JP4105019B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4105019B2
JP4105019B2 JP2003103553A JP2003103553A JP4105019B2 JP 4105019 B2 JP4105019 B2 JP 4105019B2 JP 2003103553 A JP2003103553 A JP 2003103553A JP 2003103553 A JP2003103553 A JP 2003103553A JP 4105019 B2 JP4105019 B2 JP 4105019B2
Authority
JP
Japan
Prior art keywords
cylinder
engine
required torque
region
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103553A
Other languages
Japanese (ja)
Other versions
JP2004308560A (en
Inventor
桂 大久保
尚平 岡崎
彰 加藤
富雄 木村
徹 北村
利宏 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003103553A priority Critical patent/JP4105019B2/en
Publication of JP2004308560A publication Critical patent/JP2004308560A/en
Application granted granted Critical
Publication of JP4105019B2 publication Critical patent/JP4105019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の制御装置に関し、特に複数の気筒を有し、圧縮自己着火運転及び火花点火運転を行うことができる内燃機関の制御装置に関する。
【0002】
【従来の技術】
内燃機関に供給される混合気を圧縮自己着火により燃焼させる圧縮自己着火運転によれば、空燃比がリーンな状態でも比較的安定した燃焼を実現し、しかも燃焼温度が比較的低いので、NOxの発生量を低減することができる。しかしながら、機関の全運転領域で安定した圧縮自己着火運転を行うことは困難であるため、機関運転状態に応じて圧縮自己着火運転と、火花点火運転とを切り換えるようにした内燃機関の制御装置が、特許文献1に示されている。
【0003】
この特許文献1に示された制御装置によれば、機関の低・中負荷且つ低回転運転領域で圧縮自己着火運転が行われ、極低負荷運転領域、高負荷運転領域及び高回転運転領域では、火花点火運転が行われる。高負荷運転領域及び高回転運転領域では、主として大きな機関出力を得るために火花点火運転が行われる。極低負荷運転領域では、燃料供給量が少なく、圧縮自己着火が確実に行われなくなることから、火花点火運転が行われる。
【0004】
【特許文献1】
特開2001−152919号公報
【0005】
【発明が解決しようとする課題】
火花点火運転を行うと、圧縮自己着火運転に比べて燃費が悪くなるため、圧縮自己着火運転を行う運転領域を、より拡大することが望ましい。
【0006】
本発明はこの点に着目してなされたものであり、圧縮自己着火運転及び火花点火運転を行うことができる内燃機関をより適切に制御し、圧縮自己着火運転を行うことができる運転領域を拡大することができる制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、複数の気筒を有し、圧縮自己着火運転及び火花点火運転を行うことができる内燃機関の制御装置において、前記機関の要求トルク(PMECMD)を算出する要求トルク算出手段と、前記要求トルク(PMECMD)を用いて定義される前記機関の所定運転領域(RHCCI)において前記圧縮自己着火運転を行い、前記所定運転領域以外の運転領域において前記火花点火運転を行うように切換制御を行う運転切換制御手段と、前記所定運転領域内の、前記要求トルク(PMECMD)が所定値(PTH)以上である第1部分領域内では前記複数気筒の全部を作動させる全気筒運転を行う一方、前記所定運転領域内の、前記要求トルク(PMECMD)が前記所定値(PTH)より小さい第2部分領域(RHCCIX)内では、前記複数気筒の一部(#1,#4気筒)の作動を休止させる一部気筒運転を行うように前記機関を制御する気筒休止制御手段とを備えることを特徴とする。
【0008】
この構成によれば、機関の要求トルクを用いて定義される所定運転領域において圧縮自己着火運転を行い、所定運転領域以外の運転領域において火花点火運転を行うように切換制御が行われるとともに、所定運転領域内の、要求トルクが所定値以上である第1部分領域内では全気筒運転を行う一方、所定運転領域内の、要求トルクが所定値より小さい第2部分領域内では一部気筒運転を行うように制御される。第2部分領域内で一部気筒運転を行うことにより、作動気筒に供給すべき燃料量が増加し、混合気を確実に自己着火させることができる運転領域、すなわち圧縮自己着火運転を行うことができる運転領域を第2部分領域相当分だけ拡大することができる。
【0009】
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記気筒休止制御手段は、前記一部気筒運転を行うときは、作動気筒(#2,#3気筒)に供給する燃料量を前記全気筒運転時より増加させることを特徴とする。
【0010】
この構成によれば、一部気筒運転を行うときは作動気筒に供給する燃料量が全筒運転時より増量される。作動気筒に供給する燃料量を増量させることにより、休筒運転中の機関出力トルクを要求トルクに合わせることができる。
【0011】
また前記気筒休止制御手段は、前記作動気筒(#2,#3気筒)に供給する燃料量(INJ)を、前記機関の気筒数(N)と、前記作動気筒の数(n)との比率(N/n)に応じて通常運転時の燃料量より増加させることが望ましい。
【0012】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図である。図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気管2を備え、吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(TH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子制御ユニット(以下「ECU」という)5に供給する。スロットル弁3には、スロットル弁3を駆動するアクチュエータ7が接続されており、アクチュエータ7は、ECU5によりその作動が制御される。
【0013】
燃料噴射弁6は、エンジン1の燃焼室(図示せず)内に直接燃料を噴射できるように気筒毎に設けられている。各燃料噴射弁6は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間(燃料噴射量)が制御される。
【0014】
エンジン1の各気筒には、吸気弁及び排気弁(図示せず)がそれぞれ2個ずつ設けられている。吸気弁及び排気弁は、電磁駆動機構30により駆動される電磁駆動弁であり、開弁時期及び閉弁時期を任意に設定することができる。電磁駆動型の吸排気弁は、例えば特開2000−283316号公報などに示されている。
【0015】
またエンジン1の各気筒には、燃焼室内の圧力を検出する筒内圧センサ14が設けられており、その検出信号はECU5に供給される。
一方、スロットル弁3の直ぐ下流には吸気管内絶対圧(PBA)センサ8が設けられており、この絶対圧センサ8により電気信号に変換された絶対圧信号は前記ECU5に供給される。また、その下流には吸気温(TA)センサ9が取付けられており、吸気温TAを検出して対応する電気信号を出力してECU5に供給する。
【0016】
エンジン1の本体に装着されたエンジン水温(TW)センサ10はサーミスタ等から成り、エンジン水温(冷却水温)TWを検出して対応する温度信号を出力してECU5に供給する。
ECU5には、エンジン1のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ11が接続されており、クランク軸の回転角度に応じた信号がECU5に供給される。クランク角度位置センサ11は、エンジン1の特定の気筒の所定クランク角度位置でパルス(以下「CYLパルス」という)を出力する気筒判別センサ、各気筒の吸入行程開始時の上死点(TDC)に関し所定クランク角度前のクランク角度位置で(4気筒エンジンではクランク角180度毎に)TDCパルスを出力するTDCセンサ及びTDCパルスより短い一定クランク角周期(例えば30度周期)で1パルス(以下「CRKパルス」という)を発生するCRKセンサから成り、CYLパルス、TDCパルス及びCRKパルスがECU5に供給される。これらのパルスは、吸気弁及び排気弁の開閉弁時期、燃料噴射時期、点火時期等の各種タイミング制御及びエンジン回転数(エンジン回転速度)NEの検出に使用される。
【0017】
エンジン1の各気筒毎に設けられた点火プラグ12は、ECU5に接続されており、点火プラグ12の駆動信号、すなわち点火信号がECU5から供給される。
ECU5には、エンジン1により駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ31、その検出信号がECU5に供給される。
【0018】
ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、アクチュエータ7、電磁駆動機構30、点火プラグ12、及び燃料噴射弁6に駆動信号を供給する出力回路等から構成される。
【0019】
ECU5のCPUは、アクセルセンサ31により検出されるアクセルペダル操作量APに応じてスロットル弁3の目標開度THCMDを算出し、スロットル弁開度THが目標開度THCMDに一致するようにアクチュエータ7の駆動制御を行う。
【0020】
ECU5は、アクセルペダル操作量APに応じてエンジン1の要求トルクPMECMDを算出し、要求トルクPMECMD及びエンジン回転数NEに応じて、圧縮自己着火運転を行う運転条件(以下「HCCI条件」という(HCCI:Homogeneous Charge Compression Ignition))が成立するときは、吸気弁及び排気弁のバルブタイミングが、圧縮自己着火運転に適したものとなるように電磁駆動機構30を制御するとともに、点火プラグ12による点火を行わないようにする。一方HCCI条件が不成立のときは、点火プラグ12による点火を行う火花点火運転を行う。火花点火運転では、吸気弁及び排気弁のバルブタイミングが、火花点火運転に適したものとなるように電磁駆動機構30が制御される。
【0021】
図2は、エンジン制御処理の要部のフローチャートであり、この処理は、ECU5のCPUでTDCパルスに同期して実行される。
ステップS11では、アクセルペダル操作量APに応じて図4(a)に示すPMECMDテーブルを検索し、エンジンの1気筒当たりの要求トルクPMECMDを算出する。PMECMDテーブルは、要求トルクPMECMDがアクセルペダル操作量APにほぼ比例するように設定されている。次いで、エンジン回転数NE及び要求トルクPMECMDにより、HCCI条件が成立しているか否かを判別する(ステップS12)。HCCI条件は、図3に示すエンジン回転数NE及び要求トルクPMECMDで決まる運転領域RHCCIで成立する。この運転領域RHCCIに含まれ、ハッチングを付した運転領域RHCCIXは、本実施形態における一部気筒運転により、従来より拡大した領域である。
【0022】
ステップS12でHCCI条件が成立していないときは、ステップS13に進み、火花点火運転を行う。
HCCI条件が成立しているときは、要求トルクPMECMDが所定閾値PTHより小さいか否かを判別する(ステップS14)。所定閾値PTHは、図3に示すように、運転領域RHCCIXの上縁に対応する。
【0023】
ステップS14でPMECMD<PTHであるときは、#1気筒及び#4気筒の吸気弁及び排気弁を閉弁させる(ステップS15)とともに、これらの気筒における燃料噴射を停止し(ステップS16)、#1気筒及び#4気筒を休止状態とする(#2気筒及び#3気筒のみを作動させる一部気筒運転を行う)。次に作動を継続する#2気筒及び#3気筒の要求トルクを、ステップS11で算出した要求トルクの2倍とする(ステップS17)。すなわち、一部気筒運転中の1気筒当たりの要求トルクPCMDVSは、下記式(1)により決定される。
PCMDVS=PMECMD×2 (1)
【0024】
ステップS18では、要求トルクPCMDVSに応じて図4(b)に示すINJテーブルを検索し、作動させる#2気筒及び#3気筒の基本燃料噴射量INJを算出する。INJテーブルは、基本燃料噴射量INJが要求トルクPCMDVCSにほぼ比例するように設定されている。次いで、要求トルクPCMDVSに応じて図4(c)に示すTCMDテーブルを検索し、目標筒内温度TCMDを算出する(ステップS19)。TCMDテーブルは、要求トルクPCMDVSが増加するほど目標筒内温度TCMDが低下するように設定されている。
【0025】
ステップS20では、目標筒内温度TCMDに応じて図5(a)に示すCAECテーブル、及び同図(b)に示すCAIOテーブルを検索し、作動させる#2気筒及び#3気筒の排気弁の閉弁時期CAEC及び吸気弁の開弁時期CAIOを求める。ここで、排気弁の閉弁時期CAECは、図6に示すように、排気行程が終了する上死点(以下「排気TDC」という)からの進角量として定義され、吸気弁の開弁時期CAIOは、排気TDCからの遅角量として定義されている。図6において、縦軸は吸気弁及び排気弁のリフト量LFTを示し、破線が排気弁のリフト特性を示し、実線が吸気弁のリフト特性を示す。
【0026】
図5(a)に示すCAECテーブルは、目標筒内温度TCMDが高くなるほど、閉弁時期CAECが進角するように設定されている。また同図(b)に示すCAIOテーブルは、目標筒内温度TCMDが高くなるほど、開弁時期CAIOが遅角するように設定されている。すなわち、目標筒内温度TCMDが高くなるほど、排気弁及び吸気弁のバルブタイミングにおける負のオーバラップ期間TNOLが長くなるように、排気弁及び吸気弁のバルブタイミングが制御される。これにより、実際の筒内温度(燃焼室内の温度)が目標筒内温度TCMDとほぼ一致するように制御される。
【0027】
ステップS21では、目標筒内温度TCMDに応じて図5(c)に示すKTCMDテーブルを検索し、補正係数KTCMDを算出する。KTCMDテーブルは、目標筒内温度TCMDが高くなるほど、補正係数KTCMDが大きくなるように設定されている。
【0028】
ステップS22では、下記式(2)に基本燃料噴射量INJ及び補正係数KTCMDを適用し、燃料噴射量INJCMDを算出する。
INJCMD=INJ×KTCMD (2)
式(2)により基本燃料噴射量INJを補正することにより、実際の筒内温度が目標筒内温度TCMDとなるように燃料噴射量が制御される。
【0029】
ステップS14でPMECMD≧PTHであるときは、全気筒運転を行う。すなわち、先ずステップS31に進み、各気筒の要求トルクをステップS11で算出された要求トルクPMECMDに設定し、次いで要求トルクPMECMDに応じて図4(b)に示すINJテーブルを検索し、基本燃料噴射量INJを求める(ステップS32)。
【0030】
ステップS33では、要求トルクPMECMDに応じて図4(c)に示すTCMDテーブルを検索し、目標筒内温度TCMDを算出する。ステップS34では、目標筒内温度TCMDに応じて図5(a)に示すCAECテーブル、及び同図(b)に示すCAIOテーブルを検索し、全気筒の排気弁の閉弁時期CAEC及び吸気弁の開弁時期CAIOを求める。ステップS35では、前記ステップS21と同様に、目標筒内温度TCMDに応じて補正係数KTCMDを算出し、次いで前記式(2)により、燃料噴射量INJCMDを求める。
【0031】
以上のように本実施形態では、要求トルクPMECMDが所定閾値PTHより小さいときは、#1気筒及び#4気筒を休止させ、#2気筒及び#3気筒を作動させる一部気筒運転を行う。そして、作動させる#2気筒及び#3気筒の要求トルクを2倍にして、1気筒当たりの燃料噴射量を増加させるようにしたので、安定した着火を実現し、圧縮自己着火運転を行うエンジン運転領域を拡大することができる。
【0032】
本実施形態では、電磁駆動機構30が気筒休止制御手段に一部を構成し、ECU5が要求トルク算出手段及び気筒休止制御手段の一部を構成する。より具体的には、図2のステップS11が要求トルク算出手段に相当し、同図のステップSステップS14〜S22が気筒休止制御手段に相当する。
【0033】
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、4気筒エンジンの例を示したが、気筒数はこれに限るものではない。例えば6気筒エンジンにおいて、一部気筒運転を行う場合は、3気筒を休止させ、3気筒を作動させる一部気筒運転や、2気筒を休止させ、4気筒を作動させる一部気筒運転を行うようにしてもよい。いずれの場合も、作動させる一部の気筒の要求トルクPCMDVSは、下記式(3)により算出される。
PCMDVS=PMECMD×N/n (3)
【0034】
ここで、Nは全気筒数、nは一部気筒運転における作動気筒数である。すなわち、作動気筒の要求トルクPCMDVSは、全気筒運転における1気筒当たりの要求トルクPMECMDに作動気筒数nに対する全気筒数Nの比率(N/n)を乗算することにより得られる。
式(3)を用いることにより、一部気筒運転において全気筒運転と同一のエンジン出力トルクを得ることができる。
また作動させる一部の気筒の要求トルクPCMDVSは、下記式(4)により算出するようにしてよい。
PCMDVS=PMECMD×KCSCMD (4)
ここでKCSCMDは、エンジン1の運転パラメータに応じて設定される「1.0」より大きい補正係数であり、例えば上記比率N/nに近い値に設定される。
【0035】
また燃料噴射弁6は、吸気管2と燃焼室とを連通する吸気ポート(図示せず)に設けるようにしてもよい。
また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。
【0036】
【発明の効果】
以上詳述したように請求項1に記載の発明によれば、機関の要求トルクを用いて定義される所定運転領域において圧縮自己着火運転を行い、所定運転領域以外の運転領域において火花点火運転を行うように切換制御が行われるとともに、所定運転領域内の、要求トルクが所定値以上である第1部分領域内では全気筒運転を行う一方、所定運転領域内の、要求トルクが所定値より小さい第2部分領域内では一部気筒運転を行うように制御される。第2部分領域内で一部気筒運転を行うことにより、作動気筒に供給すべき燃料量が増加し、混合気を確実に自己着火させることができる運転領域、すなわち圧縮自己着火運転を行うことができる運転領域を第2部分領域相当分だけ拡大することができる。
【0037】
請求項2に記載の発明によれば、一部気筒運転を行うときは作動気筒に供給する燃料量が全筒運転時より増量される。作動気筒に供給する燃料量を増量させることにより、休筒運転中の機関出力トルクを要求トルクに合わせることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。
【図2】図1に示す内燃機関の制御処理の要部を示すフローチャートである。
【図3】圧縮自己着火運転を実行する機関運転領域を示す図である。
【図4】図2の処理で使用されるテーブルを示す図である。
【図5】図2の処理で使用されるテーブルを示す図である。
【図6】吸気弁及び排気弁のリフト特性を示す図である。
【符号の説明】
1 内燃機関
5 電子制御ユニット(要求トルク算出手段、気筒休止制御手段)
6 燃料噴射弁
30 電磁駆動機構(気筒休止制御手段)
31 アクセルセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that has a plurality of cylinders and can perform a compression self-ignition operation and a spark ignition operation.
[0002]
[Prior art]
According to the compression self-ignition operation in which the air-fuel mixture supplied to the internal combustion engine is combusted by compression self-ignition, relatively stable combustion is realized even when the air-fuel ratio is lean, and the combustion temperature is relatively low. The amount of generation can be reduced. However, since it is difficult to perform stable compression self-ignition operation in the entire operation region of the engine, an internal combustion engine control device that switches between compression self-ignition operation and spark ignition operation according to the engine operation state is provided. Patent Document 1 discloses this.
[0003]
According to the control device disclosed in Patent Document 1, the compression self-ignition operation is performed in the low / medium load and low rotation operation region of the engine. A spark ignition operation is performed. In the high load operation region and the high rotation operation region, a spark ignition operation is performed mainly to obtain a large engine output. In the extremely low load operation region, the fuel supply amount is small, and compression self-ignition is not reliably performed, so the spark ignition operation is performed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-152919
[Problems to be solved by the invention]
When the spark ignition operation is performed, the fuel efficiency becomes worse as compared with the compression self-ignition operation. Therefore, it is desirable to further expand the operation range in which the compression self-ignition operation is performed.
[0006]
The present invention has been made paying attention to this point, and more appropriately controls an internal combustion engine capable of performing compression self-ignition operation and spark ignition operation, and expands an operation range in which compression self-ignition operation can be performed. It is an object of the present invention to provide a control device that can do the above.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is a control device for an internal combustion engine having a plurality of cylinders and capable of performing a compression self-ignition operation and a spark ignition operation, and a required torque (PMECMD) of the engine. Required compression calculation means for calculating the engine, the compression self-ignition operation is performed in a predetermined operation region (RHCCI) of the engine defined using the request torque (PMECMD), and the spark is generated in an operation region other than the predetermined operation region. An operation switching control means for performing switching control so as to perform an ignition operation, and all of the plurality of cylinders in the first partial region in the predetermined operation region where the required torque (PMECMD) is equal to or greater than a predetermined value (PTH). While performing all-cylinder operation to be operated, the required torque (PMECMD) within the predetermined operation region is smaller than the predetermined value (PTH). In the partial region (RHCCIX), characterized in that it comprises said part of the plurality of cylinders (# 1, # 4 cylinder) cylinder deactivation control means for controlling said engine to perform the partial-cylinder operation to halt the operation of the And
[0008]
According to this configuration, the switching control is performed so that the compression self-ignition operation is performed in the predetermined operation region defined using the required torque of the engine , and the spark ignition operation is performed in the operation region other than the predetermined operation region. All cylinder operation is performed in the first partial region where the required torque is greater than or equal to a predetermined value in the operation region, while partial cylinder operation is performed in the second partial region in the predetermined operation region where the required torque is less than the predetermined value. Controlled to do. By performing the partial cylinder operation in the second partial region, the amount of fuel to be supplied to the working cylinder is increased, and the operation region in which the air-fuel mixture can be surely self-ignited, that is, the compression self-ignition operation can be performed. The possible operation area can be expanded by the amount corresponding to the second partial area .
[0009]
According to a second aspect of the present invention, in the control device for an internal combustion engine according to the first aspect, when the partial cylinder operation is performed , the cylinder deactivation control means sets the working cylinder (# 2, # 3 cylinder). the supplied fuel quantity, characterized in Rukoto increase from the time the all-cylinder operation.
[0010]
According to this configuration, when the partial cylinder operation is performed, the amount of fuel supplied to the working cylinder is increased from that during the all-cylinder operation . By increasing the amount of fuel supplied to the working cylinder can Rukoto combined engine output torque during cylinder deactivation operation to the required torque.
[0011]
The cylinder deactivation control means determines the amount of fuel (INJ) to be supplied to the working cylinders (# 2, # 3 cylinders) as a ratio of the number of cylinders (N) of the engine and the number of working cylinders (n). It is desirable to increase the amount of fuel during normal operation according to (N / n).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention. In FIG. 1, for example, an internal combustion engine (hereinafter simply referred to as “engine”) 1 having four cylinders includes an intake pipe 2, and a throttle valve 3 is disposed in the middle of the intake pipe 2. Further, a throttle valve opening (TH) sensor 4 is connected to the throttle valve 3, and an electric signal corresponding to the opening of the throttle valve 3 is output to an electronic control unit (hereinafter referred to as “ECU”) 5. Supply. An actuator 7 that drives the throttle valve 3 is connected to the throttle valve 3, and the operation of the actuator 7 is controlled by the ECU 5.
[0013]
The fuel injection valve 6 is provided for each cylinder so that fuel can be directly injected into a combustion chamber (not shown) of the engine 1. Each fuel injection valve 6 is connected to a fuel pump (not shown) and electrically connected to the ECU 5, and a valve opening time (fuel injection amount) of the fuel injection valve 6 is controlled by a signal from the ECU 5.
[0014]
Each cylinder of the engine 1 is provided with two intake valves and two exhaust valves (not shown). The intake valve and the exhaust valve are electromagnetically driven valves that are driven by the electromagnetic drive mechanism 30, and the valve opening timing and the valve closing timing can be arbitrarily set. An electromagnetically driven intake / exhaust valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-283316.
[0015]
Each cylinder of the engine 1 is provided with an in-cylinder pressure sensor 14 for detecting the pressure in the combustion chamber, and the detection signal is supplied to the ECU 5.
On the other hand, an intake pipe absolute pressure (PBA) sensor 8 is provided immediately downstream of the throttle valve 3, and an absolute pressure signal converted into an electric signal by the absolute pressure sensor 8 is supplied to the ECU 5. Further, an intake air temperature (TA) sensor 9 is attached downstream thereof, detects the intake air temperature TA, outputs a corresponding electric signal, and supplies it to the ECU 5.
[0016]
An engine water temperature (TW) sensor 10 mounted on the main body of the engine 1 is composed of a thermistor or the like, detects the engine water temperature (cooling water temperature) TW, outputs a corresponding temperature signal, and supplies it to the ECU 5.
The ECU 5 is connected to a crank angle position sensor 11 that detects a rotation angle of a crankshaft (not shown) of the engine 1, and a signal corresponding to the rotation angle of the crankshaft is supplied to the ECU 5. The crank angle position sensor 11 is a cylinder discrimination sensor that outputs a pulse (hereinafter referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 1, and relates to a top dead center (TDC) at the start of the intake stroke of each cylinder. A TDC sensor that outputs a TDC pulse at a crank angle position before a predetermined crank angle (every 180 degrees of crank angle in a four-cylinder engine) and one pulse (hereinafter referred to as “CRK”) with a constant crank angle period shorter than the TDC pulse (for example, a period of 30 degrees) The CYL pulse, the TDC pulse, and the CRK pulse are supplied to the ECU 5. These pulses are used for various timing controls such as opening / closing valve timings of the intake and exhaust valves, fuel injection timing, ignition timing, and detection of the engine speed (engine speed) NE.
[0017]
A spark plug 12 provided for each cylinder of the engine 1 is connected to the ECU 5, and a drive signal of the spark plug 12, that is, an ignition signal is supplied from the ECU 5.
The ECU 5 is supplied with an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1 and a detection signal thereof.
[0018]
The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing unit (hereinafter referred to as “CPU”). ), A storage circuit for storing a calculation program executed by the CPU, a calculation result, and the like, an actuator 7, an electromagnetic drive mechanism 30, a spark plug 12, and an output circuit for supplying a drive signal to the fuel injection valve 6 The
[0019]
The CPU of the ECU 5 calculates the target opening THCMD of the throttle valve 3 according to the accelerator pedal operation amount AP detected by the accelerator sensor 31, and controls the actuator 7 so that the throttle valve opening TH matches the target opening THCMD. Drive control is performed.
[0020]
The ECU 5 calculates the required torque PMECMD of the engine 1 according to the accelerator pedal operation amount AP, and performs an operation condition for performing the compression self-ignition operation according to the required torque PMECMD and the engine speed NE (hereinafter referred to as “HCCI condition” (HCCI condition)). : Homogeneous Charge Compression Ignition)) is established, the electromagnetic drive mechanism 30 is controlled so that the valve timings of the intake valve and the exhaust valve are suitable for compression self-ignition operation, and ignition by the spark plug 12 is performed. Do not do it. On the other hand, when the HCCI condition is not satisfied, a spark ignition operation for performing ignition by the spark plug 12 is performed. In the spark ignition operation, the electromagnetic drive mechanism 30 is controlled so that the valve timings of the intake valve and the exhaust valve are suitable for the spark ignition operation.
[0021]
FIG. 2 is a flowchart of the main part of the engine control process, and this process is executed by the CPU of the ECU 5 in synchronization with the TDC pulse.
In step S11, the PMECMD table shown in FIG. 4A is searched according to the accelerator pedal operation amount AP, and the required torque PMECMD per cylinder of the engine is calculated. The PMECMD table is set so that the required torque PMECMD is substantially proportional to the accelerator pedal operation amount AP. Next, it is determined whether or not the HCCI condition is satisfied based on the engine speed NE and the required torque PMECMD (step S12). The HCCI condition is satisfied in the operation region RHCCI determined by the engine speed NE and the required torque PMECMD shown in FIG. The hatched hatched operation region RHCCCIX is included in this operation region RHCCI and is a region that has been expanded compared to the prior art due to partial cylinder operation in the present embodiment.
[0022]
When the HCCI condition is not satisfied in step S12, the process proceeds to step S13, and a spark ignition operation is performed.
When the HCCI condition is satisfied, it is determined whether or not the required torque PMECMD is smaller than a predetermined threshold value PTH (step S14). The predetermined threshold value PTH corresponds to the upper edge of the operation region RHCCIX, as shown in FIG.
[0023]
If PMECMD <PTH in step S14, the intake valves and exhaust valves of the # 1 and # 4 cylinders are closed (step S15), and fuel injection in these cylinders is stopped (step S16), and # 1 The cylinder and the # 4 cylinder are deactivated (partial cylinder operation is performed in which only the # 2 cylinder and the # 3 cylinder are operated). Next, the required torques of the # 2 and # 3 cylinders that continue to operate are set to twice the required torque calculated in step S11 (step S17). That is, the required torque PCMDVS per cylinder during partial cylinder operation is determined by the following equation (1).
PCMDVS = PMECMD × 2 (1)
[0024]
In step S18, the INJ table shown in FIG. 4B is retrieved according to the required torque PCMDVS, and the basic fuel injection amounts INJ of the # 2 cylinder and # 3 cylinder to be operated are calculated. The INJ table is set so that the basic fuel injection amount INJ is substantially proportional to the required torque PCMDVCS. Next, the TCMD table shown in FIG. 4C is searched according to the required torque PCMDVS, and the target in-cylinder temperature TCMD is calculated (step S19). The TCMD table is set so that the target in-cylinder temperature TCMD decreases as the required torque PCMDVS increases.
[0025]
In step S20, the CAEC table shown in FIG. 5A and the CAIO table shown in FIG. 5B are retrieved according to the target in-cylinder temperature TCMD, and the exhaust valves of the # 2 cylinder and # 3 cylinder to be operated are closed. The valve timing CAEC and the intake valve opening timing CAIO are obtained. Here, as shown in FIG. 6, the exhaust valve closing timing CAEC is defined as an advance amount from the top dead center (hereinafter referred to as “exhaust TDC”) at which the exhaust stroke ends, and the intake valve opening timing CAEC. CAIO is defined as a retard amount from the exhaust TDC. In FIG. 6, the vertical axis indicates the lift amount LFT of the intake valve and the exhaust valve, the broken line indicates the lift characteristic of the exhaust valve, and the solid line indicates the lift characteristic of the intake valve.
[0026]
The CAEC table shown in FIG. 5A is set so that the valve closing timing CAEC advances as the target in-cylinder temperature TCMD increases. Further, the CAIO table shown in FIG. 5B is set such that the valve opening timing CAIO is retarded as the target in-cylinder temperature TCMD increases. That is, the valve timing of the exhaust valve and the intake valve is controlled such that the negative overlap period TNOL in the valve timing of the exhaust valve and the intake valve becomes longer as the target in-cylinder temperature TCMD becomes higher. Thereby, the actual in-cylinder temperature (temperature in the combustion chamber) is controlled so as to substantially coincide with the target in-cylinder temperature TCMD.
[0027]
In step S21, a KTCMD table shown in FIG. 5C is retrieved according to the target in-cylinder temperature TCMD, and a correction coefficient KTCMD is calculated. The KTCMD table is set so that the correction coefficient KTCMD increases as the target in-cylinder temperature TCMD increases.
[0028]
In step S22, the basic fuel injection amount INJ and the correction coefficient KTCMD are applied to the following equation (2) to calculate the fuel injection amount INJCMD.
INJCMD = INJ × KTCMD (2)
By correcting the basic fuel injection amount INJ by the equation (2), the fuel injection amount is controlled so that the actual in-cylinder temperature becomes the target in-cylinder temperature TCMD.
[0029]
When PMECMD ≧ PTH in step S14, all cylinders are operated. That is, first, the process proceeds to step S31, where the required torque of each cylinder is set to the required torque PMECMD calculated in step S11, and then the INJ table shown in FIG. An amount INJ is obtained (step S32).
[0030]
In step S33, the TCMD table shown in FIG. 4C is searched according to the required torque PMEMCMD, and the target in-cylinder temperature TCMD is calculated. In step S34, the CAEC table shown in FIG. 5 (a) and the CAIO table shown in FIG. 5 (b) are retrieved according to the target in-cylinder temperature TCMD, and the exhaust valve closing timing CAEC and the intake valve of all the cylinders are searched. Obtain the valve opening time CAIO. In step S35, as in step S21, the correction coefficient KTCMD is calculated according to the target in-cylinder temperature TCMD, and then the fuel injection amount INJCMD is obtained by the equation (2).
[0031]
As described above, in the present embodiment, when the required torque PMECMD is smaller than the predetermined threshold value PTH, the partial cylinder operation is performed in which the # 1 cylinder and the # 4 cylinder are deactivated and the # 2 cylinder and the # 3 cylinder are operated. Since the required torque of the # 2 cylinder and # 3 cylinder to be operated is doubled and the fuel injection amount per cylinder is increased, the engine operation that realizes stable ignition and performs the compression self-ignition operation The area can be enlarged.
[0032]
In the present embodiment, the electromagnetic drive mechanism 30 constitutes a part of the cylinder deactivation control means, and the ECU 5 constitutes a part of the required torque calculation means and the cylinder deactivation control means. More specifically, step S11 in FIG. 2 corresponds to the required torque calculation means, and steps S14 to S22 in FIG. 2 correspond to the cylinder deactivation control means.
[0033]
The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, an example of a four-cylinder engine is shown, but the number of cylinders is not limited to this. For example, in a 6-cylinder engine, when performing a partial cylinder operation, a 3 cylinder is deactivated and a 3 cylinder is activated, a partial cylinder operation is activated, or a 2 cylinder is deactivated and a 4 cylinder is activated. It may be. In any case, the required torque PCMDVS of some cylinders to be operated is calculated by the following equation (3).
PCMDVS = PMECMD × N / n (3)
[0034]
Here, N is the total number of cylinders, and n is the number of operating cylinders in partial cylinder operation. That is, the required torque PCMDVS of the working cylinder is obtained by multiplying the required torque PMECMD per cylinder in all cylinder operation by the ratio (N / n) of the total number of cylinders N to the number of working cylinders n.
By using Expression (3), the same engine output torque as that in the full cylinder operation can be obtained in the partial cylinder operation.
Further, the required torque PCMDVS of some cylinders to be operated may be calculated by the following equation (4).
PCMDVS = PMECMD × KCSCMD (4)
Here, KCSCMD is a correction coefficient larger than “1.0” set according to the operation parameter of the engine 1, and is set to a value close to the ratio N / n, for example.
[0035]
The fuel injection valve 6 may be provided in an intake port (not shown) that communicates the intake pipe 2 and the combustion chamber.
The present invention can also be applied to control of a marine vessel propulsion engine such as an outboard motor having a crankshaft as a vertical direction.
[0036]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention , the compression self-ignition operation is performed in the predetermined operation region defined using the required torque of the engine , and the spark ignition operation is performed in the operation region other than the predetermined operation region. Switching control is performed so that all cylinders are operated in the first partial region in the predetermined operation region where the required torque is equal to or greater than the predetermined value, while the required torque in the predetermined operation region is smaller than the predetermined value. Control is performed so as to perform partial cylinder operation in the second partial region. By performing the partial cylinder operation in the second partial region, the amount of fuel to be supplied to the working cylinder is increased, and the operation region in which the air-fuel mixture can be surely self-ignited, that is, the compression self-ignition operation can be performed. The possible operation area can be expanded by the amount corresponding to the second partial area .
[0037]
According to the second aspect of the present invention, when the partial cylinder operation is performed, the amount of fuel supplied to the working cylinder is increased from that during the all cylinder operation . By increasing the amount of fuel supplied to the working cylinder can Rukoto combined engine output torque during cylinder deactivation operation to the required torque.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a main part of a control process of the internal combustion engine shown in FIG.
FIG. 3 is a diagram showing an engine operation region in which a compression self-ignition operation is executed.
4 is a diagram showing a table used in the process of FIG. 2. FIG.
FIG. 5 is a diagram showing a table used in the processing of FIG. 2;
FIG. 6 is a diagram showing lift characteristics of an intake valve and an exhaust valve.
[Explanation of symbols]
1 Internal combustion engine 5 Electronic control unit (required torque calculation means, cylinder deactivation control means)
6 Fuel injection valve 30 Electromagnetic drive mechanism (cylinder deactivation control means)
31 Accelerator sensor

Claims (2)

複数の気筒を有し、圧縮自己着火運転及び火花点火運転を行うことができる内燃機関の制御装置において、
前記機関の要求トルクを算出する要求トルク算出手段と、
前記要求トルクを用いて定義される前記機関の所定運転領域において前記圧縮自己着火運転を行い、前記所定運転領域以外の運転領域において前記火花点火運転を行うように切換制御を行う運転切換制御手段と、
前記所定運転領域内の、前記要求トルクが所定値以上である第1部分領域内では前記複数気筒の全部を作動させる全気筒運転を行う一方、前記所定運転領域内の、前記要求トルクが前記所定値より小さい第2部分領域内では、前記複数気筒の一部の作動を休止させる一部気筒運転を行うように前記機関を制御する気筒休止制御手段とを備えることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine having a plurality of cylinders and capable of performing compression self-ignition operation and spark ignition operation,
Required torque calculating means for calculating the required torque of the engine;
An operation switching control means for performing the switching control so that the compression self-ignition operation is performed in a predetermined operation region of the engine defined using the required torque and the spark ignition operation is performed in an operation region other than the predetermined operation region; ,
In the first partial region in which the required torque is greater than or equal to a predetermined value within the predetermined operation region, all-cylinder operation for operating all of the plurality of cylinders is performed, while the required torque in the predetermined operation region is the predetermined value. And a cylinder deactivation control means for controlling the engine so as to perform a partial cylinder operation for deactivating some of the plurality of cylinders within a second partial region smaller than the value. apparatus.
前記気筒休止制御手段は、前記一部気筒運転を行うときは、作動気筒に供給する燃料量を前記全気筒運転時より増加させることを特徴とする請求項1に記載の内燃機関の制御装置。The cylinder deactivation control means, wherein when performing partial-cylinder operation, the control apparatus for an internal combustion engine according to claim 1, characterized in Rukoto the amount of fuel supplied to the hydraulic cylinder is increased from the time the all-cylinder operation .
JP2003103553A 2003-04-08 2003-04-08 Control device for internal combustion engine Expired - Fee Related JP4105019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103553A JP4105019B2 (en) 2003-04-08 2003-04-08 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103553A JP4105019B2 (en) 2003-04-08 2003-04-08 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004308560A JP2004308560A (en) 2004-11-04
JP4105019B2 true JP4105019B2 (en) 2008-06-18

Family

ID=33466612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103553A Expired - Fee Related JP4105019B2 (en) 2003-04-08 2003-04-08 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4105019B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548183B2 (en) * 2005-03-31 2010-09-22 マツダ株式会社 Control device for spark ignition engine
JP4339878B2 (en) * 2005-08-04 2009-10-07 本田技研工業株式会社 Control device for compression ignition internal combustion engine
US7730717B2 (en) 2005-08-04 2010-06-08 Honda Motor Co., Ltd. Control system for compression-ignition engine
JP4876557B2 (en) * 2005-12-08 2012-02-15 マツダ株式会社 Control device for spark ignition gasoline engine
US7730870B2 (en) * 2006-12-08 2010-06-08 Ford Global Technologies, Llc Engine dynamic load leveling
KR101567159B1 (en) * 2013-12-17 2015-11-06 현대자동차주식회사 System for controlling complex combustion engine using cylinder deactivation and Method for the same

Also Published As

Publication number Publication date
JP2004308560A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5548029B2 (en) Control device for internal combustion engine
JP4848396B2 (en) Ignition timing control device for internal combustion engine
JP6359594B2 (en) Control device for internal combustion engine
JP2013144946A (en) Internal combustion engine control device
JPH11324778A (en) Gasoline direct injection engine
US7406937B2 (en) Method for operating an internal combustion engine
JP4121902B2 (en) Control device for compression ignition type internal combustion engine
JP2006266200A (en) Valve characteristic control device for internal combustion engine
JP2000073803A (en) Cylinder injection gasoline engine
JP5625842B2 (en) Control device for internal combustion engine
JP4105019B2 (en) Control device for internal combustion engine
AU2005317727A1 (en) Valve characteristic control apparatus for internal combustion engine
JP5593132B2 (en) Control device for internal combustion engine
JP3771101B2 (en) Control device for internal combustion engine
US20070095314A1 (en) Control apparatus and control method for internal combustion engine
JP2010196581A (en) Fuel injection control device of internal combustion engine
JP5543843B2 (en) Control device for internal combustion engine
JP2005194965A (en) Fuel injection controller of engine
JP5514635B2 (en) Control device for internal combustion engine
JP5429148B2 (en) Premixed compression self-ignition engine
JP2007132187A (en) Intake control device for internal combustion engine
JP4682905B2 (en) Control device for premixed compression self-ignition internal combustion engine
JP6008796B2 (en) Control device for internal combustion engine
JP2004308558A (en) Controller for compression self-ignition internal combustion engine
JP4911135B2 (en) Self-ignition combustion detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees