JP4108227B2 - Hydrophilic filtration membrane - Google Patents

Hydrophilic filtration membrane Download PDF

Info

Publication number
JP4108227B2
JP4108227B2 JP19100799A JP19100799A JP4108227B2 JP 4108227 B2 JP4108227 B2 JP 4108227B2 JP 19100799 A JP19100799 A JP 19100799A JP 19100799 A JP19100799 A JP 19100799A JP 4108227 B2 JP4108227 B2 JP 4108227B2
Authority
JP
Japan
Prior art keywords
membrane
inorganic salt
mol
concentration
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19100799A
Other languages
Japanese (ja)
Other versions
JP2001017841A (en
Inventor
譲 石橋
辰行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP19100799A priority Critical patent/JP4108227B2/en
Publication of JP2001017841A publication Critical patent/JP2001017841A/en
Application granted granted Critical
Publication of JP4108227B2 publication Critical patent/JP4108227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、限外濾過プロセスに用いられる濾過膜に関し、さらに詳しくは、濾過モジュール等の濾過に適した形態に成形するに際して、膜性能を低下させることなく容易に成形することが可能な濾過膜に関する。
【0002】
【従来の技術】
有機高分子からなる限外濾過膜は、製膜後に乾燥させると乾燥前に比べて著しく透水性能や分画特性等の膜特性が低下することが知られている。一方、濾過モジュール等の濾過に適した形態に成形するに際して、該濾過膜が湿潤状態では接着剤との界面が剥離する等の問題を生ずることがあった。膜特性を低下させることなく、接着での問題を回避するために、従来は、グリセリン等の低揮発性有機液体を該濾過膜中に含浸させて乾燥することが行われていた。しかしながら、この方法では膜を使用するにあたって低揮発性有機液体を洗浄するのに時間がかかったり、その洗浄排水を無害化するための処理が必要であった。
【0003】
これに対して、膜特性を低下させることなく膜の水分を除去する方法として、無機塩を使用することが特開昭57−21903号公報や特開平3−245827号公報、特開平6−277470号公報等で提案されている。
【0004】
特開昭57−21903号公報では、逆浸透膜に無機塩水溶液を含浸させた後、特定含水率になるまで乾燥することによって、膜特性を低下させることなく接着可能にすることが開示されている。さらに、特開平3−245827号公報では、逆浸透膜を特定濃度の硫酸塩水溶液に浸漬した後、遠心処理等の手段を用いて中空部の水を除去することによって、膜特性を低下させることなく接着可能にすることが開示されている。しかしながら、これらの方法を限外濾過膜に適用した場合、膜特性の保持が十分でなかったり、接着界面での剥離が起きる問題があった。また、特開平6−277470号公報において、無機塩溶液を含浸させた後乾燥することによって膜の空孔部分に無機塩を詰めた多孔膜は、再度湿潤することによって乾燥処理前の膜特性を回復することが開示されている。しかしながら、該公報で開示された情報を基に、ポリアクリロニトリル等の極性ポリマーから形成された限外濾過膜を処理した場合、膜特性の保持が十分でなかったり、接着界面での剥離が起きるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、製膜後の膜特性を保持し、かつ、限外濾過を行うのに適した形態に成形することが可能な親水性濾過膜を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は上記の課題を解決するものである。
すなわち、本発明は、
(1)膜を形成するポリマーのSP値が21以上である限外濾過膜において、該膜中に無機塩と水とを含有し、無機塩含有量がポリマー1kg当り0.5mol以上であり、かつ、無機塩濃度が1mol/Lから25℃における飽和近傍濃度の範囲であることを特徴とする親水性濾過膜、
(2)無機塩が、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化アルミニウム、塩化鉄、硝酸リチウム、硝酸マグネシウム、硝酸カルシウム、硝酸アルミニウム、硝酸鉄、チオシアン酸カリウム、硫酸水素ナトリウム、炭酸カリウムの中から選ばれた少なくとも1種である上記(1)記載の親水性濾過膜、
(3)膜中の無機塩含有量がポリマー1kg当り1mol以上である上記(1)記載の親水性濾過膜、
(4)無機塩が塩化リチウム、塩化マグネシウム、塩化カルシウムの中から選ばれた少なくとも1種であり、膜中の無機塩濃度が、2mol/Lから25℃における飽和濃度の範囲である上記(1)記載の親水性濾過膜、に関する。
【0007】
本発明におけるSP値が21以上の膜形成性ポリマーとしては、エチルセルロース(SP値21;Polymer Handbook(第3版),John Wiley&Sons,New York,1989)、ニ酢酸セルロース(SP値23;同上)、酢酸セルロース(SP値27;同上)、セルロース(SP値32;同上)等のセルロース類、ポリアミド6,6(SP値23;同上)等のポリアミド類、ポリビニルアルコール(SP値26;同上)、ポリアクリロニトリル(SP値26;同上)等のアクリル系樹脂、ポリフッ化ビニリデン(SP値23;Journal of Polymer Science;PartB:Polymer Physics,Vol.26,785−794(1988))等のフッ化ビニリデン系樹脂が挙げられる。これらのポリマーは単独で膜を形成していても良いし、これらのポリマー1種または複数種が主成分として他のポリマーとブレンドされて膜を形成していても良い。なお、本発明でいうSP値の単位は、(MPa)1/2 である。
【0008】
本発明の限外濾過膜は、その孔径が0.001μm〜0.02μm未満である。該孔径は、0.1重量%のデキストラン水溶液の阻止率と該デキストランの分子量分布から求めた分子量を用い、下記の数式(1)によって計算される値である。
【0009】
D=2×(3V・M/(4π・N))1/3 (式1)
ここで、Dは孔径(cm)、Vは偏比容(cm3 /g)、Mは分子量(g/mol)、Nはアボガドロ数(mol-1)である。上記条件で求める場合、Vは1.0として計算する。
【0010】
本発明で用いられる無機塩としては、アルカリ金属、アルカリ土類金属、アルミニウム、鉄(III)のハロゲン化物、硝酸塩、硫酸塩、炭酸塩、リン酸塩、チオシアン酸塩、チオ硫酸塩、ホウ酸塩が挙げられる。これらの内、25℃における溶解度が0.2mol/L以上である無機塩が好ましい。好ましくは、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化アルミニウム、塩化鉄、硝酸リチウム、硝酸マグネシウム、硝酸カルシウム、硝酸アルミニウム、硝酸鉄、チオシアン酸カリウム、硫酸水素ナトリウム、炭酸カリウムであり、特に好ましくは、塩化リチウム、塩化マグネシウム、塩化カルシウムである。これらの無機塩は単独で用いても良く、また、複数種を混合して用いることもできる。
【0011】
本発明の膜は、膜壁内の空孔中に上記無機塩と水とを含有し、無機塩の含有量がポリマー成分1kgに対して0.5mol以上である必要がある。好ましくは1mol以上であり、より好ましくは2mol以上である。0.5mol未満では、透水性能が低下する。
【0012】
また、無機塩濃度は、1mol/Lから25℃における飽和近傍濃度の範囲である必要がある。該無機塩濃度の好ましい範囲は、濾過モジュールを成形するに際して膜を固定するために用いる接着剤の種類によって若干異なる。該接着剤としては、通常、エポキシ樹脂やウレタン樹脂が使用される。エポキシ樹脂の場合には、1mol/Lから該無機塩の25℃における飽和濃度の範囲が好ましく、2mol/Lから該無機塩の25℃における飽和濃度の範囲がより好ましい。一方、ウレタン樹脂の場合には、2mol/Lから該無機塩の25℃における飽和濃度の範囲が好ましく、3mol/Lから該無機塩の25℃における飽和濃度の範囲がより好ましい。該無機塩濃度が1mol/L未満では、濾過モジュールを成形した場合に接着界面での剥離や接着部の強度不足が起きる傾向が強くなる。また、飽和近傍濃度を越える濃度では、膜中で無機塩の結晶が析出することによって分画特性を低下させる傾向が強くなる。
【0013】
なお、本発明でいう無機塩含有量、含水量および無機塩濃度とは、下記の数式(2)、(3)、(4)で計算される値である。
S=(1000+A−P)×C/P (式2)
W=(A−P)/P−S×M/1000 (式3)
SC=(1000+A−P)×C×ρ/(A−P) (式4)
ここで、Sが無機塩含有量(mol/kg−ポリマー)、Wが含水量(kg/kg−ポリマー)、SCが無機塩濃度(mol/L)であり、Aは濾過膜サンプルの重量、Pは該濾過膜サンプルを形成しているポリマー重量、Cは濾過膜サンプルを1000gの純水中に浸漬して溶出した液の無機塩濃度(mol/kg−液)、Mは無機塩の無水物としての分子量(g/mol)、ρは該濃度の無機塩水溶液の密度(kg/L)である。具体的な計算方法は後述する。
また、本発明における飽和近傍濃度とは、該無機塩の25℃における飽和濃度の1.1倍の値である。
【0014】
本発明の濾過膜は、公知の方法によって製膜した膜を湿潤状態のまま、予め所定濃度に調整した無機塩水溶液と接触させて、該膜中に該無機塩を含浸させることによって、容易に調製することができる。
【0015】
含浸させる方法としては、膜を無機塩水溶液中に浸漬する方法、膜に無機塩水溶液を噴霧する方法、膜上に無機塩水溶液を流下させる方法等を採ることができる。この場合、膜と接触させる無機塩水溶液の濃度や接触時間を調整することによって、膜中の無機塩含有量を制御することができる。膜種によっては、製膜後に湿潤状態を保ったまま加熱処理を行って膜構造を固定する工程を経ることがあるが、この時に同時に含浸処理を行うことも可能である。
【0016】
次いで、上記のようにして含浸させた後、乾燥処理を行なうことによって含水量を調整し、所定の膜中無機塩濃度に調整することができる。この場合、乾燥時の環境温度や湿度、および、乾燥環境への暴露時間を調整することによって、含水量を制御することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
(1)純水透水量の測定
濾過膜サンプルの片側表面から他の表面へ1kgf/cm2 の差圧をかけて25℃の限外濾過水を透過させ、単位時間、単位圧力(単位差圧)当りの透過速度を測定し、その量をL/hr・m2 ・atmで表した。但し、中空糸の場合には外表面積を有効表面積として計算した。
(2)分画性能の測定
0.1重量%のデキストランT−2000(Pharmacia Biotech社製 Dextran T−2000)水溶液を用い、入り圧と出圧の平均圧力を0.5kgf/cm2 、流体線速を1m/secなるクロスフローの条件、25℃の温度条件で濾過し、30分後の阻止率を測定した。
(3)膜中の無機塩含有量の測定と無機塩濃度の計算
濾過膜サンプル約20gを精秤(重量A)した後、純水1000g中に24時間浸漬した。該水溶液中のイオン濃度をICPおよびイオンクロマトグラフィーを用いて分析し、定量(濃度C;mol/kg−液)した。
【0018】
次いで、上記液中の濾過膜サンプルを取り出し、純水100g中に浸漬して洗浄した。この洗浄操作を3回行った後、105℃で16時間乾燥し、乾燥後の重量を精秤してサンプルのポリマー重量(重量P)を求めた。
該ポリマー重量と上記のイオン濃度から無機塩含有量、含水量および無機塩濃度を各々数式(2)、(3)、(4)によって求めた。
【0019】
S=(1000+A−P)×C/P (式2)
W=(A−P)/P−S×M/1000 (式3)
SC=(1000+A−P)×C×ρ/(A−P) (式4)
ここで、Sが無機塩含有量(mol/kg−ポリマー)、Wが含水量(kg/kg−ポリマー)、SCが無機塩濃度(mol/L)であり、Aは濾過膜サンプルの重量、Pは該濾過膜サンプルを形成しているポリマー重量、Cは濾過膜サンプルを1000gの純水中に浸漬して溶出した液の無機塩濃度(mol/kg−液)、Mは無機塩の無水物としての分子量(g/mol)、ρは該濃度の無機塩水溶液の密度(kg/L)である。
【0020】
なお、ρは以下のようにして求めた。先ず、下記数式(5)から無機塩の質量濃度(mol/kg−液)を計算した。次いで、試薬を用いて該質量濃度の液を別途調整し、その液の25℃における密度を測定して求めた。
SC’=S×P/(A−P) (式5)
なお、飽和濃度を超えている場合には、懸濁状態での液重量と容積を測定し、その値から求めた。
【0021】
【実施例1〜5および比較例1〜3】
アクリロニトリル91.5重量%、アクリル酸メチル8.0重量%、メタクリル酸スルホン酸ソーダ0.5重量%からなる極限粘度[η]=1.2の共重合体(SP値:25)18重量%および重量平均分子量600のポリエチレングリコール(和光純薬社製、PEG600)21重量%を、プロピレンカーボネート9.15重量%とジメチルスルホキシド51.85重量%の混合溶媒に溶解して均一溶液とした。この液を60℃に保ち、テトラエチレングリコール50重量%と水50重量%との混合溶液からなる内部液とともに、紡口(二重環状ノズル)から吐出させ、60℃の水浴中に浸漬させて、外径1.35mm、内径0.75mmのポリアクリロニトリル系中空糸膜を作成した。次いで、該膜を純水中に十分水洗した後、55℃まで昇温して3時間保持した後に室温に戻した。
【0022】
該膜の純水透水量は、310L/hr・m2 ・atmであり、デキストランT−2000の阻止率は85%であった。該阻止率とデキストランT−2000の分子量分布から求めた孔径は、0.013μmであった。また、該膜の含水量は2.7kg/kg−ポリマーであった。
【0023】
該膜を、表1に示す無機塩水溶液に浸漬し、25℃において2時間静置した後、表1に示す環境条件で1時間乾燥した。なお、実施例5および比較例2では、無機塩水溶液に25℃浸漬した後、乾燥処理の代わりに、糸の端部において700Gの遠心力がかかる条件で1時間遠心処理を施して脱液を行った。
上記のような処理を行った膜について、上記の方法によって膜中の無機塩含有量と無機塩濃度を求めた。また、上記の処理を行った膜を純水中に4時間浸漬した後、純水透水量と分画性能を測定した。結果を表2に示す。
【0024】
次ぎに、同様に処理した中空糸膜300本を内径25mmのアクリル樹脂製ケースに挿入し、両端部をエポキシ樹脂で封止して、濾過モジュールを形成した。該濾過モジュールを用いて、操作圧3kgf/cm2 の条件で濾過および逆洗を1000回繰り返し、リークの有無を観察した。
【0025】
結果を表2に示す。実施例では、いずれも透水性能、分画性能が無機塩処理前と同等であり、接着剤での封止も良好に行われ、リークの発生は全くなかった。
【0026】
【実施例6】
実施例1と同様にして製膜したポリアクリロニトリル系中空糸を大量の純水で水洗した後、0.75mol/Lの塩化カルシウム水溶液に浸漬し、55℃まで昇温して3時間保持した後に室温に戻した。次いで、温度40℃、相対湿度30%の環境で1時間乾燥した。
該膜の純水透水量は、305L/hr・m2 ・atm、デキストランT−2000の阻止率は84%であり、純水で熱処理を施した湿潤膜と同等な値であった。
なお、該膜中の無機塩含有量、含水量は、各々1.9mol/kg−ポリマー、0.29kg/kg−ポリマーであった。また、無機塩濃度は5.4mol/Lであり、25℃における飽和濃度の0.93倍であった。
【0027】
次ぎに、2液混合型のウレタン樹脂を用いた他は、実施例1と同様にして濾過モジュールを形成し、リークの有無を観察した。その結果、全くリークは発生しなかった。
【0028】
【実施例7〜9】
無機塩種、含浸液濃度、乾燥での温度および相対湿度を表3に示した条件に変えた他は実施例1と同様にして、中空糸膜を処理した。
該膜の純水透水量と分画性能、および、膜中の無機塩含有量と無機塩濃度を測定した結果を表4に示す。いずれの例でも、透水性能、分画性能が無機塩処理前と同等であった。
【0029】
次ぎに、実施例6と同様にして濾過モジュールを形成し、リークの有無を観察したところ、リークの発生は全くなかった。
【0030】
【比較例4】
実施例1と同様にして製膜した後加熱処理した中空糸膜を、特開昭57−21903号公報の記載内容に準拠して、塩化ナトリウム水溶液1.8mol/L(10重量%)に2時間浸漬した。次いで、表面付着液を遠心処理して除いた後、温度25℃、相対湿度30%の環境で30分間乾燥した。
該膜中の無機塩含有量と含水量は、各々4.7mol/kg−ポリマー、0.63kg/kg−ポリマーであり、含水膜重量基準の含水率は、乾燥前の含水率の45%であった。また、無機塩濃度は6.4mol/Lであり、25℃における飽和濃度の1.2倍であった。
該膜の純水透水量は、380L/hr・m2 ・atm、デキストランT−2000の阻止率は44%であり、分画性能が低下していた。
【0031】
【比較例5】
実施例1と同様にして製膜した後加熱処理した中空糸膜を、特開平3−245827号公報の記載内容に準拠して、0.5mol/L(MgSO4 ・7H2 O11重量%)の硫酸マグネシウム水溶液に2時間浸漬した。次いで、表面付着液を遠心処理して除いた。
該膜中の無機塩含有量と含水量は、各々0.7mol/kg−ポリマー、1.3kg/kg−ポリマーであり、含水膜重量基準の含水率は、乾燥前の含水率の79%であった。また、無機塩濃度は0.5mol/Lであり、25℃の飽和濃度の0.19倍であった。
該膜の純水透水量と分画性能を測定した結果、各々300L/hr・m2 ・atm、85%であり、無機塩処理前と同等であった。
【0032】
次ぎに、実施例6と同様にして濾過モジュールを形成したところ、ウレタン樹脂成分であるイソシアネート基の分解による発泡が起こり、接着部に気泡が多量に混在していた。該モジュールで実施例1と同様にしてリークの有無を観察したところ、濾過・逆洗の繰り返し10回目でリークが発生した。
【0033】
【実施例10】
ポリフッ化ビニリデン(Atochem社製Kynar761 SP値:23)20重量%、N−メチル−2−ピロリドン68重量%、平均分子量50000のポリエチレングリコール(和光純薬工業社製試薬一級)15重量%を混合・溶解して原液を調製した。原液を50℃に加熱してガラス板上に流延し、直ちに30℃の水中に浸漬して凝固させた後、ガラス板から自然に剥離させて平膜を得た。次いで、大量の純水で水洗した後、55℃まで昇温して3時間保持した後に室温に戻して保存した。
【0034】
該膜の厚みは80μmであり、純水透水量は、210L/hr・m2 ・atm、デキストランT−70の阻止率は16%であった。該阻止率とデキストランT−70の分子量分布から求めた孔径は、0.006μmであった。
該膜を、0.75mol/Lの塩化カルシウム水溶液に浸漬し、25℃において2時間静置した後、25℃−相対湿度30%の環境条件で1時間乾燥した。
【0035】
該膜中の無機塩含有量と含水量は、各々1.5mol/kg−ポリマー、0.2kg/kg−ポリマーであった。また、無機塩濃度は5.8mol/Lであり、25℃の飽和濃度の0.99倍であった。
該膜の純水透水量と分画性能を測定したところ、純水透水量が205L/hr・m2 ・atm、デキストランT−70の阻止率が16%であり、無機塩処理前と同等であった。
【0036】
内径25mm、外径45mm、厚み5mmのABS製環状板の片面に、10mm幅で実施例6のウレタン樹脂を塗布し、直ちに上記の無機塩処理した平膜を置いて接着して平膜カートリッジを成形した。該接着面を観察したところ、気泡の発生がなく、良好な接着部を形成していた。該カートリッジの両面から5分毎に交互に0.5kgf/cm2 の圧力をかけて純水を透過させ、リークの有無を観察したところ、100回繰り返してもリークは発生しなかった。
【0037】
【比較例6】
乾燥せずに表面の付着液を濾紙で拭き取った以外は、実施例10と同様にして膜を処理した。
該膜中の無機塩含有量と含水量は、各々1.5mol/kg−ポリマー、1.9kg/kg−ポリマーであった。また、無機塩濃度は0.75mol/Lであり、25℃の飽和濃度の0.13倍であった。
該膜の純水透水量と分画性能を測定したところ、純水透水量が208L/hr・m2 ・atm、デキストランT−70の阻止率が16%であり、無機塩処理前と同等であった。
【0038】
次ぎに、実施例10と同様にしてカートリッジを形成したところ、ウレタン樹脂が発泡し、接着部に気泡が多量に混在した。該カートリッジのリークの発生を観察したことろ、3回目で膜が剥離してリークした。
【0039】
【表1】

Figure 0004108227
【0040】
【表2】
Figure 0004108227
【0041】
【表3】
Figure 0004108227
【0042】
【表4】
Figure 0004108227
【0043】
【本発明の効果】
以上に述べたように、本発明の濾過膜では、製膜後の膜特性を保持し、かつ、限外濾過を行うのに適した形態に成形することが可能である。また、使用時には、容易に洗浄することができ、洗浄排水の無害化処理を行う必要がないので、実用上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filtration membrane used in an ultrafiltration process. More specifically, the present invention relates to a filtration membrane that can be easily molded without degrading membrane performance when molding into a form suitable for filtration such as a filtration module. About.
[0002]
[Prior art]
It is known that when ultrafiltration membranes made of organic polymers are dried after film formation, membrane properties such as water permeability and fractionation properties are markedly reduced compared to before drying. On the other hand, when the filter module or the like is molded into a form suitable for filtration, there may be a problem that the interface with the adhesive peels off when the filter membrane is wet. In order to avoid adhesion problems without deteriorating membrane properties, conventionally, a low-volatile organic liquid such as glycerin has been impregnated into the filtration membrane and dried. However, in this method, when using the membrane, it takes time to wash the low-volatile organic liquid, or a treatment for detoxifying the washing waste water is required.
[0003]
On the other hand, as a method for removing moisture from the film without deteriorating the film characteristics, it is possible to use an inorganic salt as disclosed in JP-A-57-21903, JP-A-3-245427, and JP-A-6-277470. It is proposed in the issue gazette.
[0004]
JP-A-57-21903 discloses that a reverse osmosis membrane is impregnated with an aqueous inorganic salt solution and then dried to a specific water content, thereby enabling adhesion without deteriorating membrane properties. Yes. Furthermore, in Japanese Patent Laid-Open No. 3-245827, after immersing the reverse osmosis membrane in a sulfate aqueous solution having a specific concentration, the membrane characteristics are lowered by removing the water in the hollow portion using a means such as centrifugation. It is disclosed that it can be bonded without any problems. However, when these methods are applied to an ultrafiltration membrane, there is a problem that the membrane characteristics are not sufficiently maintained or peeling at the adhesion interface occurs. Also, in JP-A-6-277470, a porous membrane in which inorganic salts are impregnated and then dried to fill the pores of the membrane with inorganic salt is re-wetted so that the membrane characteristics before drying treatment are improved. It is disclosed to recover. However, based on the information disclosed in the publication, when an ultrafiltration membrane formed from a polar polymer such as polyacrylonitrile is processed, the membrane properties are not sufficiently maintained or peeling at the adhesive interface occurs. There was a problem.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a hydrophilic filtration membrane that retains membrane characteristics after film formation and can be formed into a form suitable for performing ultrafiltration.
[0006]
[Means for Solving the Problems]
The present invention solves the above problems.
That is, the present invention
(1) In the ultrafiltration membrane in which the SP value of the polymer forming the membrane is 21 or more, the membrane contains an inorganic salt and water, and the inorganic salt content is 0.5 mol or more per kg of the polymer, And the hydrophilic filtration membrane characterized by the inorganic salt concentration being in the range of saturation concentration at 25 ° C. from 1 mol / L,
(2) Among inorganic salts, lithium chloride, magnesium chloride, calcium chloride, aluminum chloride, iron chloride, lithium nitrate, magnesium nitrate, calcium nitrate, aluminum nitrate, iron nitrate, potassium thiocyanate, sodium hydrogen sulfate, potassium carbonate The hydrophilic filtration membrane according to the above (1), which is at least one selected
(3) The hydrophilic filtration membrane according to the above (1), wherein the inorganic salt content in the membrane is 1 mol or more per 1 kg of the polymer,
(4) The inorganic salt is at least one selected from lithium chloride, magnesium chloride, and calcium chloride, and the inorganic salt concentration in the film is in the range of 2 mol / L to a saturation concentration at 25 ° C. (1 ) Described above.
[0007]
Examples of the film-forming polymer having an SP value of 21 or more in the present invention include ethyl cellulose (SP value 21; Polymer Handbook (3rd edition), John Wiley & Sons, New York, 1989), cellulose diacetate (SP value 23; the same as above), Cellulose such as cellulose acetate (SP value 27; same as above), cellulose (SP value 32; same as above), polyamides such as polyamide 6,6 (SP value 23; same as above), polyvinyl alcohol (SP value 26; same as above), poly Acrylic resins such as acrylonitrile (SP value 26; same as above) and polyvinylidene fluoride resins such as polyvinylidene fluoride (SP value 23; Journal of Polymer Science; Part B: Polymer Physics, Vol. 26, 785-794 (1988)). Is I can get lost. These polymers may form a film alone, or one or more of these polymers may be blended with other polymers as a main component to form a film. In addition, the unit of SP value as used in the field of this invention is (MPa) 1/2 .
[0008]
The ultrafiltration membrane of the present invention has a pore size of 0.001 μm to less than 0.02 μm. The pore diameter is a value calculated by the following mathematical formula (1), using the molecular weight obtained from the blocking rate of a 0.1% by weight dextran aqueous solution and the molecular weight distribution of the dextran.
[0009]
D = 2 × (3V · M / (4π · N)) 1/3 (Formula 1)
Here, D is the pore diameter (cm), V is the partial specific volume (cm 3 / g), M is the molecular weight (g / mol), and N is the Avogadro number (mol −1 ). When calculating | requiring on the said conditions, V is calculated as 1.0.
[0010]
Examples of the inorganic salt used in the present invention include alkali metal, alkaline earth metal, aluminum, iron (III) halide, nitrate, sulfate, carbonate, phosphate, thiocyanate, thiosulfate, and boric acid. Salt. Among these, an inorganic salt having a solubility at 25 ° C. of 0.2 mol / L or more is preferable. Preferably, lithium chloride, magnesium chloride, calcium chloride, aluminum chloride, iron chloride, lithium nitrate, magnesium nitrate, calcium nitrate, aluminum nitrate, iron nitrate, potassium thiocyanate, sodium hydrogen sulfate, potassium carbonate, particularly preferably Lithium chloride, magnesium chloride, calcium chloride. These inorganic salts may be used alone or in combination of two or more.
[0011]
The membrane of the present invention contains the inorganic salt and water in the pores in the membrane wall, and the content of the inorganic salt needs to be 0.5 mol or more with respect to 1 kg of the polymer component. Preferably it is 1 mol or more, More preferably, it is 2 mol or more. If it is less than 0.5 mol, the water permeation performance decreases.
[0012]
In addition, the inorganic salt concentration needs to be in the range of the concentration near saturation at 1 ° C. to 25 ° C. The preferable range of the inorganic salt concentration is slightly different depending on the type of adhesive used for fixing the membrane when molding the filtration module. As the adhesive, an epoxy resin or a urethane resin is usually used. In the case of an epoxy resin, the range of the saturated concentration at 25 ° C. of the inorganic salt from 1 mol / L is preferable, and the range of the saturated concentration at 25 ° C. of the inorganic salt is more preferable from 2 mol / L. On the other hand, in the case of a urethane resin, the range of the saturated concentration at 25 ° C. of the inorganic salt from 2 mol / L is preferable, and the range of the saturated concentration at 25 ° C. of the inorganic salt is more preferable from 3 mol / L. When the inorganic salt concentration is less than 1 mol / L, there is a strong tendency that peeling at the bonding interface and insufficient strength of the bonded portion occur when a filtration module is molded. At concentrations exceeding the saturation concentration, the tendency of the fractionation characteristics to deteriorate due to the precipitation of inorganic salt crystals in the film increases.
[0013]
The inorganic salt content, water content, and inorganic salt concentration referred to in the present invention are values calculated by the following mathematical formulas (2), (3), and (4).
S = (1000 + AP) × C / P (Formula 2)
W = (AP) / PS * M / 1000 (Formula 3)
SC = (1000 + AP) × C × ρ / (AP) (Formula 4)
Here, S is the inorganic salt content (mol / kg-polymer), W is the water content (kg / kg-polymer), SC is the inorganic salt concentration (mol / L), A is the weight of the filtration membrane sample, P is the weight of the polymer forming the filter membrane sample, C is the inorganic salt concentration (mol / kg-solution) of the solution eluted by immersing the filter membrane sample in 1000 g of pure water, and M is the anhydrous inorganic salt. The molecular weight (g / mol) as a product, ρ is the density (kg / L) of the inorganic salt aqueous solution having the concentration. A specific calculation method will be described later.
Further, the near-saturation concentration in the present invention is a value 1.1 times the saturation concentration of the inorganic salt at 25 ° C.
[0014]
The filtration membrane of the present invention can be easily obtained by bringing the membrane formed by a known method into contact with an inorganic salt aqueous solution adjusted to a predetermined concentration in a wet state and impregnating the membrane with the inorganic salt. Can be prepared.
[0015]
As a method of impregnation, a method of immersing the membrane in an inorganic salt aqueous solution, a method of spraying the inorganic salt aqueous solution on the membrane, a method of flowing down the inorganic salt aqueous solution on the membrane, and the like can be employed. In this case, the inorganic salt content in the film can be controlled by adjusting the concentration of the inorganic salt aqueous solution to be brought into contact with the film and the contact time. Depending on the type of film, there may be a process of fixing the film structure by performing a heat treatment while keeping the wet state after the film formation, and it is also possible to simultaneously perform the impregnation process at this time.
[0016]
Next, after the impregnation as described above, the moisture content can be adjusted by performing a drying treatment to adjust to a predetermined inorganic salt concentration in the film. In this case, the water content can be controlled by adjusting the environmental temperature and humidity during drying and the exposure time to the dry environment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
(1) Measurement of water permeability of pure water Applying a differential pressure of 1 kgf / cm 2 from one surface of the filtration membrane sample to the other surface, allowing 25 ° C. ultrafiltrated water to permeate, unit time, unit pressure (unit differential pressure) ) Permeation rate was measured, and the amount was expressed as L / hr · m 2 · atm. However, in the case of hollow fibers, the outer surface area was calculated as the effective surface area.
(2) Measurement of fractionation performance A 0.1 wt% dextran T-2000 (Pharmacia Biotech Dextran T-2000) aqueous solution was used, the average pressure of the input pressure and the output pressure was 0.5 kgf / cm 2 , fluid line Filtration was performed under a cross flow condition of 1 m / sec and a temperature condition of 25 ° C., and the rejection after 30 minutes was measured.
(3) Measurement of inorganic salt content in membrane and calculation of inorganic salt concentration About 20 g of filtration membrane sample was precisely weighed (weight A) and then immersed in 1000 g of pure water for 24 hours. The ion concentration in the aqueous solution was analyzed using ICP and ion chromatography and quantified (concentration C; mol / kg-solution).
[0018]
Subsequently, the filtration membrane sample in the said liquid was taken out, and it immersed in 100 g of pure waters, and wash | cleaned. After performing this washing operation three times, drying was performed at 105 ° C. for 16 hours, and the weight after drying was precisely weighed to determine the polymer weight (weight P) of the sample.
From the polymer weight and the above ion concentration, the inorganic salt content, water content, and inorganic salt concentration were determined by mathematical formulas (2), (3), and (4), respectively.
[0019]
S = (1000 + AP) × C / P (Formula 2)
W = (AP) / PS * M / 1000 (Formula 3)
SC = (1000 + AP) × C × ρ / (AP) (Formula 4)
Here, S is the inorganic salt content (mol / kg-polymer), W is the water content (kg / kg-polymer), SC is the inorganic salt concentration (mol / L), A is the weight of the filtration membrane sample, P is the weight of the polymer forming the filter membrane sample, C is the inorganic salt concentration (mol / kg-solution) of the solution eluted by immersing the filter membrane sample in 1000 g of pure water, and M is the anhydrous inorganic salt. The molecular weight (g / mol) as a product, ρ is the density (kg / L) of the inorganic salt aqueous solution having the concentration.
[0020]
Ρ was determined as follows. First, the mass concentration (mol / kg-solution) of the inorganic salt was calculated from the following mathematical formula (5). Next, a liquid having the mass concentration was separately adjusted using a reagent, and the density at 25 ° C. of the liquid was measured and obtained.
SC ′ = S × P / (AP) (Formula 5)
When the saturation concentration was exceeded, the liquid weight and volume in the suspended state were measured and obtained from the values.
[0021]
Examples 1 to 5 and Comparative Examples 1 to 3
Copolymer of intrinsic viscosity [η] = 1.2 (SP value: 25) consisting of 91.5% by weight of acrylonitrile, 8.0% by weight of methyl acrylate and 0.5% by weight of sodium methacrylic acid sulfonate (SP value: 25) 18% by weight Further, 21% by weight of polyethylene glycol having a weight average molecular weight of 600 (PEG 600, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in a mixed solvent of 9.15% by weight of propylene carbonate and 51.85% by weight of dimethyl sulfoxide to obtain a uniform solution. This liquid is kept at 60 ° C., discharged together with an internal liquid composed of a mixed solution of 50% by weight of tetraethylene glycol and 50% by weight of water, and discharged from a spinning nozzle (double annular nozzle) and immersed in a 60 ° C. water bath. A polyacrylonitrile-based hollow fiber membrane having an outer diameter of 1.35 mm and an inner diameter of 0.75 mm was prepared. Next, the membrane was sufficiently washed with pure water, heated to 55 ° C. and held for 3 hours, and then returned to room temperature.
[0022]
The membrane had a pure water permeation rate of 310 L / hr · m 2 · atm and a dextran T-2000 rejection of 85%. The pore diameter determined from the blocking rate and the molecular weight distribution of dextran T-2000 was 0.013 μm. The water content of the membrane was 2.7 kg / kg-polymer.
[0023]
The membrane was immersed in an aqueous inorganic salt solution shown in Table 1, allowed to stand at 25 ° C. for 2 hours, and then dried for 1 hour under the environmental conditions shown in Table 1. In Example 5 and Comparative Example 2, after immersing in an inorganic salt aqueous solution at 25 ° C., instead of drying treatment, centrifugation was performed for 1 hour under the condition that 700 G centrifugal force was applied to the end of the yarn, and the liquid was removed. went.
About the film | membrane which performed the above processes, the inorganic salt content and inorganic salt concentration in a film | membrane were calculated | required by said method. Further, after the membrane subjected to the above treatment was immersed in pure water for 4 hours, the pure water permeation amount and the fractionation performance were measured. The results are shown in Table 2.
[0024]
Next, 300 hollow fiber membranes treated in the same manner were inserted into an acrylic resin case having an inner diameter of 25 mm, and both ends were sealed with an epoxy resin to form a filtration module. Using the filtration module, filtration and backwashing were repeated 1000 times under the condition of an operating pressure of 3 kgf / cm 2 and the presence or absence of leakage was observed.
[0025]
The results are shown in Table 2. In the examples, the water permeation performance and the fractionation performance were the same as those before the inorganic salt treatment, the sealing with the adhesive was performed well, and no leakage occurred.
[0026]
[Example 6]
The polyacrylonitrile hollow fiber formed in the same manner as in Example 1 was washed with a large amount of pure water, immersed in a 0.75 mol / L calcium chloride aqueous solution, heated to 55 ° C. and held for 3 hours. It returned to room temperature. Subsequently, it was dried for 1 hour in an environment of a temperature of 40 ° C. and a relative humidity of 30%.
The pure water permeation amount of the membrane was 305 L / hr · m 2 · atm, and the blocking rate of dextran T-2000 was 84%, which was a value equivalent to a wet membrane subjected to heat treatment with pure water.
The inorganic salt content and water content in the membrane were 1.9 mol / kg-polymer and 0.29 kg / kg-polymer, respectively. The inorganic salt concentration was 5.4 mol / L, which was 0.93 times the saturation concentration at 25 ° C.
[0027]
Next, a filtration module was formed in the same manner as in Example 1 except that a two-component mixed urethane resin was used, and the presence or absence of leakage was observed. As a result, no leak occurred.
[0028]
Examples 7 to 9
A hollow fiber membrane was treated in the same manner as in Example 1 except that the inorganic salt species, the impregnating solution concentration, the drying temperature and the relative humidity were changed to the conditions shown in Table 3.
Table 4 shows the results of measuring the pure water permeation amount and fractionation performance of the membrane, and the inorganic salt content and inorganic salt concentration in the membrane. In any example, the water permeation performance and the fractionation performance were equivalent to those before the inorganic salt treatment.
[0029]
Next, when a filtration module was formed in the same manner as in Example 6 and the presence or absence of a leak was observed, no leak occurred.
[0030]
[Comparative Example 4]
In accordance with the description in JP-A-57-21903, a hollow fiber membrane that was formed in the same manner as in Example 1 and then heat-treated was added to 1.8 mol / L (10 wt%) of an aqueous sodium chloride solution. Soaked for hours. Next, the surface adhering liquid was removed by centrifugation, followed by drying for 30 minutes in an environment of a temperature of 25 ° C. and a relative humidity of 30%.
The inorganic salt content and water content in the membrane are 4.7 mol / kg-polymer and 0.63 kg / kg-polymer, respectively, and the moisture content based on the weight of the moisture membrane is 45% of the moisture content before drying. there were. The inorganic salt concentration was 6.4 mol / L, which was 1.2 times the saturation concentration at 25 ° C.
The pure water permeation amount of the membrane was 380 L / hr · m 2 · atm, the blocking rate of dextran T-2000 was 44%, and the fractionation performance was lowered.
[0031]
[Comparative Example 5]
A hollow fiber membrane which was formed in the same manner as in Example 1 and then heat-treated was 0.5 mol / L (MgSO 4 .7H 2 O 11 wt%) in accordance with the description in JP-A-3-245828. It was immersed in an aqueous magnesium sulfate solution for 2 hours. Subsequently, the surface adhesion liquid was removed by centrifugation.
The inorganic salt content and moisture content in the membrane are 0.7 mol / kg-polymer and 1.3 kg / kg-polymer, respectively, and the moisture content based on the weight of the moisture membrane is 79% of the moisture content before drying. there were. The inorganic salt concentration was 0.5 mol / L, which was 0.19 times the saturation concentration at 25 ° C.
As a result of measuring the pure water permeation amount and fractionation performance of the membrane, they were 300 L / hr · m 2 · atm and 85%, respectively, which were the same as before the inorganic salt treatment.
[0032]
Next, when a filtration module was formed in the same manner as in Example 6, foaming occurred due to decomposition of the isocyanate group that was a urethane resin component, and a large amount of air bubbles were mixed in the bonded portion. When the module was observed for leaks in the same manner as in Example 1, leaks occurred at the 10th repetition of filtration and backwashing.
[0033]
[Example 10]
Polyvinylidene fluoride (Atochem Kynar 761 SP value: 23) 20% by weight, N-methyl-2-pyrrolidone 68% by weight, average molecular weight 50000 polyethylene glycol (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) 15% by weight Dissolved to prepare a stock solution. The stock solution was heated to 50 ° C. and cast on a glass plate, immediately immersed in water at 30 ° C. to solidify, and then naturally separated from the glass plate to obtain a flat film. Next, after washing with a large amount of pure water, the temperature was raised to 55 ° C. and maintained for 3 hours, and then returned to room temperature and stored.
[0034]
The membrane had a thickness of 80 μm, a pure water permeability of 210 L / hr · m 2 · atm, and a dextran T-70 rejection of 16%. The pore diameter determined from the blocking rate and the molecular weight distribution of dextran T-70 was 0.006 μm.
The membrane was immersed in a 0.75 mol / L calcium chloride aqueous solution, allowed to stand at 25 ° C. for 2 hours, and then dried for 1 hour under environmental conditions of 25 ° C. and a relative humidity of 30%.
[0035]
The inorganic salt content and water content in the membrane were 1.5 mol / kg-polymer and 0.2 kg / kg-polymer, respectively. The inorganic salt concentration was 5.8 mol / L, which was 0.99 times the saturation concentration at 25 ° C.
When the pure water permeation amount and fractionation performance of the membrane were measured, the pure water permeation amount was 205 L / hr · m 2 · atm, the dextran T-70 rejection was 16%, which was the same as before the inorganic salt treatment. there were.
[0036]
Apply the urethane resin of Example 6 with a width of 10 mm to one side of an ABS annular plate having an inner diameter of 25 mm, an outer diameter of 45 mm, and a thickness of 5 mm, and immediately place the flat film treated with the inorganic salt and adhere to the flat film cartridge. Molded. As a result of observing the adhesion surface, no bubbles were generated and a good adhesion portion was formed. When pure water was permeated by applying a pressure of 0.5 kgf / cm 2 alternately from both sides of the cartridge every 5 minutes and the presence or absence of leak was observed, no leak occurred even after repeating 100 times.
[0037]
[Comparative Example 6]
The membrane was treated in the same manner as in Example 10 except that the surface adhering liquid was wiped off with filter paper without drying.
The inorganic salt content and water content in the membrane were 1.5 mol / kg-polymer and 1.9 kg / kg-polymer, respectively. The inorganic salt concentration was 0.75 mol / L, which was 0.13 times the saturation concentration at 25 ° C.
When the pure water permeation amount and fractionation performance of the membrane were measured, the pure water permeation amount was 208 L / hr · m 2 · atm, the dextran T-70 rejection was 16%, which was the same as before inorganic salt treatment. there were.
[0038]
Next, when the cartridge was formed in the same manner as in Example 10, the urethane resin foamed and a large amount of air bubbles were mixed in the bonded portion. Observing the occurrence of leakage in the cartridge, the film peeled off and leaked in the third time.
[0039]
[Table 1]
Figure 0004108227
[0040]
[Table 2]
Figure 0004108227
[0041]
[Table 3]
Figure 0004108227
[0042]
[Table 4]
Figure 0004108227
[0043]
[Effect of the present invention]
As described above, the filtration membrane of the present invention can be formed into a form suitable for ultrafiltration while maintaining membrane characteristics after film formation. Moreover, since it can wash | clean easily at the time of use and it is not necessary to perform the detoxification process of washing waste_water | drain, it is very useful practically.

Claims (1)

膜を形成するポリマーのSP値が21以上である限外濾過膜において、該膜中に無機塩と水とを含有し、無機塩含有量がポリマー1kg当り0.5mol以上であり、かつ、無機塩濃度が1mol/Lから25℃における飽和近傍濃度の範囲であることを特徴とする親水性濾過膜。In the ultrafiltration membrane in which the SP value of the polymer forming the membrane is 21 or more, the membrane contains an inorganic salt and water, the inorganic salt content is 0.5 mol or more per kg of polymer, and the inorganic A hydrophilic filtration membrane, wherein the salt concentration is in the range of concentration near saturation at 1 mol / L to 25 ° C.
JP19100799A 1999-07-05 1999-07-05 Hydrophilic filtration membrane Expired - Fee Related JP4108227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19100799A JP4108227B2 (en) 1999-07-05 1999-07-05 Hydrophilic filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19100799A JP4108227B2 (en) 1999-07-05 1999-07-05 Hydrophilic filtration membrane

Publications (2)

Publication Number Publication Date
JP2001017841A JP2001017841A (en) 2001-01-23
JP4108227B2 true JP4108227B2 (en) 2008-06-25

Family

ID=16267332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19100799A Expired - Fee Related JP4108227B2 (en) 1999-07-05 1999-07-05 Hydrophilic filtration membrane

Country Status (1)

Country Link
JP (1) JP4108227B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503117B2 (en) * 1999-08-03 2010-07-14 旭化成ケミカルズ株式会社 Hydrophilic porous membrane
JP2004122621A (en) * 2002-10-03 2004-04-22 Daicel Chem Ind Ltd Surface protective film and its manufacturing method
US20190388842A1 (en) * 2017-03-01 2019-12-26 Nitto Denko Corporation Selectively permeable graphene oxide membrane
KR102282787B1 (en) 2017-03-24 2021-07-30 닛토덴코 가부시키가이샤 Selectively Permeable Graphene Oxide Membrane

Also Published As

Publication number Publication date
JP2001017841A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
CN105026022B (en) Composite semipermeable membrane and its manufacturing method
JP5424145B1 (en) Polymer porous flat membrane sheet
CN106110910A (en) A kind of infiltration vaporization separation film and preparation method thereof
JP4656503B2 (en) Composite semipermeable membrane and method for producing the same
WO2002102500A1 (en) Membrane polymer compositions
JP2008093543A (en) Manufacturing method of dry composite semipermeable membrane
CN101227968A (en) Nano composite hollow fiber membrane and method of manufacturing the same
CN108479395A (en) A kind of forward osmosis membrane and preparation method thereof
JP4108227B2 (en) Hydrophilic filtration membrane
JP2011025110A (en) Separation membrane, and method of producing the same
JPWO2016104781A1 (en) Composite semipermeable membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPH05317664A (en) Porous hollow fiber membrane
JPS6159764B2 (en)
JP4284767B2 (en) Composite semipermeable membrane, water production method using the same, and fluid separation element
JP2013013875A (en) Production method of vinyl chloride-based porous membrane
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JP2001129366A (en) Method for manufacture of ultrafiltration module
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
US4322501A (en) Quaternization process for ion exchange membranes
JP4503117B2 (en) Hydrophilic porous membrane
JPS61125408A (en) Method for making porous polyolefin hollow yarn hydrophilic
JPS6039401B2 (en) Ultrafiltration tubing
CN115245757B (en) Composite nanofiltration membrane and preparation method and application thereof
JP3102591B2 (en) Microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees