JP4103182B2 - Magnet generator and manufacturing method thereof - Google Patents

Magnet generator and manufacturing method thereof Download PDF

Info

Publication number
JP4103182B2
JP4103182B2 JP20327898A JP20327898A JP4103182B2 JP 4103182 B2 JP4103182 B2 JP 4103182B2 JP 20327898 A JP20327898 A JP 20327898A JP 20327898 A JP20327898 A JP 20327898A JP 4103182 B2 JP4103182 B2 JP 4103182B2
Authority
JP
Japan
Prior art keywords
magnet
yoke
protection ring
manufacturing
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20327898A
Other languages
Japanese (ja)
Other versions
JP2000037054A (en
Inventor
則和 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20327898A priority Critical patent/JP4103182B2/en
Publication of JP2000037054A publication Critical patent/JP2000037054A/en
Application granted granted Critical
Publication of JP4103182B2 publication Critical patent/JP4103182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば二輪車に用いて好適な磁石式発電機に関する。
【0002】
【従来の技術】
従来の磁石式発電機を図10〜図12に示す。
図10に示す磁石式発電機100(従来技術1)は、ヨーク110内の底部にリング状のスペーサ120を配置し、このスペーサ120により磁石130の底部側位置(図10の右端位置)を規制した状態で磁石130とヨーク110とを接着固定している。
図11に示す磁石式発電機100(従来技術2)は、ヨーク110の底壁に孔140を空け、この孔140からヨーク110内に挿入されたピン150により磁石130の底部側位置を規制した状態で磁石130とヨーク110とを接着固定している。
図12に示す磁石式発電機100(従来技術3)は、ヨーク110の内径面に段付き部160を設け、この段付き部160により磁石130の底部側位置を規制した状態で、磁石130の内径側に磁石保護環170を打ち込み(圧入)、その磁石保護環170の反力により磁石130をヨーク110の内径面に押し付けて磁石130を固定している。
【0003】
【発明が解決しようとする課題】
ところが、上記の従来技術1〜3は、それぞれ磁石130の底部側位置を規制するための部品または加工等を必要とすることから以下の問題点があった。
(従来技術1)
▲1▼磁石130を位置決めするためのスペーサ120を必要とするので高価となる。
▲2▼発電子200の位置やコア210の厚さに合わせて磁石130を最適位置に配置しようとすると、その度にスペーサ120の寸法が異なるため、スペーサ120を成型する型を新規に設ける必要があり、型代が増加して高価となる。
(従来技術2)
▲1▼ヨーク110の底壁に孔140を開けるための型が必要になり高価となる。
▲2▼磁石130とヨーク110とを接着する際に接着剤が垂れてピン150に付着すると、磁石130とピン150とが固着する不具合が生じる。
▲3▼磁石130とヨーク110との接着が完了するまで、ピン150及びこのピン150を保持する付属治具を回転子と一体に保つ必要があるため、多数のピン150と付属治具を必要とする。
(従来技術3)
ヨーク110の内径面に段付き部160を設けていることから、発電子200の位置やコア210の厚さに合わせて磁石130を最適位置に配置しようとすると、その度に段付き部160の位置が異なるため、ヨーク110の段付き部160を成型する型を新規に設ける必要があり、型代が増加して高価となる。
本発明は、上記事情に基づいて成されたもので、その目的は、安価な磁石式発電機を提供することにある。
【0004】
【課題を解決するための手段】
(請求項1の手段)
磁石保護環は、磁石の開口側端面を覆う円環状のつば部を有し、ヨークには、開口端部の内径側角部にテーパ状の面取りがつば部と径方向に対向するように設けられている。これにより、磁石と磁石保護環とを一体に組み合わせた状態でヨークに打ち込むことができるため、その打ち込み位置に磁石を位置決めすることができる。この場合、従来技術で説明したスペーサやピン、ピンを通すための穴、及びヨークの内径面に設けられる段付き部等の磁石の位置決めに要する部品や加工を必要としないため、コストを低減できる。なお、打ち込みを可能にするために、勾配の緩やかな面取りを設ける。
【0005】
また、磁石と磁石保護環とを一体に組み合わせてヨークに打ち込むことができるため、磁石保護環の筒部底部側を磁石内径より径を小さくしたテーパ状に形成する必要がない。つまり、従来技術3に示した磁石式発電機は、先に磁石のみをヨーク内に配置して、後から磁石保護環を磁石の内径側に圧入する構成であるため、磁石保護環の圧入を可能にするために、磁石保護環の筒部底部側が磁石内径より小さいテーパ状に縮径されている(外径が小さくなっている)。このため、底部側内径が小さくなるので、コアの厚い発電子と組み合わせると、底部側磁石保護環とコアとのエアギャップを確保するために磁石を薄くしなければならず、性能が低下する問題が生じる。これに対し、本発明では、磁石保護環の筒部底部側を磁石内径より小さくする必要がないため、磁石保護環の筒部の外周に複数個の磁石を配置した状態で、両者がヨークの内側に圧入することによって、筒部の外周面を磁石の軸方向全長に渡って磁石の内周面と密着させることができ、コアの厚い発電子と組み合わせた場合でも、磁石を薄くすることなく、発電子とのエアギャップを確保することができる。
【0006】
(請求項2の手段)
磁石の軸方向底部側の外径側角部に磁石の円弧全長に渡って面取りが設けられている。つまり、磁石をヨークの内側に打ち込む(または磁石の外側にヨークを打ち込む)時に、ヨークの開口端部(面取りを設けた部分)に当たる磁石の角部にも面取りを設けることにより、打ち込みを更に容易に行うことができる。
【0007】
(請求項3の手段)
磁石の内径側角部に軸方向全長に渡って面取りが設けられている。これは、ヨークを打ち込む(あるいは磁石を打ち込む)際に、周方向に隣合う磁石と磁石との間で筒部の膨出部が外径側へ突出するため、周方向に隣合う磁石間の隙間が小さいと、膨出部の変形(外径側への膨出)が困難となる。そこで、磁石の内径側角部に面取りを設けることにより、周方向に隣合う磁石間の隙間が小さい場合でも、膨出部の変形スペースを確保できる。
【0008】
(請求項4の手段)
ば部の膨出部と周方向同位置に、周方向に隣合う磁石間の隙間と略同じ幅の位置決め溝が設けられている。磁石と磁石保護環とを一体に組み合わせてヨークに打ち込む際に、つば部の位置決め溝に磁石間の隙間を合わせることで磁石と磁石保護環とを容易に位置決めすることができる。
【0009】
(請求項5の手段)
磁石とヨークとを接着剤により固着している。この場合、磁石保護環の反力(磁石を外径方向へ付勢する力)と接着力とで磁石を固定するため、磁石固定強度を充分に確保できる。これにより、磁石保護環を薄くすることが可能で、その磁石保護環を薄くした分だけ磁石を厚くして性能向上を図ることができ、大型ロータにも適用が可能になる。
【0010】
(請求項6の手段)
磁石保護環を薄くして打ち込みを行うと、つば部の剛性が低下して、打ち込み後につば部が波うち状に変形する可能性がある。そこで、つば部に複数の溝部を設けることにより、つば部の波うちを防止することができる。なお、複数の溝部は、つば部の周方向に略等間隔に設けることが望ましい。
また、この溝部に接着剤を滴下することにより、磁石端面と磁石保護環との間に接着剤が浸透し易くなり、磁石端面と磁石保護環との接着を確実に行うことができる。
【0011】
(請求項7の手段)
磁石保護環と磁石は、筒部の外周に複数個の磁石を配置した状態で両者を打ち込み用治具に装着し、その打ち込み用治具により筒部の内周面を規制しながら磁石の外側にヨークを打ち込む(あるいはヨークの内側に磁石を打ち込む)ことにより、ヨーク内の所定位置に組付けられる。この場合、ヨークの開口端部の内径側角部にテーパ状の面取りが設けられているため、この面取りによって形成される傾斜面に沿って容易に打ち込みを行うことができる。
【0012】
(請求項8の手段)
磁石保護環と磁石は、つば部に設けた位置決め溝と周方向に隣合う磁石間の隙間との周方向位置を合わせた状態で打ち込み用治具に装着される。これにより、磁石と磁石保護環とを位置決めした状態でヨークとの打ち込みを行うことができる。
【0013】
(請求項9の手段)
ヨークの底壁に磁石との位置関係を特定する窓穴を開け、磁石に着磁する時に、窓穴を通じて磁石と着磁治具との位置決めを行う。これにより、磁石と着磁治具とを位置決めした状態で磁石に着磁することができるため、周方向に隣合う磁石と磁石との合わせ位置部に磁極がこないように着磁することが可能となり、性能低下を防止できる。
【0014】
(請求項10の手段)
磁石保護環は、打ち込みにより、磁石と磁石との間で筒部の膨出部が外径側へ突出するが、筒部の外径を入口側から奥側まで略同一に設けた場合、膨出部の突出量は磁石に当たっている部分より、磁石に当たっていない奥側部分の方が大きくなる。その結果、磁石の周方向中央部付近で、磁石に当たっていない筒部の奥側部分が内径側へ飛び出すことがある。そこで、筒部の入口側より奥側の方が外径を若干小さくして、打ち込み代を減らすことにより、筒部の内径側への飛び出しを少なくすることができる。
【0015】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて説明する。
(第1実施例)
図1は磁石式発電機の径方向断面図である。
本実施例の磁石式発電機1は、例えば二輪車に用いられるもので、以下に説明する発電子と回転子とを備える。
発電子は、図1に示すように、複数枚の鉄板を積層してコア2を形成し、このコア2の外側を絶縁処理した後、発電コイル3を巻き付けて構成されている。
【0016】
回転子は、ヨーク4、複数個の磁石5、及び磁石保護環6より構成される。
ヨーク4は、鉄板をプレス加工したもので、円筒壁4aと底壁4bを有する椀状に成型され、底壁4bの複数箇所でリベット7によりボス8に締結されている。円筒壁4aの開口端内径側の角部には、ヨーク4内への磁石5の打ち込み(圧入)を容易にするため、図3に示すように、勾配の緩やかなテーパ状の面取り4cが設けられている。なお、この面取り4cは、図4及び図5に示すように、勾配を段階的(図4は2段階、図5は3段階)に設定しても良い。
ヨーク4の底壁4bには、図2に示すように、2個の窓穴4dが径方向の対向位置に開けられている(窓穴4dの説明は後述する)。
ボス8は、円筒内周面にテーパ8aが設けられ、そのテーパ8aをクランクシャフトのテーパ部(図示しない)に嵌め合わせて、ボス8の先端側(図1の左側)から締結部材(図示しない)によりクランクシャフトに締結されている。
【0017】
磁石5は、ヨーク4の内側に磁石保護環6と一緒に圧入された後、接着剤でヨーク4に接着される。従って、磁石5は、磁石保護環6の反力(磁石5を径方向外側へ付勢する力)と接着力の両方でヨーク4に固定される。
磁石5の内径側角部には、図2に示すように、軸方向全長に渡って面取り5aが設けられ、この面取り5aによって磁石保護環6との間に略三角形状の空間A(図2参照)を形成している。また、磁石5の軸方向底部側(図1の右側)の外径側角部に磁石5の円弧全長に渡って面取り(図示しない)を設けても良い。つまり、磁石5をヨーク4の内側に打ち込む(または磁石5の外側にヨーク4を打ち込む)時に、ヨーク4の開口端部(面取り4cを設けた部分)に当たる磁石5の角部にも面取りを設けることにより、打ち込みを更に容易に行うことができる。
【0018】
磁石保護環6は、図6に示すように、各磁石5の内径側に圧入される筒部6aと、各磁石5の開口端側端面を覆うリング状のつば部6bとを有し、非磁性体の金属板(例えばステンレス板)をプレスで筒状に絞った後、底部を丸く穴抜きして形成されている。
筒部6aは、その外径寸法が、ヨーク4内に組み込まれた各磁石5の径方向に対向する磁石5間の内径寸法より若干大きく設けられている。また、筒部6aの中間部6cの外径が先端部6d(図6の右端部)の外径より若干大きく、中間部6cから先端部6dにかけてテーパ状に形成され、更につば部側端部6eの外径が中間部6cの外径より若干大きく、つば部側端部6eから中間部6cにかけてテーパ状に形成されている。つまり、中間部6cから先端側より、中間部6cからつば部6b側の方が筒部6aの打ち込み代が多くなるように構成されている。なお、中間部6cから先端側のテーパの方が中間部6cからつば部6b側のテーパより勾配が緩やかに設けられている。
また、筒部6aには、図2及び図6に示すように、磁石5の数と同数の膨出部6fが筒部6aの径方向外側へ若干突出して設けられている。この膨出部6fは、筒部6aの周方向に等間隔位置に設定され、筒部6aの周方向に所定の幅で、且つ筒部6aのつば部6b側端部から先端側へ向かって所定長さだけ設けられている。
【0019】
筒部6aとつば部6bとの折り曲げ部には、磁石5の角部と干渉しないように、全周に渡ってR部(図6参照)が設けられている。
つば部6bには、図2に示すように、磁石5の数と同数の位置決め溝6gと、その位置決め溝6gに繋がる長穴溝6hと、複数のU字溝6iとが設けられている。
位置決め溝6gは、打ち込み時に磁石5と磁石保護環6との位置決めを行うために設けられているもので、筒部6aに設けられた膨出部6fと周方向同位置に設定され、磁石5間の隙間Gと略同じ幅で開けられている。
長穴溝6hは、打ち込み時に膨出部6fの変形を容易にするために設けられたもので、周方向に長穴状に形成され、位置決め溝6gの内径側に繋がっている。
U字溝6iは、打ち込み後につば部6bが波うち状に変形することを防止するために設けられたもので、図2に示すように、つば部6bの周方向に略等間隔位置に設定されている。
【0020】
次に、本実施例の回転子の製造方法について説明する。
本実施例の回転子は、図7に示す打ち込み用治具(下述する)を用いて、磁石5と磁石保護環6とを一体にヨーク4の内側に打ち込んで組み立てられる。
打ち込み用治具は、圧入治具9、可動治具10、及び加圧治具11より構成される。
圧入治具9は、磁石保護環6と磁石5とを保持する治具で、磁石保護環6の筒部6aを内側から保持する円柱形の保持部9aを有する。
可動治具10は、圧入治具9に保持された磁石5の外径面に嵌合するリング状に設けられ、圧入治具9に対してスプリング12により支持されている。この可動治具10の内周面には、図8(図7のB−B断面図)に示すように、4個(磁石5の数と同数)の位置決め突起10aが可動治具10の内径側へ突出して設けられている。各位置決め突起10aは、可動治具10の周方向等間隔に位置し、周方向の突起幅がヨーク4の内側に配置される磁石5と磁石5との隙間Gより若干小さく設けられている。
加圧治具11は、圧入治具9の上方からヨーク4を加圧して磁石5の外側に打ち込むための治具である。
【0021】
先ず、圧入治具9につば部6bを下向きにして磁石保護環6をセットする。この時、つば部6bに設けられている位置決め溝6gを可動治具10の位置決め突起10aに嵌合して磁石保護環6の周方向位置を規制する。続いて、4個の磁石5を磁石保護環6と可動治具10との間に挿入する。なお、各磁石5は、それぞれ可動治具10の2個の位置決め突起10a間に挿入されることにより、自動的に磁石保護環6との位置決めが行われる。
更に、ヨーク4の開口端を下向きにして磁石5の各外径側に被せる。これにより、磁石5の外径側角部とヨーク4の開口端角部に設けた面取り4cとが当たった状態でセットされる。なお、この時、ヨーク4の底壁4bに開けられた窓穴4dに、圧入治具9に支持された位置決めピン13を通すことにより、圧入治具9に位置決めされている磁石5とヨーク4との位置決めを行うことができる。
続いて、加圧治具11でヨーク4を上方から加圧すると、磁石5の外径側角部がヨーク4の面取り4cに沿って内側に押し付けられ、磁石5と磁石保護環6とが同時にヨーク4内に圧入されていく。
【0022】
この圧入に伴って磁石保護環6の筒部6aが内径側へ押し縮められ、その筒部6aの内周面が圧入治具9の保持部9aの外周面に当接すると、筒部6aの押し縮められた分が磁石5の面取り5aによって形成される空間A(図2参照)に膨出し、磁石5をヨーク4の円筒壁4a内周面に押し付けて、磁石5をヨーク4に位置決めする。
その後、圧入治具9から回転子を取り外し、予熱を加えた後、ヨーク4の底壁4bを下にした状態で、ヨーク4と磁石5との合わせ面(図1のC部)に接着剤を滴下する。これにより、接着剤がヨーク4と磁石5との間、磁石5と磁石保護環6との間に浸透し、それぞれの部品を接着固定する。
最後に、図示しない着磁治具により各磁石5を着磁して終了する。
【0023】
(第1実施例の効果)
本実施例の回転子は、ヨーク4の開口端角部にテーパ状の面取り4cを設けているため、磁石5と磁石保護環6とを一体に組み合わせた状態でヨーク4内に打ち込むことができ、その打ち込み位置に磁石5を位置決めすることができる。この場合、打ち込み用治具によって圧入完了位置を変えることにより、従来技術の位置決め方法によらず、磁石5を任意の性能最適位置に設定することができ、磁石5の最大性能を発揮することができる。これにより、従来の磁石式発電機と比較して、磁石5の位置決めに要するコストを低減できる。
また、磁石5と磁石保護環6とを一体に組み合わせてヨーク4に打ち込むことができるため、磁石保護環6の筒部底部側をテーパ状に縮径する必要がない。これにより、筒部6aの外周面を磁石5の軸方向全長に渡って磁石5の内周面と密着させることができ、コア2の厚い発電子と組み合わせた場合でも、磁石5を薄くすることなく、発電子とのエアギャップを確保することができる。
【0024】
本実施例の磁石保護環6は、つば部6bに位置決め溝6gを設けているため、磁石5と磁石保護環6とを一体に組み合わせてヨーク4に打ち込む際に、可動治具10の位置決め突起10aにつば部6bの位置決め溝6gと磁石5間の隙間Gとを合わせることで磁石5と磁石保護環6とを容易に位置決めすることができる。
また、磁石保護環6は、打ち込みにより、磁石5と磁石5との間で筒部6aの膨出部6fが外径側へ突出するが、筒部6aの外径を入口側から奥側まで略同一に設けた場合、膨出部6fの突出量は磁石5に当たっている部分より、磁石5に当たっていない奥側部分の方が大きくなる。その結果、磁石5の周方向中央部付近で、磁石5に当たっていない筒部6aの奥側部分が内径側へ飛び出すことがある。そこで、筒部6aの入口側より奥側の方が外径を若干小さくして、打ち込み代を減らすことにより、筒部6aの内径側への飛び出しを少なくすることができる。
更に、筒部6aをテーパ状に形成したことにより、磁石保護環6のプレス絞りを容易にし、且つプレス型からも抜け易くできるメリットがある。
【0025】
本実施例の回転子は、磁石保護環6の反力(磁石5を外径方向へ付勢する力)と接着剤の接着力とで磁石5をヨーク4に固定しているため、磁石固定強度を充分に確保できる。これにより、磁石保護環6を薄くすることが可能で、その磁石保護環6を薄くした分だけ磁石5を厚くして性能向上を図ることができ、大型ロータにも適用が可能になる。
上記のように磁石保護環6を薄くして打ち込みを行うと、つば部6bの剛性が低下して、打ち込み後につば部6bが波うち状に変形する可能性がある。そこで、つば部6bに複数のU字溝6iを設けることにより、つば部6bの波うちを防止することができる。また、このU字溝6iに接着剤を滴下することにより、磁石5と磁石保護環6との間に接着剤が浸透し易くなり、磁石5と磁石保護環6との接着を確実に行うことができる。
【0026】
本実施例の回転子は、周方向に隣合う磁石5間の隙間Gが小さいため、このままでは、磁石保護環6の筒部6aに設けた膨出部6fが打ち込み時に外側へ突出できるスペースを充分に確保することができない。そこで、本実施例では、磁石5の内径側角部に面取り4cを設けて磁石保護環6との間に空間Aを形成することにより、周方向に隣合う磁石5間の隙間Gが小さい場合でも、膨出部6fの変形スペースを確保している。
磁石保護環6と磁石5とをヨーク4内に組み込んだ後、磁石5を着磁する際に、ヨーク4の底壁4bに開けた窓穴4dを通じて磁石5と着磁治具との位置決めを行うことができる。この場合、磁石5と着磁治具とを位置決めした状態で磁石5に着磁できるため、隣合う磁石5と磁石5との合わせ位置部に磁極がこないように着磁することが可能となり、性能低下を防止できる。
【0027】
(第2実施例)
図9はヨーク4の開口側から見た回転子の正面図(一部断面を含む)である。
本実施例は、周方向に隣合う磁石5間の隙間Gが大きい場合の一例である。
第1実施例では、周方向に隣合う磁石5間の隙間Gが小さいため、磁石保護環6の筒部6aに設けた膨出部6fが外側へ変形できるスペースを確保する必要があり、そのために、磁石5の内径側角部に面取り5aを設けているが、本実施例では、周方向に隣合う磁石5間の隙間Gが大きいため、磁石5の内径側角部に面取りを設ける必要はない。
また、磁石保護環6のつば部6bに設ける位置決め溝6gの周方向幅を磁石5間の隙間Gに合わせて大きく設定している。なお、位置決め溝6gの周方向幅を大きくすることにより、第1実施例に記載した長穴溝6hを廃止することができる。
この第2実施例においても、第1実施例に記載した打ち込み用治具を用いて磁石保護環6と磁石5とを一体に組み合わせてヨーク4の内側に打ち込むことができるため、第1実施例と同様の効果を得ることができる。
【図面の簡単な説明】
【図1】磁石式発電機の径方向断面図である(第1実施例)。
【図2】ヨークの開口側から見た回転子の正面図である(第1実施例)。
【図3】ヨークの開口端部に設けたテーパ形状を示す断面図である。
【図4】ヨークの開口端部に設けたテーパ形状の変形例を示す断面図である。
【図5】ヨークの開口端部に設けたテーパ形状の変形例を示す断面図である。
【図6】磁石保護環の径方向断面図である。
【図7】圧入治具による打ち込み工程を示す断面図である。
【図8】図7のB−B断面図である。
【図9】ヨークの開口側から見た回転子の正面図である(第2実施例)。
【図10】磁石式発電機の径方向断面図である(従来技術)。
【図11】磁石式発電機の径方向断面図である(従来技術)。
【図12】磁石式発電機の径方向断面図である(従来技術)。
【符号の説明】
1 磁石式発電機
4 ヨーク
4b 底壁
4c ヨークの面取り
4d 窓穴
5 磁石
5a 磁石の面取り
6 磁石保護環
6a 筒部
6b つば部
6f 膨出部
6g 位置決め溝
6i U字溝(溝部)
9 圧入治具(打ち込み用治具)
10 可動治具(打ち込み用治具)
11 加圧治具(打ち込み用治具)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnet generator suitable for use in, for example, a motorcycle.
[0002]
[Prior art]
A conventional magnet generator is shown in FIGS.
In the magnet generator 100 (prior art 1) shown in FIG. 10, a ring-shaped spacer 120 is disposed at the bottom of the yoke 110, and the position on the bottom side of the magnet 130 (the right end position in FIG. 10) is regulated by this spacer 120. In this state, the magnet 130 and the yoke 110 are bonded and fixed.
A magnet generator 100 (prior art 2) shown in FIG. 11 has a hole 140 formed in the bottom wall of the yoke 110, and the bottom side position of the magnet 130 is regulated by a pin 150 inserted into the yoke 110 from the hole 140. In this state, the magnet 130 and the yoke 110 are bonded and fixed.
A magnet generator 100 (prior art 3) shown in FIG. 12 is provided with a stepped portion 160 on the inner surface of the yoke 110, and the bottom portion of the magnet 130 is regulated by the stepped portion 160. A magnet protection ring 170 is driven into the inner diameter side (press-fit), and the magnet 130 is pressed against the inner diameter surface of the yoke 110 by the reaction force of the magnet protection ring 170 to fix the magnet 130.
[0003]
[Problems to be solved by the invention]
However, the above-described conventional techniques 1 to 3 have the following problems because they require parts or processing for regulating the position of the bottom side of the magnet 130.
(Prior art 1)
(1) Since the spacer 120 for positioning the magnet 130 is required, it is expensive.
(2) When the magnet 130 is arranged at the optimum position in accordance with the position of the emitting electron 200 and the thickness of the core 210, the size of the spacer 120 is different each time. Therefore, it is necessary to newly provide a mold for molding the spacer 120. And the mold cost increases and becomes expensive.
(Prior art 2)
(1) A mold for opening the hole 140 in the bottom wall of the yoke 110 is required, which is expensive.
(2) If the adhesive hangs down and adheres to the pin 150 when the magnet 130 and the yoke 110 are bonded, there is a problem that the magnet 130 and the pin 150 are fixed.
(3) Until the adhesion between the magnet 130 and the yoke 110 is completed, it is necessary to keep the pin 150 and the attached jig for holding the pin 150 integral with the rotor. And
(Prior art 3)
Since the stepped portion 160 is provided on the inner diameter surface of the yoke 110, each time the magnet 130 is arranged at the optimum position in accordance with the position of the emitting electron 200 or the thickness of the core 210, the stepped portion 160 Since the positions are different, it is necessary to newly provide a mold for molding the stepped portion 160 of the yoke 110, which increases the mold cost and becomes expensive.
The present invention has been made on the basis of the above circumstances, and an object thereof is to provide an inexpensive magnet generator.
[0004]
[Means for Solving the Problems]
(Means of Claim 1)
The magnet protection ring has an annular collar portion that covers the opening end surface of the magnet, and the yoke is provided with a tapered chamfer at the inner diameter side corner portion of the opening end portion so as to face the collar portion in the radial direction. It has been. Thereby, since it can be driven into the yoke in a state where the magnet and the magnet protection ring are combined together, the magnet can be positioned at the driving position. In this case, parts and processing required for positioning the magnet, such as spacers, pins, holes for passing the pins, and stepped portions provided on the inner diameter surface of the yoke described in the prior art, are not required, so that the cost can be reduced. . A chamfer with a gentle slope is provided to enable driving.
[0005]
In addition, since the magnet and the magnet protection ring can be combined and driven into the yoke, it is not necessary to form the cylindrical bottom portion of the magnet protection ring in a tapered shape having a diameter smaller than the inner diameter of the magnet. That is, the magnet generator shown in the prior art 3 has a configuration in which only the magnet is first arranged in the yoke and the magnet protection ring is press-fitted into the inner diameter side of the magnet later. In order to make it possible, the cylinder bottom portion side of the magnet protection ring is reduced in diameter so as to be smaller than the inner diameter of the magnet (the outer diameter is reduced). For this reason, the bottom side inner diameter becomes small, so when combined with a thick core electron generator, the magnet must be thinned to ensure an air gap between the bottom side magnet protection ring and the core, resulting in reduced performance. Occurs. On the other hand, in the present invention, since it is not necessary to make the bottom part side of the cylinder part of the magnet protection ring smaller than the inner diameter of the magnet, in the state where a plurality of magnets are arranged on the outer periphery of the cylinder part of the magnet protection ring, By press-fitting inside, the outer peripheral surface of the cylinder part can be brought into close contact with the inner peripheral surface of the magnet over the entire axial length of the magnet, and even when combined with a thick core generator, the magnet is not made thin. An air gap with the generated electrons can be secured.
[0006]
(Means of Claim 2)
A chamfer is provided at the outer diameter side corner on the bottom side in the axial direction of the magnet over the entire arc length of the magnet. In other words, when the magnet is driven inside the yoke (or when the yoke is driven outside the magnet), chamfering is further facilitated by providing a chamfer at the corner of the magnet that hits the opening end (the chamfered portion) of the yoke. Can be done.
[0007]
(Means of claim 3)
A chamfer is provided at the inner diameter side corner of the magnet over the entire axial length. This is because when the yoke is driven (or when the magnet is driven), the bulging portion of the cylindrical portion protrudes to the outer diameter side between the magnets adjacent to each other in the circumferential direction. When the gap is small, it is difficult to deform the bulge portion (bulge toward the outer diameter side). Therefore, by providing chamfers at the inner diameter side corners of the magnet, it is possible to secure a deformation space of the bulging portion even when the gap between adjacent magnets in the circumferential direction is small.
[0008]
(Means of claim 4)
One the bulging portion of the field portion and the circumferential same position, substantially the positioning groove of the same width as the gap between the magnets adjacent in the circumferential direction is provided. When the magnet and the magnet protection ring are combined and driven into the yoke, the magnet and the magnet protection ring can be easily positioned by matching the gap between the magnets with the positioning groove of the collar portion.
[0009]
(Means of claim 5)
The magnet and the yoke are fixed with an adhesive. In this case, since the magnet is fixed by the reaction force of the magnet protection ring (force for urging the magnet in the outer diameter direction) and the adhesive force, sufficient magnet fixing strength can be secured. As a result, the magnet protection ring can be made thinner, and the magnet can be made thicker as much as the magnet protection ring is made thinner, so that the performance can be improved and can be applied to a large rotor.
[0010]
(Means of claim 6)
When the magnet protection ring is thinned and driven, the rigidity of the collar part is lowered, and the collar part may be deformed into a wave shape after driving. Therefore, by providing a plurality of groove portions in the collar portion, it is possible to prevent the wave of the collar portion. The plurality of groove portions are desirably provided at substantially equal intervals in the circumferential direction of the collar portion.
Moreover, by dripping the adhesive into the groove, the adhesive easily penetrates between the magnet end face and the magnet protection ring, and the adhesion between the magnet end face and the magnet protection ring can be reliably performed.
[0011]
(Means of claim 7)
The magnet protection ring and the magnet are mounted on a driving jig with a plurality of magnets arranged on the outer periphery of the cylindrical part, and the outer periphery of the magnet is controlled while the inner peripheral surface of the cylindrical part is regulated by the driving jig. A yoke is driven into the magnet (or a magnet is driven into the inside of the yoke), thereby assembling at a predetermined position in the yoke. In this case, since the tapered chamfer is provided at the inner diameter side corner of the opening end of the yoke, it can be driven easily along the inclined surface formed by this chamfer.
[0012]
(Means of Claim 8)
The magnet protection ring and the magnet are attached to the driving jig in a state where the circumferential positions of the positioning groove provided in the collar portion and the gap between the magnets adjacent in the circumferential direction are matched. Thereby, driving with a yoke can be performed in the state which positioned the magnet and the magnet protection ring.
[0013]
(Means of claim 9)
A window hole for specifying the positional relationship with the magnet is formed in the bottom wall of the yoke, and when the magnet is magnetized, the magnet and the magnetizing jig are positioned through the window hole. As a result, the magnet can be magnetized in a state where the magnet and the magnetizing jig are positioned, so that the magnet can be magnetized so that no magnetic poles are formed at the alignment position between the magnets adjacent in the circumferential direction. Thus, performance degradation can be prevented.
[0014]
(Means of claim 10)
When the magnet protection ring is driven, the bulging part of the cylindrical part protrudes between the magnets toward the outer diameter side. However, when the outer diameter of the cylindrical part is provided substantially the same from the inlet side to the rear side, The protruding amount of the protruding portion is larger in the back side portion not hitting the magnet than in the portion hitting the magnet. As a result, in the vicinity of the central portion in the circumferential direction of the magnet, the back side portion of the cylindrical portion that does not hit the magnet may protrude toward the inner diameter side. Therefore, by projecting the outer diameter slightly smaller on the inner side than the inlet side of the cylindrical portion and reducing the driving allowance, it is possible to reduce the protrusion to the inner diameter side of the cylindrical portion.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a radial sectional view of a magnet generator.
The magnet generator 1 of the present embodiment is used, for example, in a two-wheeled vehicle, and includes a generator and a rotor described below.
As shown in FIG. 1, the generated electrons are formed by laminating a plurality of iron plates to form a core 2, insulating the outside of the core 2, and then winding a power generating coil 3.
[0016]
The rotor includes a yoke 4, a plurality of magnets 5, and a magnet protection ring 6.
The yoke 4 is formed by pressing an iron plate, is formed into a bowl shape having a cylindrical wall 4a and a bottom wall 4b, and is fastened to a boss 8 by rivets 7 at a plurality of locations on the bottom wall 4b. As shown in FIG. 3, a tapered chamfer 4c having a gentle gradient is provided at the corner on the inner diameter side of the opening end of the cylindrical wall 4a in order to facilitate driving (press fitting) of the magnet 5 into the yoke 4. It has been. In this chamfer 4c, as shown in FIGS. 4 and 5, the gradient may be set stepwise (FIG. 4 has two steps and FIG. 5 has three steps).
As shown in FIG. 2, two window holes 4d are formed in the radially opposing positions on the bottom wall 4b of the yoke 4 (the description of the window holes 4d will be described later).
The boss 8 is provided with a taper 8a on the inner peripheral surface of the cylinder. The taper 8a is fitted to a taper portion (not shown) of the crankshaft, and a fastening member (not shown) is formed from the tip side (left side in FIG. 1) of the boss 8. ) Is fastened to the crankshaft.
[0017]
The magnet 5 is pressed into the inside of the yoke 4 together with the magnet protection ring 6 and then adhered to the yoke 4 with an adhesive. Therefore, the magnet 5 is fixed to the yoke 4 by both the reaction force of the magnet protection ring 6 (force for urging the magnet 5 radially outward) and the adhesive force.
As shown in FIG. 2, a chamfer 5a is provided at the inner diameter side corner of the magnet 5 over the entire length in the axial direction, and a substantially triangular space A (FIG. 2) is formed between the chamfer 5a and the magnet protection ring 6. See). Further, a chamfer (not shown) may be provided over the entire arc of the magnet 5 at the outer diameter side corner on the bottom side (right side in FIG. 1) of the magnet 5. That is, when the magnet 5 is driven into the inside of the yoke 4 (or when the yoke 4 is driven into the outside of the magnet 5), chamfering is also provided at the corner of the magnet 5 that hits the opening end portion (portion provided with the chamfer 4c) of the yoke 4. Thus, driving can be performed more easily.
[0018]
As shown in FIG. 6, the magnet protection ring 6 has a cylindrical portion 6 a that is press-fitted into the inner diameter side of each magnet 5, and a ring-shaped collar portion 6 b that covers the end surface on the opening end side of each magnet 5. A magnetic metal plate (for example, a stainless steel plate) is squeezed into a cylindrical shape by a press, and then the bottom is rounded.
The cylindrical portion 6 a is provided with an outer diameter dimension slightly larger than an inner diameter dimension between the magnets 5 facing each other in the radial direction of each magnet 5 incorporated in the yoke 4. Further, the outer diameter of the intermediate portion 6c of the cylindrical portion 6a is slightly larger than the outer diameter of the tip portion 6d (the right end portion in FIG. 6), and is formed in a tapered shape from the intermediate portion 6c to the tip portion 6d. The outer diameter of 6e is slightly larger than the outer diameter of the intermediate portion 6c, and is formed in a taper shape from the flange-side end portion 6e to the intermediate portion 6c. That is, it is configured such that the driving allowance of the cylindrical portion 6a is larger from the intermediate portion 6c to the flange portion 6b side than from the distal end side. The taper on the tip side from the intermediate portion 6c is provided with a gentler gradient than the taper on the side from the intermediate portion 6c to the collar portion 6b.
Further, as shown in FIGS. 2 and 6, the tubular portion 6a is provided with bulging portions 6f having the same number as the number of magnets 5 so as to slightly protrude outward in the radial direction of the tubular portion 6a. The bulging portions 6f are set at equal intervals in the circumferential direction of the cylindrical portion 6a, have a predetermined width in the circumferential direction of the cylindrical portion 6a, and toward the distal end side from the end portion on the flange portion 6b side of the cylindrical portion 6a. Only a predetermined length is provided.
[0019]
The bent portion between the cylindrical portion 6a and the collar portion 6b is provided with an R portion (see FIG. 6) over the entire circumference so as not to interfere with the corner portion of the magnet 5.
As shown in FIG. 2, the collar portion 6b is provided with the same number of positioning grooves 6g as the number of magnets 5, an elongated hole groove 6h connected to the positioning grooves 6g, and a plurality of U-shaped grooves 6i.
The positioning groove 6g is provided for positioning the magnet 5 and the magnet protection ring 6 at the time of driving. The positioning groove 6g is set at the same position in the circumferential direction as the bulging portion 6f provided in the cylindrical portion 6a. It is opened with substantially the same width as the gap G between them.
The long hole groove 6h is provided to facilitate deformation of the bulging portion 6f when driven, and is formed in the shape of a long hole in the circumferential direction and connected to the inner diameter side of the positioning groove 6g.
The U-shaped groove 6i is provided to prevent the flange portion 6b from deforming into a wave shape after driving, and is set at substantially equal intervals in the circumferential direction of the flange portion 6b as shown in FIG. Has been.
[0020]
Next, the manufacturing method of the rotor of a present Example is demonstrated.
The rotor of this embodiment is assembled by driving the magnet 5 and the magnet protection ring 6 together into the yoke 4 using a driving jig (described below) shown in FIG.
The driving jig includes a press-fitting jig 9, a movable jig 10, and a pressing jig 11.
The press-fitting jig 9 is a jig for holding the magnet protection ring 6 and the magnet 5, and has a cylindrical holding part 9a for holding the cylindrical part 6a of the magnet protection ring 6 from the inside.
The movable jig 10 is provided in a ring shape that fits to the outer diameter surface of the magnet 5 held by the press-fitting jig 9, and is supported by the spring 12 with respect to the press-fitting jig 9. On the inner peripheral surface of the movable jig 10, four positioning projections 10a (the same number as the number of magnets 5) are provided as shown in FIG. 8 (BB sectional view of FIG. 7). It protrudes to the side. The positioning projections 10 a are positioned at equal intervals in the circumferential direction of the movable jig 10, and the circumferential projection width is slightly smaller than the gap G between the magnet 5 and the magnet 5 disposed inside the yoke 4.
The pressurizing jig 11 is a jig for pressurizing the yoke 4 from above the press-fitting jig 9 and driving it into the outside of the magnet 5.
[0021]
First, the magnet protection ring 6 is set on the press-fitting jig 9 with the collar portion 6b facing downward. At this time, the positioning groove 6g provided in the collar portion 6b is fitted into the positioning projection 10a of the movable jig 10 to regulate the circumferential position of the magnet protection ring 6. Subsequently, the four magnets 5 are inserted between the magnet protection ring 6 and the movable jig 10. Each magnet 5 is automatically positioned with respect to the magnet protection ring 6 by being inserted between the two positioning projections 10 a of the movable jig 10.
Further, the yoke 4 is placed on each outer diameter side of the magnet 5 with the open end of the yoke 4 facing downward. Thus, the magnet 5 is set in a state where the outer diameter side corner portion of the magnet 5 and the chamfer 4c provided at the opening end corner portion of the yoke 4 contact each other. At this time, the magnet 5 and the yoke 4 positioned on the press-fitting jig 9 are passed by passing the positioning pins 13 supported by the press-fitting jig 9 through the window holes 4d formed in the bottom wall 4b of the yoke 4. And positioning.
Subsequently, when the yoke 4 is pressed from above with the pressing jig 11, the outer diameter side corner of the magnet 5 is pressed inward along the chamfer 4 c of the yoke 4, and the magnet 5 and the magnet protection ring 6 are simultaneously moved. It is press-fitted into the yoke 4.
[0022]
Along with the press-fitting, the cylindrical portion 6a of the magnet protection ring 6 is compressed toward the inner diameter side, and when the inner peripheral surface of the cylindrical portion 6a comes into contact with the outer peripheral surface of the holding portion 9a of the press-fitting jig 9, the cylindrical portion 6a The compressed portion swells into the space A (see FIG. 2) formed by the chamfer 5 a of the magnet 5, presses the magnet 5 against the inner peripheral surface of the cylindrical wall 4 a of the yoke 4, and positions the magnet 5 on the yoke 4. .
Then, after removing the rotor from the press-fitting jig 9 and applying preheating, the adhesive is applied to the mating surface (C portion in FIG. 1) of the yoke 4 and the magnet 5 with the bottom wall 4b of the yoke 4 facing down. Is dripped. As a result, the adhesive penetrates between the yoke 4 and the magnet 5 and between the magnet 5 and the magnet protection ring 6 to bond and fix the respective components.
Finally, each magnet 5 is magnetized by a magnetizing jig (not shown) and the process is terminated.
[0023]
(Effects of the first embodiment)
Since the rotor of this embodiment is provided with a tapered chamfer 4c at the opening end corner of the yoke 4, it can be driven into the yoke 4 with the magnet 5 and the magnet protection ring 6 combined together. The magnet 5 can be positioned at the driving position. In this case, by changing the press-fitting completion position with the driving jig, the magnet 5 can be set to an arbitrary optimum performance position regardless of the positioning method of the prior art, and the maximum performance of the magnet 5 can be exhibited. it can. Thereby, compared with the conventional magnet generator, the cost required for positioning of the magnet 5 can be reduced.
Further, since the magnet 5 and the magnet protection ring 6 can be combined and driven into the yoke 4, it is not necessary to reduce the diameter of the bottom of the cylindrical portion of the magnet protection ring 6 in a tapered shape. Thereby, the outer peripheral surface of the cylinder part 6a can be contact | adhered with the inner peripheral surface of the magnet 5 over the axial direction full length of the magnet 5, and even when combined with the thick electron generation of the core 2, making the magnet 5 thin. Therefore, it is possible to secure an air gap with the generated electrons.
[0024]
In the magnet protection ring 6 of this embodiment, the positioning groove 6g is provided in the collar portion 6b. Therefore, when the magnet 5 and the magnet protection ring 6 are combined together and driven into the yoke 4, the positioning protrusion of the movable jig 10 is provided. By aligning the positioning groove 6g of the collar portion 6b with the gap G between the magnets 5 to 10a, the magnet 5 and the magnet protection ring 6 can be easily positioned.
Further, when the magnet protection ring 6 is driven, the bulging portion 6f of the cylindrical portion 6a protrudes between the magnet 5 and the magnet 5 to the outer diameter side, but the outer diameter of the cylindrical portion 6a extends from the inlet side to the inner side. When provided approximately the same, the protruding amount of the bulging portion 6f is larger in the back side portion not hitting the magnet 5 than in the portion hitting the magnet 5. As a result, in the vicinity of the central portion in the circumferential direction of the magnet 5, the back side portion of the cylindrical portion 6a that does not contact the magnet 5 may jump out to the inner diameter side. Therefore, the outer diameter of the tube portion 6a on the back side is slightly smaller than that on the inlet side to reduce the driving allowance, thereby reducing the protrusion of the tube portion 6a to the inner diameter side.
Furthermore, since the cylindrical portion 6a is formed in a tapered shape, there is a merit that the magnet protective ring 6 can be easily pressed and removed from the press die.
[0025]
In the rotor of this embodiment, the magnet 5 is fixed to the yoke 4 by the reaction force of the magnet protection ring 6 (the force that urges the magnet 5 in the outer diameter direction) and the adhesive force of the adhesive. Enough strength can be secured. As a result, the magnet protection ring 6 can be made thinner, the performance of the magnet 5 can be increased by making the magnet protection ring 6 thinner, and the present invention can be applied to a large rotor.
If the magnet protection ring 6 is thinned and driven as described above, the rigidity of the collar portion 6b decreases, and the collar portion 6b may be deformed into a wave shape after driving. Therefore, by providing a plurality of U-shaped grooves 6i in the collar portion 6b, the wave of the collar portion 6b can be prevented. Also, by dripping the adhesive into the U-shaped groove 6i, the adhesive easily penetrates between the magnet 5 and the magnet protection ring 6, and the magnet 5 and the magnet protection ring 6 are securely bonded. Can do.
[0026]
In the rotor of this embodiment, since the gap G between the magnets 5 adjacent to each other in the circumferential direction is small, in this state, there is a space in which the bulging portion 6f provided on the cylindrical portion 6a of the magnet protection ring 6 can protrude outward. It cannot be secured sufficiently. Therefore, in this embodiment, when the chamfer 4c is provided on the inner diameter side corner of the magnet 5 and the space A is formed between the magnet protection ring 6 and the gap G between the magnets 5 adjacent in the circumferential direction is small. However, the deformation space of the bulging portion 6f is secured.
When the magnet 5 is magnetized after the magnet protection ring 6 and the magnet 5 are assembled in the yoke 4, the magnet 5 and the magnetizing jig are positioned through the window hole 4 d formed in the bottom wall 4 b of the yoke 4. It can be carried out. In this case, since the magnet 5 can be magnetized in a state in which the magnet 5 and the magnetizing jig are positioned, it is possible to magnetize so that the magnetic pole does not come to the position where the adjacent magnet 5 and the magnet 5 are aligned, Performance degradation can be prevented.
[0027]
(Second embodiment)
FIG. 9 is a front view (including a partial cross section) of the rotor as viewed from the opening side of the yoke 4.
This embodiment is an example of a case where the gap G between the magnets 5 adjacent in the circumferential direction is large.
In the first embodiment, since the gap G between the magnets 5 adjacent to each other in the circumferential direction is small, it is necessary to secure a space in which the bulging portion 6f provided on the cylindrical portion 6a of the magnet protection ring 6 can be deformed outward. Further, the chamfer 5a is provided at the inner diameter side corner of the magnet 5, but in this embodiment, the gap G between the magnets 5 adjacent in the circumferential direction is large, and therefore it is necessary to provide the chamfer at the inner diameter side corner of the magnet 5. There is no.
Further, the circumferential width of the positioning groove 6 g provided in the collar portion 6 b of the magnet protection ring 6 is set to be large according to the gap G between the magnets 5. Note that the elongated groove 6h described in the first embodiment can be eliminated by increasing the circumferential width of the positioning groove 6g.
Also in the second embodiment, since the magnet protection ring 6 and the magnet 5 can be combined together and driven into the yoke 4 using the driving jig described in the first embodiment, the first embodiment can be used. The same effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a radial sectional view of a magnet generator (first embodiment).
FIG. 2 is a front view of the rotor as viewed from the opening side of the yoke (first embodiment).
FIG. 3 is a cross-sectional view showing a tapered shape provided at an opening end of a yoke.
FIG. 4 is a cross-sectional view showing a modified example of a tapered shape provided at the opening end of the yoke.
FIG. 5 is a cross-sectional view showing a modification of a tapered shape provided at the opening end of the yoke.
FIG. 6 is a radial cross-sectional view of a magnet protection ring.
FIG. 7 is a cross-sectional view showing a driving process using a press-fitting jig.
8 is a cross-sectional view taken along the line BB in FIG.
FIG. 9 is a front view of the rotor as viewed from the opening side of the yoke (second embodiment).
FIG. 10 is a radial sectional view of a magnet generator (prior art).
FIG. 11 is a radial sectional view of a magnet generator (prior art).
FIG. 12 is a radial sectional view of a magnet generator (prior art).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnet type generator 4 Yoke 4b Bottom wall 4c Chamfering 4d of a window Window hole 5 Magnet 5a Chamfering 6 Magnet protection ring 6a Tube part 6b Collar part 6f Swelling part 6g Positioning groove 6i U-shaped groove (groove part)
9 Press-fitting jig (placement jig)
10 Movable jig (driving jig)
11 Pressurizing jig (Plasting jig)

Claims (10)

底壁を有する椀状のヨークと、
このヨーク内に挿入され、前記ヨークの内周面に沿って周方向に所定の間隔を開けて配された複数個の磁石と、
円筒状の筒部と、円環状のつば部とを有し、前記筒部が前記複数個の磁石の内径側に圧入状態で配置され、前記つば部が前記磁石の開口側端面を覆う磁石保護環とを有する磁石式発電機であって、
前記ヨークには、開口端部の内径側角部にテーパ状の面取りが設けられ、
前記磁石保護環は、周方向に隣合う前記磁石間で外径方向へ突出する膨出部を前記筒部に設け、且つ、前記磁石保護環の前記筒部の外周に前記複数個の磁石を配置した状態で、両者が前記ヨークの内側に圧入されることによって、前記筒部の外周面が前記磁石の軸方向全長に渡って前記磁石の内周面と密着しており、
前記テーパ状の面取りは、前記つば部と径方向に対向する位置にあることを特徴とする磁石式発電機。
A bowl-shaped yoke having a bottom wall;
A plurality of magnets inserted into the yoke and arranged at predetermined intervals in the circumferential direction along the inner peripheral surface of the yoke;
Magnet protection that has a cylindrical tube portion and an annular collar portion , the tube portion is arranged in a press-fit state on the inner diameter side of the plurality of magnets, and the collar portion covers the opening side end surface of the magnet. A magnet generator having a ring,
The yoke is provided with a tapered chamfer on the inner diameter side corner of the opening end,
The magnet protection ring is provided with a bulging portion projecting in an outer diameter direction between the magnets adjacent in the circumferential direction, and the plurality of magnets are arranged on an outer periphery of the cylinder portion of the magnet protection ring. In an arranged state, the outer peripheral surface of the cylindrical portion is in close contact with the inner peripheral surface of the magnet over the entire axial length of the magnet by being press-fitted inside the yoke .
The taper-shaped chamfer is located at a position facing the collar portion in the radial direction .
前記磁石の軸方向底部側の外径側角部に前記磁石の円弧全長に渡って面取りが設けられていることを特徴とする請求項1に記載した磁石式発電機。2. The magnet generator according to claim 1, wherein a chamfer is provided at an outer diameter side corner on the bottom side in the axial direction of the magnet over the entire arc length of the magnet. 前記磁石の内径側角部に軸方向全長に渡って面取りが設けられていることを特徴とする請求項1及び2に記載した磁石式発電機。3. The magnet generator according to claim 1, wherein a chamfer is provided at an inner diameter side corner of the magnet over the entire axial length. 4. 前記つば部の前記膨出部と周方向同位置に、周方向に隣合う前記磁石間の隙間と略同じ幅の位置決め溝が設けられていることを特徴とする請求項1〜3に記載した磁石式発電機。In the circumferential direction the same position the bulging portion of the one field section, substantially the positioning groove of the same width as the gap between the magnets adjacent in the circumferential direction, characterized in that it is provided according to claim 1 Magnet generator. 前記磁石と前記ヨークとを接着剤により固着していることを特徴とする請求項1〜4に記載した磁石式発電機。The magnet generator according to claim 1, wherein the magnet and the yoke are fixed with an adhesive. 前記磁石保護環は、前記位置決め溝とは別に前記つば部に複数の溝部が設けられていることを特徴とする請求項4及び5に記載した磁石式発電機。6. The magnet generator according to claim 4, wherein the magnet protection ring is provided with a plurality of groove portions in the collar portion separately from the positioning groove. 7. 請求項1〜6に記載した磁石式発電機の製造方法であって、
前記磁石保護環と前記磁石は、前記筒部の外周に前記複数個の磁石を配置した状態で両者を打ち込み用治具に装着し、その打ち込み用治具により前記筒部の内周面を規制しながら前記磁石の外側に前記ヨークを打ち込むことにより、前記ヨーク内の所定位置に組付けられることを特徴とする磁石式発電機の製造方法。
It is a manufacturing method of the magnet type generator described in Claims 1-6,
The magnet protection ring and the magnet are mounted on a driving jig with the plurality of magnets arranged on the outer periphery of the cylindrical part, and the inner peripheral surface of the cylindrical part is regulated by the driving jig. A method of manufacturing a magnet generator, wherein the yoke is assembled at a predetermined position in the yoke by driving the yoke outside the magnet.
請求項7に記載した磁石式発電機の製造方法において、
前記磁石保護環と前記磁石は、前記つば部に設けた位置決め溝と周方向に隣合う磁石間の隙間との周方向位置を合わせた状態で前記打ち込み用治具に装着されることを特徴とする磁石式発電機の製造方法。
In the manufacturing method of the magnet type generator according to claim 7,
The magnet protection ring and the magnet are mounted on the driving jig in a state in which the circumferential positions of the positioning groove provided in the collar portion and the gap between the magnets adjacent in the circumferential direction are aligned. A method for manufacturing a magnet generator.
請求項7及び8に記載した磁石式発電機の製造方法において、
前記ヨークの底壁に前記磁石との位置関係を特定する窓穴を開け、前記磁石に着磁する時に、前記窓穴を通じて前記磁石と着磁治具との位置決めを行うことを特徴とする磁石式発電機の製造方法。
In the manufacturing method of the magnet type generator according to claims 7 and 8,
A magnet having a window hole for specifying a positional relationship with the magnet formed in a bottom wall of the yoke, and when the magnet is magnetized, the magnet and the magnetizing jig are positioned through the window hole. A method of manufacturing a power generator.
請求項7〜9に記載した磁石式発電機の製造方法において、
前記磁石保護環は、前記筒部の入口側より奥側の方が外径を若干小さくして、打ち込み代を減らしていることを特徴とする磁石式発電機の製造方法。
In the manufacturing method of the magnet type generator according to claims 7-9,
The magnet protection ring is a method of manufacturing a magnet generator, characterized in that the outer diameter is slightly smaller on the back side than on the inlet side of the cylindrical portion to reduce the driving allowance.
JP20327898A 1998-07-17 1998-07-17 Magnet generator and manufacturing method thereof Expired - Fee Related JP4103182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20327898A JP4103182B2 (en) 1998-07-17 1998-07-17 Magnet generator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20327898A JP4103182B2 (en) 1998-07-17 1998-07-17 Magnet generator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000037054A JP2000037054A (en) 2000-02-02
JP4103182B2 true JP4103182B2 (en) 2008-06-18

Family

ID=16471414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20327898A Expired - Fee Related JP4103182B2 (en) 1998-07-17 1998-07-17 Magnet generator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4103182B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619206B2 (en) * 2002-04-22 2005-02-09 三菱電機株式会社 Magnet generator
JP2006144972A (en) * 2004-11-22 2006-06-08 Tokai Rubber Ind Ltd Vibration absorbing bush installation structure
JP2006158061A (en) * 2004-11-29 2006-06-15 Kokusan Denki Co Ltd Rotor for permanent-magnet generator
JP4161082B2 (en) 2006-09-13 2008-10-08 三菱電機株式会社 Magnet generator
JP5422019B2 (en) 2012-05-16 2014-02-19 三菱電機株式会社 Magnet generator
CN105529853A (en) * 2016-02-24 2016-04-27 珠海格力节能环保制冷技术研究中心有限公司 Rotor housing and outer rotor motor
US11710598B2 (en) 2019-05-31 2023-07-25 Aichi Steel Corporation Method for manufacturing field magnet
JPWO2022070306A1 (en) * 2020-09-30 2022-04-07

Also Published As

Publication number Publication date
JP2000037054A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US7629721B2 (en) Stator of motor
US6891295B2 (en) Flywheel magneto generator
JP6218871B2 (en) Small electric drive device, soft magnetic magnetic feedback path device, and method of manufacturing soft magnetic magnetic feedback path device
JP4103182B2 (en) Magnet generator and manufacturing method thereof
JPS62203537A (en) Rotor for motor
JP2010115108A (en) Electric motor
JP2005354768A (en) Surface magnet type magnetic field rotor and motor utilizing same
US20010048259A1 (en) Dynamo-electric machine and outer yoke thereof
JPH0686487A (en) Permanent magnet rotor
US7173351B2 (en) Motor and method of manufacturing the same
JPH06343251A (en) Manufacture for rotor of permanent-magnet generator
JPH06237547A (en) Permanent magnet-type rotary electric machine
JPH07274421A (en) Rotor of magnetic generator
JPH10145996A (en) Rotor for magnet generator
JPH0767273A (en) Core for electric rotating machine
JPH05316694A (en) Manufacture of motor stator
JPS62138044A (en) Rotor for magneto-generator
JP4001885B2 (en) Brushless motor
JP5075366B2 (en) Magnet generator
JPS63174538A (en) Magnet motor
CN113014005A (en) Stator and method for manufacturing the same
US20230137688A1 (en) Rotor, method of producing the rotor, and motor
JP2608518B2 (en) Method for manufacturing rotor of magnet generator
JPH0781595B2 (en) Excitation device for electromagnetic clutch
JPH0559661B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees