媒とがほぼ2相に分かれた状態となり、適切に分離される。つまり、車外側熱交換器で冷却する場合のように、外気温度の影響を受けて冷却過剰となることがなく、オイル及び冷媒が分離の困難な液相となる心配もない。したがって、車外側熱交換器での熱交換を十分に行うことができ、車内側熱交換器の冷却能力を十分に発揮させることが可能となる。また、簡単な構成であるにも拘わらず、オイルの分離を効果的に行わせることが可能となる。
前記出口側ヘッダ内を、さらに第2遮蔽板で分離してオイル回収室を形成し、前記第2遮蔽板に、前記オイル分離室と前記オイル回収室とを連通する連通孔を形成すると、オイルの分離をより一層効果的に行わせることが可能となる点で好ましい。
【0008】
前記オイル分離手段から流出する冷媒を、冷房時にはそのまま、暖房時には減圧して前記車外側熱交換器に流入させる第2冷媒減圧手段と、
暖房時、前記車外側熱交換器から流出する冷媒を、前記第1冷媒減圧手段及び前記車内側熱交換器をバイパスさせて前記コンプレッサに還流可能とするバイパス手段とを備えるのが好ましい。
【0009】
この構成により、冷房時には車内側熱交換器による冷却を中止することができる。また、第2冷媒減圧手段で冷媒を減圧して車外側熱交換器での吸熱を可能とすることにより、水−冷媒熱交換器でエンジン冷却水への放熱量を増大させることができる。しかも、冷房時のみならず、暖房時にも、オイル分離手段によるオイルを分離することが可能となる。
【0010】
前記車外側熱交換器から流出する冷媒と、前記車内側熱交換器から流出する冷媒との間で熱交換させる内部熱交換器を備えると、より一層サイクル効率を高めることが可能となる点で好ましい。
【0011】
前記オイル分離手段は、前記水−冷媒熱交換器に一体的に設けると、コンパクトで安価な構成とすることが可能となる点で好ましい。
【0014】
前記水−冷媒熱交換器に流入させるエンジン冷却水の流量を、その水温に基づいて調整する流量調整手段を備えると、水−冷媒熱交換器による冷媒の冷却を最も適した条件で行わせることが可能となる点で好ましい。
【0015】
なお、前記冷媒には二酸化炭素を使用することが可能である。
【0016】
【発明の実施の形態】
以下、本発明に係る実施形態を添付図面に従って説明する。
【0017】
図1は、本実施形態に係る車両用空調装置の冷凍サイクル100を示す概略図である。この冷凍サイクル100では、コンプレッサ1から吐出された冷媒が、水−冷媒熱交換器2、第2冷媒減圧手段である絞り弁3、車外側熱交換器4、第1冷媒減圧手段である第1膨張弁5、及び、車内側熱交換器6を介してコンプレッサ1に戻って循環する。車外側熱交換器4から流出して車内側熱交換器6に向かって流動する冷媒と、車内側熱交換器6から流出してコンプレッサ1へと還流する冷媒とは内部熱交換器7によって熱交換されている。なお、ここでは、冷媒には二酸化炭素が使用されている。
【0018】
コンプレッサ1は、エンジン8の駆動力が図示しないクラッチを介して伝達され、所定回転数で駆動することにより、冷媒を高温・高圧状態として吐出する。
【0019】
水−冷媒熱交換器2は、図2乃至図4に示すように、第1ヘッダ9と第2ヘッダ10、及び、第3ヘッダ11と第4ヘッダ12の間を、扁平状の第1チューブ13、及び、第2チューブ14でそれぞれ接続し、両チューブ13,14を互いに面接触させたものである。第1ヘッダ9には、コンプレッサ1から吐出された高温・高圧の冷媒が流入する。この高温・高圧の冷媒は、第1チューブ13を介して第2ヘッダ10へと流入する。第3ヘッダ11にはエンジン冷却水が流入し、第2チューブ14を介して第4ヘッダ12へと流動する。エンジン冷却水の水量は、流量調整弁30によって調整されている。流量調整弁30は、エンジン冷却水の温度を検出する温度センサ(図示せず)での検出温度に基づいて開度を調整される。
【0020】
第2ヘッダ10は、図2に示すように、第1遮蔽板15によって長手方向に2分割され、第1チューブ13が接続される冷媒室16と、オイル分離室17とが形成されている。第1遮蔽板15には、長手方向に沿って2列で複数の貫通孔15aが形成されている。貫通孔15aは、第1チューブ13から冷媒室16に流入した冷媒が直接冷媒室へと流出しないように、その流動方向に対して平行に変位した両側に位置している。これにより、冷媒が一旦第1遮蔽板15に衝突し、冷媒からのオイルの分離が適切に行われる。
【0021】
また、第2ヘッダ10の下部には、図4に示すように、第2遮蔽板18が設けられ、オイル回収室19が形成されている。第2遮蔽板18には、前記オイル分離室17に連通する複数の連通孔18aが形成され、冷媒から分離されたオイルが回収されるようになっている。オイル回収室19に回収されたオイルは、オイル回収管20を介してコンプレッサ2へと還流される。オイル回収管20内にはオイル減圧手段である絞り部20a(オリフィス)が形成され、通過するオイルが減圧されるようになっている。
【0022】
第1チューブ13は、図2及び図3に示すように、熱伝導性に優れた金属材料等で形成される板状材に所定間隔で複数の連通孔13aを形成したもので、押出や鋳造等により加工され、耐圧性に優れている。第2チューブ14は、内部を所定間隔で設けた仕切部14aによって仕切られており、各仕切部14aは、冷媒の流れが蛇行するように上下それぞれの端部で切除されている。第1チューブ13と第2チューブ14とは、両端の各ヘッダ9,12と10,11とへの接続部分を除いて面接触するように一体化されている。この面接触部分で冷媒からエンジン冷却水に放熱可能となっている。
【0023】
車外側熱交換器4は車両前方部に配設され、通過する高温・高圧の冷媒と外気との間で熱交換し、冷媒を冷却する。
【0024】
第1膨張弁5は通過する冷媒を気化しやすい状態に減圧する。
【0025】
車内側熱交換器6は車内前方部に配設した空調ユニット21内に設けられ、内部を通過する冷媒が気化することにより、空調ユニット21を通過する空気を冷却・除湿する。空調ユニット21には、車内側熱交換器6の下流側にエアミックスダンパ22が設けられ、通過する冷風が分流されている。分流された一方の冷風は、内部をエンジン冷却水が流動するヒータコア23で加熱され、残る他方の冷風と混合されて所望温度に温調された後、車内に送風される。
【0026】
前記車内側熱交換器4と前記第1膨張弁5には、バイパス管24によって開閉弁25が並列接続されている。開閉弁25は、冷房時及び除湿暖房時に全閉とされ、暖房時には全開とされる。
【0027】
次に、前記構成の冷凍サイクルを備えた車両用空調装置の動作について説明する。
【0028】
冷房運転では、絞り弁3を全開とし、開閉弁25を全閉とする。そして、コンプレッサ1を駆動すると、冷媒は高温・高圧状態で吐出され、まず、水−冷媒熱交換器2の第1ヘッダ9に流入し、第1チューブ13を介して第2ヘッダ10へと流動する。冷媒は第1チューブ13を流動する間、第2チューブ14を流動するエンジン冷却水と熱交換され、冷却される。このとき、第2チューブ14を流動するエンジン冷却水の水量は、流量調整弁30により水温の違いに応じた値に調整する。すなわち、水−冷媒熱交換器2の熱交換能力が所望の値とされ、通過後の冷媒が凝縮しないようになっている。
【0029】
第2ヘッダ10に流入した冷媒は、冷媒室16から第1遮蔽板15の貫通孔15aを介してオイル分離室17へと流入する。冷媒と、そこに混入するオイルとは、水−冷媒熱交換器2を通過することにより冷却されてはいるが、気化した状態を維持しているため、混ざり合わずに冷媒とオイルとに分離した状態となっている。このため、第1遮蔽板15によって、比重の大きいオイルが、自重によって下方へと移動する。そして、このオイルは、第2遮蔽板18の連通孔を介してオイル回収室19に回収され、オイル回収管20を介してコンプレッサ1へと還流される。オイルはオイル回収管20を流動する際、絞り部20aによって減圧され、コンプレッサ1に流入する際には完全に気化した状態となる。
【0030】
冷媒室16に流入した冷媒は、車外側熱交換器4を流動し、外気と熱交換されて冷却される。車外側熱交換器4で冷却された冷媒は、内部熱交換器7を流動してさらに冷却された後、車内側熱交換器6に流入する。車内側熱交換器6では、冷媒は内部を流動することにより部分的に気化し、空調ユニット21を通過する空気を冷却・除湿する。車内側熱交換器6から流出した冷媒は、内部熱交換器7を通過することにより車外側熱交換器4から車内側熱交換器6に向かう高温の冷媒から吸熱して完全に気化する。このため、アキュムレータ(気液分離器)は不要である。
【0031】
一方、暖房運転では、運転開始直後で、エンジン冷却水の温度が十分に上昇していなければ、絞り弁3の開度を調整し、開閉弁25を全開とした状態で、コンプレッサ1の駆動を開始する。これにより、コンプレッサ1から吐出された冷媒は、前記同様、高温・高圧状態で、水−冷媒熱交換器2を流動し、エンジン冷却水と熱交換される。冷媒に含まれるオイルは前記同様コンプレッサ1に還流される。水−冷媒熱交換器2で冷却された冷媒は、絞り弁3で減圧され、車外側熱交換器4を通過する際、気化して外気から吸熱する。そして、車内側熱交換器6をバイパスし、コンプレッサ1に戻って循環する。このように、冷媒は、車外側熱交換器4で気化すると共に、車内側熱交換器6をバイパスすることにより、十分に温度が上昇する。したがって、水−冷媒熱交換器2でエンジン冷却水を急速に温度上昇させることができ、ヒータコア23による車内暖房を暖房運転の開始直後から開始することが可能となる。その後、エンジン冷却水の温度が上昇し、水−冷媒熱交換器2によるエンジン冷却水の加熱が不要となれば、コンプレッサ1の駆動を停止する。
【0032】
また、除湿暖房が必要となった場合には、前記冷房運転時と同様に、絞り弁3を全開とし、開閉弁25を全閉とすればよい。これにより、前記同様、車内側熱交換器6により、空調ユニット21内を通過する空気の除湿が可能となる。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明によれば、コンプレッサと車外側熱交換器の間に水−冷媒熱交換器を設けるようにしたので、冷媒とオイルとを確実に気相の2つに分離した状態で冷却することができ、オイル分離手段によるオイルの分離を容易に行わせることが可能である。また、オイル分離手段により分離したオイルは、減圧手段により減圧して気化した状態でコンプレッサに還流可能であるので、コンプレッサが異常停止する等の不具合を発生させることもない。
【図面の簡単な説明】
【図1】 本実施形態に係る車両用空調装置の冷凍サイクルを示す概略図である。
【図2】 図1の水−冷媒熱交換器を示す斜視図である。
【図3】 (a)は図2の平面図、(b)は正面図である。
【図4】 図2の第2ヘッダの縦断面図である。
【符号の説明】
1…コンプレッサ
2…水−冷媒熱交換器
3…絞り弁(第2冷媒減圧手段)
4…車外側熱交換器
5…第1膨張弁(第1冷媒減圧手段)
6…車内側熱交換器
7…内部熱交換器
8…エンジン
9…第1ヘッダ
10…第2ヘッダ
11…第3ヘッダ
12…第4ヘッダ
13…第1チューブ
14…第2チューブ
15…第1遮蔽板(オイル分離手段)
16…冷媒室
17…オイル分離室
18…第2遮蔽板
19…オイル回収室
20…バイパス流路
20a…絞り部(オイル減圧手段)
23…ヒータコア
24…バイパス管
25…開閉弁
30…流量調整弁(流量調整手段)
100…冷凍サイクル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air conditioner.
[0002]
[Prior art]
Conventionally, there is a vehicle air conditioner that circulates carbon dioxide in a refrigeration cycle. In such an air conditioner, in order to improve cycle efficiency, the refrigerant is circulated in a supercritical state, and an oil separator is provided on the outlet side of the vehicle exterior heat exchanger (see, for example, Patent Documents 1 and 2). ).
[0003]
[Patent Document 1]
JP 2000-274844 A [Patent Document 2]
JP 2000-274890 A [0004]
[Problems to be solved by the invention]
However, in the vehicle air conditioner, when the outside air temperature is low (for example, around 10 ° C.), the amount of heat dissipated in the outside heat exchanger increases, and the refrigerant becomes subcritical and the outlet of the outside heat exchanger. It becomes liquid phase on the side. For this reason, although the oil separator is provided, the oil cannot be separated, and it becomes difficult to operate at a desired cycle efficiency. In addition, there is a risk that a problem such as an abnormal stoppage occurs due to insufficient oil in the compressor. Conversely, if the refrigerant is to be maintained in a supercritical state so that the oil can be separated by the oil separator, the cooling capacity of the vehicle interior heat exchanger must be suppressed, and the vehicle interior is sufficiently cooled. It becomes impossible.
[0005]
Then, this invention makes it a subject to provide the vehicle air conditioner which can ensure the desired operation | movement by appropriately recirculating the oil which leaks from a compressor, maintaining a desired cooling capability.
[0006]
[Means for Solving the Problems]
As a means for solving the above problems, the present invention provides:
In a vehicle air conditioner including a refrigeration cycle for circulating the refrigerant discharged from the compressor back to the compressor via the vehicle exterior heat exchanger, the first refrigerant decompression means, and the vehicle interior heat exchanger,
A water-refrigerant heat exchanger for exchanging heat between the refrigerant discharged from the compressor and engine cooling water;
Oil separation means for separating oil from refrigerant flowing out of the water-refrigerant heat exchanger;
Oil pressure reducing means for reducing the pressure of the oil separated by the oil separating means and returning it to the compressor;
The water-refrigerant heat exchanger has a configuration in which a pair of tubes arranged so as to be capable of exchanging heat are connected to a pair of headers, and the inside of the outlet side header that causes the refrigerant to flow out to the vehicle exterior heat exchanger, An oil separation chamber and a refrigerant chamber, which are separated by the first shielding plate and serve as the oil separation means, are formed, and a through hole is formed in the shielding plate by shifting the position in parallel to the flow direction of the refrigerant in the tube. Formed .
[0007]
With this configuration, the high-temperature refrigerant discharged from the compressor is radiated to the engine cooling water by passing through the water-refrigerant heat exchanger, and flows into the oil separator while maintaining the gaseous state. For this reason, in an oil separator, oil and a refrigerant will be in the state divided into two phases, and are separated appropriately. That is, unlike the case of cooling by the vehicle outside heat exchanger, the cooling does not become excessive due to the influence of the outside air temperature, and there is no fear that the oil and the refrigerant become a liquid phase that is difficult to separate. Therefore, it is possible to sufficiently perform heat exchange in the vehicle exterior heat exchanger, and to sufficiently exhibit the cooling ability of the vehicle interior heat exchanger. Moreover, although it is a simple structure, it becomes possible to perform oil separation effectively.
When the outlet side header is further separated by a second shielding plate to form an oil recovery chamber, and the second shielding plate is formed with a communication hole that communicates the oil separation chamber and the oil recovery chamber, This is preferable in that it is possible to perform the separation more effectively.
[0008]
Second refrigerant decompression means for reducing the refrigerant flowing out from the oil separation means as it is during cooling and reducing the pressure during heating into the vehicle exterior heat exchanger;
It is preferable to include a bypass unit that allows the refrigerant flowing out of the vehicle exterior heat exchanger to flow back to the compressor by bypassing the first refrigerant decompression device and the vehicle interior heat exchanger during heating.
[0009]
With this configuration, cooling by the vehicle interior heat exchanger can be stopped during cooling. Further, the amount of heat released to the engine coolant can be increased by the water-refrigerant heat exchanger by depressurizing the refrigerant by the second refrigerant depressurizing means and enabling the heat absorption by the outside heat exchanger. Moreover, the oil can be separated by the oil separation means not only during cooling but also during heating.
[0010]
The cycle efficiency can be further improved by providing an internal heat exchanger that exchanges heat between the refrigerant flowing out of the vehicle exterior heat exchanger and the refrigerant flowing out of the vehicle interior heat exchanger. preferable.
[0011]
If the oil separation means is provided integrally with the water-refrigerant heat exchanger, it is preferable in that a compact and inexpensive configuration can be achieved.
[0014]
Cooling of the refrigerant by the water-refrigerant heat exchanger is performed under the most suitable condition by providing a flow rate adjusting means for adjusting the flow rate of the engine cooling water flowing into the water-refrigerant heat exchanger based on the water temperature. Is preferable in that it becomes possible.
[0015]
Carbon dioxide can be used as the refrigerant.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the accompanying drawings.
[0017]
FIG. 1 is a schematic diagram showing a refrigeration cycle 100 of a vehicle air conditioner according to the present embodiment. In the refrigeration cycle 100, the refrigerant discharged from the compressor 1 is a water-refrigerant heat exchanger 2, a throttle valve 3 as second refrigerant decompression means, an outside heat exchanger 4, and first refrigerant decompression means. It circulates back to the compressor 1 via the expansion valve 5 and the vehicle interior heat exchanger 6. The refrigerant flowing out from the vehicle exterior heat exchanger 4 and flowing toward the vehicle interior heat exchanger 6 and the refrigerant flowing out from the vehicle interior heat exchanger 6 and returning to the compressor 1 are heated by the internal heat exchanger 7. Have been replaced. Here, carbon dioxide is used as the refrigerant.
[0018]
The compressor 1 receives the driving force of the engine 8 via a clutch (not shown), and is driven at a predetermined rotational speed to discharge the refrigerant in a high temperature / high pressure state.
[0019]
As shown in FIGS. 2 to 4, the water-refrigerant heat exchanger 2 includes a flat first tube between the first header 9 and the second header 10 and between the third header 11 and the fourth header 12. 13 and the second tube 14, and the tubes 13 and 14 are in surface contact with each other. High temperature and high pressure refrigerant discharged from the compressor 1 flows into the first header 9. The high temperature / high pressure refrigerant flows into the second header 10 through the first tube 13. Engine coolant flows into the third header 11 and flows to the fourth header 12 via the second tube 14. The amount of engine cooling water is adjusted by the flow rate adjustment valve 30. The flow rate adjustment valve 30 is adjusted in opening degree based on a temperature detected by a temperature sensor (not shown) that detects the temperature of engine cooling water.
[0020]
As shown in FIG. 2, the second header 10 is divided into two in the longitudinal direction by the first shielding plate 15, and a refrigerant chamber 16 to which the first tube 13 is connected and an oil separation chamber 17 are formed. A plurality of through holes 15 a are formed in the first shielding plate 15 in two rows along the longitudinal direction. The through holes 15a are located on both sides displaced parallel to the flow direction so that the refrigerant flowing into the refrigerant chamber 16 from the first tube 13 does not directly flow out to the refrigerant chamber. Thereby, a refrigerant | coolant once collides with the 1st shielding board 15, and separation of the oil from a refrigerant | coolant is performed appropriately.
[0021]
Further, as shown in FIG. 4, a second shielding plate 18 is provided at the lower part of the second header 10, and an oil recovery chamber 19 is formed. A plurality of communication holes 18 a communicating with the oil separation chamber 17 are formed in the second shielding plate 18 so that oil separated from the refrigerant is collected. The oil recovered in the oil recovery chamber 19 is returned to the compressor 2 through the oil recovery pipe 20. A throttle portion 20a (orifice), which is an oil decompression means, is formed in the oil recovery pipe 20 so that the oil passing therethrough is decompressed.
[0022]
As shown in FIGS. 2 and 3, the first tube 13 is formed by forming a plurality of communication holes 13a at a predetermined interval in a plate-like material formed of a metal material or the like having excellent heat conductivity. Etc. and is excellent in pressure resistance. The 2nd tube 14 is partitioned off by the partition part 14a which provided the inside with the predetermined space | interval, and each partition part 14a is excised by each upper and lower ends so that the flow of a refrigerant may meander. The 1st tube 13 and the 2nd tube 14 are integrated so that a surface contact may be carried out except the connection part to each header 9,12,10,11 of both ends. Heat can be dissipated from the refrigerant to the engine coolant at this surface contact portion.
[0023]
The vehicle exterior heat exchanger 4 is disposed in the front part of the vehicle, and exchanges heat between the high-temperature and high-pressure refrigerant passing therethrough and the outside air to cool the refrigerant.
[0024]
The first expansion valve 5 depressurizes the passing refrigerant to a state where it easily vaporizes.
[0025]
The vehicle interior heat exchanger 6 is provided in an air conditioning unit 21 disposed in the front part of the vehicle, and cools and dehumidifies the air passing through the air conditioning unit 21 as the refrigerant passing through the interior is vaporized. The air conditioning unit 21 is provided with an air mix damper 22 on the downstream side of the vehicle interior heat exchanger 6, and the cold air passing therethrough is divided. One of the divided cold air is heated by the heater core 23 in which the engine cooling water flows, mixed with the remaining cold air, adjusted to a desired temperature, and then blown into the vehicle.
[0026]
An on-off valve 25 is connected in parallel to the vehicle interior heat exchanger 4 and the first expansion valve 5 by a bypass pipe 24. The on-off valve 25 is fully closed during cooling and dehumidifying heating, and is fully opened during heating.
[0027]
Next, the operation of the vehicle air conditioner provided with the refrigeration cycle having the above configuration will be described.
[0028]
In the cooling operation, the throttle valve 3 is fully opened and the on-off valve 25 is fully closed. When the compressor 1 is driven, the refrigerant is discharged in a high temperature / high pressure state, and first flows into the first header 9 of the water-refrigerant heat exchanger 2 and flows to the second header 10 through the first tube 13. To do. While the refrigerant flows through the first tube 13, the refrigerant is cooled by exchanging heat with the engine cooling water flowing through the second tube 14. At this time, the amount of engine cooling water flowing through the second tube 14 is adjusted to a value corresponding to the difference in water temperature by the flow rate adjusting valve 30. That is, the heat exchange capacity of the water-refrigerant heat exchanger 2 is set to a desired value so that the refrigerant after passing does not condense.
[0029]
The refrigerant that has flowed into the second header 10 flows from the refrigerant chamber 16 into the oil separation chamber 17 through the through hole 15 a of the first shielding plate 15. Although the refrigerant and the oil mixed therein are cooled by passing through the water-refrigerant heat exchanger 2, the refrigerant and the oil are maintained in a vaporized state, so that they are separated into refrigerant and oil without mixing. It has become a state. For this reason, oil with a large specific gravity moves downward by its own weight by the first shielding plate 15. Then, the oil is recovered in the oil recovery chamber 19 through the communication hole of the second shielding plate 18 and is returned to the compressor 1 through the oil recovery pipe 20. The oil is decompressed by the throttle portion 20a when flowing through the oil recovery pipe 20, and is completely vaporized when flowing into the compressor 1.
[0030]
The refrigerant that has flowed into the refrigerant chamber 16 flows through the vehicle exterior heat exchanger 4 and is cooled by heat exchange with the outside air. The refrigerant cooled by the vehicle exterior heat exchanger 4 flows through the internal heat exchanger 7 and is further cooled, and then flows into the vehicle interior heat exchanger 6. In the vehicle interior heat exchanger 6, the refrigerant partially vaporizes by flowing inside, and cools and dehumidifies the air passing through the air conditioning unit 21. The refrigerant that has flowed out of the vehicle interior heat exchanger 6 passes through the internal heat exchanger 7 and absorbs heat from the high-temperature refrigerant that travels from the vehicle exterior heat exchanger 4 toward the vehicle interior heat exchanger 6 to be completely vaporized. For this reason, an accumulator (gas-liquid separator) is unnecessary.
[0031]
On the other hand, in the heating operation, if the temperature of the engine coolant does not rise sufficiently immediately after the start of the operation, the compressor 1 is driven with the opening of the throttle valve 3 adjusted and the on-off valve 25 fully opened. Start. As a result, the refrigerant discharged from the compressor 1 flows through the water-refrigerant heat exchanger 2 and exchanges heat with the engine coolant in a high temperature and high pressure state, as described above. The oil contained in the refrigerant is returned to the compressor 1 as described above. The refrigerant cooled by the water-refrigerant heat exchanger 2 is depressurized by the throttle valve 3 and is vaporized and absorbs heat from the outside air when passing through the vehicle exterior heat exchanger 4. Then, the vehicle interior heat exchanger 6 is bypassed and returned to the compressor 1 for circulation. As described above, the refrigerant is vaporized by the vehicle exterior heat exchanger 4, and the temperature sufficiently rises by bypassing the vehicle interior heat exchanger 6. Therefore, the temperature of the engine coolant can be rapidly increased by the water-refrigerant heat exchanger 2, and the heating of the vehicle interior by the heater core 23 can be started immediately after the start of the heating operation. Thereafter, when the temperature of the engine coolant rises and heating of the engine coolant by the water-refrigerant heat exchanger 2 becomes unnecessary, the driving of the compressor 1 is stopped.
[0032]
When dehumidifying heating is required, the throttle valve 3 may be fully opened and the open / close valve 25 may be fully closed, as in the cooling operation. Thereby, the dehumidification of the air which passes the inside of the air-conditioning unit 21 is attained by the vehicle interior heat exchanger 6 like the above.
[0033]
【The invention's effect】
As apparent from the above description, according to the present invention, since the water-refrigerant heat exchanger is provided between the compressor and the vehicle exterior heat exchanger, the refrigerant and the oil are surely separated into the gas phase. It is possible to cool the oil in a separated state, and it is possible to easily separate the oil by the oil separating means. Further, since the oil separated by the oil separating means can be returned to the compressor in a state where the oil is depressurized and vaporized by the pressure reducing means, there is no problem such as abnormal stop of the compressor.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a refrigeration cycle of a vehicle air conditioner according to the present embodiment.
FIG. 2 is a perspective view showing the water-refrigerant heat exchanger of FIG.
3A is a plan view of FIG. 2, and FIG. 3B is a front view.
4 is a longitudinal sectional view of the second header of FIG. 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Water-refrigerant heat exchanger 3 ... Throttle valve (2nd refrigerant | coolant decompression means)
4 ... Outside heat exchanger 5 ... First expansion valve (first refrigerant pressure reducing means)
6 ... Inside heat exchanger 7 ... Internal heat exchanger 8 ... Engine 9 ... First header 10 ... Second header 11 ... Third header 12 ... Fourth header 13 ... First tube 14 ... Second tube 15 ... First Shield plate (oil separation means)
16 ... Refrigerant chamber 17 ... Oil separation chamber 18 ... Second shielding plate 19 ... Oil recovery chamber 20 ... Bypass passage 20a ... Restriction part (oil decompression means)
23 ... Heater core 24 ... Bypass pipe 25 ... On-off valve 30 ... Flow rate adjusting valve (flow rate adjusting means)
100: Refrigeration cycle

Claims (7)

コンプレッサから吐出させた冷媒を、車外側熱交換器、第1冷媒減圧手段、及び、車内側熱交換器を介してコンプレッサに戻して循環させる冷凍サイクルを備えた車両用空調装置において、
前記コンプレッサから吐出された冷媒と、エンジン冷却水との間で熱交換させる水−冷媒熱交換器と、
該水−冷媒熱交換器から流出する冷媒からオイルを分離するオイル分離手段と、
該オイル分離手段で分離したオイルを減圧して前記コンプレッサに戻すオイル減圧手段とを備え、
前記水−冷媒熱交換器は、一対のヘッダに、熱交換可能に配置した一対のチューブをそれぞれ接続してなる構成とし、前記車外側熱交換器へと冷媒を流出させる出口側ヘッダ内を、第1遮蔽板で分離して前記オイル分離手段となるオイル分離室と冷媒室とを形成し、前記遮蔽板に、前記チューブでの冷媒の流動方向に対して平行に位置をずらせて貫通孔を形成したことを特徴とする車両用空調装置。
In a vehicle air conditioner including a refrigeration cycle for circulating the refrigerant discharged from the compressor back to the compressor via the vehicle exterior heat exchanger, the first refrigerant decompression means, and the vehicle interior heat exchanger,
A water-refrigerant heat exchanger for exchanging heat between the refrigerant discharged from the compressor and engine cooling water;
Oil separation means for separating oil from refrigerant flowing out of the water-refrigerant heat exchanger;
Oil pressure reducing means for reducing the pressure of the oil separated by the oil separating means and returning it to the compressor;
The water-refrigerant heat exchanger has a configuration in which a pair of tubes arranged so as to be capable of exchanging heat are connected to a pair of headers, and the inside of the outlet side header that causes the refrigerant to flow out to the vehicle exterior heat exchanger, An oil separation chamber and a refrigerant chamber, which are separated by the first shielding plate and serve as the oil separation means, are formed, and a through hole is formed in the shielding plate by shifting the position in parallel to the flow direction of the refrigerant in the tube. A vehicle air conditioner characterized by being formed .
前記出口側ヘッダ内を、さらに第2遮蔽板で分離してオイル回収室を形成し、前記第2遮蔽板に、前記オイル分離室と前記オイル回収室とを連通する連通孔を形成したことを特徴とする請求項に記載の車両用空調装置。The inside of the outlet header is further separated by a second shielding plate to form an oil recovery chamber, and the second shielding plate is formed with a communication hole that communicates the oil separation chamber and the oil recovery chamber. The vehicle air conditioner according to claim 1 , wherein 前記オイル分離手段から流出する冷媒を、冷房時にはそのまま、暖房時には減圧して前記車外側熱交換器に流入させる第2冷媒減圧手段と、
暖房時、前記車外側熱交換器から流出する冷媒を、前記第1冷媒減圧手段及び前記車内側熱交換器をバイパスさせて前記コンプレッサに還流可能とするバイパス手段とを備えたことを特徴とする請求項1又は2に記載の車両用空調装置。
Second refrigerant decompression means for reducing the refrigerant flowing out from the oil separation means as it is during cooling and reducing the pressure during heating into the vehicle exterior heat exchanger;
And a bypass means for allowing the refrigerant flowing out of the vehicle exterior heat exchanger to flow back to the compressor by bypassing the first refrigerant decompression means and the vehicle interior heat exchanger during heating. The vehicle air conditioner according to claim 1 or 2 .
前記車外側熱交換器から流出する冷媒と、前記車内側熱交換器から流出する冷媒との間で熱交換させる内部熱交換器を備えたことを特徴とする請求項1から3のいずれか1項に記載の車両用空調装置。And a refrigerant flowing out of the vehicle outer heat exchanger, any of claims 1 to 3, characterized in that an internal heat exchanger for heat exchange between the refrigerant flowing out of the vehicle interior heat exchanger 1 The vehicle air conditioner according to Item . 前記オイル分離手段は、前記水−冷媒熱交換器に一体的に設けたことを特徴とする請求項1から4のいずれか1項に記載の車両用空調装置。The oil separating means, the water - air-conditioning system according to any one of claims 1, characterized in that provided integrally with 4 to refrigerant heat exchanger. 前記水−冷媒熱交換器に流入させるエンジン冷却水の流量を、その水温に基づいて調整する流量調整手段を備えたことを特徴とする請求項1から5のいずれか1項に記載の車両用空調装置。The water - the flow rate of engine coolant to flow into the refrigerant heat exchanger, a vehicle according to any one of claims 1 to 5, characterized in that it comprises a flow rate adjusting means for adjusting, based on the water temperature Air conditioner. 前記冷媒には二酸化炭素を使用したことを特徴とする請求項1から6のいずれか1項に記載の車両用空調装置。The vehicle air conditioner according to any one of claims 1 to 6 , wherein carbon dioxide is used as the refrigerant.
JP2003060273A 2003-03-06 2003-03-06 Air conditioner for vehicles Expired - Fee Related JP4108509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060273A JP4108509B2 (en) 2003-03-06 2003-03-06 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060273A JP4108509B2 (en) 2003-03-06 2003-03-06 Air conditioner for vehicles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007318593A Division JP2008111660A (en) 2007-12-10 2007-12-10 Air conditioner for vehicle

Publications (2)

Publication Number Publication Date
JP2004270999A JP2004270999A (en) 2004-09-30
JP4108509B2 true JP4108509B2 (en) 2008-06-25

Family

ID=33122871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060273A Expired - Fee Related JP4108509B2 (en) 2003-03-06 2003-03-06 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4108509B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695849A1 (en) 2005-02-28 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle unit
JPWO2007123041A1 (en) * 2006-04-19 2009-09-03 カルソニックカンセイ株式会社 Internal heat exchanger
JP5668610B2 (en) * 2011-06-10 2015-02-12 カルソニックカンセイ株式会社 Water-cooled condenser
CN109186053B (en) * 2018-09-10 2024-03-08 珠海格力电器股份有限公司 Heat recovery device and air conditioner

Also Published As

Publication number Publication date
JP2004270999A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US9862251B2 (en) Vehicular air-conditioning system with a switching heat exchanger
CN102486348B (en) For the condenser of vehicle
WO2015194107A1 (en) Refrigeration cycle device
JP5626194B2 (en) Heat exchange system
CN102788452B (en) Condenser for vehicle and the air conditioning system for vehicle
US9625214B2 (en) Heat exchanger
JP6380455B2 (en) Refrigeration cycle equipment
JP6083339B2 (en) Air conditioner for vehicles
JP6838518B2 (en) Refrigeration cycle equipment
DE112011101957T5 (en) Heat pump cycle
CN112092566A (en) Thermal management system
JP6415943B2 (en) Heat pump air conditioning system for vehicles
KR102039163B1 (en) Heat Pump For a Vehicle
CN107089113B (en) Vehicle air conditioning equipment and have its vehicle
JP2018012365A (en) Vehicular air conditioner
JP4055739B2 (en) Air conditioner for vehicles
US20130333402A1 (en) Climate control systems for motor vehicles and methods of operating the same
JP5264442B2 (en) Air conditioner for vehicles
JP2008111660A (en) Air conditioner for vehicle
JP4108509B2 (en) Air conditioner for vehicles
CN113474188B (en) Heat exchanger and vehicle air conditioning system
WO2001001051A1 (en) Refrigerant condenser
JP2011189824A (en) Air-conditioning system for vehicle
JPH11190573A (en) Gas-liquid separator
JP6891711B2 (en) Combined heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees