JP4107970B2 - Leak inspection method for water purification cartridge - Google Patents

Leak inspection method for water purification cartridge Download PDF

Info

Publication number
JP4107970B2
JP4107970B2 JP2003007133A JP2003007133A JP4107970B2 JP 4107970 B2 JP4107970 B2 JP 4107970B2 JP 2003007133 A JP2003007133 A JP 2003007133A JP 2003007133 A JP2003007133 A JP 2003007133A JP 4107970 B2 JP4107970 B2 JP 4107970B2
Authority
JP
Japan
Prior art keywords
water purification
purification cartridge
pressure
inspection
pressure change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003007133A
Other languages
Japanese (ja)
Other versions
JP2004219253A (en
Inventor
正則 伊藤
勉 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2003007133A priority Critical patent/JP4107970B2/en
Publication of JP2004219253A publication Critical patent/JP2004219253A/en
Application granted granted Critical
Publication of JP4107970B2 publication Critical patent/JP4107970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも多孔質剤を収容した浄水カートリッジのリーク検査方法に関する。
【0002】
【従来の技術】
水道水などを浄水するために、図4に示すような、浄水カートリッジ1を備えた浄水器2を使用することがある。浄水器2の浄水カートリッジ1としては、例えば、多数本の中空糸膜11がU字状に集束され、それらの端部が固定された中空糸膜モジュール12と、活性炭などの多孔質剤13とを有し、ケース14および蓋部15で一体化したものが挙げられる。この浄水器2では、原水が流入口17から浄水カートリッジ2内に流入し、多孔質剤13、中空糸膜モジュール12の順に通過した後に流出口18から流出し、浄水器2の排出口19から処理水として排出する。
ところが、このような浄水カートリッジ1では、ケース14と蓋部15との接合が不完全であると、隙間が形成されてしまうことがあった。ケース14と蓋部15との接合部16に隙間が形成された場合には、原水が中空糸膜モジュール12および多孔質剤13を通過せずに、接合部16の隙間を通って処理水中に混入してしまい、浄水が不十分になるおそれがあった。そのため、通常では、浄水カートリッジ1を作製した後には、リーク検査を実施している。
【0003】
従来の検査方法(例えば、特許文献1〜3参照)としては、図5に示すように、空気導入管41から空気を封入した浄水カートリッジ1を水槽42中に水没させ、気泡43の発生の有無を目視で確認する水没法、図6に示すように、空気を封入した浄水カートリッジ1の接合部16に石鹸水を塗布し、気泡44の発生の有無を目視で確認する石鹸水塗布法などが挙げられる。
また、他の検査方法として、浄水カートリッジに検査用ガスを供給し、検査用ガスの漏れ量を微小流量計で測定する流量法、浄水カートリッジ内を正圧または負圧にし、その後の圧力変化を圧力計、圧力センサ、圧力スイッチなどで測定し、圧力変化量とリーク有無のしきい値とを比較して漏れを検知する圧力法などが挙げられる。
【0004】
【特許文献1】
特開平9−75690号公報
【特許文献2】
特開平10−15059号公報
【特許文献3】
特開2002−236102号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した水没法や石鹸水塗布法では、作業者が目視で判断するため、気泡の発生を見落としたりすることがあり、精度が低かった。さらに、水没法や石鹸水塗布法では浄水カートリッジが濡れてしまうため、製品として出荷する前に乾燥しなければならず、そのための時間を要していた。
また、流量法や圧力法では次のような問題があった。すなわち、浄水カートリッジに収容された多孔質剤は空隙が多いため、浄水カートリッジに検査用ガスを供給した際には、検査用ガスが空隙内に充満するのに時間を要する。それゆえ、空気が長時間流れるため、流量法では、リークしていると誤認することがあった。また、圧力法では、圧力が安定したと判断しても、実際には完全に空気が充満しておらず、さらに圧力が低下することがあり、リークしていると誤認することがあった。
つまり、多孔質剤の空隙への空気の進入と、空気の漏洩とを区別することが困難であり、検査精度が低かった。一方、空気が空隙内に完全に充満するのを待てば誤認はなくなるが、検査時間が非常に長くなるという問題が生じた。しかも、近年では、浄水カートリッジが大型化されているので、上述した傾向がより強くなり、流量法や圧力法による検査はより困難になっている。
【0006】
以上のことから、浄水カートリッジの品質管理に適した検査方法が望まれていた。さらに、工業的な見地から、簡便な検査方法が望まれていた。
本発明は、前記事情を鑑みてなされたものであり、簡便かつ高精度で、しかも短時間に浄水カートリッジの漏れを検査でき、品質管理に容易に適用できる浄水カートリッジの検査方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の浄水カートリッジのリーク検査方法は、少なくとも多孔質剤を収容し、リークしていないことが確認された基準用浄水カートリッジに、該浄水カートリッジの水の流入口および流出口に接続したガス導入用の配管によって所定圧力の検査用ガスを導入した後、該基準用浄水カートリッジ内の圧力変化を測定する第1の測定工程と、
基準用浄水カートリッジと同じ構成を有する検査対象の浄水カートリッジに、該浄水カートリッジの水の流入口および流出口に接続したガス導入用の配管によって第1の測定工程と同等の所定圧力の検査用ガスを導入した後、該浄水カートリッジ内の圧力変化を測定する第2の測定工程とを有し、
第1の測定工程で測定された圧力変化と第2の測定工程で測定された圧力変化とに基づいて、検査対象の浄水カートリッジのリークの有無を検査することを特徴とする。
本発明の浄水カートリッジのリーク検査方法においては、密封した所定圧力の検査用ガスを圧力変化の基準として利用することが好ましい。
また、浄水カートリッジに検査用ガスを導入する際に、浄水カートリッジに形成された全ての開口部から検査用ガスを導入することが好ましい。
さらに、検査用ガスの所定圧力が0.01〜0.7MPaの範囲内であることが好ましい。
【0008】
【発明の実施の形態】
本発明の浄水カートリッジのリーク検査方法(以下、リーク検査方法と略す)の一実施形態例について図面を参照して説明する。なお、この実施形態例で使用される浄水カートリッジは、図4に示したものである。
本実施形態例のリーク検査方法では、まず、第1の測定工程において、リークしていないことが確認された基準用浄水カートリッジに、所定圧力の検査用ガスを導入した後、基準用浄水カートリッジの圧力変化を測定する。ここで測定された圧力変化は、多孔質剤および中空糸膜の空隙への検査用ガスの充満に起因する現象である。
次いで、第2の測定工程において、基準用浄水カートリッジと同じ構成を有する検査対象の浄水カートリッジに、第1の測定工程と同等の所定圧力の検査用ガスを導入した後、浄水カートリッジの圧力変化を測定する。
そして、第1の測定工程で測定された圧力変化と第2の測定工程で測定された圧力変化とに基づいて、浄水カートリッジのリークの有無を検査する。
【0009】
上述したリーク検査方法における圧力変化の測定方法について説明する。
図1に、圧力変化を測定する際に使用される圧力変化測定装置20の模式図を示す。この圧力変化測定装置20は、検査用ガスを送気するポンプなどの送気手段21と、送気手段21に接続されたガス導入管22と、検査用ガスを収容可能な基準圧力用容器23と、ガス導入管22と浄水カートリッジ1とを接続する第1の接続管25と、ガス導入管22と基準圧力用容器23とを接続する第2の接続管26と、第1の接続管25と第2の接続管26とに接続し、基準圧力用容器23側の検査用ガスと浄水カートリッジ1側の検査用ガスの差圧を測定する圧力測定手段27とを有している。
【0010】
この圧力変化測定装置20においては、第1の接続管25および第2の接続管26には、開閉用バルブ28a,28bが設置されている。
また、浄水カートリッジ1に形成された全ての開口部が、第1の接続管と接続されて検査用ガスが導入されるようになっている。すなわち、使用時に原水を取り入れるための流入口17と、処理水を流出させる流出口18とが、第1の接続管25に接続されている。このように、浄水カートリッジに形成された全ての開口部から検査用ガスを導入すれば、導入時間を短縮化できるとともに、圧力を容易に安定化させることができ、結果的に、検査時間をより短縮できる。
【0011】
この圧力変化測定装置20を用いた場合の圧力変化方法では、第1の接続管25の開閉用バルブ28aと、第2の接続管26の開閉用バルブ28bとを開けて、送気手段21によってガス導入管22から基準圧力用容器23内及び浄水カートリッジ1内に所定圧力の検査用ガスを導入する。次いで、第1の接続管25の開閉用バルブ28aと、第2の接続管26の開閉用バルブ28bを閉じ、基準圧力用容器23側の検査用ガスと浄水カートリッジ1側の検査用ガスとに隔離して放置する。そして、放置している間、圧力測定手段27によって、基準圧力用容器23側の検査用ガスと浄水カートリッジ1側の検査用ガスの差圧を測定する。ここで、検査用ガスを導入した直後は圧力値の振れ幅が大きいため、圧力値の振れ幅が小さくなるまで待ってから差圧を測定することが好ましい。その待ち時間は、浄水カートリッジ1の大きさ、収容された多孔質剤の量や物性、検査条件によって異なるが、0.2〜5秒程度であることが好ましい。放置時間が0.2秒未満であると圧力値の振れ幅が十分に小さくならなことがあり、5秒を超えると多孔質剤および中空糸膜の空隙への検査用ガスの進入の影響が無視できなくなることがある。
【0012】
差圧の測定の際には、基準圧力用容器23側の検査用ガスは密封されているから、基準圧力用容器23側の検査用ガスの圧力には変化がなく、導入したときの圧力のままである。一方、浄水カートリッジ1側は、多孔質剤および中空糸膜の空隙への検査用ガスの充満あるいはリークによって圧力低下する。したがって、基準圧力用容器23側の検査用ガスと浄水カートリッジ1側の検査用ガスの差圧を測定することで、浄水カートリッジ1内の検査用ガスの圧力変化を測定できる。
なお、圧力変化の測定間隔は、圧力変化の大きい測定初期で短くし、圧力変化の小さい測定後期で長くすることが好ましい。
なお、検査用ガスの導入は、ここでは基準圧力用容器23内及び浄水カートリッジ1内に同時に行っているが、別々に行っても構わない。
【0013】
このような圧力変化測定方法は、第1の測定工程および第2の測定工程の両方に適用できる。また、このような圧力変化測定方法は、圧力変化測定手段27によって、導入時の検査用ガスの圧力と浄水カートリッジ内の圧力との差圧を測定して圧力低下を求めており、常に変化の基準を有しているのでより高精度に測定できる。
【0014】
上述した圧力変化測定方法において、検査用ガスとしては特に制限はなく、例えば、空気を使用できる。また、検査用ガスの所定圧力は、浄水カートリッジの大きさ、構造、加圧時の変形などを考慮して適宜最適値を選ぶことができるが、0.01〜0.7MPaの範囲内であることが好ましい。検査用ガスの所定圧力が0.01〜0.7MPaの範囲内にあれば、リークの有無を容易に判定できるとともに、高圧に対応する設備が不要になる。
【0015】
上述した圧力変化測定方法によって測定された第1の測定工程での圧力変化と第2の測定工程での圧力変化とから、浄水カートリッジのリークの有無を判定する。以下に、その判定方法の一例について説明する。この判定方法では、第1の測定工程で測定された圧力変化をプロットして、図2に示すような、マスターカーブAを作成し、そのマスターカーブAを基準として許容できる圧力低下量を加味したしきい値カーブBを作成する。そして、第2の測定工程で測定された圧力変化をプロットして測定値カーブCを作成し、この測定値カーブCがしきい値カーブBより上に位置する場合には、リークしていないと判定し、一方、測定値カーブCがしきい値カーブBより下に位置する場合(図示例)には、リークしていると判定する。また、図2のグラフを利用し、所定時間Tにおける検査対象品の圧力低下量と、しきい値カーブB上のしきい値との大小関係で判定することもできる。
この判定方法において、許容できる圧力低下量は、要求される性能、浄水カートリッジの構造、所定圧力量などによって決定される。
【0016】
また、上述した判定方法では、図3に示すような、記憶部31と比較部32と表示部33とを有する判定装置34を用いてもよい。判定装置34を用いた場合には、第1の測定工程において圧力変化測定手段27で測定された圧力変化を記憶部31に記憶させる。そして、比較部32によって、この記憶部31で記憶された圧力変化に許容値を加味した圧力変化と、第2の測定工程において圧力変化測定手段27で測定された圧力変化とを比較し、その比較結果(判定結果)を表示部33で表示させる。このように判定装置34を用いれば、極めて短時間に判定することができる。この場合、同じ形状の浄水カートリッジのリーク検査を行う場合には、記憶されたマスターカーブAを用いて対比することができるので、リーク検査を行うごとに第1の測定工程を繰り返して行わなくてもよい。
【0017】
以上説明したリーク検査方法では、第1の測定工程にて、リークしていない基準用浄水カートリッジに所定圧力の検査用ガスを導入した後、基準用浄水カートリッジ内の圧力変化を測定するので、多孔質剤および中空糸膜の空隙への空気の進入による圧力変化を把握できる。そして、この圧力変化を考慮してリークの有無の判断基準を定め、第2の測定工程の測定結果と比較するので、高精度である。しかも、検査用ガスが多孔質剤および中空糸膜の空隙に完全に充満するまで待つ必要はないから検査時間が短縮される。また、この検査方法は特殊な装置を用いなくてもよいので簡便である。
【0018】
【実施例】
以下のようにして浄水カートリッジを作製した。まず、ポリエチレン製中空糸膜(三菱レイヨン(株)製、分画性能;0.1μm、外径;380μm)を、中空糸膜の総表面積が0.6m 、U字状に折り返した際に長さが65mmになるように、中空糸膜を7500本に集束し、底面を有する円筒状のケースに装填した。次いで、ポリウレタン樹脂からなる固定用樹脂をケースの底面近傍に充填し、固定用樹脂を固化させて、中空糸膜を固定する固定部を形成した。次いで、ケースの底面から10mmの位置で、固定部を底面に平行に切断して中空糸膜を開口させて、ケースと一体化した中空糸膜モジュールを作製した。
次いで、中空糸膜モジュールと一体化したケース内に、多孔質剤である粒状の活性炭200gを充填し、ケースに蓋部を接合して、図1に示すような、多数本の中空糸膜11がU字状に集束され、それらの端部が固定された中空糸膜モジュール12と、多孔質剤13である活性炭とを有する浄水カートリッジ1を得た。
【0019】
(実施例1)
まず、第1の測定工程において、リークしていないことが確認された基準用浄水カートリッジの流入口および流出口に、図1に示すような圧力変化測定装置20の第1の接続管25を接続した。次いで、第1の接続管25の開閉用バルブ28aと、第2の接続管26の開閉用バルブ28bとを開けて、送気手段21によってガス導入管22から基準圧力用容器23内及び浄水カートリッジ1内に、検査用ガスとして150kPaの空気を60秒間で導入した。
次いで、第1の接続管25の開閉用バルブ28aと第2の接続管26の開閉用バルブ28bとを閉じ、基準圧力用容器23側の空気と浄水カートリッジ1側の空気とに隔離して放置した。そして、放置している間、圧力測定手段27によって、基準圧力用容器23側の空気と浄水カートリッジ1側の空気の差圧変化を30秒間測定することで、圧力変化を測定した。なお、空気を導入した直後は圧力値の振れ幅が非常に大きいため、圧力値の振れ幅が小さくなるまで0.5〜2秒間程度放置した。このような第1の測定工程によって、浄水カートリッジ内の中空糸膜および活性炭の空隙への空気の進入による圧力変化を求めた。なお、圧力変化測定での測定間隔は、圧力変化の大きい測定初期で短くし、圧力変化の小さい測定後期で長くした。また、第1の測定工程は複数回行って、平均の圧力変化を求め、この平均の圧力変化を、図3に示すような判定装置34の記憶部31に記憶させた。
【0020】
次に、第2の測定工程において、第1の測定工程と同様にして、検査対象の浄水カートリッジの圧力変化を測定した。そして、判定装置34を用い、記憶部31に記憶された圧力変化に許容値を加味した圧力変化と、検査対象の浄水カートリッジの圧力変化とを比較部32で比較し、リークの有無を判定した。なお、比較部32では、同じ経過時間での圧力値を比較した。
このような検査方法により20本の浄水カートリッジを検査したところ、高精度にリークの有無を判定し、良品・不良品を区別することができた。また、検査時間も極めて短時間であった。
【0021】
(比較例1)
第1の測定工程を省略し、リーク有無の判定基準の圧力低下量(しきい値)を定め、このしきい値と、第2の測定工程における所定時間経過後の任意の時間の圧力低下量とを比較したこと以外は実施例1と同様にして、浄水カートリッジを検査した。このように、所定時間経過後の任意の時間の圧力低下量としきい値とを比較した場合には、浄水カートリッジ内の圧力は所定時間経過後にも低下するから、リークしていないものをリークしていると判定してしまうことがあり、複数回測定を繰り返しても、リークの有無を高精度に判定することはできなかった。すなわち、実施例1で良品あるいは不良品と判定された浄水カートリッジを比較例1の検査方法で検査しても異なった結果になることがあり、しかもその結果は誤っていた。
【0022】
(比較例2)
以下のような水没法によって浄水カートリッジを検査した。すなわち、図5に示すように、空気導入管41から空気を封入した作製後の浄水カートリッジ1を水槽42中に水没させ、浄水カートリッジ1から発生する気泡43の有無でリークの有無を判定した(図示例ではリークしている)。このような水没法によっても、リークの有無の判定は約1分で可能であったが、リーク検査後に浄水カートリッジ1を約1日かけて乾燥させる必要があったため、判定に時間を要した。
【0023】
【発明の効果】
本発明の浄水カートリッジのリーク検査方法は、簡便かつ高精度で、しかも短時間に浄水カートリッジの漏れを検査でき、品質管理に容易に適用できる。
【図面の簡単な説明】
【図1】 本発明の浄水カートリッジのリーク検査方法で使用される検査用ガスの圧力変化測定装置の一例を示す模式図である。
【図2】 浄水カートリッジ内の検査用ガスの圧力変化の一例をプロットしたグラフである。
【図3】 本発明の浄水カートリッジのリーク検査方法で使用される判定装置の構成を示す模式図である。
【図4】 浄水器の構造の一例を示す断面図である。
【図5】 従来の浄水カートリッジのリーク検査方法である水没法を示す側面である。
【図6】 従来の浄水カートリッジのリーク検査方法である石鹸水塗布法を示す斜視図である。
【符号の説明】
1 浄水カートリッジ
13 多孔質剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak inspection method for a water purification cartridge containing at least a porous agent.
[0002]
[Prior art]
In order to purify tap water or the like, a water purifier 2 having a water purification cartridge 1 as shown in FIG. 4 may be used. As the water purification cartridge 1 of the water purifier 2, for example, a hollow fiber membrane module 12 in which a large number of hollow fiber membranes 11 are converged in a U-shape and their ends are fixed, a porous agent 13 such as activated carbon, And integrated with the case 14 and the lid 15. In this water purifier 2, raw water flows into the water purification cartridge 2 from the inlet 17, passes through the porous agent 13 and the hollow fiber membrane module 12 in this order, then flows out from the outlet 18, and from the outlet 19 of the water purifier 2. Discharge as treated water.
However, in such a water purification cartridge 1, a gap may be formed if the case 14 and the lid 15 are incompletely joined. In the case where a gap is formed in the joint portion 16 between the case 14 and the lid portion 15, the raw water does not pass through the hollow fiber membrane module 12 and the porous agent 13 and passes through the gap in the joint portion 16 into the treated water. There was a possibility that the water would be insufficient due to contamination. Therefore, normally, after producing the water purification cartridge 1, the leak inspection is performed.
[0003]
As a conventional inspection method (for example, see Patent Documents 1 to 3), as shown in FIG. 5, the water purification cartridge 1 in which air is sealed from the air introduction pipe 41 is submerged in the water tank 42, and the presence or absence of bubbles 43 is generated. As shown in FIG. 6, there is a soaking method for visually confirming the presence of bubbles 44 by applying soapy water to the joint 16 of the water-purifying cartridge 1 filled with air. Can be mentioned.
As another inspection method, supply the inspection gas to the water purification cartridge, measure the leakage amount of the inspection gas with a micro flow meter, set the inside of the water purification cartridge to positive or negative pressure, and change the pressure after that. Examples include a pressure method in which leakage is detected by measuring with a pressure gauge, a pressure sensor, a pressure switch, etc., and comparing the amount of change in pressure with a threshold value for presence or absence of leakage.
[0004]
[Patent Document 1]
JP-A-9-75690 [Patent Document 2]
Japanese Patent Laid-Open No. 10-15059 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-236102
[Problems to be solved by the invention]
However, in the above-described submersion method and soap solution application method, since the operator makes a visual decision, the generation of bubbles may be overlooked, and the accuracy is low. Furthermore, since the water purification cartridge gets wet in the submersion method or the soap water application method, it has to be dried before shipping as a product, which requires time.
Further, the flow rate method and the pressure method have the following problems. That is, since the porous agent accommodated in the water purification cartridge has many voids, it takes time for the inspection gas to fill the void when the inspection gas is supplied to the water purification cartridge. Therefore, since air flows for a long time, the flow rate method sometimes misidentifies that it is leaking. Further, in the pressure method, even if it is determined that the pressure is stable, the air is actually not completely filled, and the pressure may be further lowered, which may be mistaken as a leak.
That is, it is difficult to distinguish between the entry of air into the void of the porous agent and the leakage of air, and the inspection accuracy is low. On the other hand, if the air is completely filled in the air gap, there will be no misidentification, but there is a problem that the inspection time becomes very long. Moreover, in recent years, since the water purification cartridge has been increased in size, the above-mentioned tendency has become stronger, and inspection by the flow rate method and the pressure method has become more difficult.
[0006]
From the above, an inspection method suitable for quality control of the water purification cartridge has been desired. Furthermore, a simple inspection method has been desired from an industrial viewpoint.
The present invention has been made in view of the above circumstances, and provides a method for inspecting a water purification cartridge that can be easily and highly accurately tested for leakage of a water purification cartridge in a short time and can be easily applied to quality control. Objective.
[0007]
[Means for Solving the Problems]
The method for inspecting leakage of a water purification cartridge according to the present invention includes introducing a gas connected to the water inlet and outlet of the water purification cartridge into a reference water purification cartridge that contains at least a porous agent and is confirmed not to leak. A first measuring step of measuring a pressure change in the reference water purification cartridge after introducing a test gas having a predetermined pressure by a pipe for use ;
An inspection gas having a predetermined pressure equivalent to that of the first measurement step is connected to the water purification cartridge to be inspected having the same configuration as the reference water purification cartridge by a gas introduction pipe connected to the water inlet and outlet of the water purification cartridge. And a second measuring step for measuring a pressure change in the water purification cartridge,
Based on the pressure change measured in the first measurement step and the pressure change measured in the second measurement step, the presence or absence of leakage of the water purification cartridge to be inspected is inspected.
In the method for inspecting a leak of a water purification cartridge according to the present invention, it is preferable to use a sealed inspection gas having a predetermined pressure as a reference for pressure change.
In addition, when introducing the inspection gas into the water purification cartridge, it is preferable to introduce the inspection gas from all the openings formed in the water purification cartridge.
Furthermore, it is preferable that the predetermined pressure of the inspection gas is in the range of 0.01 to 0.7 MPa.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of a water purification cartridge leak inspection method (hereinafter abbreviated as a leak inspection method) of the present invention will be described with reference to the drawings. The water purification cartridge used in this embodiment is shown in FIG.
In the leak inspection method of the present embodiment, first, after introducing the inspection gas of a predetermined pressure into the reference water purification cartridge that is confirmed not to leak in the first measurement step, the reference water purification cartridge Measure the pressure change. The pressure change measured here is a phenomenon resulting from the filling of the inspection agent gas into the voids of the porous agent and the hollow fiber membrane.
Next, in the second measurement step, after introducing a test gas having a predetermined pressure equivalent to that in the first measurement step into the water purification cartridge to be inspected having the same configuration as the reference water purification cartridge, the pressure change of the water purification cartridge is changed. taking measurement.
And based on the pressure change measured at the 1st measurement process, and the pressure change measured at the 2nd measurement process, the presence or absence of the leak of a water purification cartridge is test | inspected.
[0009]
A method for measuring a pressure change in the above-described leak inspection method will be described.
In FIG. 1, the schematic diagram of the pressure change measuring apparatus 20 used when measuring a pressure change is shown. The pressure change measuring device 20 includes an air supply means 21 such as a pump for supplying an inspection gas, a gas introduction pipe 22 connected to the air supply means 21, and a reference pressure container 23 that can store the inspection gas. A first connection pipe 25 that connects the gas introduction pipe 22 and the water purification cartridge 1, a second connection pipe 26 that connects the gas introduction pipe 22 and the reference pressure vessel 23, and a first connection pipe 25. And a pressure measuring means 27 for measuring a differential pressure between the test gas on the reference pressure container 23 side and the test gas on the water purification cartridge 1 side.
[0010]
In the pressure change measuring device 20, opening and closing valves 28 a and 28 b are installed in the first connecting pipe 25 and the second connecting pipe 26.
Moreover, all the openings formed in the water purification cartridge 1 are connected to the first connecting pipe so that the inspection gas is introduced. That is, the inlet 17 for taking in raw water at the time of use and the outlet 18 for discharging treated water are connected to the first connecting pipe 25. In this way, if the inspection gas is introduced from all the openings formed in the water purification cartridge, the introduction time can be shortened and the pressure can be easily stabilized, resulting in a longer inspection time. Can be shortened.
[0011]
In the pressure change method using the pressure change measuring device 20, the opening / closing valve 28 a of the first connection pipe 25 and the opening / closing valve 28 b of the second connection pipe 26 are opened, and the air supply means 21 An inspection gas having a predetermined pressure is introduced into the reference pressure vessel 23 and the water purification cartridge 1 from the gas introduction pipe 22. Next, the opening / closing valve 28a of the first connection pipe 25 and the opening / closing valve 28b of the second connection pipe 26 are closed, and the inspection gas on the reference pressure container 23 side and the inspection gas on the water purification cartridge 1 side are changed. Isolate and leave. While being left, the pressure measuring means 27 measures the differential pressure between the inspection gas on the reference pressure container 23 side and the inspection gas on the water purification cartridge 1 side. Here, since the fluctuation range of the pressure value is large immediately after the introduction of the inspection gas, it is preferable to wait for the fluctuation range of the pressure value to decrease before measuring the differential pressure. The waiting time varies depending on the size of the water purification cartridge 1, the amount and physical properties of the contained porous agent, and the inspection conditions, but is preferably about 0.2 to 5 seconds. If the standing time is less than 0.2 seconds, the fluctuation range of the pressure value may not be sufficiently small. If the standing time exceeds 5 seconds, the influence of the inspection gas entering the voids of the porous agent and the hollow fiber membrane is affected. It may not be negligible.
[0012]
When measuring the differential pressure, the test gas on the reference pressure container 23 side is sealed, so that the pressure of the test gas on the reference pressure container 23 side does not change, and the pressure at the time of introduction is the same. It remains. On the other hand, on the water purification cartridge 1 side, the pressure drops due to the filling or leakage of the inspection gas into the voids of the porous agent and the hollow fiber membrane. Therefore, by measuring the differential pressure between the inspection gas on the reference pressure container 23 side and the inspection gas on the water purification cartridge 1 side, the pressure change of the inspection gas in the water purification cartridge 1 can be measured.
In addition, it is preferable to shorten the measurement interval of a pressure change at the initial stage of measurement with a large pressure change, and to make it long at the latter stage of a measurement with a small pressure change.
Here, the introduction of the inspection gas is simultaneously performed in the reference pressure vessel 23 and the water purification cartridge 1 here, but may be performed separately.
[0013]
Such a pressure change measurement method can be applied to both the first measurement process and the second measurement process. Further, in such a pressure change measuring method, the pressure change measuring means 27 measures the pressure difference between the pressure of the inspection gas at the time of introduction and the pressure in the water purification cartridge to obtain a pressure drop, and the change in the pressure always changes. Since it has a reference, it can be measured with higher accuracy.
[0014]
In the pressure change measuring method described above, the inspection gas is not particularly limited, and for example, air can be used. The predetermined pressure of the inspection gas can be appropriately selected in consideration of the size and structure of the water purification cartridge, deformation during pressurization, etc., but is within the range of 0.01 to 0.7 MPa. It is preferable. If the predetermined pressure of the inspection gas is within a range of 0.01 to 0.7 MPa, it is possible to easily determine the presence or absence of a leak, and an equipment corresponding to a high pressure becomes unnecessary.
[0015]
The presence or absence of leakage of the water purification cartridge is determined from the pressure change in the first measurement process and the pressure change in the second measurement process measured by the pressure change measurement method described above. Hereinafter, an example of the determination method will be described. In this determination method, the pressure change measured in the first measurement step is plotted, and a master curve A as shown in FIG. 2 is created, and an allowable pressure drop is taken into account based on the master curve A. A threshold curve B is created. Then, a change in pressure measured in the second measurement step is plotted to create a measurement value curve C. When this measurement value curve C is located above the threshold curve B, there is no leakage. On the other hand, if the measured value curve C is located below the threshold curve B (illustrated example), it is determined that there is a leak. 2 can also be determined based on the magnitude relationship between the pressure drop amount of the inspection target product at the predetermined time T and the threshold value on the threshold curve B. FIG.
In this determination method, the allowable pressure drop is determined by the required performance, the structure of the water purification cartridge, the predetermined pressure amount, and the like.
[0016]
In the determination method described above, a determination device 34 having a storage unit 31, a comparison unit 32, and a display unit 33 as shown in FIG. 3 may be used. When the determination device 34 is used, the pressure change measured by the pressure change measuring means 27 in the first measurement process is stored in the storage unit 31. Then, the comparison unit 32 compares the pressure change stored in the storage unit 31 with an allowable value and the pressure change measured by the pressure change measuring unit 27 in the second measurement step. The comparison result (determination result) is displayed on the display unit 33. If the determination device 34 is used in this way, the determination can be made in a very short time. In this case, when performing a leak inspection of a water purification cartridge of the same shape, the stored master curve A can be used for comparison, so the first measurement step must be repeated each time a leak inspection is performed. Also good.
[0017]
In the leak inspection method described above, since the test gas having a predetermined pressure is introduced into the reference water purification cartridge that has not leaked in the first measurement step, the pressure change in the reference water purification cartridge is measured. It is possible to grasp the pressure change due to the entry of air into the pores of the material and the hollow fiber membrane. Then, taking into account this change in pressure, a criterion for determining whether or not there is a leak is determined and compared with the measurement result of the second measurement step, which is highly accurate. Moreover, since it is not necessary to wait until the inspection gas completely fills the voids of the porous agent and the hollow fiber membrane, the inspection time is shortened. This inspection method is simple because it does not require a special device.
[0018]
【Example】
A water purification cartridge was produced as follows. First, a polyethylene hollow fiber membrane (manufactured by Mitsubishi Rayon Co., Ltd., fractionation performance: 0.1 μm, outer diameter: 380 μm), the total surface area of the hollow fiber membrane is 0.6 m 2. , 7500 hollow fiber membranes were converged so as to have a length of 65 mm when folded back into a U shape, and loaded into a cylindrical case having a bottom surface. Next, a fixing resin made of polyurethane resin was filled in the vicinity of the bottom surface of the case, and the fixing resin was solidified to form a fixing portion for fixing the hollow fiber membrane. Next, at a position 10 mm from the bottom surface of the case, the fixing portion was cut in parallel to the bottom surface to open the hollow fiber membrane, thereby producing a hollow fiber membrane module integrated with the case.
Next, 200 g of granular activated carbon which is a porous agent is filled in a case integrated with a hollow fiber membrane module, and a lid is joined to the case, so that a large number of hollow fiber membranes 11 as shown in FIG. The water purification cartridge 1 which has the hollow fiber membrane module 12 by which these were converged in the U-shape and the edge part was fixed, and the activated carbon which is the porous agent 13 was obtained.
[0019]
(Example 1)
First, in the first measurement step, the first connecting pipe 25 of the pressure change measuring device 20 as shown in FIG. 1 is connected to the inlet and outlet of the reference water purification cartridge that has been confirmed not to leak. did. Next, the opening / closing valve 28a of the first connecting pipe 25 and the opening / closing valve 28b of the second connecting pipe 26 are opened, and the air supply means 21 allows the inside of the reference pressure container 23 and the water purification cartridge from the gas introduction pipe 22. 1, air of 150 kPa was introduced as a test gas in 60 seconds.
Next, the opening / closing valve 28a of the first connection pipe 25 and the opening / closing valve 28b of the second connection pipe 26 are closed, and the air is separated into the air on the reference pressure container 23 side and the air on the water purification cartridge 1 side and left as it is. did. Then, the pressure change was measured by measuring the change in pressure difference between the air on the reference pressure container 23 side and the air on the water purification cartridge 1 side for 30 seconds by the pressure measuring means 27 while left unattended. In addition, since the fluctuation range of the pressure value was very large immediately after the introduction of air, the pressure value was left for about 0.5 to 2 seconds until the fluctuation range of the pressure value became small. By such a first measurement step, the pressure change due to the entry of air into the hollow fiber membrane and the activated carbon gap in the water purification cartridge was determined. In addition, the measurement interval in the pressure change measurement was shortened at the initial stage of measurement where the pressure change was large, and was increased in the latter stage of measurement where the pressure change was small. Further, the first measurement step was performed a plurality of times to obtain an average pressure change, and this average pressure change was stored in the storage unit 31 of the determination device 34 as shown in FIG.
[0020]
Next, in the second measurement step, the pressure change of the water purification cartridge to be inspected was measured in the same manner as in the first measurement step. And using the determination apparatus 34, the pressure change which added the allowance to the pressure change memorize | stored in the memory | storage part 31 and the pressure change of the water purification cartridge of test object are compared in the comparison part 32, and the presence or absence of the leak was determined. . In addition, in the comparison part 32, the pressure value in the same elapsed time was compared.
When 20 water purification cartridges were inspected by such an inspection method, it was possible to determine the presence or absence of leakage with high accuracy and to distinguish between good and defective products. Also, the inspection time was extremely short.
[0021]
(Comparative Example 1)
The first measurement step is omitted, and a pressure drop amount (threshold value) is set as a criterion for determining whether or not there is a leak. The water purification cartridge was inspected in the same manner as in Example 1 except that In this way, when the amount of pressure drop for a given time after the lapse of a predetermined time is compared with the threshold value, the pressure in the water purification cartridge also drops after the lapse of the predetermined time. Therefore, even if the measurement was repeated a plurality of times, the presence or absence of the leak could not be determined with high accuracy. That is, even if the water purification cartridge determined as good or defective in Example 1 was inspected by the inspection method of Comparative Example 1, different results might be obtained, and the result was incorrect.
[0022]
(Comparative Example 2)
The water purification cartridge was inspected by the following water immersion method. That is, as shown in FIG. 5, the prepared water purification cartridge 1 in which air is sealed from the air introduction pipe 41 is submerged in the water tank 42, and the presence or absence of leakage is determined based on the presence or absence of bubbles 43 generated from the water purification cartridge 1 ( In the example shown, there is a leak). Even with such a submergence method, it was possible to determine whether or not there was a leak in about 1 minute, but it took time for the determination because the water purification cartridge 1 had to be dried for about 1 day after the leak test.
[0023]
【The invention's effect】
The water purification cartridge leak inspection method of the present invention is simple and highly accurate, and can inspect the leakage of the water purification cartridge in a short time, and can be easily applied to quality control.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an inspection gas pressure change measuring device used in a method for inspecting a water purification cartridge leak according to the present invention.
FIG. 2 is a graph plotting an example of a change in pressure of a test gas in a water purification cartridge.
FIG. 3 is a schematic diagram showing a configuration of a determination device used in a method for inspecting a water purification cartridge leak according to the present invention.
FIG. 4 is a cross-sectional view showing an example of the structure of a water purifier.
FIG. 5 is a side view showing a submersion method which is a conventional method for inspecting a leakage of a water purification cartridge.
FIG. 6 is a perspective view showing a soapy water application method which is a conventional method for inspecting a leakage of a water purification cartridge.
[Explanation of symbols]
1 Water purification cartridge 13 Porous agent

Claims (4)

少なくとも多孔質剤を収容し、リークしていないことが確認された基準用浄水カートリッジに、該浄水カートリッジの水の流入口および流出口に接続したガス導入用の配管によって所定圧力の検査用ガスを導入した後、該基準用浄水カートリッジ内の圧力変化を測定する第1の測定工程と、
基準用浄水カートリッジと同じ構成を有する検査対象の浄水カートリッジに、該浄水カートリッジの水の流入口および流出口に接続したガス導入用の配管によって第1の測定工程と同等の所定圧力の検査用ガスを導入した後、該浄水カートリッジ内の圧力変化を測定する第2の測定工程とを有し、
第1の測定工程で測定された圧力変化と第2の測定工程で測定された圧力変化とに基づいて、検査対象の浄水カートリッジのリークの有無を検査することを特徴とする浄水カートリッジのリーク検査方法。
At least a porous agent is accommodated, and a test water having a predetermined pressure is supplied to a reference water purification cartridge that has been confirmed not to leak by a gas introduction pipe connected to the water inlet and outlet of the water purification cartridge. A first measurement step of measuring a pressure change in the reference water purification cartridge after introduction;
An inspection gas having a predetermined pressure equivalent to that of the first measurement step is connected to the water purification cartridge to be inspected having the same configuration as the reference water purification cartridge by a gas introduction pipe connected to the water inlet and outlet of the water purification cartridge. And a second measuring step for measuring a pressure change in the water purification cartridge,
Leak inspection of a water purification cartridge characterized by inspecting whether there is a leak in the water purification cartridge to be inspected based on the pressure change measured in the first measurement step and the pressure change measured in the second measurement step Method.
密封した所定圧力の検査用ガスを圧力変化の基準として利用することを特徴とする請求項1に記載の浄水カートリッジのリーク検査方法。The method for inspecting a leakage of a water purification cartridge according to claim 1, wherein a sealed inspection gas having a predetermined pressure is used as a reference for pressure change. 浄水カートリッジに検査用ガスを導入する際に、浄水カートリッジに形成された全ての開口部から検査用ガスを導入することを特徴とする請求項1または2に記載の浄水カートリッジのリーク検査方法。The method for inspecting a leakage of a water purification cartridge according to claim 1 or 2, wherein when the inspection gas is introduced into the water purification cartridge, the inspection gas is introduced from all openings formed in the water purification cartridge. 検査用ガスの所定圧力が0.01〜0.7MPaの範囲内であることを特徴とする請求項1〜3のいずれかに記載の浄水カートリッジのリーク検査方法。The method for inspecting a leakage of a water purification cartridge according to any one of claims 1 to 3, wherein the predetermined pressure of the inspection gas is within a range of 0.01 to 0.7 MPa.
JP2003007133A 2003-01-15 2003-01-15 Leak inspection method for water purification cartridge Expired - Lifetime JP4107970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007133A JP4107970B2 (en) 2003-01-15 2003-01-15 Leak inspection method for water purification cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007133A JP4107970B2 (en) 2003-01-15 2003-01-15 Leak inspection method for water purification cartridge

Publications (2)

Publication Number Publication Date
JP2004219253A JP2004219253A (en) 2004-08-05
JP4107970B2 true JP4107970B2 (en) 2008-06-25

Family

ID=32897314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007133A Expired - Lifetime JP4107970B2 (en) 2003-01-15 2003-01-15 Leak inspection method for water purification cartridge

Country Status (1)

Country Link
JP (1) JP4107970B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909113B1 (en) 2007-08-31 2009-07-23 주식회사 에이스 디지텍 Leak Inspection System of Filtering Device and Leak Inspection Method of Filtering Device Using the Same
JP2011210976A (en) 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method of detecting supply abnormality using the substrate processing apparatus
CN104111149A (en) * 2014-06-19 2014-10-22 佛山市美的清湖净水设备有限公司 Detection equipment of water purifier and detection method thereof
CN104111147B (en) * 2014-06-19 2017-11-24 佛山市美的清湖净水设备有限公司 Detection device of water purifier and method for detecting leakage of detection device by adopting water purifier
CN104406750B (en) * 2014-12-16 2017-06-13 深圳市汉斯顿净水设备有限公司 The device for detecting sealability and detection method of a kind of water purification machine
CN104807604A (en) * 2015-05-19 2015-07-29 珠海普乐美厨卫有限公司 Water purifier detection equipment and detection method utilizing water purifier detection equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166835A (en) * 1983-03-14 1984-09-20 Cosmo Keiki:Kk Pressure variation detecting type leakage inspecting device
JPH07117474B2 (en) * 1990-09-26 1995-12-18 株式会社フクダ Leak test method and device
JPH0975690A (en) * 1995-09-11 1997-03-25 Nkk Corp Method and device for detecting damage of water treatment filter and water treatment apparatus equipped with the same
JP3401139B2 (en) * 1996-07-02 2003-04-28 テルモ株式会社 Leak test method and test apparatus for hollow fiber membrane module
JP2002206985A (en) * 2001-01-09 2002-07-26 Nec Kansai Ltd Airtightness inspecting device and method
JP4618902B2 (en) * 2001-02-07 2011-01-26 大和製罐株式会社 Cap air tightness inspection apparatus and method

Also Published As

Publication number Publication date
JP2004219253A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
EP1194217B1 (en) Method and apparatus for testing the integrity of filtering membranes
US4872974A (en) Apparatus for testing membrane filters, and for sterilizing liquids with use of membrane filter
US20070056905A1 (en) Continuous pressure decay test
CN100447545C (en) Leak tester
JP2001190938A (en) Method of detecting breakage of water treating membrane
HU221782B1 (en) Method and installation for in situ testing of filtering membrane integrity
JPH10165784A (en) Water penetration test for filter
CN101341389A (en) Method and device for testing the integrity of filtration membranes
JP4107970B2 (en) Leak inspection method for water purification cartridge
CN101672756A (en) Full-automatic pollution index value online monitoring instrument
JP2003501648A (en) Method for checking the integrity of a filtration unit and an inspection device for implementing the method
CA2276358C (en) Method of determining pulp properties
JP2007007539A (en) Leak detection method of membrane separator
JP2001269551A (en) Method for detecting rupture of permeable membrane module for water cleaning/treatment device
US20220072479A1 (en) Method for testing integrity of a filter medium
JP2011069801A (en) Measuring device of amount of bubble within liquid by measurement of volume change rate
JP4728684B2 (en) Membrane filter diagnosis method and apparatus for membrane filtration
JP7244310B2 (en) Hollow fiber membrane module leak test method, pure water production method, and pure water production apparatus
JPH0975690A (en) Method and device for detecting damage of water treatment filter and water treatment apparatus equipped with the same
CN213749526U (en) Gas diffusion speed measurement test device
JP4591670B2 (en) Film break detection method
JP4379352B2 (en) Operation method of membrane treatment apparatus
JP2005013992A (en) Safety testing method for hollow fiber membrane module
CN111830198A (en) Foam scrubbing agent performance evaluation test device
CN107884134A (en) A kind of air-tightness detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250