JP4100117B2 - Exhaust gas purification catalyst and its regeneration method - Google Patents

Exhaust gas purification catalyst and its regeneration method Download PDF

Info

Publication number
JP4100117B2
JP4100117B2 JP2002285213A JP2002285213A JP4100117B2 JP 4100117 B2 JP4100117 B2 JP 4100117B2 JP 2002285213 A JP2002285213 A JP 2002285213A JP 2002285213 A JP2002285213 A JP 2002285213A JP 4100117 B2 JP4100117 B2 JP 4100117B2
Authority
JP
Japan
Prior art keywords
exhaust gas
storage material
supported
carrier layer
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285213A
Other languages
Japanese (ja)
Other versions
JP2004114016A (en
Inventor
雅王 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002285213A priority Critical patent/JP4100117B2/en
Publication of JP2004114016A publication Critical patent/JP2004114016A/en
Application granted granted Critical
Publication of JP4100117B2 publication Critical patent/JP4100117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、担体層に貴金属とNOx 吸蔵材とを担持したNOx 吸蔵還元型の排ガス浄化用触媒と、その再生方法に関する。
【0002】
【従来の技術】
従来より、担体層に貴金属とNOx 吸蔵材とを担持したNOx 吸蔵還元型の排ガス浄化用触媒が用いられている。このNOx 吸蔵還元型触媒は、酸素過剰のリーン雰囲気でNOx 吸蔵材にNOx を吸蔵し、間欠的にストイキ〜リッチ雰囲気の排ガスを流すことでNOx 吸蔵材からNOx を放出させ雰囲気中に豊富に存在するHC及びCOによってNOx を還元浄化する。したがってリーン雰囲気の排ガス中のHC,CO及びNOx を効率よく浄化することができる。
【0003】
このNOx 吸蔵材としては、アルカリ金属,アルカリ土類金属及び希土類元素から選ばれる少なくとも一種が用いられている。アルカリ金属は高温域におけるNOx 吸蔵能に優れ、アルカリ土類金属は低温域におけるNOx 吸蔵能に優れているので、アルカリ金属とアルカリ土類金属の両方を担持したものが多い。
【0004】
ところが排ガス中には燃料中の硫黄に起因する硫黄酸化物(SOx )が含まれ、これがNOx 吸蔵材と反応してNOx 吸蔵能を消失させるという問題がある。これは硫黄被毒と称されている。すなわち、排ガス中に含まれるSO2 が触媒上で酸化されてSO3 となり、それが排ガス中の水分と反応してSO4 となるために、NOx 吸蔵材と容易に反応して硫酸塩が生成する。このように硫酸塩となったNOx 吸蔵材はもはやNOx を吸蔵することができず、NOx 浄化率が低下する。またNOx 吸蔵材の硫酸塩は通常の排ガス温度では分解が困難であるので、一旦硫酸塩となったNOx 吸蔵材はNOx 吸蔵能を回復することができない。
【0005】
このような硫黄被毒を防止するためには、燃料中から不純物である硫黄成分を除去することが有効である。一方、触媒側でも硫黄被毒を抑制するために、特開平08−099034号公報などには、TiO2など酸性度の高い担体を用いてSOx を近接しにくくする技術が開示されている。またZrO2にRhを担持した触媒は、排ガス中で水蒸気改質反応によって還元活性の高いH2を生成するので、このH2によってNOx 吸蔵材の硫酸塩を還元分解することでNOx 吸蔵材を再生し、NOx 吸蔵能を回復することも行われている。
【0006】
しかし上記した対策を講じても、硫黄被毒を完全に無くすことは困難であり、使用中のNOx 吸蔵還元型触媒には硫黄被毒を受けたNOx 吸蔵材が少なからず存在する。そこで使用中のNOx 吸蔵還元型触媒に対して、硫黄被毒を解消するための再生処理を行うことが考えられている。つまり、NOx 吸蔵材の硫酸塩は、通常の排ガス温度では分解が困難であるが、 600〜 700℃以上では容易に分解する。したがって定期的に 600〜 700℃以上の高温の排ガスを流す処理を行うことで、硫黄被毒したNOx 吸蔵材を再生することが可能となる。
【0007】
【特許文献1】
特開平08−099034号
【特許文献2】
特開2001−000863号
【特許文献3】
特開2002−126453号
【0008】
【発明が解決しようとする課題】
ところがNOx 吸蔵材として広く用いられているアルカリ金属は、熱的に不安定であり、高温では担体あるいは基材との固溶反応が進行したり、外部に飛散したりする劣化が生じる。そのため上記した再生処理を定期的に行うと、NOx 吸蔵能が徐々に低下するという問題があった。
【0009】
またアルカリ土類金属は、熱的には安定であるものの、その硫酸塩の分解温度はアルカリ金属の硫酸塩に比べて高い。そのため例えば外周部に担持されたアルカリ土類金属については、外部への放熱量が大きいこと、排ガス温度が低いことなどによって、再生処理による再生が困難となる場合がある。
【0010】
本発明はこのような事情に鑑みてなされたものであり、再生処理時におけるNOx 吸蔵材の劣化を抑制するとともに、担持されているNOx 吸蔵材の大部分を確実に再生できるようにすることを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、排ガス通路をもつ基材と、排ガス通路の表面に形成された担体層と、担体層に担持された貴金属と、担体層に担持された硫黄脱離温度が高い第1NOx 吸蔵材と、担体層に担持された硫黄脱離温度が低い第2NOx 吸蔵材と、を含んでなる排ガス浄化用触媒であって、排ガスは流速分布をもち、大きな流速の排ガスが流れる排ガス通路の担体層には、第1NOx 吸蔵材が第2NOx 吸蔵材より多く担持され、小さな流速の排ガスが流れる排ガス通路の担体層には、第2 NO x 吸蔵材が第1 NO x 吸蔵材より多く担持されていることにある。
【0013】
また大きな流速の排ガスが流れる排ガス通路の担体層における第2NOx 吸蔵材の担持量は、小さな流速の排ガスが流れる排ガス通路の担体層における第2NOx 吸蔵材の担持量より少ないことがさらに望ましい。
【0014】
そして本発明の排ガス浄化用触媒の再生方法の特徴は、排ガス通路をもつ基材と、排ガス通路の表面に形成された担体層と、担体層に担持された貴金属と、担体層に担持された硫黄脱離温度が高い第1NOx 吸蔵材と、担体層に担持された硫黄脱離温度が低い第2NOx 吸蔵材と、を含んでなり、大きな流速の排ガスが流れる排ガス通路の担体層には、第1NOx 吸蔵材が第2NOx 吸蔵材より多く担持され、小さな流速の排ガスが流れる排ガス通路の担体層には、第2 NO x 吸蔵材が第1 NO x 吸蔵材より多く担持されている排ガス浄化用触媒に対し、ストイキ〜リッチ雰囲気の高温の排ガスを流通させ、硫黄被毒している第1NOx 吸蔵材及び第2NOx 吸蔵材のNOx 吸蔵能を再生することにある。
【0015】
【発明の実施の形態】
例えばハニカム形状の触媒における排ガスの流速は、一般に中心部のセルほど大きく周辺部のセルほど小さいという分布を有している。したがって排ガス流速が大きい中心部のセルほど高温となり、排ガス流速の小さい周辺部のセルほど低温となるという温度分布が生じる。また触媒の外周部には一般に外筒が設けられるので、外筒によって熱が奪われる結果、周辺部のセルがさらに低温となる。そのため高温の排ガスを流通させる再生処理時においても、触媒の中心部と周辺部における温度差が大きくなり、NOx 吸蔵材の劣化が生じたり、あるいは再生が困難となる場合がある。
【0016】
そこで本発明の排ガス浄化用触媒では、大きな流速の排ガスが流れる排ガス通路の担体層には、硫黄脱離温度が高い第1NOx 吸蔵材が、硫黄脱離温度が低い第2NOx 吸蔵材より多く担持されている。硫黄脱離温度が高い第1NOx 吸蔵材が多く担持されていても、大きな流速の排ガスが流れる排ガス通路は排ガスから受ける熱量が大きいため高温となるため、硫黄被毒を受けた第1NOx 吸蔵材は容易に硫黄脱離温度まで昇温され、硫黄被毒している第1NOx 吸蔵材からはSOx が円滑に脱離し第1NOx 吸蔵材が再生される。
【0017】
そして小さな流速の排ガスが流れる排ガス通路の担体層には、第2NOx 吸蔵材が第1NOx 吸蔵材より多く担持されている。小さな流速の排ガスが流れる排ガス通路は大きな流速の排ガスが流れる排ガス通路に比べて低温となるが、硫黄脱離温度が低い第2NOx 吸蔵材が多く担持されているため、硫黄被毒している第2NOx 吸蔵材からもSOx が円滑に脱離し第2NOx 吸蔵材が再生される。したがって排ガスの温度分布に対応してそれぞれのNOx 吸蔵材について再生処理を行うことができ、再生処理効率が向上する。
【0018】
硫黄脱離温度とは、NOx 吸蔵材の硫酸塩からSOx が脱離する温度である。したがって硫黄脱離温度はNOx 吸蔵材の硫酸塩の分解温度と同義であるので、NOx 吸蔵材の硫酸塩の分解温度を指標としても同じことである。
【0019】
第1NOx 吸蔵材と第2NOx 吸蔵材は、相対的に硫黄脱離温度が異なるものであり、元素周期表において互いに同族のものであってもよいし、互いに異族のものでもよい。例えばアルカリ金属は一般にアルカリ土類金属より硫黄脱離温度が低いので、第2NOx 吸蔵材がアルカリ金属であれば第1NOx 吸蔵材としてアルカリ土類金属を用いることができる。また希土類元素もアルカリ金属より硫黄脱離温度が高いので、第2NOx 吸蔵材がアルカリ金属であれば、第1NOx 吸蔵材として希土類元素を用いてもよい。
【0020】
第2NOx 吸蔵材としてアルカリ金属を用いた場合には、小さな流速の排ガスが流れる排ガス通路の担体層に第2NOx 吸蔵材が多く担持されるのであるから、担持されているアルカリ金属の多くは高温となるのが防止され、担体あるいは基材との固溶などの反応が抑制されるとともに、外部への飛散も抑制される。したがってアルカリ金属の劣化に起因するNOx 吸蔵能の低下を防止することができる。
【0021】
大きな流速の排ガスが流れる排ガス通路の担体層における第2NOx 吸蔵材の担持量は、小さな流速の排ガスが流れる排ガス通路の担体層における第2NOx 吸蔵材の担持量より少ないことがさらに望ましい。これにより、第2NOx 吸蔵材としてアルカリ金属を用いた場合に上記した劣化が生じるアルカリ金属の量をさらに少なくすることができ、アルカリ金属の劣化に起因するNOx 吸蔵能の低下をさらに防止することができる。
【0022】
本発明にいう「少ない」あるいは「多い」という表現は、第1NOx 吸蔵材と第2NOx 吸蔵材のそれぞれの担持量の相対的な多少を意味し、その差に制限はない。僅かな差であってもそれなりの効果が得られるし、例えば「第1NOx 吸蔵材が第2NOx 吸蔵材より多い」という表現の場合には、第2NOx 吸蔵材が担持されておらず第1NOx 吸蔵材のみが担持されている場合も含まれ、その場合が最も好ましい。
【0023】
また本発明にいう「大きい」あるいは「小さい」という表現は、排ガス流速の相対的な大小を意味し、その差に制限はない。僅かな差であってもそれなりの効果が得られるし、その差に応じて第1NOx 吸蔵材と第2NOx 吸蔵材の種類や担持量を決定すればよい。一般には、ハニカム形状の触媒における排ガスの流速には直管内を流れる流体の流速分布に対応した差が生じ、一般に中心部のセルほど流速が大きく周辺部のセルほど流速が小さくなる。しかし強制的に部分的に流速を変化させる場合もあり、触媒内を流れる排ガス流速の分布には種々の場合がある。
【0024】
ところでNOx 吸蔵還元型触媒を搭載した自動車では、高速走行時には空燃比はストイキに制御され、その排ガス温度は約 800℃の高温となる。そのためNOx 吸蔵材によるNOx 吸蔵能はほとんど作用せず、貴金属による三元活性によって排ガスが浄化される。しかしながらアルカリ金属には貴金属の活性を阻害するという欠点があり、従来のNOx 吸蔵還元型触媒ではアルカリ金属を含まない三元触媒に比べて高速走行時の浄化能が劣っていた。
【0025】
しかし本発明の排ガス浄化用触媒によれば、大きな流速の排ガスが流れる排ガス通路には、第2NOx 吸蔵材であるアルカリ金属の担持量が少ない。したがってアルカリ金属によって貴金属の活性が阻害されるのが防止され、高い三元活性が発現される。これにより高速走行時の浄化能が向上する。
【0026】
排ガス通路をもつ基材としては、ハニカム形状のもの、フォーム形状のものなどを用いることができ、その材質はコーディエライトなどの耐熱性セラミックス、金属などから選択できる。
【0027】
排ガス通路の表面に形成された担体層は、アルミナ,チタニア,セリア,ジルコニア,シリカ,あるいはこれらの複数種からなる複合酸化物などから選ばれる多孔質酸化物粉末から形成することができ、これらの単体あるいは混合物からウォッシュコート法などを用いて形成することができる。その形成量は特に制限されないが、厚すぎると通気抵抗が大きくなってエンジンに支障が生じ、薄すぎると貴金属の担持密度が高くなり過ぎて粒成長による活性低下が生じるようになる。一般には基材1リットルあたり 100〜 500g程度が好ましい。
【0028】
担体層に担持された貴金属としては、Pt,Rh,Pd,Ir,Ruなどから一種類あるいは複数種類を選択して用いることができ、その担持量は基材1リットルあたり 0.1〜20g程度である。少なくともPtを担持することが望ましい。
【0029】
担体層に担持されたNOx 吸蔵材としては、Na,K,Li,Cs,Rbなどのアルカリ金属、Ba,Ca,Mg,Srなどのアルカリ土類金属、La,Y,Nd,Prなどの希土類元素を用いることができる。その担持量は、第1NOx 吸蔵材及び第2NOx 吸蔵材共に、基材1リットルあたり0.05〜10.0モルの範囲が最適である。
【0030】
そして本発明の排ガス浄化用触媒の再生方法では、本発明の排ガス浄化用触媒に対し、ストイキ〜リッチ雰囲気の高温の排ガスを流通させる。これにより硫黄被毒している第1NOx 吸蔵材及び第2NOx 吸蔵材が分解し、第1NOx 吸蔵材及び第2NOx 吸蔵材が再生される。そして上記と同様の作用により、排ガスの温度分布に対応して再生処理を行うことができ、再生処理効率が向上する。またアルカリ金属の劣化に起因するNOx 吸蔵能の低下を防止することができる。
【0031】
ストイキ〜リッチ雰囲気の高温の排ガスの温度は、 600〜 700℃とすることが望ましい。 600℃未満ではNOx 吸蔵材の再生が困難であり、 700℃を越えると担持されているアルカリ金属に劣化が生じるようになり、貴金属に粒成長が生じる場合もある。高温の排ガスを流通させる時間は、硫黄被毒程度に応じて行うことが望ましいが、10分間も行えば十分である。
【0032】
ストイキ〜リッチ雰囲気の高温の排ガスを流通させる時期は、NOx 吸蔵材の硫黄被毒量が所定量以上となった場合に行うことが望ましい。これにより貴金属の粒成長やアルカリ金属の劣化をさらに抑制することができる。NOx 吸蔵材の硫黄被毒量が所定量以上となったことは、エンジンの駆動時間,エンジンの負荷量,現実のNOx 吸蔵量などのパラメータを検出することで判定することができる。
【0033】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0034】
(実施例)
2.0Lのコーディエライト製ハニカム基材を用意し、アルミナ粉末を主とするスラリーをウォッシュコートして担体層を形成した。担体層はハニカム基材1Lあたり 275g形成された。
【0035】
担体層をもつハニカム基材に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、 110℃で2時間乾燥し 450℃で2時間焼成して担体層にPtを担持した。Ptの担持量はハニカム基材1Lあたり 2.0gである。
【0036】
次にPtが担持された担体層をもつハニカム基材の、端面の中心部を除く周辺部をマスキングし、所定濃度の酢酸バリウム水溶液の所定量を中心部のみに含浸した。そして 110℃で2時間乾燥し 550℃で2時間焼成して、中心部の担体層にBaを担持した。Baの担持量はハニカム基材1Lあたり 0.2モルである。
【0037】
続いて、Ptが全体に担持されBaが中心部に担持されたハニカム基材の、端面の中心部をマスキングし、所定濃度の酢酸カリウム水溶液の所定量を周辺部のみに含浸した。そして 110℃で2時間乾燥し 550℃で2時間焼成して、周辺部の担体層にKを担持した。Kの担持量はハニカム基材1Lあたり 0.1モルである。
【0038】
得られた触媒の概略斜視図を図1に示す。この触媒では、軸中心から半径の50%までの中心部1に位置する担体層にBaが担持され、外周から半径の50%までの周辺部2に位置する担体層にKが担持されている。
【0039】
(比較例)
実施例と同様に担体層が形成されPtが担持されたハニカム基材に対し、酢酸バリウム及び酢酸カリウムが各々所定濃度で溶解した所定量の水溶液を含浸させ、 110℃で2時間乾燥し 550℃で2時間焼成してBa及びKを担持した。Ba及びKは担体層の全体に均一に担持され、ハニカム基材1Lあたりの担持量はBaが 0.2モル、Kが 0.1モルである。
【0040】
<試験・評価>
実施例及び比較例の触媒をそれぞれ評価装置に配置し、表1に示すモデルガスをリーン/リッチ=1分/1秒で交互に切り換えながら流通させる硫黄被毒耐久試験を行った。空間速度は105,000h-1、触媒床温度 480℃、被毒時間は2時間5分である。この硫黄被毒耐久試験は、実車8万km走行相当の試験である。
【0041】
【表1】

Figure 0004100117
【0042】
上記耐久試験後のそれぞれの触媒に対し、表2に示す再生ガスを流通させる第1再生処理及び第2再生処理をそれぞれ行った。第1再生処理及び第2再生処理の条件を表3に示す。
【0043】
【表2】
Figure 0004100117
【0044】
【表3】
Figure 0004100117
【0045】
表3に示す条件で再生ガスを触媒に流通させると、ベルヌーイの定理より、図2に示すように触媒の中心部1を流れる排ガスの流速は大きく、周辺部2を流れる排ガスの流速は小さい。また周辺部2は中心部1より外部への放熱量が大きい。したがって中心部1は周辺部2より高温となり、触媒には中心部1と周辺部2との間に温度差が生じる。しかし実施例の触媒では、周辺部1に担持されているKは硫黄脱離温度が低いため、低い温度でも容易にSOx を脱離して再生される。また中心部1に担持された硫黄脱離温度が高いBaは、中心部1の温度が高いため容易に硫黄分解温度となりSOx を脱離して再生される。
【0046】
耐久試験後のそれぞれの触媒と、上記再生処理後の各触媒をエンジンベンチにそれぞれ搭載し、 1.8Lのリーンバーンエンジン(常時は酸素過剰のリーン雰囲気で燃焼され間欠的にストイキ〜リッチ雰囲気となるように混合気の比率が制御されるシステム)の排気系に装着し、リーン/リッチ=1分/1秒間に浄化することのできるNOx の浄化率を測定した。結果を図3に示す。
【0047】
図3より、耐久試験後に再生処理を行わなかった触媒では、実施例及び比較例共にNOx 浄化率が著しく低く、硫黄被毒が進行していることがわかる。それに対して再生処理を行うことでNOx 浄化率が大きく向上し、比較例に比べて実施例の触媒が特にNOx 浄化率の向上程度が大きい。これは中心部にBaを担持し周辺部にKを担持した効果であることが明らかであり、排ガスの温度分布に応じてKとBaをそれぞれ効率よく再生できたことと、さらにKの劣化が抑制されたことによる効果であると考えられる。
【0048】
【発明の効果】
すなわち本発明の排ガス浄化用触媒及びその再生方法によれば、再生処理時におけるNOx 吸蔵材の劣化を抑制することができ、硫黄被毒を受けたNOx 吸蔵材を確実に再生することができる。したがって再生処理後も初期とほぼ同等のNOx 浄化能を確保することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の排ガス浄化用触媒の概略斜視図である。
【図2】触媒を流れる排ガスの流速分布を示す説明図である。
【図3】実施例及び比較例の触媒の、各種再生処理後のNOx 浄化率を示すグラフである。
【符号の説明】
1:中心部 2:周辺部[0001]
BACKGROUND OF THE INVENTION
The present invention includes a NO x storage-and-reduction type catalyst for purifying an exhaust gas which carries the noble metal and the NO x storage material on a carrier layer, to their reproducing method.
[0002]
[Prior art]
Conventionally, the NO x storage-reduction type exhaust gas purifying catalyst carrying the precious metal and the NO x storage material on a carrier layer is used. The NO x storage-and-reduction type catalyst, oxygen excess occludes NO x in the NO x storage material in a lean atmosphere, the atmosphere is intermittently release the NO x from the NO x storage material by passing a gas of a stoichiometric-rich atmosphere It reduces and purifies NO x by abundant HC and CO in. Accordingly HC in the exhaust gas of lean atmosphere, it is possible to efficiently purify CO and NO x.
[0003]
As the NO x storage material, at least one selected from alkali metals, alkaline earth metals and rare earth elements is used. Alkali metal is excellent in the NO x storage ability in a high temperature range, the alkaline earth metal is so excellent in the NO x storage ability in low temperature range, many of them carrying both alkali metal and alkaline earth metal.
[0004]
However in the exhaust gas contains sulfur oxides resulting from the sulfur in the fuel (SO x), but this is a problem that abolishes the NO x storage ability reacts with the NO x storage material. This is called sulfur poisoning. That is, SO 2 contained in the exhaust gas is oxidized on the catalyst to become SO 3 which reacts with moisture in the exhaust gas to become SO 4 , so that it easily reacts with the NO x storage material and sulfate is formed. Generate. Thus, the NO x storage material that has become sulfate can no longer store NO x , and the NO x purification rate decreases. Further, since the sulfate of NO x storage material is difficult to decompose at normal exhaust gas temperature, the NO x storage material once converted to sulfate cannot recover the NO x storage capacity.
[0005]
In order to prevent such sulfur poisoning, it is effective to remove sulfur components as impurities from the fuel. On the other hand, in order to suppress sulfur poisoning on the catalyst side as well, Japanese Patent Application Laid-Open No. 08-099034 discloses a technique for making SO x difficult to approach using a highly acidic carrier such as TiO 2 . The catalyst supporting Rh on ZrO 2, so generates a high H 2 of reduction activity by the steam reforming reaction in the exhaust gas, the NO x storage by reductive decomposition of the sulfates of the NO x storage material by this H 2 The material is also regenerated and the NO x storage capacity is restored.
[0006]
However, even if the above-mentioned measures are taken, it is difficult to completely eliminate sulfur poisoning, and there are not a few NO x storage materials that have undergone sulfur poisoning in the NO x storage reduction catalyst in use. Therefore, it is considered to perform a regeneration process for eliminating sulfur poisoning on the NO x storage reduction catalyst in use. That is, the NO x storage material sulfate is difficult to decompose at normal exhaust gas temperatures, but easily decomposes at 600 to 700 ° C. or higher. Therefore, it is possible to regenerate the sulfur-poisoned NO x storage material by periodically performing a process of flowing a high-temperature exhaust gas of 600 to 700 ° C. or higher.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 08-099034 [Patent Document 2]
JP 2001-000863 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-126453
[Problems to be solved by the invention]
However, the alkali metal widely used as the NO x storage material is thermally unstable, and at high temperatures, the solid solution reaction with the support or the substrate proceeds, or deterioration such as scattering to the outside occurs. Therefore, when the regeneration process described above is performed periodically, there is a problem that the NO x storage capacity gradually decreases.
[0009]
Alkaline earth metals are thermally stable, but the decomposition temperature of the sulfate is higher than that of the alkali metal sulfate. For this reason, for example, alkaline earth metals supported on the outer periphery may be difficult to regenerate due to a large amount of heat released to the outside and a low exhaust gas temperature.
[0010]
The present invention has been made in view of such circumstances, and suppresses the deterioration of the NO x storage material during the regeneration process, and makes it possible to reliably regenerate most of the supported NO x storage material. For the purpose.
[0011]
[Means for Solving the Problems]
The exhaust gas purifying catalyst of the present invention that solves the above problems is characterized by a base material having an exhaust gas passage, a carrier layer formed on the surface of the exhaust gas passage, a noble metal supported on the carrier layer, and a carrier layer. sulfur and desorption temperature is high the 1NO x storage material, the supported sulfur desorption temperature is lower second 2NO x occluding material on a carrier layer, a comprising at exhaust gas purifying catalyst and the exhaust gas flow velocity distribution rice, the carrier layer of the exhaust gas channel which the exhaust gas flows in a large flow rate, the first 1NO x storage material is more supported than the 2NO x occluding material, the carrier layer of the exhaust gas passage exhaust gas small flow rate flows, the 2 NO x Occlusion material is first NO x This is because it is supported more than the occlusion material .
[0013]
Further, it is more preferable that the amount of the second NO x storage material supported in the carrier layer of the exhaust gas passage through which the exhaust gas having a large flow velocity flows is smaller than the amount of the second NO x storage material supported in the carrier layer of the exhaust gas passage through which the exhaust gas having a small flow velocity flows.
[0014]
The feature of the method for regenerating an exhaust gas purifying catalyst of the present invention is that a base material having an exhaust gas passage, a carrier layer formed on the surface of the exhaust gas passage, a noble metal carried on the carrier layer, and a carrier layer. sulfur and desorption temperature is high the 1NO x occluding material, the sulfur desorption temperature on a support layer comprises low and the 2NO x occluding material, and the carrier layer of the exhaust gas passage exhaust gas of a large flow rate flows , the first 1NO x storage material is more supported than the 2NO x occluding material, the carrier layer of the exhaust gas passage exhaust gas small flow rate flows, the 2 NO x Occlusion material is first NO x To an exhaust gas purifying catalyst that is more supported than absorbing material, allowed to flow high-temperature exhaust gas of a stoichiometric-rich atmosphere, the the NO x storage capacity of the 1NO x storage material and the 2NO x storage material is poisoned by sulfur There is to play.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
For example, the flow rate of exhaust gas in a honeycomb-shaped catalyst generally has a distribution such that the center cell is larger and the peripheral cell is smaller. Accordingly, a temperature distribution is generated in which the center cell having a larger exhaust gas flow rate becomes higher temperature and the peripheral cell having a lower exhaust gas flow rate becomes lower temperature. In addition, since an outer cylinder is generally provided on the outer peripheral portion of the catalyst, heat is taken away by the outer cylinder, so that the cells in the peripheral portion are further cooled. Therefore, even during the regeneration process in which high-temperature exhaust gas is circulated, the temperature difference between the central part and the peripheral part of the catalyst becomes large, and the NO x storage material may be deteriorated or may be difficult to regenerate.
[0016]
Therefore, in the exhaust gas purifying catalyst of the present invention, the carrier layer of the exhaust gas passage exhaust gas of a large flow rate flows, the 1NO x storage material sulfur desorption temperature is high, more than sulfur desorption temperature is lower second 2NO x occluding material It is supported. Even if a large amount of the first NO x storage material having a high sulfur desorption temperature is carried, the exhaust gas passage through which the exhaust gas with a large flow velocity receives a large amount of heat from the exhaust gas becomes high temperature, so the first NO x storage that has received sulfur poisoning. The material is easily heated to the sulfur desorption temperature, SO x is desorbed smoothly from the sulfur-poisoned first NO x storage material, and the first NO x storage material is regenerated.
[0017]
And the carrier layer of the exhaust gas passage exhaust gas small flow velocity flows, the first 2NO x occluding material are often supported than the 1NO x storage material. Although the exhaust gas passage exhaust gas small velocity flow becomes lower temperature than the exhaust gas passage flowing through the exhaust gas of a large flow rate, since the sulfur desorption temperature is first 2NO x occluding material is often carried low, and sulfur poisoning the 2NO x occluding material sO x is smoothly desorbed is reproduced from the first 2NO x occluding material. Therefore, the regeneration process can be performed on each NO x storage material corresponding to the temperature distribution of the exhaust gas, and the regeneration process efficiency is improved.
[0018]
The sulfur desorption temperature is a temperature at which SO x is desorbed from the sulfate of the NO x storage material. Hence the sulfur desorption temperature is synonymous with the decomposition temperature of the sulfate of the NO x storage material, it is the same thing as an index decomposition temperature of the sulfate of the NO x storage material.
[0019]
The 1NO x storage material and the 2NO x storage component, which relatively sulfur desorption temperature are different, may be of homologous to each other in the periodic table may be of different group from each other. For example the alkali metal is so generally from sulfur desorption temperature is lower alkaline earth metals, is first 2NO x storage material can be used alkaline earth metal as a 1NO x occluding material if alkali metal. Since rare earth elements are also sulfur desorption temperature is higher than the alkali metal, if the 2NO x storage material is an alkali metal, it may be used a rare earth element as a 1NO x storage material.
[0020]
In the case of using an alkali metal as a 2NO x storage component, since it is the the first 2NO x storage material it is often supported on a carrier layer of the exhaust gas passage exhaust gas small flow velocity flows, many of alkali metal supported A high temperature is prevented, reaction such as solid solution with the carrier or the substrate is suppressed, and scattering to the outside is also suppressed. Therefore it is possible to prevent the deterioration of the NO x storage capacity due to the deterioration of the alkali metal.
[0021]
Loading amount of the 2NO x storage material in the carrier layer of the exhaust gas passage exhaust gas of a large flow rate flows, be less than the loading amount of the 2NO x storage material in the carrier layer of the exhaust gas passage flowing through the exhaust gas of a small flow rate is further desirable. Thus, the 2NO x occluding material the amount of alkali metal deteriorates as described above can be further reduced in the case of using the alkali metal as, further to prevent the reduction of the NO x storage capacity due to deterioration of the alkali metal be able to.
[0022]
The expression "small" or "large" in the present invention means a respective supported amount of relative some of the 1NO x storage material and the 2NO x storage component is not limited to the difference. It moderate effect even minor differences are obtained, for example, when "the first 1NO x storage material greater than the 2NO x occluding material" of the expression, it first 2NO x occluding material first has not been carried The case where only the 1NO x storage material is supported is also included, and that case is most preferable.
[0023]
The expression “large” or “small” in the present invention means the relative magnitude of the exhaust gas flow velocity, and there is no limitation on the difference. We moderate effect can be obtained even slight differences may be determined the type and loading amount of the 1NO x storage material and the 2NO x storage material in accordance with the difference. In general, the flow rate of the exhaust gas in the honeycomb-shaped catalyst has a difference corresponding to the flow rate distribution of the fluid flowing in the straight pipe. Generally, the flow rate is higher in the central cell and lower in the peripheral cell. However, there is a case where the flow rate is forcibly changed partially, and there are various cases of distribution of the exhaust gas flow rate flowing through the catalyst.
[0024]
By the way, in an automobile equipped with a NO x storage reduction catalyst, the air-fuel ratio is stoichiometrically controlled during high-speed driving, and the exhaust gas temperature is as high as about 800 ° C. Therefore, the NO x storage capacity by the NO x storage material hardly acts, and the exhaust gas is purified by the three-way activity by the noble metal. However, alkali metals have the disadvantage of inhibiting the activity of noble metals, and conventional NO x storage-reduction type catalysts have poor purification performance at high speeds compared to three-way catalysts that do not contain alkali metals.
[0025]
However, according to the exhaust gas purifying catalyst of the present invention, the amount of alkali metal that is the second NO x storage material is small in the exhaust gas passage through which the exhaust gas having a large flow rate flows. Therefore, inhibition of the activity of the noble metal by the alkali metal is prevented, and a high ternary activity is expressed. As a result, the purification ability during high-speed traveling is improved.
[0026]
As the base material having an exhaust gas passage, a honeycomb-shaped material, a foam-shaped material, etc. can be used, and the material can be selected from heat-resistant ceramics such as cordierite, metal, and the like.
[0027]
The carrier layer formed on the surface of the exhaust gas passage can be formed of a porous oxide powder selected from alumina, titania, ceria, zirconia, silica, or a composite oxide composed of a plurality of these, and these It can be formed from a single substance or a mixture using a wash coat method or the like. The amount of formation is not particularly limited, but if it is too thick, the airflow resistance becomes large and the engine is hindered. If it is too thin, the supporting density of the noble metal becomes too high and the activity decreases due to grain growth. In general, about 100 to 500 g per liter of the base material is preferable.
[0028]
As the noble metal supported on the carrier layer, one or more kinds selected from Pt, Rh, Pd, Ir, Ru, etc. can be selected and used, and the supported amount is about 0.1 to 20 g per liter of the base material. . It is desirable to carry at least Pt.
[0029]
Examples of the NO x storage material supported on the carrier layer include alkali metals such as Na, K, Li, Cs, and Rb, alkaline earth metals such as Ba, Ca, Mg, and Sr, and La, Y, Nd, and Pr. Rare earth elements can be used. Its supported amount, a 1NO x storage material and the 2NO x occluding material together, the range of 0.05 to 10.0 mol per 1-liter substrate is optimal.
[0030]
In the exhaust gas purification catalyst regeneration method of the present invention, high-temperature exhaust gas in a stoichiometric to rich atmosphere is circulated through the exhaust gas purification catalyst of the present invention. Thus decomposed first 1NO x storage material and the 2NO x storage material is poisoned by sulfur, the 1NO x storage material and the 2NO x storage material is regenerated. By the same action as described above, the regeneration process can be performed corresponding to the temperature distribution of the exhaust gas, and the regeneration process efficiency is improved. Also it is possible to prevent deterioration of the NO x storage capacity due to the deterioration of the alkali metal.
[0031]
It is desirable that the temperature of the exhaust gas having a high stoichi-rich atmosphere is 600 to 700 ° C. If the temperature is lower than 600 ° C, it is difficult to regenerate the NO x storage material. If the temperature exceeds 700 ° C, the supported alkali metal deteriorates, and grain growth may occur in the noble metal. Although it is desirable that the high-temperature exhaust gas is circulated according to the degree of sulfur poisoning, it is sufficient if it is performed for 10 minutes.
[0032]
It is desirable that the high temperature exhaust gas in a stoichiometric to rich atmosphere is circulated when the sulfur poisoning amount of the NO x storage material becomes a predetermined amount or more. Thereby, the grain growth of the noble metal and the deterioration of the alkali metal can be further suppressed. Whether the sulfur poisoning amount of the NO x storage material has reached a predetermined amount or more can be determined by detecting parameters such as engine driving time, engine load amount, and actual NO x storage amount.
[0033]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0034]
(Example)
A 2.0 L cordierite honeycomb substrate was prepared, and a slurry mainly composed of alumina powder was washed to form a carrier layer. The carrier layer was formed in an amount of 275 g per liter of honeycomb substrate.
[0035]
A honeycomb substrate having a carrier layer was impregnated with a prescribed amount of a dinitrodiammine platinum aqueous solution having a prescribed concentration, dried at 110 ° C. for 2 hours, and fired at 450 ° C. for 2 hours to carry Pt on the carrier layer. The amount of Pt supported is 2.0 g per liter of honeycomb substrate.
[0036]
Next, the peripheral portion of the honeycomb substrate having the carrier layer carrying Pt, except for the central portion of the end face, was masked, and a predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated only in the central portion. And it dried at 110 degreeC for 2 hours, baked at 550 degreeC for 2 hours, and carry | supported Ba on the support layer of the center part. The supported amount of Ba is 0.2 mol per liter of honeycomb substrate.
[0037]
Subsequently, the central portion of the end face of the honeycomb substrate on which Pt was supported on the whole and Ba was supported on the central portion was masked, and a predetermined amount of a potassium acetate aqueous solution having a predetermined concentration was impregnated only in the peripheral portion. And it dried at 110 degreeC for 2 hours, and baked at 550 degreeC for 2 hours, and carry | supported K by the support layer of the peripheral part. The amount of K supported is 0.1 mol per liter of honeycomb substrate.
[0038]
A schematic perspective view of the obtained catalyst is shown in FIG. In this catalyst, Ba is supported on the support layer located in the central part 1 from the axial center to 50% of the radius, and K is supported on the support layer located in the peripheral part 2 from the outer periphery to 50% of the radius. .
[0039]
(Comparative example)
In the same manner as in the examples, a honeycomb substrate on which a carrier layer was formed and Pt was supported was impregnated with a predetermined amount of an aqueous solution in which barium acetate and potassium acetate were dissolved at a predetermined concentration, and dried at 110 ° C. for 2 hours. Ba and K were supported for 2 hours. Ba and K are uniformly supported on the entire support layer, and the supported amount per liter of the honeycomb substrate is 0.2 mol of Ba and 0.1 mol of K.
[0040]
<Test and evaluation>
The catalysts of Examples and Comparative Examples were respectively placed in the evaluation apparatus, and a sulfur poisoning endurance test was conducted in which the model gas shown in Table 1 was circulated while alternately switching between lean / rich = 1 minute / 1 second. The space velocity is 105,000 h −1 , the catalyst bed temperature is 480 ° C., and the poisoning time is 2 hours and 5 minutes. This sulfur poisoning durability test is a test equivalent to traveling 80,000 km of an actual vehicle.
[0041]
[Table 1]
Figure 0004100117
[0042]
The first regeneration process and the second regeneration process for circulating the regeneration gas shown in Table 2 were performed on each catalyst after the durability test. Table 3 shows conditions of the first reproduction process and the second reproduction process.
[0043]
[Table 2]
Figure 0004100117
[0044]
[Table 3]
Figure 0004100117
[0045]
When the regeneration gas is allowed to flow through the catalyst under the conditions shown in Table 3, the flow rate of the exhaust gas flowing through the central portion 1 of the catalyst is large and the flow rate of the exhaust gas flowing through the peripheral portion 2 is small as shown in FIG. In addition, the peripheral portion 2 has a larger amount of heat radiation to the outside than the central portion 1. Therefore, the central portion 1 has a higher temperature than the peripheral portion 2, and a temperature difference occurs between the central portion 1 and the peripheral portion 2 in the catalyst. However, in the catalyst of the example, K carried on the peripheral portion 1 has a low sulfur desorption temperature, so that SO x is easily desorbed and regenerated even at a low temperature. Also, Ba having a high sulfur desorption temperature carried on the central portion 1 is easily regenerated by desorbing SO x at a sulfur decomposition temperature because the temperature of the central portion 1 is high.
[0046]
Each catalyst after the endurance test and each catalyst after the above regeneration treatment are mounted on an engine bench, respectively, and a 1.8 L lean burn engine (always burned in a lean atmosphere with excess oxygen and intermittently becomes a stoichiometric to rich atmosphere) the ratio of the mixture is attached to the exhaust system of the system) to be controlled as to measure the purification rate of the NO x which can be purified in the lean / rich = 1 min / 1 sec. The results are shown in FIG.
[0047]
From FIG. 3, it can be seen that in the catalyst that was not subjected to the regeneration treatment after the durability test, the NO x purification rate was remarkably low in both Examples and Comparative Examples, and sulfur poisoning was progressing. On the other hand, by performing the regeneration treatment, the NO x purification rate is greatly improved. Compared with the comparative example, the catalyst of the example has a particularly large degree of improvement in the NO x purification rate. It is clear that this is the effect of carrying Ba at the center and K at the periphery, and K and Ba could be regenerated efficiently according to the temperature distribution of the exhaust gas, and further the deterioration of K It is thought that the effect is due to being suppressed.
[0048]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst and the regeneration method of the present invention, it is possible to suppress the deterioration of the NO x storage material during the regeneration process, and to reliably regenerate the NO x storage material that has been subjected to sulfur poisoning. it can. Therefore, it is possible to ensure the NO x purification ability substantially equal to the initial stage even after the regeneration process.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an exhaust gas purifying catalyst according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a flow velocity distribution of exhaust gas flowing through a catalyst.
FIG. 3 is a graph showing NO x purification rates after various regeneration treatments of catalysts of Examples and Comparative Examples.
[Explanation of symbols]
1: Central part 2: Peripheral part

Claims (4)

排ガス通路をもつ基材と、該排ガス通路の表面に形成された担体層と、該担体層に担持された貴金属と、該担体層に担持された硫黄脱離温度が高い第1NOx 吸蔵材と、該担体層に担持された硫黄脱離温度が低い第2NOx 吸蔵材と、を含んでなる排ガス浄化用触媒であって、
排ガスは流速分布をもち、大きな流速の排ガスが流れる該排ガス通路の該担体層には、該第1NOx 吸蔵材が該第2NOx 吸蔵材より多く担持され、小さな流速の排ガスが流れる該排ガス通路の該担体層には、該第2 NO x 吸蔵材が該第1 NO x 吸蔵材より多く担持されていることを特徴とする排ガス浄化用触媒。
A base material having an exhaust gas passage; a support layer formed on the surface of the exhaust gas passage; a noble metal supported on the support layer; a first NO x storage material having a high sulfur desorption temperature supported on the support layer; An exhaust gas purifying catalyst comprising: a second NO x storage material having a low sulfur desorption temperature supported on the carrier layer,
Exhaust gas has a flow velocity distribution, the carrier layer of the exhaust gas passage exhaust gas of a large flow rate flows, the said 1NO x storage material is more supported than said 2NO x storage material, the exhaust gas passage exhaust gas of a small flow rate flows The support layer of the second NO x Occlusion material is the first NO x A catalyst for exhaust gas purification, which is supported in a larger amount than the occlusion material .
大きな流速の排ガスが流れる前記排ガス通路の前記担体層における前記第2NOx 吸蔵材の担持量は、小さな流速の排ガスが流れる前記排ガス通路の前記担体層における前記第2NOx 吸蔵材の担持量より少ない請求項1に記載の排ガス浄化用触媒。Loading amount of the first 2NO x storage material in the carrier layer of the exhaust gas passage exhaust gas of a large flow rate flows is less than the loading of the first 2NO x storage material in the carrier layer of the exhaust gas passage exhaust gas small flow rate flows The exhaust gas-purifying catalyst according to claim 1. 前記第1NOx 吸蔵材はアルカリ土類金属を含み、前記第2NOx 吸蔵材はアルカリ金属を含む請求項1又は請求項2に記載の排ガス浄化用触媒。Wherein said 1NO x storage material includes an alkaline earth metal, wherein the 2NO x storage component catalyst for purification of exhaust gas according to claim 1 or claim 2 including an alkali metal. 排ガス通路をもつ基材と、該排ガス通路の表面に形成された担体層と、該担体層に担持された貴金属と、該担体層に担持された硫黄脱離温度が高い第1NOx 吸蔵材と、該担体層に担持された硫黄脱離温度が低い第2NOx 吸蔵材と、を含んでなり、大きな流速の排ガスが流れる該排ガス通路の該担体層には、該第1NOx 吸蔵材が該第2NOx 吸蔵材より多く担持され、小さな流速の排ガスが流れる該排ガス通路の該担体層には、該第2 NO x 吸蔵材が該第1 NO x 吸蔵材より多く担持されている排ガス浄化用触媒に対し、
ストイキ〜リッチ雰囲気の高温の排ガスを流通させ、硫黄被毒している該第1NOx 吸蔵材及び該第2NOx 吸蔵材のNOx 吸蔵能を再生することを特徴とする排ガス浄化用触媒の再生方法。
A base material having an exhaust gas passage; a support layer formed on the surface of the exhaust gas passage; a noble metal supported on the support layer; a first NO x storage material having a high sulfur desorption temperature supported on the support layer; And a second NO x storage material having a low sulfur desorption temperature supported by the carrier layer, and the first NO x storage material is in the carrier layer of the exhaust gas passage through which exhaust gas having a large flow rate flows. are often carried from a 2NO x occluding material, the carrier layer of the exhaust gas passage exhaust gas of a small flow rate flows, said 2 NO x Occlusion material is the first NO x For exhaust gas purifying catalysts that are supported more than occlusion materials ,
The high-temperature exhaust gas of a stoichiometric-rich atmosphere is circulated, regeneration of the catalyst for exhaust gas purification, characterized in that for reproducing the NO x storage capacity of said 1NO x storage material and said 2NO x storage material is poisoned by sulfur Method.
JP2002285213A 2002-09-30 2002-09-30 Exhaust gas purification catalyst and its regeneration method Expired - Fee Related JP4100117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285213A JP4100117B2 (en) 2002-09-30 2002-09-30 Exhaust gas purification catalyst and its regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285213A JP4100117B2 (en) 2002-09-30 2002-09-30 Exhaust gas purification catalyst and its regeneration method

Publications (2)

Publication Number Publication Date
JP2004114016A JP2004114016A (en) 2004-04-15
JP4100117B2 true JP4100117B2 (en) 2008-06-11

Family

ID=32278576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285213A Expired - Fee Related JP4100117B2 (en) 2002-09-30 2002-09-30 Exhaust gas purification catalyst and its regeneration method

Country Status (1)

Country Link
JP (1) JP4100117B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125524A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Exhaust gas purifier
JP4497115B2 (en) * 2006-03-17 2010-07-07 三菱自動車工業株式会社 Catalyst diagnostic device
JP5233499B2 (en) * 2008-08-19 2013-07-10 いすゞ自動車株式会社 Exhaust gas purification system and exhaust gas purification method

Also Published As

Publication number Publication date
JP2004114016A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4651039B2 (en) Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
EP1710009A1 (en) Catalyst for purification of diesel exhaust gas
BRPI0706870A2 (en) APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS
JP2006326495A (en) Exhaust-gas cleaning catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4144174B2 (en) Exhaust gas purification device
JP3685463B2 (en) Exhaust gas purification catalyst
JP2008151100A (en) Exhaust emission control device
US10378409B2 (en) Exhaust gas purification catalyst
WO2005064130A1 (en) Device and process for removing nitrogen oxides from the exhaust gas of internal combustion engines with the aid of catalytically generated ammonia
JP2000202309A (en) Regeneration of exhaust gas-cleaning catalyst
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP2005262144A (en) Nox occlusion reduction catalyst
JP4100117B2 (en) Exhaust gas purification catalyst and its regeneration method
JP2008264700A (en) Sulfur occluding catalyst
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP4479418B2 (en) Exhaust gas purification catalyst
JP2009138667A (en) Catalyst device for purifying exhaust gas
JP2009273989A (en) Exhaust gas cleaning device
JP2002168117A (en) Exhaust emission control system
JP2008274807A (en) Exhaust emission control device
JP3523843B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4962753B2 (en) Sulfur oxide absorber and exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees