JP4102322B2 - Method for producing metal oxide using hydroxide - Google Patents

Method for producing metal oxide using hydroxide Download PDF

Info

Publication number
JP4102322B2
JP4102322B2 JP2004078220A JP2004078220A JP4102322B2 JP 4102322 B2 JP4102322 B2 JP 4102322B2 JP 2004078220 A JP2004078220 A JP 2004078220A JP 2004078220 A JP2004078220 A JP 2004078220A JP 4102322 B2 JP4102322 B2 JP 4102322B2
Authority
JP
Japan
Prior art keywords
hydroxide
metal oxide
metal
powder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004078220A
Other languages
Japanese (ja)
Other versions
JP2005008511A (en
Inventor
ソンファン ナ
ヒョンス キム
ソンイン ムン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Electrotechnology Research Institute KERI
Original Assignee
Korea Electrotechnology Research Institute KERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Electrotechnology Research Institute KERI filed Critical Korea Electrotechnology Research Institute KERI
Publication of JP2005008511A publication Critical patent/JP2005008511A/en
Application granted granted Critical
Publication of JP4102322B2 publication Critical patent/JP4102322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Secondary Cells (AREA)

Description

本発明は,水酸化物を利用した金属酸化物の製造方法に関し,特に,ろ過工程,水洗工程,複数回の焼結工程を経ずに,容易に金属酸化物を合成することができる,水酸化物を利用した金属酸化物の製造方法に関する。   The present invention relates to a method for producing a metal oxide using a hydroxide, and in particular, a water oxide that can easily synthesize a metal oxide without going through a filtration step, a water washing step, and a plurality of sintering steps. The present invention relates to a method for producing a metal oxide using an oxide.

近年,携帯電話およびノートブックパソコンなどの機器の小型化及び軽量化に伴い,電池の高性能化が求められている。特に,リチウムニ次電池の高性能化に対する必要性が急速に高まってきている。したがって,既存のリチウムニ次電池の両極活物質の限界を越えることができる新たな組成を有する両極活物質の開発が強く求められている。現在までに開発された両極活物質のうち,既存の両極活物質に代替される可能性があるものとしては,LiNiMn1−X(x〜0.5)やLiNiMnCo1−X−Y(x〜0.33,y〜0.33)などがある。 In recent years, with the downsizing and weight reduction of devices such as mobile phones and notebook personal computers, higher performance of batteries has been demanded. In particular, the need for high performance lithium secondary batteries is rapidly increasing. Therefore, there is a strong demand for the development of bipolar active materials having a new composition that can exceed the limits of the bipolar active materials of existing lithium secondary batteries. Among the bipolar active materials that have been developed to date, LiNi X Mn 1-X O 2 (x to 0.5) and LiNi X Mn y Co may be substituted for existing bipolar active materials. 1-X—Y 2 O 2 (x˜0.33, y˜0.33) and the like.

ここで,このような組成の両極活物質は,リチウムを含んだ状態で合成すると不純物を含みやすいので,金属水酸化物の前駆体(precursor)を利用する方法が開発されている。具体的には,所望の金属イオンが含有された溶液を得るために,水やエタノールなどの溶媒に溶解可能な金属化合物をこれらの溶媒に溶解する。次に,溶液中の金属イオンを金属水酸化物として沈澱させるために,塩基性の溶液を所定の割合で添加する。リチウムニ次電池用活物質はリチウムを含むので,塩基性の溶液としては,通常は,水酸化リチウム(LiOH)溶液を用いる。   Here, since the bipolar active material having such a composition is likely to contain impurities when synthesized in a state containing lithium, a method using a metal hydroxide precursor has been developed. Specifically, in order to obtain a solution containing a desired metal ion, a metal compound that can be dissolved in a solvent such as water or ethanol is dissolved in these solvents. Next, in order to precipitate the metal ions in the solution as a metal hydroxide, a basic solution is added at a predetermined ratio. Since the active material for a lithium secondary battery contains lithium, a lithium hydroxide (LiOH) solution is usually used as the basic solution.

得られた沈殿物を,ろ過した後(ろ過工程),残存しているリチウムイオンを除去するために,水で洗浄する(水洗工程)。その後,沈殿物を乾燥させることにより,金属水酸化物の粉末を得る。次に,得られた金属水酸化物の粉末と,リチウムイオンを含んだ化合物(例えば,硝酸塩,酢酸塩(アセテート),炭酸塩などの有機酸塩)の粉末とを十分に混合した後に,これを圧搾し,例えばタブレットの形態に形成する。このタブレットを約500℃以下の温度でか焼する(か焼工程)。次に,再びこれを粉砕して粉末を得る。この粉末を混合後,再度タブレットを形成し,約1000℃以下の温度で焼結する。さらに,上記のような焼結工程を数回繰り返すことにより,金属酸化物を製造することができる。以上のような工程は,リチウムを含む金属元素を均一に分布させるために行われる。   The obtained precipitate is filtered (filtering step), and then washed with water to remove remaining lithium ions (water washing step). Thereafter, the precipitate is dried to obtain a metal hydroxide powder. Next, the obtained metal hydroxide powder and the powder of a compound containing lithium ions (for example, organic acid salts such as nitrate, acetate (acetate), carbonate, etc.) are mixed thoroughly and then mixed. Squeezed, for example, in the form of a tablet. The tablet is calcined at a temperature of about 500 ° C. or less (calcination process). Next, this is again pulverized to obtain a powder. After mixing this powder, a tablet is formed again and sintered at a temperature of about 1000 ° C. or lower. Furthermore, a metal oxide can be manufactured by repeating the sintering process as described above several times. The above process is performed in order to uniformly distribute the metal element including lithium.

しかし,上記ような金属酸化物の製造方法は,ろ過工程,水洗工程,および複数回の焼結工程を経なければならないものであるため,原材料を余分に使用しなければならないだけでなく,複雑な工程を経ることにより高い工程費用がかかるという問題点がある。   However, the metal oxide manufacturing method as described above requires a filtration process, a water washing process, and a plurality of sintering processes, so that not only extra raw materials must be used but also complicated. There is a problem that high process costs are required by going through various processes.

したがって,本発明は,ろ過工程,水洗工程,複数回の焼結工程を経ずに,容易に金属酸化物を合成することができる,水酸化物を利用した金属酸化物の製造方法を提供することを目的とする。   Therefore, the present invention provides a method for producing a metal oxide using a hydroxide, which can easily synthesize a metal oxide without going through a filtration step, a water washing step, and a plurality of sintering steps. For the purpose.

上記の課題を解決するために,本発明によれば,(a)所定の溶媒に溶解させることができる金属化合物をその溶媒に溶解し,所望の金属イオンが存在する溶液を調製する段階と,(b)前記溶液に所定のイオンが含有された塩基性化合物溶液を添加し沈殿物を得る段階と,(c)前記沈殿物を含む溶液を乾燥させ金属水酸化物と上記金属化合物との混合物を得る段階と,(d)前記混合物を粉碎することにより粉末状態に形成し,粉末状態の混合物にエタノールを添加した後,混練して泥状態の金属水酸化物の混合物を形成する段階と,(e)前記泥状態の金属水酸化物の混合物を所定温度でか焼した後,粉碎することにより粉末状に形成する段階と,(f)上記粉末をそのまま所定温度で熱処理することにより,最終的な金属酸化物の粉末を得る段階とを含む水酸化物を利用した金属酸化物の製造方法が提供される。   In order to solve the above problems, according to the present invention, (a) a step of dissolving a metal compound that can be dissolved in a predetermined solvent in the solvent and preparing a solution in which a desired metal ion is present; (B) adding a basic compound solution containing predetermined ions to the solution to obtain a precipitate; and (c) drying the solution containing the precipitate to mix a metal hydroxide and the metal compound. And (d) forming the mixture into a powder state by pulverizing, adding ethanol to the mixture in the powder state, and kneading to form a mixture of metal hydroxides in a mud state; (E) calcining the mixture of metal hydroxides in the mud state at a predetermined temperature and then forming into a powder form by pulverization; and (f) heat-treating the powder as it is at a predetermined temperature, Metal oxide powder Method for producing a metal oxide using a hydroxide containing a step of obtaining a is provided.

また,上記段階(a)で,金属化合物として,ニッケル(Ni)とマンガン(Mn)とを含む硝酸塩,酢酸塩,炭酸塩からなる群より選択される少なくとも1つの塩を,水やエタノールなどの溶媒に溶解させて所望の金属イオン(Ni,Mn)が存在する溶液を調製することができる
In the step (a), at least one salt selected from the group consisting of nitrate, acetate and carbonate containing nickel (Ni) and manganese (Mn) as a metal compound is used, such as water or ethanol. A solution in which desired metal ions (Ni, Mn) are present can be prepared by dissolving in a solvent .

さらに,上記段階(b)で,上記段階(a)で調整された溶液に,所望の当量比のリチウムイオンを含む塩基性溶液(水酸化物,アンモニア化合物などの溶液)を添加し沈殿物を生成することができる。   Further, in the step (b), a basic solution (a solution of hydroxide, ammonia compound, etc.) containing lithium ions in a desired equivalent ratio is added to the solution prepared in the step (a), and the precipitate is removed. Can be generated.

さらに,上記段階(c)で,上記沈殿物を含む溶液を濾過せずに,そのまま200℃以下の温度で蒸発・乾燥し,所望の当量比の金属水酸化物と有機酸塩との混合物を得ることができる。   Further, in the step (c), the solution containing the precipitate is not filtered and evaporated and dried as it is at a temperature of 200 ° C. or less to obtain a mixture of a metal hydroxide and an organic acid salt having a desired equivalent ratio. Obtainable.

さらに,上記段階(e)で,上記泥状態の金属水酸化物の混合物を450℃の温度で3時間加熱した後,仮粉砕することにより粉末状態に形成することができる。   Furthermore, in the step (e), the mixture of the metal hydroxide in the mud state can be formed into a powder state by heating at a temperature of 450 ° C. for 3 hours and then temporarily pulverizing.

さらに,上記段階(f)で,上記粉末を650℃で5時間,950℃で3時間,連続的な熱処理工程を経て最終的な金属酸化物の粉末を得ることができる。   Furthermore, in the step (f), a final metal oxide powder can be obtained through continuous heat treatment at 650 ° C. for 5 hours and 950 ° C. for 3 hours.

以上に説明したように,本発明に係る水酸化物を利用した金属酸化物の製造方法によれば,多種の金属イオンが均一に分布されている溶液中に塩基性物質を添加することにより沈殿物を得るので,均一な組成の単一の酸化物を合成することができる。さらに,微量のエタノールを添加することにより,泥状態の混練物を形成した後に,か焼工程を経るようになるので,泥状の水酸化物の混合物において,エタノールを短時間で蒸発させることができる。これにより,乾燥過程で生ずることがある原料物質間の濃度勾配を最少化することのができる。また,残存したエタノールをその後の熱処理工程で燃料として使用することができるため,不純物の存在しない,より均一な組成の金属酸化物を製造することができる。したがって,不純物のない単一の酸化物の製造が困難な組成の金属酸化物も容易に製造することができる。また,従来の製造方法に比べ,工程時間や工程費用を大幅に軽減することができる。   As described above, according to the method for producing a metal oxide using a hydroxide according to the present invention, precipitation is performed by adding a basic substance to a solution in which various metal ions are uniformly distributed. As a result, a single oxide with a uniform composition can be synthesized. Furthermore, by adding a small amount of ethanol, a mud-like kneaded product is formed and then a calcination process is performed. Therefore, ethanol can be evaporated in a short time in a mud-like hydroxide mixture. it can. This minimizes the concentration gradient between source materials that can occur during the drying process. Further, since the remaining ethanol can be used as a fuel in the subsequent heat treatment step, a metal oxide having a more uniform composition free from impurities can be produced. Therefore, a metal oxide having a composition in which it is difficult to produce a single oxide without impurities can be easily produced. In addition, process time and process costs can be greatly reduced compared to conventional manufacturing methods.

以下に,添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は,本実施形態による金属酸化物の製造方法により水酸化物を利用して金属酸化物を製造する工程を示すフローチャートである。図1を参照すると,本実施形態による水酸化物を利用した金属酸化物の製造方法においては,まず所定の溶媒に溶解させることができる金属化合物をその溶媒に溶解し,所望の金属イオンが存在する溶液を調製する(S101)。例えば,LiNiMn1−Xのような金属酸化物を合成するときは,ニッケル(Ni)とマンガン(Mn)を含んだ化合物(例えば,硝酸塩,酢酸塩(アセテート),炭酸塩などの有機酸塩)を所定の溶媒(例えば,水,エタノールなど)に溶解させて溶液を調製する。 FIG. 1 is a flowchart showing a process for producing a metal oxide using a hydroxide by the method for producing a metal oxide according to the present embodiment. Referring to FIG. 1, in the method for producing a metal oxide using hydroxide according to the present embodiment, a metal compound that can be dissolved in a predetermined solvent is first dissolved in the solvent, and a desired metal ion is present. A solution to be prepared is prepared (S101). For example, when a metal oxide such as LiNi X Mn 1-X O 2 is synthesized, a compound containing nickel (Ni) and manganese (Mn) (for example, nitrate, acetate (acetate), carbonate, etc.) An organic acid salt) is dissolved in a predetermined solvent (for example, water, ethanol, etc.) to prepare a solution.

このようにして溶液を調製した後,その溶液に,所定のイオンが含有された塩基性化合物の溶液を添加することにより沈殿物を生成する(S102)。より具体的には,上記溶液に所定の当量比のリチウム(Li)イオンを含んだ塩基性の溶液(例えば,水酸化物,アンモニア化合物などの溶液)を添加し,沈殿物を生成する。この沈殿物を含む溶液を乾燥させることにより,金属水酸化物と有機酸塩との混合物を得ることができる(S103)。より具体的には,沈殿物を含む溶液をろ過せずに,そのまま約200℃以下の温度で蒸発・乾燥させることにより,所定の当量比の金属水酸化物と有機酸塩との混合物を得ることができる。   After preparing the solution in this way, a precipitate is generated by adding a solution of a basic compound containing predetermined ions to the solution (S102). More specifically, a basic solution (for example, a solution of a hydroxide, an ammonia compound, etc.) containing lithium (Li) ions at a predetermined equivalent ratio is added to the above solution to generate a precipitate. By drying the solution containing the precipitate, a mixture of a metal hydroxide and an organic acid salt can be obtained (S103). More specifically, a solution containing a metal hydroxide and an organic acid salt having a predetermined equivalent ratio is obtained by evaporating and drying the solution containing the precipitate as it is at a temperature of about 200 ° C. or less without filtering. be able to.

このようにして金属水酸化物と有機酸塩との混合物を得た後に,その混合物を粉砕し,粉末状態に形成する。ここにエタノールを添加した後,混練して泥状態に形成する(S104)。より具体的には,上記混合物を粉砕することにより,粉末状態に形成する。次に,この粉末に少量のエタノールを添加して,乾燥する際に析出されたリチウム水酸化物およびリチウムチッ化物を再び溶解する。この溶液をニッケル水酸化物およびマンガン水酸化物と混合して,泥状態の水酸化物の混合物を得る。ここで,上記添加されたエタノールは,沈澱過程で使われた水酸化物のその後の乾燥過程で形成される水酸化物,硝酸塩,酢酸塩,炭酸塩(上記例では各種Liイオンが含有された塩)などを再度溶解し,粉末の中に均一に分布されるようにする。また,その後のか焼工程(calcination)および焼結工程において,熱処理に必要な燃料として使用され,均一な酸化物の形成を助ける役割をする。   After obtaining a mixture of metal hydroxide and organic acid salt in this way, the mixture is pulverized and formed into a powder state. After adding ethanol here, it knead | mixes and it forms in a mud state (S104). More specifically, the mixture is pulverized to form a powder. Next, a small amount of ethanol is added to the powder, and the lithium hydroxide and lithium nitride precipitated during drying are dissolved again. This solution is mixed with nickel hydroxide and manganese hydroxide to obtain a mud hydroxide mixture. Here, the added ethanol is a hydroxide, nitrate, acetate, carbonate formed in the subsequent drying process of the hydroxide used in the precipitation process (in the above example, various Li ions were contained). Salt) is dissolved again so that it is evenly distributed in the powder. In addition, it is used as a fuel necessary for heat treatment in the subsequent calcination process and sintering process, and plays a role in helping to form a uniform oxide.

以上のようにして,泥状態の金属水酸化物の混合物を得た後に,その混合物を所定温度で,か焼し,粉砕することにより粉末状に形成する(S105)。より具体的には,泥状態の金属水酸化物の混合物を450℃の温度で3時間加熱した後,仮粉砕することにより粉末形態に形成する。なお,仮粉砕は,粉末が均一性を有するようにするために行われる。   After obtaining a mixture of metal hydroxides in a mud state as described above, the mixture is calcined at a predetermined temperature and pulverized to form a powder (S105). More specifically, a mud-like metal hydroxide mixture is heated at a temperature of 450 ° C. for 3 hours and then temporarily ground to form a powder form. The temporary pulverization is performed so that the powder has uniformity.

このようにして粉末を得た後,この粉末をそのまま所定温度で熱処理することにより,最終的な金属酸化物の粉末を得ることができる(S106)。より具体的には,上記粉末を,例えば,650℃で5時間,950℃で3時間,連続的な熱処理工程を経て最終的な金属酸化物の粉末を得ることができる。本実施形態の水酸化物を利用した金属酸化物の製造は,このようにして終了する。ここで,650℃での熱処理は,含有されたリチウム塩が融解することができる温度を維持させるためのものである。一方,950℃での熱処理は,最終的な金属酸化物の結晶構造を充分に形成させるためのものである。以上のような方法で製造した金属酸化物は,図2に示された(写真撮影された)ように,粒子の大きさが11μm以下の均一な粒度分布を有する粉末の形態として,粒子は,球形に近い形態を有する。   After the powder is obtained in this way, the final metal oxide powder can be obtained by heat-treating the powder as it is at a predetermined temperature (S106). More specifically, a final metal oxide powder can be obtained through a continuous heat treatment step, for example, at 650 ° C. for 5 hours and at 950 ° C. for 3 hours. The production of the metal oxide using the hydroxide of this embodiment is thus completed. Here, the heat treatment at 650 ° C. is for maintaining a temperature at which the contained lithium salt can be melted. On the other hand, the heat treatment at 950 ° C. is for sufficiently forming the final crystal structure of the metal oxide. As shown in FIG. 2 (photographed), the metal oxide produced by the above method is in the form of a powder having a uniform particle size distribution with a particle size of 11 μm or less. It has a shape close to a sphere.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to this example. It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

なお,本実施形態に係る製造方法で製造した金属酸化物は,携帯電話,ノートブックパソコンなどの機器に用いられる電池の両極活物質として用いられうる。   In addition, the metal oxide manufactured by the manufacturing method according to the present embodiment can be used as a bipolar active material for batteries used in devices such as mobile phones and notebook personal computers.

本発明は,水酸化物を利用した金属酸化物の製造方法に適用することができる。   The present invention can be applied to a method for producing a metal oxide using a hydroxide.

本発明に係る水酸化物を利用した金属酸化物を製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the metal oxide using the hydroxide concerning this invention. 本発明に係る水酸化物を利用した金属酸化物の製造方法によって製造された金属酸化物の走査型電子顕微鏡の写真である。It is a photograph of the scanning electron microscope of the metal oxide manufactured by the manufacturing method of the metal oxide using the hydroxide concerning the present invention.

Claims (6)

水酸化物を利用した金属酸化物の製造方法において:
(a)所定の溶媒に溶解させることができる金属化合物を前記溶媒に溶解し,所望の金属イオンが存在する溶液を調製する段階と;
(b)前記溶液に所定のイオンを含有する塩基性化合物の溶液を添加することにより沈殿物を生成する段階と;
(c)前記沈殿物を含む溶液を乾燥させることにより金属水酸化物と前記金属化合物との混合物を得る段階と;
(d)前記混合物を粉砕することにより粉末状態に形成し,前記粉末状態の混合物にエタノールを添加した後,混練して泥状態の金属水酸化物の混合物を形成する段階と;
(e)前記泥状態の金属水酸化物の混合物を所定温度でか焼した後,粉砕することにより粉末状に形成する段階と;
(f)前記粉末をそのまま所定温度で熱処理することにより,最終的な金属酸化物の粉末を得る段階と;
を含むことを特徴とする水酸化物を利用した金属酸化物の製造方法。
In a method for producing a metal oxide using hydroxide:
(A) dissolving a metal compound that can be dissolved in a predetermined solvent in the solvent to prepare a solution containing a desired metal ion;
(B) generating a precipitate by adding a solution of a basic compound containing predetermined ions to the solution;
(C) obtaining a mixture of the metal hydroxide and the metal compound by drying the solution containing the precipitate;
(D) pulverizing the mixture to form a powder, adding ethanol to the powdered mixture, and kneading to form a mud metal hydroxide mixture;
(E) calcining the mixture of metal hydroxides in the mud state at a predetermined temperature and then pulverizing to form a powder;
(F) heat-treating the powder as it is at a predetermined temperature to obtain a final metal oxide powder;
A method for producing a metal oxide using a hydroxide, comprising:
前記段階(a)で,前記金属化合物として,ニッケル(Ni)とマンガン(Mn)とを含む硝酸塩,酢酸塩,炭酸塩からなる群より選択される少なくとも1つの塩を,所定の溶媒に溶解させて溶液を調製することを特徴とする請求項1に記載の水酸化物を利用した金属酸化物の製造方法。 In the step (a), at least one salt selected from the group consisting of nitrate, acetate and carbonate containing nickel (Ni) and manganese (Mn) as the metal compound is dissolved in a predetermined solvent. The method for producing a metal oxide using a hydroxide according to claim 1, wherein the solution is prepared. 前記段階(b)で,前記段階(a)で調製された溶液に,所望の当量比のリチウム(Li)イオンを含む塩基性溶液を添加し沈殿物を生成することを特徴とする請求項1に記載の水酸化物を利用した金属酸化物の製造方法。   2. The step (b) includes adding a basic solution containing lithium (Li) ions in a desired equivalent ratio to the solution prepared in the step (a) to generate a precipitate. A method for producing a metal oxide using the hydroxide described in 1. 前記段階(c)で,前記沈殿物を含む溶液を濾過せずに,そのまま200℃以下の温度で蒸発・乾燥し,所望の当量比の金属水酸化物と有機酸塩との混合物を得ることを特徴とする請求項1に記載の水酸化物を利用した金属酸化物の製造方法。   In step (c), the solution containing the precipitate is not filtered and evaporated and dried at a temperature of 200 ° C. or lower to obtain a mixture of a metal hydroxide and an organic acid salt with a desired equivalent ratio. A method for producing a metal oxide using the hydroxide according to claim 1. 前記段階(e)で,前記泥状態の金属水酸化物の混合物を450℃の温度で3時間加熱した後,仮粉砕することにより粉末状態に形成することを特徴とする請求項1に記載の水酸化物を利用した金属酸化物の製造方法。   The mixture of the metal hydroxide in the mud state in the step (e) is heated to a temperature of 450 ° C for 3 hours and then temporarily pulverized to form a powder state. A method for producing a metal oxide using a hydroxide. 前記段階(f)で,前記粉末を650℃で5時間,950℃で3時間,連続的な熱処理工程を経て最終的な金属酸化物の粉末を得ることを特徴とする請求項1に記載の水酸化物を利用した金属酸化物の製造方法。
2. The metal oxide powder according to claim 1, wherein in the step (f), the powder is subjected to a continuous heat treatment process at 650 ° C. for 5 hours and at 950 ° C. for 3 hours. A method for producing a metal oxide using a hydroxide.
JP2004078220A 2003-06-17 2004-03-18 Method for producing metal oxide using hydroxide Expired - Fee Related JP4102322B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0038956A KR100513930B1 (en) 2003-06-17 2003-06-17 Method for manufacturing a cathode material for lithium secondary batteries using a hydroxide

Publications (2)

Publication Number Publication Date
JP2005008511A JP2005008511A (en) 2005-01-13
JP4102322B2 true JP4102322B2 (en) 2008-06-18

Family

ID=34101673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078220A Expired - Fee Related JP4102322B2 (en) 2003-06-17 2004-03-18 Method for producing metal oxide using hydroxide

Country Status (2)

Country Link
JP (1) JP4102322B2 (en)
KR (1) KR100513930B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134592B1 (en) * 2006-01-02 2012-04-09 삼성코닝정밀소재 주식회사 Manufacturing method of metal oxide powder for slurry and metal oxide powder for slurry manufactured by the same
KR101212626B1 (en) 2010-03-05 2012-12-14 연세대학교 산학협력단 Metal oxide thin film, preparation method thereof, and solution for the same
WO2011108884A2 (en) * 2010-03-05 2011-09-09 연세대학교 산학협력단 Metal oxide thin film, preparation method thereof, and solution for metal oxide thin film
KR101547972B1 (en) * 2014-01-09 2015-08-27 주식회사 이엔드디 Manufacturing method for Ni-Co-Mn composite precursor

Also Published As

Publication number Publication date
KR20040108394A (en) 2004-12-24
KR100513930B1 (en) 2005-09-09
JP2005008511A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR101260685B1 (en) Method of preparing cathode active material for lithium secondary batteries and lithium secondary batteries using the same
TW200810202A (en) Lithium-metal composite oxides and electrochemical device using the same
JP2012064557A (en) Method for reprocessing and synthesizing metal oxide positive electrode active material for lithium secondary battery
JP2006134852A (en) Method of manufacturing crystalline material nano particulate anode active material using self-blending eutectic method for high output lithium secondary battery
JP2012064557A5 (en)
KR101905362B1 (en) Metal composite for cathode active material, cathode active material comprising the same, and mehtod of preparing the same
KR20170078791A (en) Production of a spinel material
JP2018200863A (en) Positive-electrode active material complex for lithium ion secondary battery or positive-electrode active material complex for sodium ion secondary battery, secondary battery using the same, and manufacturing method for the same
JP2000260432A (en) Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it
Fang et al. Simple glycerol-assisted and morphology-controllable solvothermal synthesis of lithium-ion battery-layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode materials
JP4102322B2 (en) Method for producing metal oxide using hydroxide
JPH1149519A (en) Production of lithium-cobalt multiple oxide
Heo et al. Synthesis and electrochemical performance analysis of LiNiO2 cathode material using Taylor-Couette flow-type Co-precipitation method
JP2005038772A (en) Active material for lithium secondary battery, and its manufacturing method
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP2001185148A5 (en)
JP2004158443A (en) Manufacturing method of lithium-manganese-nickel complex oxide for lithium secondary battery
JPH08264184A (en) Electrode substance preparation for lithium secondary battery
KR100528455B1 (en) Method for preparing high performance cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same
JPH10279315A (en) Production of lithium-cobalt multiple oxide
JP3645561B2 (en) Method for producing layered lithium-chromium-manganese oxide for lithium secondary battery
JP2005247673A (en) Dy-DOPED NANO CERIA SINTERED COMPACT AND ITS MANUFACTURING METHOD
KR100564748B1 (en) Cathode compositions for lithium batteries and method for preparing the same
KR101802067B1 (en) Synthesis method of oxide powder with perovskite structure and oxide powder formed by the synthesis method
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees