JP4107873B2 - Luminescent fine particles - Google Patents

Luminescent fine particles Download PDF

Info

Publication number
JP4107873B2
JP4107873B2 JP2002134676A JP2002134676A JP4107873B2 JP 4107873 B2 JP4107873 B2 JP 4107873B2 JP 2002134676 A JP2002134676 A JP 2002134676A JP 2002134676 A JP2002134676 A JP 2002134676A JP 4107873 B2 JP4107873 B2 JP 4107873B2
Authority
JP
Japan
Prior art keywords
luminescent
fine particles
molecular recognition
luminescent fine
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134676A
Other languages
Japanese (ja)
Other versions
JP2003329686A (en
Inventor
賢一 花木
健二 山本
由岐夫 山口
信也 前之園
陽一朗 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002134676A priority Critical patent/JP4107873B2/en
Publication of JP2003329686A publication Critical patent/JP2003329686A/en
Application granted granted Critical
Publication of JP4107873B2 publication Critical patent/JP4107873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体関連物質、環境関連物質等の標的物質の高感度測定法に用いる分子認識発光性マーカー物質として好適であり、高塩又は酸性溶液をはじめ、生物溶媒で分散安定性に優れる発光性微粒子に関する。
【0002】
【従来の技術】
近年、生体内に含まれるタンパク質、ウイルス、核酸等の生体関連物質や、ダイオキシン、金属イオン等の環境関連物質を高感度に測定する方法として、分子認識物質を蛍光体等のマーカー物質に結合した分子認識体を用いる方法が多用されている。しかし、従来用いられていた蛍光体等のマーカー物質は、発光効率が低く感度の点で必ずしも満足できず、また、一定の波長の光しか発することができないことから、一時に複数の検体を検出する等の複雑な測定に用いることは困難であった。
【0003】
近年、マーカー物質となる分子認識発光性微粒子として、半導体超微粒子(以下、半導体ナノ粒子ともいう)が注目されている。半導体ナノ粒子はバルク結晶における励起子ボーア半径と同等の粒子径を有する半導体の超微粒子(超微結晶)であり、量子閉じ込め効果の発現によって光学スペクトル、すなわち吸収スペクトル及び蛍光スペクトルを粒子径によって調節することが可能である。すなわち、粒子径によって異なる波長の光を発し得る。
【0004】
半導体ナノ粒子は、通常、粒径が0.5〜100nm、好ましくは0.5〜50nm、より好ましくは1〜10nmである超微粒子である。またこの半導体ナノ粒子の種類としては、例えば、CuCl等のI−VII族化合物半導体、CdS、CdSe等のII−VI族、InAs等のIII−V族化合物半導体、IV族半導体等の半導体結晶等が挙げられる。このような半導体ナノ粒子はコロイド化学的合成法により合成され、その表面は一般に界面活性剤及び/又は表面修飾剤で被覆され、安定化されている。
【0005】
高い量子効率を有し、かつ、粒子径分布が狭い半導体ナノ粒子を得るための合成法は限定されており、これらの方法によれば得られるナノ粒子の表面は疎水性となる場合が多い。しかし、表面が疎水性では、標的となるタンパク質、ウイルス、核酸等の生体関連物質との反応性が低下し高い感度で検出することが困難となる。また、半導体ナノ粒子は、ファンデルワールス力により粒子同士が凝集しやすく、測定中にも凝集が起こってしまうことから、凝集が起こる前に測定を終了しなくてはならないという問題もあった。
【0006】
そこで、生体内へ導入して用いる場合には半導体ナノ粒子の表面を親水化すると同時に、半導体ナノ粒子同士が凝集することを防ぐ必要があった。半導体ナノ粒子表面の親水化としては、例えば、WO00/17656「WATER−SOLUBLE THIOL−CAPPED NANOCRYSTALS」に記載されているような方法が報告されている。この方法は、半導体ナノ粒子の表面にカルボキシル基等の極性を有する官能基をグラフトすることにより、官能基の有するイオンの電荷同士の反発により粒子の凝集を防ぐというものである。
【0007】
しかしながら、この方法では試験条件を厳密にコントロールできるin vitro試験であっても長期間の分散性は不安定であり、更に、in vivo試験では、高塩濃度の生体内であることから、生体内に存在するイオンによって粒子表面にグラフトされた官能基の電荷が打ち消されてしまい、凝集を防ぐことはできなかった。
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、生体関連物質、環境関連物質等の標的物質の高感度測定法に用いる分子認識発光性微粒子のマーカー物質として好適であり、高塩又は酸性溶液をはじめ、生物溶媒で分散安定性に優れる発光性微粒子を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、極性官能基を有する高分子が表面に物理的及び/又は化学的に接合している半導体ナノ粒子からなる発光性微粒子である。
以下に本発明を詳述する。
【0010】
本発明の発光性微粒子は、極性官能基を有する高分子が表面に物理的及び/又は化学的に接合していることを特徴とする半導体ナノ粒子からなる。
上記半導体ナノ粒子としては特に限定されず、例えば、CuCl等のI−VII族化合物半導体、CdS、CdSe等のII−VI族、InAs等のIII−V族化合物半導体、IV族半導体等の半導体結晶、TiO等の金属酸化物、フタロシアニン、アゾ化合物等の有機化合物からなるもの、またはそれらの複合材料等が挙げられる。かかる複合材料としては、例えば、CdSをコア−CdSeをシェル、CdSeをコア−CdSをシェル、CdSをコア−ZnSをシェル、CdSeをコア−ZnSをシェル、CdSeのナノ結晶をコア−ZnSをシェル、CdSeのナノ結晶をコア−ZnSeをシェル、Siをコア−SiOをシェルとするコア−シェル構造を有するもの等が挙げられる。
【0011】
なお、上記半導体ナノ粒子としては、本発明の目的を損なわない範囲であれば、表面を化学的又は物理的に修飾されたものであってもよく、また、界面活性剤、分散安定剤又は酸化防止剤等の添加剤を加えたものであってもよい。このような半導体ナノ粒子は、コロイド化学的な方法、例えば、逆ミセル法(Lianos, P.et al., Chem. Phys. Lett., 125, 299 (1986))やホットソープ法(Peng, X. et al.,J. Am. Chem. Soc., 119, 7019 (1997))等によって合成することができる。
【0012】
上記半導体ナノ粒子の粒子径の好ましい下限は0.5nm、上限は100nmである。0.5nm未満であると原子又は分子そのものとなってしまい、100nmを超えると、バルクの性質となってしまうことがある。より好ましい下限は0.5nm、上限は50nm、更に好ましい下限は1nm、上限は10nmである。上記半導体ナノ粒子の形状としては特に限定されず、例えば、球状、棒状、板状、薄膜状、繊維状、チューブ状等が挙げられる。なかでも球状が好ましい。
【0013】
本発明の発光性微粒子では、上記半導体ナノ粒子の表面に極性官能基を有する高分子が物理的及び/又は化学的に接合している。極性官能基を有する高分子を物理的及び/又は化学的に接合させることにより、高分子の有する極性官能基同士の電気的な反発により粒子の凝集を防ぐことができる。
上記極性官能基を有する高分子は、酸性条件下及び/又は塩基性条件下でイオン化する官能基を有することが好ましい。一般に生体内は、部位により酸性条件にも塩基性条件にもなり得るが、酸性条件下でイオン化する官能基と塩基性条件下でイオン化する官能基とを両方同時に有することにより、酸性条件下でも塩基性条件下でも表面の極性官能基がイオン化し得るので、静電反発力により粒子の凝集を防ぐことができる。かかる官能基としては、例えば、カルボキシル基、スルホニル基、リン酸基、アンモニウム基等が挙げられる。
更に、生体内での測定に供することから、上記極性官能基を有する高分子としては天然物であることが好ましい。
【0014】
このような種々の要件を満たしうる高分子としては特にタンパク質が好適である。タンパク質と半導体ナノ粒子とを結合させることにより、本発明の発光性微粒子は生体内でも安定した分散安定性を示すとともに、該タンパク質の本来有する機能をも発現することができ、生体内の生体関連物質、環境関連物質等の標的物質の測定に利用することができる。例えば、タンパク質として、細胞膜透過性を有するタンパク質を用いれば、細胞を破壊することなく細胞内に存在する標的物質の分析にも用いることができる。
また、上記タンパク質としては免疫反応不活性タンパク質であることが好ましい。免疫反応不活性タンパク質であれば、生体内に用いても、生体の免疫機構によって排除されることなく測定を行うことができる。
【0015】
かかるタンパク質としては、具体的には例えば、アルブミン、ミオグロビン、カゼイン等が挙げられる。なかでもアルブミンは、後述の分子認識物質との結合の面でも優れており好適である。
【0016】
上記半導体ナノ粒子と上記極性官能基を有する高分子とは、物理的及び/又は化学的に接合されている。上記結合の態様としては特に限定されず、化学吸着、物理吸着、配位、水素結合、イオン結合、共有結合等が挙げられる。結合の安定性から、結合力の強い結合様式により結合されていることが好ましい。
なお、本発明の目的を損なわない範囲で、直接的接合のほかに間接的接合、すなわち該半導体ナノ粒子表面と該高分子との間に接合を媒介する他の有機分子が存在していてもよい。
また、上記極性官能基を有する高分子は、上記半導体ナノ粒子表面を取り囲むようにして複数結合していることが好ましい。極性官能基を有する高分子の半導体ナノ粒子表面の被覆率が高まることにより、本発明の発光性微粒子の分散安定性がより向上する。
【0017】
本発明の発光性微粒子を作製する方法としては特に限定されず、例えば、上記半導体ナノ粒子を、アルブミン溶液に浸漬する方法等が挙げられる。この方法により、半導体ナノ粒子の表面にアルブミンが物理吸着される。
【0018】
本発明の発光性微粒子は、表面に物理的及び/又は化学的に極性官能基を有する高分子が接合していることから、高分子の有する極性官能基同士の電気的反発により粒子の凝集を防ぐことができる。特に極性官能基を有する高分子としてタンパク質を用いる場合には、生体内でも安定した分散状態を保ち、かつ、細胞膜を通過して細胞を破壊することなく細胞内に侵入させること等が可能となる。
また、本発明の発光性微粒子は、半導体ナノ粒子を用いることから、励起光照射によって高輝度の蛍光(フォトルミネッセンス)を発し、微量成分の高感度測定に好適に用いることができる。また、粒子径の異なる半導体ナノ粒子からなる本発明の発光性微粒子を目的に応じて使い分けることにより、発光スペクトルを任意に調節・設計可能であり、より精密な測定への応用を図ることができる。
【0019】
本発明の発光性微粒子に分子認識物質を吸着及び/又は結合してなる分子認識発光性微粒子は、生体関連物質、環境関連物質等の標的物質の高感度測定法に好適に用いることができる。
かかる分子認識発光性微粒子もまた、本発明の1つである。
【0020】
上記分子認識物質とは、標的物質に特異的に反応するものであれば特に限定されないが抗原、抗体等のタンパク質、DNA、シクロデキストリン、クラウンエーテル等の環状化合物等が挙げられる。
【0021】
本発明の分子認識発光性微粒子を作製する方法としては特に限定されず、例えば、物理的吸着法や化学的結合法等が挙げられる。例えば、分子認識物質がタンパク質である場合には、発光性微粒子をアミノシラン誘導体等で処理することにより、直接又は縮合試薬により、タンパク質のアミノ基と発光性微粒子が結合される。また、分子認識物質がDNAのPCR産物である場合には、発光性微粒子をポリL−リシンでコートすることにより静電気的に結合可能である。分子認識物質がオリゴヌクレオチドである場合には、予めアルキルアミノアシランでコートした発光性微粒子を光感受性保護基を有するリンカーで保護し、光照射による脱保護、合成の繰り返しによりオリゴヌクレオチド鎖を合成する方法が挙げられる
【0022】
また、本発明の発光性微粒子に用いる極性官能基を有する高分子としてアルブミンを用いる場合には、ビオチンとアビジンとを用いて本発明の分子認識発光性微粒子を作製する方法が好適である。
すなわち、ビオチンはアルブミンとの結合性に優れることから、本発明の発光性微粒子が極性官能基を有する高分子としてアルブミンを用いている場合には、そのアルブミン上に容易にビオチンを結合させることができる。一方、ビオチンは、分子認識物質として用いられる抗原、抗体等のタンパク質やDNA等にも容易に結合させることができる。
表面にビオチンを有する本発明の発光性微粒子と、表面にビオチンを有する抗原、抗体等のタンパク質やDNA等の分子認識物質とは、アビジンを介して容易に結合することができる。
このように、本発明の発光性微粒子に用いる極性官能基を有する高分子としてアルブミンを用い、ビオチンとアビジンとを介して発光性微粒子と分子認識物質とが結合した分子認識発光性微粒子(Avidin−Biotin−Albumin−Quantum Dots:以下、ABA−QDsともいう)は、作製が容易であり応用範囲が広く好適である。
かかる本発明の分子認識発光性微粒子の1実施態様を図1及び図2に示した。
【0023】
本発明の分子認識発光性微粒子は、分子認識物質を選択することにより種々の生体関連物質、環境関連物質等を標的物質することができる。本発明の分子認識発光性微粒子による測定対象となる標的物質としては、抗体又はレセプターを作製できるものであれば特に限定されず、例えば、抗原・抗体や異常型プリオン等のタンパク質、ダイオキシン類等の内分泌撹乱物質、エイズウイルス等のウイルス、ペプチド、核酸、金属イオン等が挙げられる。
【0024】
本発明の分子認識発光性微粒子は、本発明の発光性微粒子からなることにより分散安定性に極めて優れる。このため、ELISA法によるタンパク質の検出や、免疫スクリーニング法、ハイブリッド形成法によるDNA、RNAの検出等のin vitro法に用いると、凝集が起こりにくく、長時間安定した試験を行うことができる。
また、生体内での分散安定性に優れることから、生体内における標的物質を高感度に測定することができ、薬物や生体成分の追尾、薬物の作用機構の解析等のin vivo試験にも応用することができる。
更に、アフィニティクロマトグラフィーの担体等に用いることにより、標的物質の分離や濃縮にも応用できる。
本発明の分子認識発光性微粒子を用いる標的物質の検出キットもまた、本発明の1つである。
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0025】
(実施例1)
11−メルカプトウンデカン酸ナトリウム塩表面修飾発光性微粒子(MUA−QD)1mgとウシ血清アルブミン(シグマ社製:BSA)10mgとを予め0.1mLの蒸留水に溶解し、0.1M2−[N−モルフォリノ]エタンスルホン酸(MES)バッファー(pH4.8)3.4mLを加えて充分に混合した。
次いで、蒸留水で溶解した10mg/mL1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(ピアス社製、EDC)溶液0.5mLを加え、室温2時間撹拌しながら反応させた。未反応のBSAは反応液をマイクロコンYM−100(ミリポア社製)で15000xgで5分間遠心することで除去した。遠心後、PBSバッファー(pH7.2)で2回洗浄した後、0.5mLのPBSバッファーで溶解することにより、半導体素子の表面にウシ血清アルブミンが接合した発光性微粒子(BSA結合MUA−QD)を得た。
【0026】
得られたBSA結合MUA−QDを0、0.25、0.5、1、2、4Mの濃度の塩化ナトリウムを含む10mMリン酸バッファー(pH7.2)で溶解し、室温で3日間静置した。
充分に撹拌した後、10mM リン酸バッファー(pH7.4)で作製した0.5%アガロースゲルで135V、50分間電気泳動を行った。対照としてABSが接合していないMUA−QDについても同様にして電気泳動を行った。
得られた電気泳動像を図3に示した。
図3より、BSA結合MUA−QDでは、4Mの塩化ナトリウムで処理してもブロードな電気泳動像が観察され、充分に分散していることがわかった。一方、MUA−QDでは0.25Mの塩化ナトリウム処理でも全く泳動されず、凝集していることがわかった。
【0027】
また、BSA結合MUA−QDとMUA−QDとを10mMMESバッファー(pH4.0及びpH5.5)及び10mMリン酸バッファー(pH7.4)で溶解し、室温で12時間静置した。
充分に撹拌した後、10mMリン酸バッファー(pH7.4)で作製した0.5%アガロースゲルで135V、50分間電気泳動を行った。
得られた電気泳動像を図4に示した。
図4より、BSA結合MUA−QDでは、pH4であってもpH7.4の場合と同様の移動度を示したことから、酸性下でも充分に分散していることがわかった。一方、MUA−QDでは、pH5.5では泳動されるもののpH7.4の場合に比べて移動度が劣り若干の凝集が認められ、更にpH4では完全に凝集していることがわかった。
【0028】
【発明の効果】
本発明によれば、生体関連物質、環境関連物質等の標的物質の高感度測定法に用いる分子認識発光性微粒子のマーカー物質として好適であり、特に生体内での分散安定性に優れる発光性微粒子を提供できる。
【図面の簡単な説明】
【図1】本発明の分子認識発光性微粒子の1実施態様を示す模式図である。
【図2】本発明の分子認識発光性微粒子の1実施態様を示す模式図である。
【図3】実施例で作製したBSA結合MUA−QDとMUA−QDとを異なる濃度の塩化ナトリウムで処理した後の電気泳動像である。
【図4】実施例で作製したBSA結合MUA−QDとMUA−QDとを異なるpHで処理した後の電気泳動像である。
【符号の説明】
1 発光性微粒子
2 半導体ナノ粒子
3 アルブミン
4 ビオチン
5 アビジン
6 分子認識物質(オリゴDNA)
7 分子認識物質(IgG抗体)
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable as a molecule-recognized luminescent marker substance for use in high-sensitivity measurement methods for target substances such as biologically related substances and environment-related substances, and is luminescent with excellent dispersion stability in biological solvents such as high salts or acidic solutions. Related to conductive fine particles.
[0002]
[Prior art]
In recent years, molecular recognition substances have been bound to marker substances such as phosphors as a highly sensitive method for measuring biologically related substances such as proteins, viruses and nucleic acids contained in living bodies, and environment-related substances such as dioxins and metal ions. A method using a molecular recognition body is frequently used. However, conventionally used marker substances such as phosphors are not always satisfactory in terms of sensitivity due to their low luminous efficiency, and can only emit light of a certain wavelength, so that multiple specimens can be detected at one time. It was difficult to use for complicated measurement such as.
[0003]
In recent years, semiconductor ultrafine particles (hereinafter also referred to as semiconductor nanoparticles) have attracted attention as molecular recognition light-emitting fine particles that serve as marker substances. Semiconductor nanoparticles are semiconductor ultrafine particles (ultrafine crystals) having a particle size equivalent to the exciton Bohr radius in bulk crystals, and the optical spectrum, that is, the absorption spectrum and the fluorescence spectrum are adjusted by the particle size by the manifestation of the quantum confinement effect. Is possible. That is, light having different wavelengths can be emitted depending on the particle diameter.
[0004]
The semiconductor nanoparticles are usually ultrafine particles having a particle size of 0.5 to 100 nm, preferably 0.5 to 50 nm, more preferably 1 to 10 nm. Examples of the semiconductor nanoparticles include a semiconductor crystal such as a group I-VII compound semiconductor such as CuCl, a group II-VI such as CdS and CdSe, a group III-V compound semiconductor such as InAs, and a group IV semiconductor. Is mentioned. Such semiconductor nanoparticles are synthesized by a colloidal chemical synthesis method, and the surface thereof is generally coated with a surfactant and / or a surface modifier and stabilized.
[0005]
Synthesis methods for obtaining semiconductor nanoparticles having high quantum efficiency and a narrow particle size distribution are limited, and the surface of the nanoparticles obtained by these methods often becomes hydrophobic. However, when the surface is hydrophobic, the reactivity with biologically relevant substances such as target proteins, viruses, nucleic acids and the like decreases, making it difficult to detect with high sensitivity. In addition, semiconductor nanoparticles have a problem that the particles must be aggregated due to van der Waals force, and aggregation also occurs during the measurement, so that the measurement must be terminated before the aggregation occurs.
[0006]
Therefore, when it is introduced into a living body and used, it is necessary to prevent the semiconductor nanoparticles from aggregating at the same time as making the surface of the semiconductor nanoparticles hydrophilic. As the hydrophilization of the surface of the semiconductor nanoparticles, for example, a method as described in WO00 / 17656 “WATER-SOLUBLE THIOL-CAPPPED NANOCRYSTALS” has been reported. This method is intended to prevent aggregation of particles by repelling charges of ions having a functional group by grafting a functional group having a polarity such as a carboxyl group onto the surface of the semiconductor nanoparticle.
[0007]
However, in this method, long-term dispersibility is unstable even in an in vitro test in which the test conditions can be strictly controlled. Further, in an in vivo test, the in vivo test has a high salt concentration. As a result, the charge of the functional group grafted on the particle surface is canceled by the ions present in the particles, and aggregation cannot be prevented.
[0008]
[Problems to be solved by the invention]
In view of the above situation, the present invention is suitable as a marker substance for molecule-recognized luminescent fine particles used in high-sensitivity measurement methods for target substances such as bio-related substances and environment-related substances, and includes biological solvents such as high salts or acidic solutions. An object of the present invention is to provide luminescent fine particles having excellent dispersion stability.
[0009]
[Means for Solving the Problems]
The present invention is a luminescent fine particle comprising semiconductor nanoparticles in which a polymer having a polar functional group is physically and / or chemically bonded to the surface.
The present invention is described in detail below.
[0010]
The luminescent fine particles of the present invention comprise semiconductor nanoparticles characterized in that a polymer having a polar functional group is physically and / or chemically bonded to the surface.
The semiconductor nanoparticles are not particularly limited. For example, a semiconductor crystal such as a group I-VII compound semiconductor such as CuCl, a group II-VI such as CdS or CdSe, a group III-V compound semiconductor such as InAs, or a group IV semiconductor. metal oxides such as TiO 2, phthalocyanine, made of an organic compound such as azo compounds, or composite materials thereof. Examples of such composite materials include CdS as a core-CdSe shell, CdSe as a core-CdS shell, CdS as a core-ZnS shell, CdSe as a core-ZnS shell, and CdSe nanocrystals as a core-ZnS shell. And those having a core-shell structure in which a nanocrystal of CdSe is a core-ZnSe shell and Si is a core-SiO 2 shell.
[0011]
The semiconductor nanoparticles may be those whose surfaces are chemically or physically modified as long as they do not impair the object of the present invention, and are surfactants, dispersion stabilizers or oxidation agents. What added additives, such as an inhibitor, may be used. Such semiconductor nanoparticles can be obtained by colloidal chemical methods such as reverse micelle method (Lianos, P. et al., Chem. Phys. Lett., 125, 299 (1986)) or hot soap method (Peng, X Et al., J. Am. Chem. Soc., 119, 7019 (1997)) and the like.
[0012]
The minimum with the preferable particle diameter of the said semiconductor nanoparticle is 0.5 nm, and an upper limit is 100 nm. If it is less than 0.5 nm, it becomes an atom or molecule itself, and if it exceeds 100 nm, it may have bulk properties. A more preferred lower limit is 0.5 nm, an upper limit is 50 nm, a still more preferred lower limit is 1 nm, and an upper limit is 10 nm. The shape of the semiconductor nanoparticles is not particularly limited, and examples thereof include a spherical shape, a rod shape, a plate shape, a thin film shape, a fiber shape, and a tube shape. Of these, spherical is preferable.
[0013]
In the luminescent fine particles of the present invention, a polymer having a polar functional group is physically and / or chemically bonded to the surface of the semiconductor nanoparticles. By physically and / or chemically bonding a polymer having a polar functional group, aggregation of particles can be prevented by electrical repulsion between polar functional groups of the polymer.
The polymer having a polar functional group preferably has a functional group that ionizes under acidic conditions and / or basic conditions. In general, the living body can be in an acidic condition or a basic condition depending on the site, but by having both a functional group that ionizes under acidic conditions and a functional group that ionizes under basic conditions at the same time, Since the polar functional group on the surface can be ionized even under basic conditions, aggregation of particles can be prevented by electrostatic repulsion. Examples of such functional groups include a carboxyl group, a sulfonyl group, a phosphate group, and an ammonium group.
Furthermore, the polymer having the polar functional group is preferably a natural product because it is used for measurement in vivo.
[0014]
A protein is particularly suitable as a polymer that can satisfy such various requirements. By binding protein and semiconductor nanoparticles, the luminescent microparticles of the present invention can exhibit stable dispersion stability even in vivo, and can also express the inherent function of the protein, and in vivo related to living organisms. It can be used to measure target substances such as substances and environment-related substances. For example, if a protein having cell membrane permeability is used as the protein, it can also be used for analysis of a target substance present in the cell without destroying the cell.
The protein is preferably an immune reaction inactive protein. If it is an immune reaction inactive protein, even if it is used in a living body, it can be measured without being excluded by the immune mechanism of the living body.
[0015]
Specific examples of such proteins include albumin, myoglobin, casein and the like. Among these, albumin is preferable because it is excellent in binding to a molecular recognition substance described later.
[0016]
The semiconductor nanoparticles and the polymer having the polar functional group are physically and / or chemically bonded. The form of the bond is not particularly limited, and examples thereof include chemical adsorption, physical adsorption, coordination, hydrogen bond, ionic bond, and covalent bond. It is preferable that it is couple | bonded by the coupling | bonding mode with strong bond strength from stability of coupling | bonding.
In addition to the direct bonding, indirect bonding, that is, other organic molecules that mediate the bonding exist between the surface of the semiconductor nanoparticles and the polymer, as long as the object of the present invention is not impaired. Good.
Moreover, it is preferable that a plurality of the polymers having the polar functional group are bonded so as to surround the surface of the semiconductor nanoparticles. The dispersion stability of the luminescent fine particles of the present invention is further improved by increasing the coverage of the surface of the polymer semiconductor nanoparticles having a polar functional group.
[0017]
The method for producing the luminescent fine particles of the present invention is not particularly limited, and examples thereof include a method of immersing the semiconductor nanoparticles in an albumin solution. By this method, albumin is physically adsorbed on the surface of the semiconductor nanoparticles.
[0018]
Since the luminescent fine particles of the present invention are physically and / or chemically bonded to a polymer having a polar functional group on the surface, the particles are aggregated by electrical repulsion between polar functional groups of the polymer. Can be prevented. In particular, when a protein is used as a polymer having a polar functional group, it is possible to maintain a stable dispersed state even in a living body and to enter a cell without passing through the cell membrane and destroying the cell. .
Moreover, since the luminescent fine particles of the present invention use semiconductor nanoparticles, they emit high-intensity fluorescence (photoluminescence) when irradiated with excitation light, and can be suitably used for highly sensitive measurement of trace components. In addition, by appropriately using the luminescent fine particles of the present invention composed of semiconductor nanoparticles having different particle diameters according to the purpose, the emission spectrum can be arbitrarily adjusted and designed, and can be applied to more precise measurement. .
[0019]
The molecule-recognized luminescent fine particles obtained by adsorbing and / or binding a molecule-recognizing substance to the luminescent fine particles of the present invention can be suitably used for a highly sensitive measurement method for target substances such as biologically-related substances and environment-related substances.
Such molecular recognition light-emitting fine particles are also one aspect of the present invention.
[0020]
The molecular recognition substance is not particularly limited as long as it specifically reacts with the target substance, and examples thereof include proteins such as antigens and antibodies, and cyclic compounds such as DNA, cyclodextrin, and crown ether.
[0021]
The method for producing the molecular recognition luminescent fine particles of the present invention is not particularly limited, and examples thereof include a physical adsorption method and a chemical bonding method. For example, when the molecular recognition substance is a protein, the amino group of the protein and the luminescent fine particles are bonded directly or by a condensation reagent by treating the luminescent fine particles with an aminosilane derivative or the like. When the molecular recognition substance is a PCR product of DNA, it can be bound electrostatically by coating the luminescent fine particles with poly L-lysine. When the molecular recognition substance is an oligonucleotide, the luminescent fine particles previously coated with alkylaminoasilane are protected with a linker having a photosensitive protective group, and the oligonucleotide chain is synthesized by repeated deprotection and synthesis by light irradiation. There is a method to do [0022]
In addition, when albumin is used as the polymer having a polar functional group used for the luminescent fine particles of the present invention, a method for producing the molecularly recognized luminescent fine particles of the present invention using biotin and avidin is preferable.
That is, since biotin is excellent in binding property to albumin, when the luminescent fine particles of the present invention use albumin as a polymer having a polar functional group, biotin can be easily bound on the albumin. it can. On the other hand, biotin can be easily bound to an antigen used as a molecular recognition substance, a protein such as an antibody, DNA, or the like.
The luminescent fine particles of the present invention having biotin on the surface and antigens having biotin on the surface, proteins such as antibodies, and molecular recognition substances such as DNA can be easily bonded via avidin.
Thus, albumin is used as the polymer having a polar functional group used in the luminescent fine particles of the present invention, and the molecule-recognized luminescent fine particles (Avidin−) in which the luminescent fine particles and the molecular recognition substance are bonded via biotin and avidin. Biotin-Albumin-Quantum Dots (hereinafter also referred to as ABA-QDs) is easy to produce and suitable for a wide range of applications.
One embodiment of the molecular recognition luminescent fine particles of the present invention is shown in FIG. 1 and FIG.
[0023]
The molecule-recognized luminescent fine particles of the present invention can target various biologically-related substances, environment-related substances and the like by selecting a molecular recognition substance. The target substance to be measured by the molecule-recognized luminescent fine particles of the present invention is not particularly limited as long as it can produce an antibody or a receptor. For example, proteins such as antigens / antibodies and abnormal prions, dioxins, etc. Examples include endocrine disrupting substances, viruses such as AIDS virus, peptides, nucleic acids, metal ions, and the like.
[0024]
The molecule-recognized luminescent fine particles of the present invention are extremely excellent in dispersion stability due to the luminescent fine particles of the present invention. For this reason, when used in in vitro methods such as protein detection by ELISA, immunoscreening, and DNA and RNA detection by hybridization, aggregation is unlikely to occur and a stable test can be performed for a long time.
In addition, because of its excellent dispersion stability in vivo, it is possible to measure target substances in vivo with high sensitivity, and it can also be applied to in vivo tests such as drug and biological component tracking and drug action mechanism analysis. can do.
Furthermore, it can be applied to the separation and concentration of a target substance by using it as a carrier for affinity chromatography.
A target substance detection kit using the molecule-recognized luminescent microparticles of the present invention is also one aspect of the present invention.
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0025]
(Example 1)
11 mg of 11-mercaptoundecanoic acid sodium salt surface-modified fine particles (MUA-QD) and 10 mg of bovine serum albumin (manufactured by Sigma: BSA) were dissolved in 0.1 mL of distilled water in advance, and 0.1M2- [N- Morpholino] ethanesulfonic acid (MES) buffer (pH 4.8) 3.4 mL was added and mixed well.
Then, 0.5 mL of 10 mg / mL 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (Pierce, EDC) solution dissolved in distilled water was added, and the mixture was allowed to react with stirring at room temperature for 2 hours. Unreacted BSA was removed by centrifuging the reaction solution with Microcon YM-100 (Millipore) at 15000 × g for 5 minutes. After centrifuging, washed twice with PBS buffer (pH 7.2), and then dissolved in 0.5 mL of PBS buffer, so that luminescent fine particles (BSA-bound MUA-QD) in which bovine serum albumin is bonded to the surface of the semiconductor element Got.
[0026]
The obtained BSA-bound MUA-QD was dissolved in 10 mM phosphate buffer (pH 7.2) containing sodium chloride at a concentration of 0, 0.25, 0.5, 1, 2, 4M, and allowed to stand at room temperature for 3 days. did.
After sufficiently stirring, electrophoresis was performed at 135 V for 50 minutes on a 0.5% agarose gel prepared with 10 mM phosphate buffer (pH 7.4). As a control, electrophoresis was similarly performed for MUA-QD to which ABS was not conjugated.
The obtained electrophoresis image is shown in FIG.
From FIG. 3, it was found that even when treated with 4M sodium chloride, a broad electrophoretic image was observed with BSA-bound MUA-QD and was sufficiently dispersed. On the other hand, it was found that MUA-QD was not migrated at all even with 0.25 M sodium chloride treatment and was aggregated.
[0027]
Further, BSA-bound MUA-QD and MUA-QD were dissolved in 10 mM MES buffer (pH 4.0 and pH 5.5) and 10 mM phosphate buffer (pH 7.4) and allowed to stand at room temperature for 12 hours.
After sufficiently stirring, electrophoresis was performed at 135 V for 50 minutes on a 0.5% agarose gel prepared with 10 mM phosphate buffer (pH 7.4).
The obtained electrophoresis image is shown in FIG.
From FIG. 4, BSA-conjugated MUA-QD showed the same mobility as pH 7.4 even at pH 4, indicating that it was sufficiently dispersed even under acidic conditions. On the other hand, although MUA-QD migrated at pH 5.5, the mobility was inferior to that of pH 7.4 and some aggregation was observed, and it was found that aggregation was complete at pH 4.
[0028]
【The invention's effect】
According to the present invention, the luminescent fine particles are suitable as marker substances for molecularly recognized luminescent fine particles used in high-sensitivity measurement methods for target substances such as biologically relevant substances and environment-related substances, and are particularly excellent in dispersion stability in vivo. Can provide.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a molecular recognition luminescent fine particle of the present invention.
FIG. 2 is a schematic view showing one embodiment of the molecular recognition luminescent fine particles of the present invention.
FIG. 3 is an electrophoretic image after treating BSA-bound MUA-QD and MUA-QD prepared in Example with different concentrations of sodium chloride.
FIG. 4 is an electrophoretic image after treating BSA-bound MUA-QD and MUA-QD prepared in Example at different pH.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Luminescent fine particle 2 Semiconductor nanoparticle 3 Albumin 4 Biotin 5 Avidin 6 Molecular recognition substance (oligo DNA)
7 Molecular recognition substance (IgG antibody)

Claims (5)

極性官能基を有する高分子が、粒子径が0.5〜100nmの半導体ナノ粒子の表面に物理的及び/又は化学的に接合している発光性微粒子であって、前記極性官能基を有する高分子は免疫反応不活性タンパク質であることを特徴とする発光性微粒子。The polymer having a polar functional group is a luminescent fine particle that is physically and / or chemically bonded to the surface of a semiconductor nanoparticle having a particle diameter of 0.5 to 100 nm, the polymer having a polar functional group Luminescent fine particles characterized in that the molecule is an immune reaction inactive protein. 免疫反応不活性タンパク質は、アルブミン、ミオグロビン又はカゼインであることを特徴とする請求項1記載の発光性微粒子。The luminescent microparticle according to claim 1, wherein the immune reaction inactive protein is albumin, myoglobin, or casein. 請求項1又は2記載の発光性微粒子と、前記発光性微粒子に吸着又は結合した分子認識物質からなることを特徴とする分子認識発光性微粒子。3. A molecular recognition luminescent fine particle comprising the luminescent fine particle according to claim 1 or 2 and a molecular recognition substance adsorbed or bound to the luminescent fine particle. 免疫反応不活性タンパク質がアルブミンであって、発光性微粒子と分子認識物質とが、ビオチンとアビジンとを介して結合していることを特徴とする請求項3記載の分子認識発光性微粒子。4. The molecular recognition luminescent microparticle according to claim 3, wherein the immune reaction inactive protein is albumin, and the luminescent microparticle and the molecular recognition substance are bound via biotin and avidin. 請求項3又は4記載の分子認識発光性微粒子を用いることを特徴とする標的物質の検出キット。A detection kit for a target substance, wherein the molecular recognition luminescent fine particles according to claim 3 or 4 are used.
JP2002134676A 2002-05-09 2002-05-09 Luminescent fine particles Expired - Fee Related JP4107873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134676A JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134676A JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Publications (2)

Publication Number Publication Date
JP2003329686A JP2003329686A (en) 2003-11-19
JP4107873B2 true JP4107873B2 (en) 2008-06-25

Family

ID=29697244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134676A Expired - Fee Related JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Country Status (1)

Country Link
JP (1) JP4107873B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547351A1 (en) 2003-12-01 2005-07-07 Dade Behring Marburg Gmbh Homogeneous detection method
JP2007512542A (en) * 2003-12-01 2007-05-17 デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Complexes and their use in detection methods
JP2006170853A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Analysis device, reading device and information management system
JP5082860B2 (en) 2006-01-27 2012-11-28 コニカミノルタエムジー株式会社 Si / Si3N4 type nanoparticles, biological material labeling agent using the nanoparticles, and method for producing the nanoparticles
US20100255462A1 (en) * 2006-01-27 2010-10-07 Konica Minolta Medical & Graphic, Inc. Fluorescent marker for living organism and fluorescent marking method for the same
JPWO2007125812A1 (en) * 2006-04-28 2009-09-10 コニカミノルタエムジー株式会社 INORGANIC NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND BIOLOGICAL LABELING AGENT CONTAINING INORGANIC NANOPARTICLE
US8110407B2 (en) 2006-09-14 2012-02-07 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
EP2063268A4 (en) 2006-09-15 2012-03-21 Konica Minolta Med & Graphic Fluorescent semiconductor microparticle, method for production of the microparticle, fluorescent labeling agent for biological substance using the microparticle, and bioimaging method using the microparticle
WO2008152892A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2008152969A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
US20100171076A1 (en) * 2007-06-13 2010-07-08 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticles, method for manufacturing the same, and biological substance labeling agent employing the same
WO2008152868A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance
WO2009051016A1 (en) * 2007-10-17 2009-04-23 Konica Minolta Medical & Graphic, Inc. Silicon quantum dots and biological labeling agent using the same
JP5125703B2 (en) * 2008-04-07 2013-01-23 コニカミノルタエムジー株式会社 Rare earth element-doped phosphor nanoparticles and biological material labeling agents using the same
US9023659B2 (en) 2009-05-08 2015-05-05 Konica Minolta Medical & Graphic, Inc. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
JP6334216B2 (en) * 2014-03-14 2018-05-30 京セラ株式会社 Semiconductor particle paste

Also Published As

Publication number Publication date
JP2003329686A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4107873B2 (en) Luminescent fine particles
de Dios et al. Multifunctional nanoparticles: analytical prospects
US20090258355A1 (en) Nanoscale Clusters and Methods of Making Same
JP5448369B2 (en) Method for producing silica particle having amino group on particle surface, silica particle having amino group on particle surface, and composite particle using the same
US20110226995A1 (en) Compositions and methods for functionalizing or crosslinking ligands on nanoparticle surfaces
Goryacheva et al. Synthesis and bioanalytical applications of nanostructures multiloaded with quantum dots
JP5367915B2 (en) Method for producing functional molecule-containing silica nanoparticles bonded with biomolecules
WO2011106963A1 (en) Luminescent nanogold functionalized by n-(4-aminobutyl)-n-ethylisoluminol, preparation and application thereof
WO2011045394A1 (en) Biomolecular labels, involving nanoparticles functionalised with dendrimers
JP2007506084A (en) Nanoparticle conjugate and method for producing the same
JP5202857B2 (en) Composite particles having high dispersibility and preventing non-specific adsorption, composite particle colloid, analytical reagent using the same, and method for producing composite particles
JPWO2003066644A1 (en) Ferrite-binding organic substance and method for producing the same
JP2009196829A (en) Method for producing silica nanoparticles of core-shell structure, silica nanoparticles of core-shell structure and labeling reagent using the same
JP2009281760A (en) Nanoparticle-containing silica, labeling material of biosubstance using it, and labeling method of biosubstance
US7998923B2 (en) Bioactivation of particles
Dembele et al. Zwitterionic silane copolymer for ultra-stable and bright biomolecular probes based on fluorescent quantum dot nanoclusters
JP2008273790A (en) Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
US20100048416A1 (en) Encoded microsphere
JP7162150B2 (en) Quantum dot-containing nanoparticles and method for producing the same
JP4518220B2 (en) Polyethylene glycolated metal ultrafine particles
JP2010229440A (en) Water-dispersible metal nanoparticle
JP4245415B2 (en) Method for producing molecular recognition phosphor
JP5024291B2 (en) Fluorescent semiconductor fine particles, method for producing the same, fluorescent labeling agent for biological material using the same, and bioimaging method using the same
JP2009162537A (en) Composite particle having polysaccharide on surface, composite particle colloid, analytical reagent using the same, and composite particle manufacturing method
GB2445579A (en) An encoded microsphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees