JP4103953B2 - Radio wave absorber with sound absorbing function - Google Patents

Radio wave absorber with sound absorbing function Download PDF

Info

Publication number
JP4103953B2
JP4103953B2 JP2002265786A JP2002265786A JP4103953B2 JP 4103953 B2 JP4103953 B2 JP 4103953B2 JP 2002265786 A JP2002265786 A JP 2002265786A JP 2002265786 A JP2002265786 A JP 2002265786A JP 4103953 B2 JP4103953 B2 JP 4103953B2
Authority
JP
Japan
Prior art keywords
radio wave
conductive resin
resin plate
sound absorbing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002265786A
Other languages
Japanese (ja)
Other versions
JP2004100335A (en
Inventor
哲 宗
一則 小野
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002265786A priority Critical patent/JP4103953B2/en
Publication of JP2004100335A publication Critical patent/JP2004100335A/en
Application granted granted Critical
Publication of JP4103953B2 publication Critical patent/JP4103953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は高速道路の側壁等に設置される吸音機能を有する電波吸収体に関し、さらに詳しくは路車間通信や車々間通信の際に生ずる不要電磁波の反射による電波障害を防止するための吸音機能を有する電波吸収体に関する。
【0002】
【従来技術】
次世代の道路交通システムであるインテリジェント交通システム(ITS)の一環として走行する自動車の走行支援システムの開発が進んでいる。
【0003】
この自動車の走行支援システムでは、路車間通信や車々間通信が電磁波を通して行われるが、高速道路の側壁等に設置される防音壁が不要電磁波の反射源となり電波障害を起こすことが想定される。
【0004】
高速道路等の側壁には、例えば図4に示すように車両の走行に伴う騒音を周囲に放散させないように防音壁1が設置され、防音壁1には多数の防音パネル2が組み込まれ、これが走行車両からの騒音を吸収するように構成されている。
【0005】
これまでの防音パネル2は、図5にその垂直方向の断面を示すように防音壁1の背面を形成する金属等からなる遮音板3の表面側に空気層4を介在させてガラスウ−ル等からなる吸音層5が配置され、その外表面を多数の貫通孔を有する金属板(パンチングメタル)からなる保護層6で覆った構造であった。
【0006】
これにより保護層6の貫通孔を通過した騒音が吸音層5を通過するに伴い減衰し、残存した騒音が空気層4において遮音板3に反射して相殺され、さらに残存した一部の騒音が再び吸音層5で吸音されることを利用して外部に再放射するのを防止してきた。
【0007】
しかしながら、上記の防音パネル2自体には電磁波を吸収する機能がないのみならず金属板からなる保護層6の表面が電磁波の反射体となってしまい、これが電波障害の原因となってしまうため、次世代のインテリジェント交通システム(ITS)の下における防音壁1には吸音機能に加えて新たに電磁波を吸収する機能が要求されることになった。
【0008】
そこで、走行支援道路システム(AHS:Advaned Cruise-Assist Highway System) を目的とした路車間通信ゾーン内において、道路付帯設備の吸遮音壁に電波吸収性能を具備させた発明(発明の名称:不要電波抑制方法及び道路付帯設備)が提案されている(例えば、特許文献1参照)。
【0009】
【特許文献1】
特開2002−61130号公報(第7頁〜第8頁、図4(イ)〜(ハ))
【0010】
【発明が解決しようとする課題】
然しながら、上記のような不要電波抑制方法及び道路付帯設備では、構成及び機能が具体的でなく、吸音性能を損なうことなく、電波吸収性能を十分に発揮させることが出来るものかが疑問である。
【0011】
この発明の目的は、吸音性能を損なうことなく、優れた電波吸収性能を有する吸音機能を有する電波吸収体を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
この発明は上記目的を達成するため、表面側の吸音層と、その背面側に空気層を介在させて電波吸収層とを配置し、前記電波吸収層を、表面側から背面側に向かって、第一導電性樹脂板、空気層、第二導電性樹脂板、空気層、及び電波反射板を層状に配置した構造体で構成し、前記第一導電性樹脂板及び第二導電性樹脂板が、ポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜と、ポリカーボネート樹脂とを一体成形させた樹脂板で構成したことを要旨とするものである。
【0013】
ここで、前記第一導電性樹脂板を、厚さ3mm以上に構成し、また前記吸音層の表面をメッシュ間隔が78mm以上の網状の保護層で被覆することが好ましい。
【0014】
これにより、騒音は吸音層を通過するに伴い吸音されながら次第に減衰し、残存した騒音が空気層において第一導電性樹脂板に反射されて互いに相殺し、さらに残存した一部の騒音が再び吸音層で吸音されることにより外部に放散されることがない。
【0015】
一方、電磁波は吸音層と空気層をそのまま通過し、抵抗皮膜を蒸着した第一導電性樹脂板と空気層を介在させた第二導電性樹脂板とで反射と透過を繰返しながら互いに打ち消し合い、最終的に透過した電磁波は空気層を介して電波反射板の表面で反射して、再び空気層に放射される。
【0016】
そして、この電波反射板の表面で反射し、放射された電磁波は、その後、先の第一導電性樹脂板と第二導電性樹脂板とで反射と透過を繰返した電磁波と互いに打ち消し合いながら順次消滅し、表面側に位置する吸音層に至るまでに残存電磁波は消滅して最終的に外部に放散されることがなくなるのである。なお、吸音層の表面を被覆する網状の保護層は、騒音及び電磁波が電波吸収体の内部に進入する障害になることなく吸音層の表面を外部から保護する役割を果たしている。
【0017】
【発明の実施の形態】
以下、添付図面に基づき、この発明の実施形態を説明する。
【0018】
なお、各図において、同一の構成要素には同一の符号を付し、重複した説明を省略する。
【0019】
図1は、この発明の電波吸収体の積層構造を説明するための一実施形態による垂直方向の断面図を示し、電波吸収体7は、表面側のガラスウ−ル等からなる吸音層5と、その背面側に空気層4を介在させて電波吸収層8を配置して構成されている。
【0020】
前記電波吸収層8は、表面側から背面側に向かって、第一導電性樹脂板8a、空気層4a、第二導電性樹脂板8b、空気層4b、及び電波反射板8cを層状に配置した構造体で構成する。
【0021】
第一導電性樹脂板8a及び第二導電性樹脂板8bは、電波吸収層8内に電磁波を通すために導電性を付与した樹脂板からなり、ポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜を、ポリカーボネート樹脂に一体成形させた樹脂板が好ましく使用される。特に、第一導電性樹脂板8aは、電波吸収層8内に騒音を通過させない剛体とするために、厚さ3mm以上とすることが好ましい。
【0022】
電波反射板8cは、第一導電性樹脂板8a、空気層4a、第二導電性樹脂板8b及び空気層4bにより透過,反射を繰返した電磁波のうち、透過した電磁波を第二導電性樹脂板8b側に反射させる役割を有するもので、金属板により構成されるものである。
【0023】
なお、前記第一導電性樹脂板8a及び第二導電性樹脂板8bは、酸化インジウム錫を蒸着した抵抗皮膜の表面抵抗によって、反射する電磁波の割合が決まり、電磁波の一部は透過する。
【0024】
図中6は樹脂等からなる網状の保護層で、吸音層5の外表面を被覆して吸音層5を保護する役割があり、騒音や電磁波を電波吸収体7の内部に導くためにメッシュ間隔の広い(約78mm以上)網状に形成される。なお、吸音層5の構成によっては網状の保護層6を省略することができる。
【0025】
ここで、外部より電波吸収体7に侵入する騒音は、吸音層5を通過するに伴い吸音されながら次第に減衰し、残存騒音が空気層4を通って第一導電性樹脂板8aの表面で反射するが、空気層4内において入射騒音と反射騒音が互いに打ち消し合い、一部の打ち消されなかった残存反射騒音が空気層4から再び吸音層5を通過して吸音されるため、最終的に外部に放散されることがない。
【0026】
一方、吸音層5と空気層4をそのまま通過して第一導電性樹脂板8aに入射した電磁波は、反射成分と透過成分とに分かれ、第一導電性樹脂板8aを透過した電磁波は、空気層4aを通って第二導電性樹脂板8bに入射し、同様にして第二導電性樹脂板8bで反射成分と透過成分とに分けられる。
【0027】
そして、残存の透過した電磁波が空気層4bを通って電波反射板8cの表面で反射して空気層4bに放射される。
【0028】
電波反射板8cの表面で反射した反射電磁波は、その後、空気層4bを介して第二導電性樹脂板8bの表面で反射と透過を繰返し、更に透過した反射電磁波は、空気層4aを介して第一導電性樹脂板8aの表面で反射と透過を繰返し、この反射と透過を繰返す間に電磁波は互いに打ち消し合って消滅する。
【0029】
このように、この発明の実施形態では、吸音層5側から入射した電磁波は、第一導電性樹脂板8a,第二導電性樹脂板8b及び電波反射板8cで多重反射を繰返しながら互いに打ち消し合うため、最終的に表面側に位置する吸音層5に至るまでに残存電磁波は消滅し、外部に放散される電磁波は無くなることになる。
【0030】
第一導電性樹脂板8a及び第二導電性樹脂板8bとして、前記抵抗皮膜と一体成形する樹脂材料には、前記ポリカーボネート樹脂の他、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、等の熱可塑性樹脂、又はエポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノ−ル樹脂、等の熱硬化性樹脂、を使用することができる。
【0031】
【実施例1】
以下に示す仕様により図1に示す構造の電波吸収体を設計し、その設計に基づき、5.8GHzにおける電波吸収性能を計算し、吸収性能の入射角度依存性を図2に示した。なお、計算条件は以下の通りであった。
(仕様)
吸音層5:ガラスウール、複素比誘電率ε=1.1−j0.01、厚さ50mm
空気層4:複素比誘電率ε=1、厚さ35mm
電波吸収層8:
第一導電性樹脂板8a:ポリカーボネート板、厚さ3mm、抵抗皮膜の面抵抗値190Ω□
空気層4a:複素比誘電率ε=1、厚さ10mm
第二導電性樹脂板8b:ポリカーボネート板、厚さ3mm、抵抗皮膜の面抵抗値690Ω□
空気層4b:複素比誘電率ε=1、厚さ8.7mm
電波反射板8c:金属板
(第一導電性樹脂板8a及び第二導電性樹脂板8bを構成するポリカーボネート板には、それぞれ厚み125μmのポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜を一体成形してある)
(計算条件)
周波数:5.8GHz
入射角度:10°、20°、30°、40°、50°、60°、70°、80°、90°
偏波:円偏波、TM波、TE波
図2より円偏波では全ての入射角度で20dB以上の吸収性能が得られ、TM波、TE波では入射角度40°以上で吸収性能が低下する傾向が観察された。
【0032】
【実施例2】
以下に示す仕様により図1に示す構造の電波吸収体を設計し、その設計に基づき、5.8GHzにおける電波吸収性能を計算し、吸収性能の入射角度依存性を図3に示した。なお、計算条件は以下の通りであった。
(仕様)
吸音層5:ガラスウール、複素比誘電率ε=1.1−j0.01、厚さ50mm
空気層4:複素比誘電率ε=1、厚さ35mm
電波吸収層8:
第一導電性樹脂板8a:ポリカーボネート板、厚さ4mm、抵抗皮膜の面抵抗値190Ω□
空気層4a:複素比誘電率ε=1、厚さ5.4mm
第二導電性樹脂板8b:ポリカーボネート板、厚さ4mm、抵抗皮膜の面抵抗値700Ω□
空気層4b:複素比誘電率ε=1、厚さ6.4mm
電波反射板8c:金属板
(第一導電性樹脂板8a及び第二導電性樹脂板8bを構成するポリカーボネート板には、それぞれ厚み125μmのポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜を一体成形してある)
(計算条件)
周波数:5.8GHz
入射角度:10°、20°、30°、40°、50°、60°、70°、80°、90°
偏波:円偏波、TM波、TE波
図3より円偏波では全ての入射角度で23dB以上の吸収性能が得られ、TM波、TE波では入射角度40°以上で吸収性能が低下する傾向が観察された。
【0033】
【発明の効果】
この発明は、上記のように表面側の吸音層と、その背面側に空気層を介在させて電波吸収層とを配置し、前記電波吸収層を、表面側から背面側に向かって、第一導電性樹脂板、空気層、第二導電性樹脂板、空気層、及び電波反射板を層状に配置した構造体で構成し、前記第一導電性樹脂板及び第二導電性樹脂板が、ポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜と、ポリカーボネート樹脂とを一体成形させた樹脂板で構成したことにより、電波吸収体全体として吸音性能を損なうことなく優れた電波吸収性能を発揮する構造になっている。
【0034】
特に、電波吸収層を表面側から背面側に向かって、第一導電性樹脂板、空気層、第二導電性樹脂板、空気層、及び電波反射板を層状に配置した構造体にしたため、優れた電磁波の吸収を可能にする。
【0035】
また、この発明の電波吸収体は、表面側を従来の防音パネルと同一の構造を採用しており、その背面側に電波吸収層を配置することにより防音性能を損なわずに電波吸収性能を付与することを可能にしているため、製造及び施工に要する工事が容易であるという利点を有する。
【図面の簡単な説明】
【図1】この発明の電波吸収体の積層構造を説明するための一実施形態による垂直方向の一部断面図である。
【図2】この発明の実施例1による電波吸収体の電波吸収性能を示す図で、電波吸収性能の入射角度依存性を示している。
【図3】この発明の実施例2による電波吸収体の電波吸収性能を示す図で、電波吸収性能の入射角度依存性を示している。
【図4】防音パネルの使用形態を説明するための図で、高速道路の側壁に設置された防音壁に使用された状況を示している。
【図5】従来の防音パネルの積層構造を説明するための断面図である。
【符号の説明】
1 防音壁 2 防音パネル
3 遮音板
4、4a、4b 空気層
5 吸音層 6 保護層
7 電波吸収体 8 電波吸収層
8a 第一導電性樹脂板 8b 第二導電性樹脂板
8c 電波反射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave absorber having a sound absorbing function installed on a side wall or the like of an expressway, and more specifically, has a sound absorbing function for preventing radio wave interference caused by reflection of unnecessary electromagnetic waves generated during road-to-vehicle communication or vehicle-to-vehicle communication. Related to radio wave absorber.
[0002]
[Prior art]
Development of a driving support system for automobiles that travel as part of an intelligent transportation system (ITS), which is a next-generation road transportation system, is in progress.
[0003]
In this automobile driving support system, road-to-vehicle communication and vehicle-to-vehicle communication are performed through electromagnetic waves. However, it is assumed that a soundproof wall installed on the side wall of an expressway becomes a reflection source of unnecessary electromagnetic waves and causes radio interference.
[0004]
For example, as shown in FIG. 4, a soundproof wall 1 is installed on a side wall of an expressway or the like so as not to dissipate noise around the vehicle, and a number of soundproof panels 2 are incorporated in the soundproof wall 1. It is configured to absorb noise from the traveling vehicle.
[0005]
The conventional sound insulation panel 2 has a glass wall or the like with an air layer 4 interposed on the surface side of the sound insulation plate 3 made of metal or the like forming the back surface of the sound insulation wall 1 as shown in FIG. The sound-absorbing layer 5 is arranged, and the outer surface thereof is covered with a protective layer 6 made of a metal plate (punching metal) having a large number of through holes.
[0006]
As a result, the noise that has passed through the through-hole of the protective layer 6 is attenuated as it passes through the sound absorbing layer 5, and the remaining noise is reflected and canceled by the sound insulating plate 3 in the air layer 4, and a part of the remaining noise is also generated. Re-radiating to the outside has been prevented by utilizing the sound absorption by the sound absorbing layer 5 again.
[0007]
However, the above soundproof panel 2 itself does not have a function of absorbing electromagnetic waves, but the surface of the protective layer 6 made of a metal plate becomes a reflector of electromagnetic waves, which causes radio interference, In addition to the sound absorbing function, the sound barrier 1 under the next generation intelligent transportation system (ITS) is required to have a new function of absorbing electromagnetic waves.
[0008]
Therefore, in the road-to-vehicle communication zone for the purpose of driving assistance road system (AHS: Advaned Cruise-Assist Highway System), the invention is equipped with the sound absorption wall on the sound absorbing and insulating wall of the road incidental equipment (name of invention: suppression of unnecessary radio waves) Method and road incidental facilities) have been proposed (see, for example, Patent Document 1).
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-61130 (pages 7 to 8, FIGS. 4 (a) to (c))
[0010]
[Problems to be solved by the invention]
However, the unnecessary radio wave suppression method and the road incidental equipment as described above are not specific in configuration and function, and it is doubtful whether the radio wave absorption performance can be sufficiently exhibited without impairing the sound absorption performance.
[0011]
An object of the present invention is to provide a radio wave absorber having a sound absorption function having an excellent radio wave absorption performance without impairing the sound absorption performance.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a sound absorbing layer on the surface side and a radio wave absorbing layer with an air layer interposed on the back side thereof, and the radio wave absorbing layer is moved from the front side to the back side. A first conductive resin plate, an air layer, a second conductive resin plate, an air layer, and a radio wave reflection plate are configured in a layered structure, and the first conductive resin plate and the second conductive resin plate are The gist of the present invention is that the resin film is formed by integrally molding a resistance film obtained by vapor-depositing indium tin oxide on polyethylene terephthalate and a polycarbonate resin.
[0013]
Here, it is preferable that the first conductive resin plate has a thickness of 3 mm or more, and the surface of the sound absorbing layer is covered with a net-like protective layer having a mesh interval of 78 mm or more.
[0014]
As a result, the noise gradually attenuates while being absorbed as it passes through the sound absorbing layer, the remaining noise is reflected by the first conductive resin plate in the air layer and cancels each other, and a part of the remaining noise is absorbed again. It is not dissipated outside by being absorbed by the layer.
[0015]
On the other hand, the electromagnetic wave passes through the sound absorbing layer and the air layer as they are, and cancels each other while repeating reflection and transmission between the first conductive resin plate on which the resistance film is deposited and the second conductive resin plate on which the air layer is interposed, The finally transmitted electromagnetic wave is reflected by the surface of the radio wave reflector through the air layer and is radiated again to the air layer.
[0016]
Then, the electromagnetic waves reflected and radiated on the surface of the radio wave reflecting plate are then sequentially canceled while canceling each other with the electromagnetic waves repeatedly reflected and transmitted by the first conductive resin plate and the second conductive resin plate. The remaining electromagnetic wave disappears until it reaches the sound absorbing layer located on the surface side, and is not finally dissipated to the outside. Note that the net-like protective layer covering the surface of the sound absorbing layer plays a role of protecting the surface of the sound absorbing layer from the outside without being an obstacle for noise and electromagnetic waves to enter the inside of the radio wave absorber.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0018]
In each figure, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted.
[0019]
FIG. 1 shows a vertical sectional view according to an embodiment for explaining a laminated structure of a radio wave absorber according to the present invention. A radio wave absorber 7 includes a sound absorbing layer 5 made of a glass wall or the like on the surface side, A radio wave absorption layer 8 is arranged on the back side with an air layer 4 interposed therebetween.
[0020]
In the radio wave absorption layer 8, the first conductive resin plate 8a, the air layer 4a, the second conductive resin plate 8b, the air layer 4b, and the radio wave reflection plate 8c are arranged in layers from the front side to the back side. Consists of a structure.
[0021]
The first conductive resin plate 8a and the second conductive resin plate 8b are made of a resin plate imparted with conductivity in order to allow electromagnetic waves to pass through the radio wave absorption layer 8, and have a resistance film obtained by depositing indium tin oxide on polyethylene terephthalate. A resin plate integrally formed with polycarbonate resin is preferably used. In particular, the first conductive resin plate 8a is preferably 3 mm or more in thickness so as to be a rigid body that does not allow noise to pass through the radio wave absorption layer 8.
[0022]
The radio wave reflecting plate 8c is a second conductive resin plate that transmits transmitted electromagnetic waves among the electromagnetic waves repeatedly transmitted and reflected by the first conductive resin plate 8a, the air layer 4a, the second conductive resin plate 8b, and the air layer 4b. It has a role of reflecting to the 8b side, and is constituted by a metal plate.
[0023]
The first conductive resin plate 8a and the second conductive resin plate 8b have a ratio of the reflected electromagnetic wave determined by the surface resistance of the resistive film deposited with indium tin oxide, and a part of the electromagnetic wave is transmitted.
[0024]
In the figure, reference numeral 6 denotes a net-like protective layer made of resin or the like, which has a role of protecting the sound absorbing layer 5 by covering the outer surface of the sound absorbing layer 5, and mesh intervals for guiding noise and electromagnetic waves to the inside of the radio wave absorber 7. Wide (about 78 mm or more). Depending on the configuration of the sound absorbing layer 5, the net-like protective layer 6 can be omitted.
[0025]
Here, the noise that enters the radio wave absorber 7 from the outside is gradually attenuated while being absorbed as it passes through the sound absorbing layer 5, and the residual noise is reflected by the surface of the first conductive resin plate 8 a through the air layer 4. However, incident noise and reflected noise cancel each other in the air layer 4, and some residual reflected noise that has not been canceled passes through the sound absorbing layer 5 from the air layer 4 again. Will not be dissipated.
[0026]
On the other hand, the electromagnetic wave that has passed through the sound absorbing layer 5 and the air layer 4 and is incident on the first conductive resin plate 8a is divided into a reflection component and a transmission component, and the electromagnetic wave that has passed through the first conductive resin plate 8a is air. The light enters the second conductive resin plate 8b through the layer 4a and is similarly divided into a reflection component and a transmission component by the second conductive resin plate 8b.
[0027]
Then, the remaining transmitted electromagnetic wave passes through the air layer 4b and is reflected by the surface of the radio wave reflecting plate 8c to be radiated to the air layer 4b.
[0028]
The reflected electromagnetic wave reflected by the surface of the radio wave reflecting plate 8c then repeats reflection and transmission through the surface of the second conductive resin plate 8b through the air layer 4b, and the reflected electromagnetic wave that has further passed through the air layer 4a. Reflection and transmission are repeated on the surface of the first conductive resin plate 8a, and electromagnetic waves cancel each other and disappear while repeating this reflection and transmission.
[0029]
Thus, in the embodiment of the present invention, the electromagnetic waves incident from the sound absorbing layer 5 side cancel each other while repeating multiple reflections by the first conductive resin plate 8a, the second conductive resin plate 8b, and the radio wave reflection plate 8c. Therefore, the remaining electromagnetic wave disappears until it finally reaches the sound absorbing layer 5 located on the surface side, and the electromagnetic wave dissipated to the outside disappears.
[0030]
As the first conductive resin plate 8a and the second conductive resin plate 8b, resin materials integrally molded with the resistance film include polyolefin resins such as polyethylene and polypropylene, nylon 6, nylon 66 and the like in addition to the polycarbonate resin. A thermoplastic resin such as a polyamide resin, a polyester resin such as polyethylene terephthalate or polybutylene terephthalate, or a thermosetting resin such as an epoxy resin, a polyurethane resin, a polyester resin, or a phenol resin can be used.
[0031]
[Example 1]
A radio wave absorber having the structure shown in FIG. 1 was designed according to the specifications shown below. Based on the design, the radio wave absorption performance at 5.8 GHz was calculated, and the dependence of the absorption performance on the incident angle is shown in FIG. The calculation conditions were as follows.
(specification)
Sound absorbing layer 5: glass wool, complex dielectric constant ε = 1.1−j0.01, thickness 50 mm
Air layer 4: complex relative dielectric constant ε = 1, thickness 35 mm
Radio wave absorption layer 8:
First conductive resin plate 8a: polycarbonate plate, thickness 3 mm, resistance film surface resistance 190 Ω □
Air layer 4a: complex dielectric constant ε = 1, thickness 10 mm
Second conductive resin plate 8b: polycarbonate plate, thickness 3 mm, resistance film surface resistance 690Ω □
Air layer 4b: complex dielectric constant ε = 1, thickness 8.7 mm
Radio wave reflector 8c: Metal plate (The polycarbonate plate constituting the first conductive resin plate 8a and the second conductive resin plate 8b is integrally formed with a resistance film obtained by vapor-depositing indium tin oxide on polyethylene terephthalate having a thickness of 125 μm. Is)
(Calculation condition)
Frequency: 5.8GHz
Incident angle: 10 °, 20 °, 30 °, 40 °, 50 °, 60 °, 70 °, 80 °, 90 °
Polarization: Circularly polarized wave, TM wave, TE wave From FIG. 2, absorption performance of 20 dB or more is obtained at all incident angles with circularly polarized wave, and absorption performance decreases with incident angle of 40 ° or more with TM wave and TE wave A trend was observed.
[0032]
[Example 2]
A radio wave absorber having the structure shown in FIG. 1 was designed according to the specifications shown below, and radio wave absorption performance at 5.8 GHz was calculated based on the design. FIG. 3 shows the incident angle dependence of the absorption performance. The calculation conditions were as follows.
(specification)
Sound absorbing layer 5: glass wool, complex dielectric constant ε = 1.1−j0.01, thickness 50 mm
Air layer 4: complex relative dielectric constant ε = 1, thickness 35 mm
Radio wave absorption layer 8:
1st conductive resin board 8a: Polycarbonate board, thickness 4mm, sheet resistance value of resistance film 190Ω □
Air layer 4a: complex dielectric constant ε = 1, thickness 5.4 mm
Second conductive resin plate 8b: polycarbonate plate, thickness 4 mm, resistance film surface resistance value 700Ω □
Air layer 4b: complex relative dielectric constant ε = 1, thickness 6.4 mm
Radio wave reflecting plate 8c: Metal plate (The polycarbonate plate constituting the first conductive resin plate 8a and the second conductive resin plate 8b is integrally formed with a resistance film obtained by vapor-depositing indium tin oxide on 125 μm thick polyethylene terephthalate. Is)
(Calculation condition)
Frequency: 5.8GHz
Incident angle: 10 °, 20 °, 30 °, 40 °, 50 °, 60 °, 70 °, 80 °, 90 °
Polarization: Circularly polarized wave, TM wave, TE wave From FIG. 3, the absorption performance of 23 dB or more is obtained at all incident angles in the circularly polarized wave, and the absorption performance decreases at an incident angle of 40 ° or more in the TM wave and TE wave. A trend was observed.
[0033]
【The invention's effect】
According to the present invention, as described above, the sound absorbing layer on the front surface side and the radio wave absorbing layer are disposed on the back side of the sound absorbing layer, and the radio wave absorbing layer is arranged in the first direction from the front side to the back side. A conductive resin plate, an air layer, a second conductive resin plate, an air layer, and a radio wave reflection plate are configured in a layered structure, and the first conductive resin plate and the second conductive resin plate are made of polyethylene. The structure consists of a resin film in which indium tin oxide is vapor-deposited on terephthalate and a resin plate that is integrally molded with polycarbonate resin. As a whole, the wave absorber has a structure that exhibits excellent wave absorption performance without impairing sound absorption performance. ing.
[0034]
In particular, since the radio wave absorption layer has a structure in which the first conductive resin plate, the air layer, the second conductive resin plate, the air layer, and the radio wave reflection plate are arranged in layers from the front side to the back side, it is excellent. Enables absorption of electromagnetic waves.
[0035]
In addition, the radio wave absorber of the present invention adopts the same structure as the conventional soundproof panel on the front side, and by providing a radio wave absorption layer on the back side, it gives radio wave absorption performance without impairing the soundproof performance Therefore, the construction required for manufacturing and construction is easy.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view in a vertical direction according to an embodiment for explaining a laminated structure of a radio wave absorber according to the present invention.
FIG. 2 is a diagram showing the radio wave absorption performance of the radio wave absorber according to the first embodiment of the present invention, and shows the incident angle dependence of the radio wave absorption performance.
FIG. 3 is a diagram showing the radio wave absorption performance of the radio wave absorber according to Embodiment 2 of the present invention, and shows the incident angle dependence of the radio wave absorption performance.
FIG. 4 is a diagram for explaining a use form of a soundproof panel, and shows a situation where the soundproof panel is used on a soundproof wall installed on a side wall of a highway.
FIG. 5 is a cross-sectional view for explaining a laminated structure of a conventional soundproof panel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sound insulation wall 2 Sound insulation panel 3 Sound insulation board 4, 4a, 4b Air layer 5 Sound absorption layer 6 Protective layer 7 Radio wave absorber 8 Radio wave absorption layer 8a First conductive resin board 8b Second conductive resin board 8c Radio wave reflector

Claims (3)

表面側の吸音層と、その背面側に空気層を介在させて電波吸収層とを配置し、前記電波吸収層を、表面側から背面側に向かって、第一導電性樹脂板、空気層、第二導電性樹脂板、空気層、及び電波反射板を層状に配置した構造体で構成し、前記第一導電性樹脂板及び第二導電性樹脂板が、ポリエチレンテレフタレートに酸化インジウム錫を蒸着した抵抗皮膜と、ポリカーボネート樹脂とを一体成形させた樹脂板で構成したことを特徴とする吸音機能を有する電波吸収体。 A sound absorbing layer on the surface side, and an electromagnetic wave absorbing layer disposed on the back side of the sound absorbing layer, the electromagnetic wave absorbing layer from the surface side toward the back side, the first conductive resin plate, the air layer, The second conductive resin plate, the air layer, and the radio wave reflection plate are configured in a layered structure, and the first conductive resin plate and the second conductive resin plate are formed by depositing indium tin oxide on polyethylene terephthalate. 1. A radio wave absorber having a sound absorbing function, comprising a resin plate in which a resistance film and a polycarbonate resin are integrally molded. 前記第一導電性樹脂板を、厚さ3mm以上に構成した請求項1に記載の吸音機能を有する電波吸収体。 The radio wave absorber having a sound absorbing function according to claim 1, wherein the first conductive resin plate is configured to have a thickness of 3 mm or more. 前記吸音層の表面をメッシュ間隔が78mm以上の網状の保護層で被覆した請求項1または2に記載の吸音機能を有する電波吸収体。The radio wave absorber having a sound absorbing function according to claim 1 or 2, wherein the surface of the sound absorbing layer is covered with a net-like protective layer having a mesh interval of 78 mm or more .
JP2002265786A 2002-09-11 2002-09-11 Radio wave absorber with sound absorbing function Expired - Fee Related JP4103953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265786A JP4103953B2 (en) 2002-09-11 2002-09-11 Radio wave absorber with sound absorbing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265786A JP4103953B2 (en) 2002-09-11 2002-09-11 Radio wave absorber with sound absorbing function

Publications (2)

Publication Number Publication Date
JP2004100335A JP2004100335A (en) 2004-04-02
JP4103953B2 true JP4103953B2 (en) 2008-06-18

Family

ID=32264820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265786A Expired - Fee Related JP4103953B2 (en) 2002-09-11 2002-09-11 Radio wave absorber with sound absorbing function

Country Status (1)

Country Link
JP (1) JP4103953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179052A (en) 2002-11-28 2004-06-24 Pioneer Electronic Corp Display panel, its manufacturing method and partition wall for display panel
JP2005311330A (en) * 2004-03-22 2005-11-04 Takiron Co Ltd Radio wave absorber
JP4575044B2 (en) * 2004-06-23 2010-11-04 タキロン株式会社 Sound wave / radio wave absorber
JP5559668B2 (en) * 2010-12-07 2014-07-23 清二 加川 Electromagnetic wave absorber

Also Published As

Publication number Publication date
JP2004100335A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP6363528B2 (en) Radar device mounting structure
WO2010092968A1 (en) Automotive sound-absorbing sheet and automotive engine bottom cover including the sound-absorbing sheet
JP5696781B2 (en) Obstacle detection device for vehicle
JP5820223B2 (en) Soundproof sheet for automobile, method for producing the same, and dash silencer for automobile using the soundproof sheet
JP4103953B2 (en) Radio wave absorber with sound absorbing function
JP2000034938A (en) Sound absorbing device
JP4248824B2 (en) Radio wave absorber, radio wave absorption panel, radio wave absorption soundproof wall, road incidental equipment, and radio wave and sound wave reflection suppression method
JP4698137B2 (en) Unnecessary radio wave suppression structure and radio wave absorption partition wall
JP4235010B2 (en) Unnecessary radio wave suppression structure
JP4079672B2 (en) Sound absorbing panel with radio wave absorption performance
JP4194735B2 (en) Attenuator
JP4064798B2 (en) Radio wave absorption panel
JP3065561B2 (en) Sound absorbing material and sound absorbing panel
JP4685319B2 (en) Radio wave absorption panel
JP2006241775A (en) Radio wave and acoustic wave absorbing panel for viaduct under-girder
JP4240363B2 (en) Laminated wave absorber
JPH08301024A (en) Soundproof material
JP3833036B2 (en) Thin soundproof panel
JP4856151B2 (en) Unnecessary radio wave suppression structure
KR20190134128A (en) Light weight insulation for vehicle
JPH0226973Y2 (en)
JP4283064B2 (en) Radio wave acoustic absorber, radio wave acoustic absorption panel, and unnecessary radio wave acoustic wave suppression method
JP2012245834A (en) Sound absorption sheet for automobile and engine under cover for automobile using the same
JP2003115694A (en) Wave absorber and electronic appliance provided with the same
KR102682453B1 (en) Acoustic metamaterial

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees