JP4103030B2 - Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition - Google Patents

Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition Download PDF

Info

Publication number
JP4103030B2
JP4103030B2 JP2002041957A JP2002041957A JP4103030B2 JP 4103030 B2 JP4103030 B2 JP 4103030B2 JP 2002041957 A JP2002041957 A JP 2002041957A JP 2002041957 A JP2002041957 A JP 2002041957A JP 4103030 B2 JP4103030 B2 JP 4103030B2
Authority
JP
Japan
Prior art keywords
phase
resin
resin composition
film
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002041957A
Other languages
Japanese (ja)
Other versions
JP2003238830A (en
Inventor
禎一 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002041957A priority Critical patent/JP4103030B2/en
Publication of JP2003238830A publication Critical patent/JP2003238830A/en
Application granted granted Critical
Publication of JP4103030B2 publication Critical patent/JP4103030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、相分離型樹脂組成物、相分離型樹脂フィルム及び回路基板の製造方法に関する。
【0002】
【従来の技術】
従来、半導体用途等に使用される導電性、異方導電性接着フィルムには、金属粒子、金属めっき粒子等の導電性に優れる粒子を含むフィルムが提案されている。
【0003】
【発明が解決しようとする課題】
しかし、このようなフィルムは、金属粒子、金属めっき粒子等の硬い粒子を使用しているため、導電粒子がめっきあるいは蒸着で形成した電気的接続用パッドを傷つける等の問題があった。また、粒子の分散性を確保しようとするとある程度の大きさ以上の粒子を使用する必要があり、その結果、膜厚が厚くなり微細ピッチの接続に最適とは言えなかった。また、導電性フィルムの場合は多量の銀フィラーを加えるため、接着性が低下するため、剥離が生じやすく、その結果電気抵抗が増加するなどの課題があった。
【0004】
【課題を解決するための手段】
本発明は、導電性の材料と絶縁性の材料をエマルジョン化し、明確に相分離した樹脂組成物及びフィルムを提供する。このように材料を相分離させ、一方を導電ポリマが主成分である相、他方を絶縁性ポリマが主成分である相にすることにより、導電性や異方導電性を付与することが可能であり、その結果、微細ピッチの接続に適し、かつ、パッドを傷つけるなどの問題もない樹脂組成物及びフィルムを得ることができる。
【0005】
また、上記導電性樹脂を、銀等の微少導電性フィラーと樹脂を混合して形成した場合、部分的に多量の銀フィラーを有する部分と絶縁接着樹脂のみの部分とに分かれるため、高い接着性が得られる。また、塗工基材の極性を制御することにより、導電性相を局在化可能である。
【0006】
さらに、導電相と絶縁相の樹脂分量が異なる場合、塗工時に膜厚が同一であるが、溶剤乾燥後に膜厚が異なる。これを利用して表面に凹凸を形成することが可能である。
【0007】
【発明の実施の形態】
本発明の相分離型樹脂組成物は、溶媒Aに導電性樹脂溶解し、溶媒Aと相溶しない溶媒Bに絶縁性樹脂を溶解し、これを混合しエマルジョン化し、不連続に分散した相が導電性であり、連続相を絶縁性とすることによって得ることができる。
【0008】
本発明で使用する2種の溶媒は相互に溶解しないものである必要がある。その組合せとしては、極性溶媒と非極性溶媒の組合せが好ましい。
【0009】
極性溶媒と非極性溶媒の組合せの例としては、例えば、水と各種有機溶媒、例えば比較的低沸点のメチルエチルケトン、アセトン、メチルイソブチルケトン、2−エトキシエタノール、トルエン、ブチルセルソルブ、メタノール、エタノール、2−メトキシエタノール等が挙げられ、中でも水とメチルエチルケトン、水とシクロヘキサノンの組合せが溶剤の乾燥がし易い点で好ましい。また、塗膜性を向上する等の目的で、高沸点溶剤を加えても良い。高沸点溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、メチルピロリドン、シクロヘキサノン等が挙げられる。
【0010】
2種の溶媒の一方に導電性樹脂溶解し、もう一方には絶縁性樹脂を溶解する。これに使用する導電性樹脂としては、ポリマ自体が導電性を有するもの、絶縁性のポリマに導電性の粒子を含有したものが挙げられる。
【0011】
導電性ポリマとしては、例えば、ポリアニリン、ポリエチレンジオキシチオフェン、ポリスチレンスルホン酸塩等及びその混合物などが挙げられる。ポリエチレンジオキシチオフェンとポリスチレンスルホン酸塩の混合物としてはデナトロンP−502S(ナガセケミテックス株式会社製、商品名)がある。
【0012】
また、導電性樹脂は絶縁性樹脂と導電性フィラーの混合物であっても良い。導電性フィラーとしては、導電性であれば特に制限はないが、金、銀、銅、アルミニウム、ニッケル、グラファイトの合金または、混合物等が挙げられる。電気抵抗が低い点で、銅、銀が好ましい。特に、フィラーを樹脂及び溶媒中に添加する場合、らいかい機、三本ロール及びビーズミル等により、またこれらを組み合わせて行うことができる。また、ワニスとした後、真空脱気によりワニス中の気泡を除去することが好ましい。混合した後、絶縁性樹脂及び溶剤Bと混合し、エマルジョン化すると、フィラーの一部樹脂及び溶剤A中に止まりため、フィラーを多く含む相とフィラーをほとんど含まない相に分離が可能であり、接着性、導電性、熱伝導性等の改良が図れる。特に、フィラー表面に樹脂及び溶剤Aと親和性が高い表面処理を行うと、フィラーが樹脂及び溶剤A中に止まりやすくな利点で前述の効果が大きい点で好ましい。
【0013】
絶縁性樹脂は溶剤に溶解するものであれば、特に制限はないが、接着性が優れる点で、エポキシ樹脂などの熱硬化性樹脂、ポリイミド、アクリルゴム、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等が挙げられるが、これらに限定されるものではない。ポリフェニレンエーテルとしては三菱瓦斯化学株式会社製YPX−100F(商品名)があり、変性ポリフェニレンエーテル樹脂等としては三菱エンジニアリングプラスチック株式会社製ユピエースAH40、AH90,AN20(商品名)が挙げられる。フェノキシ樹脂としては東都化成株式会社製YP−50(商品名)等が挙げられる。また、本発明において使用する熱硬化性樹脂は、熱により硬化して接着作用を呈するものであればよく、エポキシ樹脂が好ましい。
【0014】
上記エポキシ樹脂としては、二官能以上(1分子中にエポキシ基を2個以上含有)で、好ましくは平均分子量が5000未満、より好ましくは平均分子量が3000以下のエポキシ樹脂が使用できる。二官能エポキシ樹脂(1分子中にエポキシ基を2個含有するエポキシ樹脂)としては、ビスフェノールA型またはビスフェノールF型エポキシ樹脂等が例示される。ビスフェノールA型またはビスフェノールF型エポキシ樹脂は、油化シェルエポキシ株式会社から、エピコート807、エピコート827、エピコート828という商品名で市販されている。また、ダウケミカル日本株式会社からは、D.E.R.330、D.E.R.331、D.E.R.361という商品名で市販されている。さらに、東都化成株式会社から、YD8125、YDF8170という商品名で市販されている。
【0015】
また、本発明におけるエポキシ樹脂としては三官能以上(1分子中にエポキシ基を3個以上含有)の多官能エポキシ樹脂を用いてもよく、二官能エポキシ樹脂50〜100重量%と三官能以上の多官能エポキシ0〜50重量%を用いることが好ましい。特に、高Tg化のためには二官能エポキシ樹脂50〜90重量%とともに、三官能以上の多官能エポキシ樹脂を10〜50重量%用いることが好ましい。三官能以上の多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が例示される。フェノールノボラック型エポキシ樹脂は、日本化薬株式会社から、EPPN−201という商品名で市販されている。クレゾールノボラック型エポキシ樹脂は、住友化学工業株式会社から、ESCN−190、ESCN−195という商品名で市販されている。また、前記日本化薬株式会社から、EOCN1012、EOCN1025、EOCN1027という商品名で市販されている。さらに、前記東都化成株式会社から、YDCN701、YDCN702、YDCN703、YDCN704という商品名で市販されている。
【0016】
エポキシ樹脂の硬化剤は、エポキシ樹脂の硬化剤として通常用いられているものを使用でき、アミン、ポリアミド、酸無水物、ポリスルフィド、三弗化硼素及びフェノール性水酸基を1分子中に2個以上有する化合物であるビスフェノールA、ビスフェノールF、ビスフェノールS等が挙げられる。特に吸湿時の耐電食性に優れるためフェノール樹脂であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂またはクレゾールノボラック樹脂等を用いるのが好ましい。フェノールノボラック樹脂は、大日本インキ化学工業株式会社からバーカムTD−2090、バーカムTD−2131、変性フェノールノボラック樹脂は大日本インキ化学工業株式会社からプライオーフェンVH4150、プライオーフェンVH4170、ビスフェノールノボラック樹脂は大日本インキ化学工業株式会社からフェノライトLF2882、フェノライトLF2822という商品名で市販されている。
【0017】
硬化剤は、エポキシ樹脂のエポキシ基1当量に対して、硬化剤のエポキシ基との反応基が0.6〜1.4当量使用することが好ましく、0.8〜1.2当量使用することがより好ましい。硬化剤が少なすぎたり多すぎたりすると耐熱性が低下する傾向がある。また、必要に応じて硬化促進剤を使用することが望ましい
【0018】
これらは、互いに相溶しない溶剤及び樹脂を使用する必要があり、相溶するものでは、導電性が低下するため、不適当である。分散相の大きさは0.01〜10μm程度が好ましい。必要に応じて、相溶化剤、界面活性剤等を併用しても良い。また、導電性樹脂を島状に分散させることにより、異方導電性を付与することが可能である。
【0019】
本発明におけるフィルムは、接着剤の各成分を溶剤や水に溶解ないし分散してワニスとし、キャリアフィルム上に塗布、加熱し溶剤や水を除去することにより得られる。キャリアフィルムとしては、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、離型処理した各種フィルム、例えばポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムが使用できる。このようなキャリアフィルムとしては例えば、離型処理したポリエチレンテレフタレートフィルムは、ルミラー(東レ・デュポン株式会社製、商品名)、ピューレックス(帝人株式会社製、商品名)という商品名で市販されており、これを利用することができる。
【0020】
本発明の樹脂組成物及びフィルム使用方法については、配線板と半導体素子の間の電気的接続と接着固定をかねた用途に使用できる。例えば、樹脂組成物を配線板上に塗布、溶媒乾燥し、その上に半導体素子を設置した後、圧着、加熱硬化する方法や、フィルムを配線板上に置き、その上に半導体素子を設置した後、圧着、加熱硬化するなどの方法が挙げられる。
上記の、樹脂組成物を配線板上に塗布、溶媒乾燥し、その上に半導体素子を設置した後、圧着、加熱硬化する方法においては、図1に示すように予め、配線板の回路以外の部分を撥水処理した後、水と導電性樹脂からなる樹脂組成物を配線板上に塗布、溶媒乾燥することにより、導電性の島相を親水性の回路上に凝集させることが可能である。
【0021】
この方法によると、導電性の島相が回路間に少なく存在し、回路上に多く存在するため、回路間のショートを起こしにくい、高価な導電性ポリマや導電性粒子の使用量が少なくても、配線板と半導体素子の間の電気的接続を付与でき、コスト低減の効果があるなどの利点がある。
撥水処理としては、フッ素樹脂等の非極性の樹脂を被覆することや、メッキ処理、表面エッチング等の方法によって表面の凹凸を形成する方法のほか、実施例に示す微細な粒子を含む撥水処理剤を用いても良い。
【0022】
以下実施例により本発明をさらに具体的に説明する。
【実施例】
実施例1
導電性樹脂及び溶媒(C)
導電性樹脂としてエポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量175、東都化成株式会社製商品名YD−8125を使用)45重量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量210、東都化成株式会社製商品名YDCN−703を使用)15重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製商品名プライオーフェンLF2882を使用)40重量部硬化促進剤としてイミダゾール系硬化促進剤(四国化成工業株式会社製キュアゾール2PZ−CNを使用)0.5重量部扁平銀フィラー(Chemet製E−0101)700部、溶媒としてメチルエチルケトン300部からなる組成物を3本ロールで混練したもの
絶縁性樹脂及び溶媒(D):ポリビニルアルコール水溶液(樹脂重量%:20%)300部
【0023】
(C)及び(D)を30分攪拌した後、真空脱泡処理したものを、厚さ75μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、90℃20分間、120℃で5分間加熱乾燥して膜厚が60μmの塗膜とし、接着剤フィルムを作製した。得られたフィルムはフィルムの膜厚方向の電気抵抗が0.001Ω.cm以下であり、フィルムの長手方向の抵抗が0.001Ω.cm以下であるという、導電性フィルムの特徴を示した。
【0024】
実施例2
導電性樹脂及び溶媒(E)
ポリエチレンジオキシチオフェンとポリスチレンスルホン酸塩の混合物であるデナトロンP−502S(ナガセケミテックス株式会社製、商品名、樹脂重量%の水溶液)10重量部を使用した。
絶縁性樹脂及び溶媒(F)
フェノキシ樹脂YP−50(東都化成株式会社製、商品名、樹脂重量35%のMEK溶液)90部を使用した。
【0025】
(E)及び(F)を30分攪拌した後、真空脱泡処理したものを、PETフィルム上に乾燥後の膜厚が15μmになるように塗工した。得られたフィルムはフィルムの膜厚方向の電気抵抗が0.001Ω.cm以下であり、フィルムの長手方向の抵抗が1MΩ.cm以上であるという、異方導電性の特徴と示した。
【0026】
実施例3
実施例2で用いた樹脂混合物を回路加工基板(幅200μm 回路間の距離200μm、回路間を撥水加工処理(水との接触角145度)上に塗布した。回路上、回路間に存在する導電性樹脂組成物の量を測定したところ、導電性樹脂の90%は回路上に存在していた。
【0027】
なお、基板の撥水処理方法は下記の方法による。
図2(I)に示すように、実装基板として、400μm間隔で200μm幅、厚さ35μmの銅パターン(銅箔回路)7を設けた基材フィルム(ポリイミド製フレキシブル基板)8を用意した。図2(II)に示すように、該基材フィルム8上に撥水処理剤9(メチル基等からなる有機物の表面処理を行った粒子である日本アエロジル株式会社製の製品名R972(接触角150°、平均粒径:16nm)1gをMEK100g中に添加し、10分間、攪拌モータで攪拌し、真空脱泡して撥水処理剤試料を作製したもの。)を塗布した。60℃10分乾燥した後、平板上のスキージに濾紙を巻き付けたものを回路上に密着させ3回往復させたところ、図2(III)に示すように回路上の撥水処理剤9は除去され、銅パターン7間の凹部のみ撥水処理剤9の粒子が残存していた。
【0028】
比較例1
絶縁性材料としてポリビニルアルコールを主成分とする水溶液(樹脂重量20%)を使用した他は、実施例2と同様にしてフィルムを作製した。フィルムは均一、透明なフィルムであった。このフィルムの膜厚方向、長手方向の電気抵抗はいずれも1MΩ.cm以上であった。
【0029】
【発明の効果】
以上説明したように、本発明の樹脂組成物及びフィルムは導電性に優れ、接着性、信頼性にも優れるため、半導体用途の接着剤として有効である。
【図面の簡単な説明】
【図1】本発明の接着剤の使用方法の一例であり、配線板と半導体素子の間の電気的接続と接着固定を兼ねた用途に使用した場合の工程を示す断面図である。
【図2】基板の撥水処理方法を示す断面図である。
【符号の説明】
1…配線板の回路
2…配線板の絶縁基板
3…撥水処理面
4…導電性樹脂
5…相分離型樹脂組成物
6…絶縁性樹脂
7…銅パターン
8…基材フィルム
9…撥水処理剤
10…銀フレーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase separation resin composition, a phase separation resin film, and a method for producing a circuit board.
[0002]
[Prior art]
Conventionally, films containing particles having excellent conductivity such as metal particles and metal plating particles have been proposed as conductive and anisotropic conductive adhesive films used for semiconductor applications and the like.
[0003]
[Problems to be solved by the invention]
However, such films, metal particles, due to the use of hard particles of the metal-plated particles, etc., there is a problem such as damaging the electrical connection pad formed by the conductive particles turtles Kki or evaporation. Further, in order to ensure the dispersibility of the particles, it is necessary to use particles having a certain size or more. As a result, the film thickness is increased, which is not optimal for connecting fine pitches. In addition, in the case of a conductive film, since a large amount of silver filler is added, the adhesiveness is lowered, so that peeling easily occurs, resulting in an increase in electrical resistance.
[0004]
[Means for Solving the Problems]
The present invention provides a resin composition and a film in which a conductive material and an insulating material are emulsified and phase-separated clearly. It is possible to impart conductivity and anisotropic conductivity by phase-separating the material in this way, one of which is a phase whose main component is a conductive polymer and the other is a phase whose main component is an insulating polymer. As a result, it is possible to obtain a resin composition and a film that are suitable for connection with a fine pitch and have no problem of scratching the pad.
[0005]
In addition, when the conductive resin is formed by mixing a fine conductive filler such as silver and a resin, it is divided into a part having a large amount of silver filler and a part having only an insulating adhesive resin. Is obtained. In addition, the conductive phase can be localized by controlling the polarity of the coated substrate.
[0006]
Furthermore, when the resin content of the conductive phase and the insulating phase is different, the film thickness is the same during coating, but the film thickness is different after solvent drying. By utilizing this, it is possible to form irregularities on the surface.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The phase-separated resin composition of the present invention comprises a phase in which a conductive resin is dissolved in a solvent A, an insulating resin is dissolved in a solvent B that is not compatible with the solvent A, and this is mixed to be emulsified and discontinuously dispersed. Is electrically conductive and can be obtained by making the continuous phase insulating .
[0008]
The two solvents used in the present invention must be insoluble in each other. As the combination, a combination of a polar solvent and a nonpolar solvent is preferable.
[0009]
Examples of combinations of polar and nonpolar solvents include, for example, water and various organic solvents, such as relatively low boiling point methyl ethyl ketone, acetone, methyl isobutyl ketone, 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol and the like can be mentioned, and among them, a combination of water and methyl ethyl ketone and water and cyclohexanone is preferable in that the solvent can be easily dried. Further, a high boiling point solvent may be added for the purpose of improving the coating properties. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone, cyclohexanone and the like.
[0010]
The conductive resin is dissolved in one of the two kinds of solvents, and the insulating resin is dissolved in the other. Examples of the conductive resin used for this include those in which the polymer itself has conductivity, and those in which conductive particles are contained in an insulating polymer.
[0011]
Examples of the conductive polymer include polyaniline, polyethylene dioxythiophene, polystyrene sulfonate, and a mixture thereof. As a mixture of polyethylene dioxythiophene and polystyrene sulfonate, Denatron P-502S (trade name, manufactured by Nagase Chemitex Co., Ltd.) is available.
[0012]
The conductive resin may be a mixture of an insulating resin and a conductive filler. The conductive filler is not particularly limited as long as it is conductive, and examples thereof include gold, silver, copper, aluminum, nickel, an alloy of graphite, a mixture, and the like. Copper and silver are preferable in terms of low electrical resistance. In particular, when the filler is added to the resin and the solvent, the filler can be used by a raking machine, a three-roller, a bead mill or the like, or a combination thereof. In addition, after forming the varnish, it is preferable to remove bubbles in the varnish by vacuum degassing. After mixing, mixing with the insulating resin and the solvent B and emulsifying, it stops in the resin part of the filler and the solvent A, so that it can be separated into a phase containing much filler and a phase containing little filler, Improvements in adhesion, conductivity, thermal conductivity, etc. can be achieved. In particular, it is preferable to perform a surface treatment having a high affinity with the resin and the solvent A on the surface of the filler because the above-described effect is great because the filler is easily stopped in the resin and the solvent A.
[0013]
The insulating resin is not particularly limited as long as it is soluble in a solvent. However, in terms of excellent adhesiveness, a thermosetting resin such as epoxy resin, polyimide, acrylic rubber, urethane resin, polyphenylene ether resin, polyetherimide Examples thereof include, but are not limited to, resins, phenoxy resins, and modified polyphenylene ether resins. Examples of the polyphenylene ether include YPX-100F (trade name) manufactured by Mitsubishi Gas Chemical Co., Ltd., and examples of the modified polyphenylene ether resin include Iupiace AH40, AH90, and AN20 (trade name) manufactured by Mitsubishi Engineering Plastics. Examples of the phenoxy resin include YP-50 (trade name) manufactured by Tohto Kasei Co., Ltd. In addition, the thermosetting resin used in the present invention is not particularly limited as long as it is cured by heat and exhibits an adhesive action, and an epoxy resin is preferable.
[0014]
As said epoxy resin, it is bifunctional or more (it contains two or more epoxy groups in 1 molecule), Preferably an average molecular weight is less than 5000, More preferably, an average molecular weight is 3000 or less epoxy resin can be used. Examples of the bifunctional epoxy resin (epoxy resin containing two epoxy groups in one molecule) include bisphenol A type and bisphenol F type epoxy resins. The bisphenol A type or bisphenol F type epoxy resin is commercially available from Yuka Shell Epoxy Co., Ltd. under the trade names of Epicoat 807, Epicoat 827, and Epicoat 828. In addition, from Dow Chemical Japan, D.C. E. R. 330, D.E. E. R. 331, D.D. E. R. It is marketed under the trade name 361. Further, they are commercially available from Toto Kasei Co., Ltd. under the trade names YD8125 and YDF8170.
[0015]
Moreover, as an epoxy resin in this invention, you may use the polyfunctional epoxy resin more than trifunctional (containing 3 or more of epoxy groups in 1 molecule), bifunctional epoxy resin 50-100 weight% and trifunctional or more than trifunctional epoxy resin. It is preferable to use 0 to 50% by weight of polyfunctional epoxy. In particular, in order to increase the Tg, it is preferable to use 10 to 50% by weight of a trifunctional or higher polyfunctional epoxy resin together with 50 to 90% by weight of the bifunctional epoxy resin. Examples of the trifunctional or higher polyfunctional epoxy resin include phenol novolac type epoxy resins and cresol novolac type epoxy resins. The phenol novolac type epoxy resin is commercially available from Nippon Kayaku Co., Ltd. under the trade name EPPN-201. Cresol novolac type epoxy resins are commercially available from Sumitomo Chemical Co., Ltd. under the trade names ESCN-190 and ESCN-195. The products are commercially available from Nippon Kayaku Co., Ltd. under the trade names EOCN1012, EOCN1025, and EOCN1027. Furthermore, it is commercially available from Toto Kasei Co., Ltd. under the trade names YDCN701, YDCN702, YDCN703, and YDCN704.
[0016]
As the curing agent for the epoxy resin, those usually used as a curing agent for the epoxy resin can be used, and have at least two amines, polyamides, acid anhydrides, polysulfides, boron trifluoride and phenolic hydroxyl groups in one molecule. Examples of the compound include bisphenol A, bisphenol F, and bisphenol S. In particular, it is preferable to use phenol novolak resin, bisphenol novolak resin, cresol novolak resin, or the like, which is a phenol resin, because of its excellent electric corrosion resistance during moisture absorption. Phenol novolac resins are from Dainippon Ink Chemical Co., Ltd. Barcam TD-2090, Barcam TD-2131, modified phenol novolac resins are from Dainippon Ink Chemical Industry Co., Ltd. They are commercially available from Ink Chemical Industry Co., Ltd. under the trade names Phenolite LF2882 and Phenolite LF2822.
[0017]
The curing agent is preferably used in an amount of 0.6 to 1.4 equivalents, and 0.8 to 1.2 equivalents of the reactive group with the epoxy group of the curing agent with respect to 1 equivalent of the epoxy group of the epoxy resin. Is more preferable. When the amount of the curing agent is too small or too large, the heat resistance tends to decrease. Further, it is desirable to use a curing accelerator if necessary.
It is necessary to use a solvent and a resin that are incompatible with each other, and those that are compatible with each other are inappropriate because the conductivity is lowered. The size of the dispersed phase is preferably about 0.01 to 10 μm. If necessary, a compatibilizer, a surfactant and the like may be used in combination. Moreover, anisotropic conductivity can be imparted by dispersing the conductive resin in an island shape.
[0019]
The film in the present invention can be obtained by dissolving or dispersing each component of the adhesive in a solvent or water to form a varnish, and applying and heating on the carrier film to remove the solvent or water. As a carrier film, a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, and various types of release-treated films such as a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film can be used. As such a carrier film, for example, a polyethylene terephthalate film subjected to release treatment is commercially available under the trade names Lumirror (trade name, manufactured by Toray DuPont Co., Ltd.) and Purex (trade name, manufactured by Teijin Limited). This can be used.
[0020]
About the resin composition and film usage method of this invention, it can be used for the use which served as the electrical connection and adhesive fixation between a wiring board and a semiconductor element. For example, a resin composition is applied onto a wiring board, solvent-dried, a semiconductor element is placed thereon, and then a method of pressure bonding and heat curing or a film is placed on the wiring board, and a semiconductor element is placed thereon. Thereafter, methods such as pressure bonding and heat curing may be mentioned.
In the above-described method of applying the resin composition onto the wiring board, drying the solvent, and placing the semiconductor element thereon, followed by pressure bonding and heat curing, as shown in FIG. It is possible to agglomerate the conductive island phase on the hydrophilic circuit by applying a resin composition comprising water and a conductive resin on the wiring board and drying the solvent after subjecting the portion to water repellent treatment. .
[0021]
According to this method, there are few conductive island phases between the circuits, and there are many on the circuits. Therefore, it is difficult to cause a short circuit between the circuits. There is an advantage that an electrical connection between the wiring board and the semiconductor element can be provided, and the cost can be reduced.
Examples of the water repellent treatment include coating a non-polar resin such as a fluororesin, a method of forming surface irregularities by a method such as plating, surface etching, and the like, and a water repellent containing fine particles as shown in the examples. A treating agent may be used.
[0022]
Hereinafter, the present invention will be described more specifically with reference to examples.
【Example】
Example 1
Conductive resin and solvent (C)
As the conductive resin, bisphenol A type epoxy resin as the epoxy resin (epoxy equivalent 175, manufactured by Tohto Kasei using trade name YD-8125 KK) 45 parts by weight, cresol novolac type epoxy resin (epoxy equivalent 210, manufactured by Tohto Kasei Co., Ltd. Product name YDCN-703 is used) 15 parts by weight, epoxy novolac resin as epoxy resin curing agent (Dainippon Ink Chemical Co., Ltd., trade name Priofen LF2882 is used) 40 parts by weight , imidazole-based curing acceleration as curing accelerator A composition composed of 0.5 parts by weight of an agent (uses Shikoku Kasei Kogyo Co., Ltd., Curazole 2PZ-CN), 700 parts of flat silver filler (E-0101 manufactured by Chemet), and 300 parts of methyl ethyl ketone as a solvent was kneaded with three rolls. Things .
Insulating resin and solvent (D): Polyvinyl alcohol aqueous solution (resin weight%: 20%) 300 parts
After stirring (C) and (D) for 30 minutes, a vacuum defoamed one was applied onto a 75 μm thick polyethylene terephthalate film that had been subjected to a mold release treatment, and dried by heating at 90 ° C. for 20 minutes and at 120 ° C. for 5 minutes. Thus, a coating film having a film thickness of 60 μm was formed to produce an adhesive film. The obtained film had an electric resistance of 0.001Ω in the film thickness direction. cm or less, and the resistance in the longitudinal direction of the film is 0.001Ω. The characteristic of the electroconductive film that it is cm or less was shown.
[0024]
Example 2
Conductive resin and solvent (E)
Ten parts by weight of Denatron P-502S (trade name, aqueous solution of resin weight%, manufactured by Nagase Chemitex Co., Ltd.), which is a mixture of polyethylene dioxythiophene and polystyrene sulfonate, was used.
Insulating resin and solvent (F)
90 parts of phenoxy resin YP-50 (manufactured by Toto Kasei Co., Ltd., trade name, MEK solution having a resin weight of 35%) was used.
[0025]
After stirring (E) and (F) for 30 minutes, a vacuum defoaming treatment was applied to a PET film so that the film thickness after drying was 15 μm. The obtained film had an electric resistance of 0.001Ω in the film thickness direction. cm or less, and the resistance in the longitudinal direction of the film is 1 MΩ. It was shown as the characteristic of anisotropic conductivity of being cm or more.
[0026]
Example 3
The resin mixture used in Example 2 was applied onto a circuit processed substrate (width 200 μm, distance 200 μm between circuits, and water repellent treatment (contact angle with water 145 degrees) between the circuits. When the amount of the conductive resin composition was measured, 90% of the conductive resin was present on the circuit.
[0027]
The substrate water-repellent treatment method is as follows.
As shown in FIG. 2I, a base film (polyimide flexible substrate) 8 provided with a copper pattern (copper foil circuit) 7 having a width of 200 μm and a thickness of 35 μm at intervals of 400 μm was prepared as a mounting substrate. As shown in FIG. 2 (II), a product name R972 (contact angle) manufactured by Nippon Aerosil Co., Ltd., which is a particle obtained by subjecting the base film 8 to a water repellent treatment agent 9 (surface treatment of an organic substance composed of a methyl group or the like). 1 ° of 150 °, average particle size: 16 nm) was added to 100 g of MEK, stirred with a stirring motor for 10 minutes, and vacuum defoamed to prepare a water repellent sample. After drying at 60 ° C. for 10 minutes, a filter paper wrapped around a squeegee on a flat plate was brought into close contact with the circuit and reciprocated three times to remove the water repellent agent 9 on the circuit as shown in FIG. 2 (III). The particles of the water repellent agent 9 remained only in the recesses between the copper patterns 7.
[0028]
Comparative Example 1
A film was produced in the same manner as in Example 2 except that an aqueous solution (resin weight 20%) containing polyvinyl alcohol as a main component was used as the insulating material. The film was a uniform and transparent film. Both the film thickness direction and the longitudinal direction electric resistance of this film were 1 MΩ. cm or more.
[0029]
【The invention's effect】
As described above, the resin composition and film of the present invention are effective as an adhesive for semiconductor applications because they are excellent in conductivity, excellent in adhesiveness and reliability.
[Brief description of the drawings]
FIG. 1 is an example of a method of using an adhesive according to the present invention, and is a cross-sectional view showing a process when used for an application that also serves as an electrical connection and adhesive fixing between a wiring board and a semiconductor element.
FIG. 2 is a cross-sectional view showing a water repellent treatment method for a substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Circuit of wiring board 2 ... Insulating substrate 3 of wiring board ... Water-repellent surface 4 ... Conductive resin 5 ... Phase separation type resin composition 6 ... Insulating resin 7 ... Copper pattern 8 ... Base film 9 ... Water repellent Treatment agent 10 ... silver flakes

Claims (5)

溶媒Aに導電性樹脂を溶解し、溶媒Aと相溶しない溶媒Bに絶縁性樹脂を溶解し、これを混合しエマルジョン化した相分離型樹脂組成物であり、不連続に分散した相が導電性であり、連続相が絶縁性であることを特徴とする相分離型樹脂組成物A phase-separated resin composition in which a conductive resin is dissolved in a solvent A, an insulating resin is dissolved in a solvent B that is not compatible with the solvent A, and this is mixed to be emulsified. And a phase-separated resin composition characterized in that the continuous phase is insulative . 溶媒Aが水であり、導電性樹脂が水溶性の導電性ポリマであることを特徴とする請求項1記載の相分離型樹脂組成物。  The phase-separated resin composition according to claim 1, wherein the solvent A is water and the conductive resin is a water-soluble conductive polymer. 導電性樹脂が導電性フィラー及び樹脂を混合したものであることを特徴とする請求項1または2記載の相分離型樹脂組成物。The phase-separated resin composition according to claim 1 or 2, wherein the conductive resin is a mixture of a conductive filler and a resin. 請求項1〜3のいずかに記載の相分離型樹脂組成物をフィルム状に成形した相分離型樹脂フィルム。The phase-separation type resin film which shape | molded the phase-separation type resin composition in any one of Claims 1-3 in the shape of a film. 請求項1〜3のいずかに記載の相分離型樹脂組成物を回路以外の面を撥水処理した回路基板に塗布することを特徴とする相分離型樹脂組成物付き回路基板の製造方法。A method for producing a circuit board with a phase-separated resin composition, wherein the phase-separated resin composition according to any one of claims 1 to 3 is applied to a circuit board having a surface other than the circuit subjected to water repellent treatment. .
JP2002041957A 2002-02-19 2002-02-19 Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition Expired - Fee Related JP4103030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041957A JP4103030B2 (en) 2002-02-19 2002-02-19 Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041957A JP4103030B2 (en) 2002-02-19 2002-02-19 Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition

Publications (2)

Publication Number Publication Date
JP2003238830A JP2003238830A (en) 2003-08-27
JP4103030B2 true JP4103030B2 (en) 2008-06-18

Family

ID=27782218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041957A Expired - Fee Related JP4103030B2 (en) 2002-02-19 2002-02-19 Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition

Country Status (1)

Country Link
JP (1) JP4103030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201223166D0 (en) * 2012-12-21 2013-02-06 Alere Switzerland Gmbh Test strip
JP6637758B2 (en) * 2015-12-24 2020-01-29 住友理工株式会社 Conductive members for electrophotographic equipment
JP7281179B2 (en) * 2019-05-30 2023-05-25 化研テック株式会社 Conductive adhesive and method of using conductive adhesive

Also Published As

Publication number Publication date
JP2003238830A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP5151902B2 (en) Anisotropic conductive film
KR19990007859A (en) An adhesive sheet for a semiconductor connection board, a TAB tape with an adhesive, a wire bonding connection tape with an adhesive, a substrate for semiconductor connection and a semiconductor device
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
WO2012029587A1 (en) Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method
KR100903137B1 (en) A Thermosetting Adhesive Film, and an Adhesive Structure Based on the Use Thereof
JP3816254B2 (en) Anisotropic conductive adhesive
KR20140011906A (en) Adhesive composition having improved reliability at high voltage condition and adhesive tape for semiconductor packaging using the same
JP4053744B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3599149B2 (en) Conductive paste, electric circuit using conductive paste, and method of manufacturing electric circuit
CN114891454A (en) Insulating adhesive film, preparation method and application thereof
JP2002204052A (en) Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
JP4103030B2 (en) Phase-separated resin composition, phase-separated resin film, and method for producing circuit board with phase-separated resin composition
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JP4049452B2 (en) Adhesive sheet for semiconductor element and semiconductor device using the same
JP2000158589A (en) Manufacture of metal foil clad laminated sheet
JP2894093B2 (en) Adhesive composition and laminated film
JP2589892B2 (en) Adhesive composition for die bonding
CN1246411C (en) Adhesive for connection of circuit
JP2836337B2 (en) Anisotropic conductive resin film adhesive
JPH10298525A (en) Anisotropic conductive adhesive resin composition and anisotropic conductive adhesive film
JPH08231933A (en) Carrier tape for tab
CN100509981C (en) Adhesive for circuit connection
JP3911776B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
KR100543748B1 (en) Method Of Preparing Electroconductive Particles Contained Anisotropic Conductive Film
JP3569194B2 (en) Adhesive tape for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees