JP4100007B2 - Method for purifying cyclopentenolones - Google Patents

Method for purifying cyclopentenolones Download PDF

Info

Publication number
JP4100007B2
JP4100007B2 JP2002061610A JP2002061610A JP4100007B2 JP 4100007 B2 JP4100007 B2 JP 4100007B2 JP 2002061610 A JP2002061610 A JP 2002061610A JP 2002061610 A JP2002061610 A JP 2002061610A JP 4100007 B2 JP4100007 B2 JP 4100007B2
Authority
JP
Japan
Prior art keywords
cyclopentenolones
ketone
calcium chloride
methyl
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002061610A
Other languages
Japanese (ja)
Other versions
JP2003261497A (en
Inventor
一幸 田中
孝弘 鈴木
喜代己 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002061610A priority Critical patent/JP4100007B2/en
Publication of JP2003261497A publication Critical patent/JP2003261497A/en
Application granted granted Critical
Publication of JP4100007B2 publication Critical patent/JP4100007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シクロペンテノロン類の精製方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
シクロペンテノロン類は、例えばアレスロロンなどのようにピレスロイド系殺虫剤の中間体として有用な化合物であり、第一菊酸を始めとする種々の菊酸類とのエステル化反応により各種の殺虫性化合物に導くことができる。
【0003】
しかしながらこの際用いるシクロペンテノロン類の純度が低いとエステル化反応が阻害されたり、生成ピレスロイドの純度が低下するという悪影響がある。原料シクロペンテノロン類はかなりの高純度が要求される。ところが、通常の製法によって得られるシクロペンテノロン類には多くの低沸点または高沸点を有する不純物が含まれており、何らかの精製法によって精製する必要があり、このため従来は精密分留が行われていた。しかしながら精密分留には高段数の精留塔を必要とするという設備上の制約があり、また処理量が多い場合、特に回分式の精留では長時間を要することから、熱に不安定な化合物には適用できないなど工業的に実施する場合の種々の欠点がある。
【0004】
一般にシクロペンテノロン類は、分子内に反応性の官能基であるカルボニル基、水酸基および不飽和結合等を有するため、熱的に不安定なものが多く、精留分留には適さない化合物であり、かかる精留分留によらない精製法として、シクロペンテノロン類が塩化カルシウムと付加物を形成する性質を利用し、該付加物を分離取得した後、付加物の分解を行い、高純度のシクロペンテノロン類を得る方法が知られている(特公平1−53263号公報)。この方法は簡便性、効率性、操作性等において優れた方法であるものの、高率でシクロペンテノロン類の回収を行うには、塩化カルシウムの量を比較的多量とすることが必要とされていた。
【0005】
【課題を解決するための手段】
このような状況下、本発明者は、より効率的なシクロペンテノロン類の精製方法に付き検討した結果、シクロペンテノロン類と塩化カルシウムとの付加物形成を特定の溶剤の共存下に行うことにより、多量の塩化カルシウムを用いなくともシクロペンテノロン類の精製を高純度、高回収率で行うことができることを見出し、本発明に至った。
【0006】
即ち本発明は、一般式(1)

Figure 0004100007
(式中、R1はアルキル基、アルケニル基、アルキニル基またはアラルキル基を表し、R2は水素原子またはアルキル基を表す。)
で示されるシクロペンテノロン類(以下、シクロペンテノロン類(1)と記す。)と塩化カルシウムとをケトン溶媒共存下に反応させ、生成するシクロペンテノロン類(1)・塩化カルシウム付加物を分離取得し、次いでこれを分解してシクロペンテノロン類を回収することを特徴とするシクロペンテノロン類の精製方法(以下、本方法と記す。)を提供するものである。
【0007】
【発明の実施の形態】
シクロペンテノロン類(1)において、置換基R1の具体例としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などのアルキル基、アリル基、α−メチルアリル基などのアルケニル基、プロパルギル基、α−メチルプロパルギル基などのアルキニル基、ベンジル基などのアラルキル基を挙げることができる。
【0008】
またR2の具体例としては水素原子、メチル基、エチル基などのアルキル基を挙げることができる。
【0009】
本方法において用いる原料シクロペンテノロン類(1)(以下、粗シクロペンテノロン類(1)と記すことがある。また、本方法により得られるシクロペンテノロン類(1)を粗シクロペンテノロン類(1)と区別するために、精製シクロペンテノロン類(1)と記すことがある。)は、例えばフルフリルアルコール類の転位反応による方法(特公昭61−26975号公報、特公昭62−52735号公報、特公昭62−57173号公報等)や、ジケトアルコールの分子内アルドール縮合反応による方法(J. Am. Chem. Soc., 71, 1517 (1949)等)により得られ、シクロペンテノロン類(1)の純度は、通常75〜85重量%程度である。
【0010】
本方法においては、シクロペンテノロン類(1)と塩化カルシウムとの付加物形成反応(以下、本反応と記す。)をケトン溶媒共存下に行うことが必要である。
【0011】
ケトン溶媒としては、ジアルキルケトン、シクロアルカノン類等の脂肪族ケトンを挙げることができる。例えば、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルs−ブチルケトン、ピナコロン、メチルペンチルケトン、メチルイソペンチルケトン、メチルネオペンチルケトン、ジエチルケトン、エチルプロピルケトン、エチルイソプロピルケトン、エチルブチルケトン、エチルイソブチルケトン、エチルt−ブチルケトン、ジプロピルケトン、ジイソプロピルケトン、プロピルイソプロピルケトン等のジ(C1〜C5)アルキルケトン;シクロブタノン、シクロペンタノン、2−メチルシクロペンタノン、3−メチルシクロペンタノン、2−エチルシクロペンタノン、3−エチルシクロペンタノン、シクロヘキサノン、2−メチルシクロヘキサノン、3−メチルシクロヘキサノン、4−メチルシクロヘキサノン、シクロヘプタノン等の(C4〜C7)シクロアルカノン類等を挙げることができる。中でも炭素数6または7のケトンが好ましく、メチルブチルケトン、メチルイソブチルケトン及びジプロピルケトンがさらに好ましい。
【0012】
ケトン溶媒は2種以上の混合物であってもよい。
【0013】
ケトン溶媒の本反応における使用量はシクロペンテノロン類(1)に対して、通常1〜10重量倍であり、好ましくは1〜5重量倍である。本反応において、ケトン溶媒以外の溶媒、例えばベンゼン、トルエン、ヘキサン、ヘプタン等を更に添加してケトン溶媒との混合溶媒とすることもできるが、収率等の点からは溶媒中のケトン溶媒の割合が少なくとも75重量%以上、好ましくは90重量%以上であり、実質的にケトン溶媒単独を用いることがより好ましい。
【0014】
本方法において塩化カルシウムとしては無水、含水の何れも使用できるが、塩化カルシウム中の水分は通常10重量%以下、好ましくは7重量%以下であり、無水塩化カルシウムとして市販されるものをそのまま使用することもできる。また、該市販品を、必要により適宜乾燥または加湿して水分調整を行った上で使用してもよい。
【0015】
本方法において塩化カルシウムの使用量はシクロペンテノロン類(1)に対し、通常0.8〜2倍モルであり、好ましくは0.9〜1.5倍モルである。
【0016】
また、本反応における混合方法としては、シクロペンテノロン類(1)とケトン溶媒からなる溶液に塩化カルシウムを添加する方法、ケトン溶媒と塩化カルシウムとからなる混合物にシクロペンテノロン類(1)を添加する方法等を挙げることができる。ケトン溶媒と塩化カルシウムとからなる混合物にシクロペンテノロン類(1)を添加する方法が好ましい。
【0017】
本反応における反応温度は、通常、0℃〜(ケトン溶媒の沸点または100℃の何れか低い方)の範囲であるが、反応速度と精製シクロペンテノロン類(1)の着色防止の点から好ましくは0〜70℃であり、更に好ましくは10〜60℃である。また反応時間は、反応温度、ケトン溶媒種等により変わるが、通常2〜24時間で付加物生成の目的は達成される。反応時、例えば、塩化カルシウムに対し0.1〜10重量%程度、好ましくは0.2〜8重量%程度の水または低級アルコール(メタノール、エタノール等)を共存させることによって反応を促進することもできる。
【0018】
次に、このようにして得られたシクロペンテノロン類(1)・塩化カルシウム付加物をろ過などの操作により分離取得し、これを分解することにより高純度のシクロペンテノロン類(1)を得ることができる。
【0019】
分離取得は、本反応により沈澱物として生成する付加物をろ過するだけでよい。また、ろ過においては、前記ケトン溶媒や、ベンゼン、トルエン等の芳香族炭化水素溶媒、ヘプタン、ヘキサン等の脂肪族炭化水素溶媒、酢酸エチル等のエステル溶媒等の有機溶媒で該付加物を洗浄して付加物に付着するろ液を除くこともできる。
【0020】
また、この付加物の分解は、該付加物に単に水を加えるだけでよいが、若干の酸やアルカリを含む水を加えてもよい。分離してくるシクロペンテノロン類(1)を有機溶媒で抽出することにより効率よく、シクロペンテノロン類(1)を該有機溶媒中に回収することができる。必要により該有機溶媒を除去することにより精製シクロペンテノロン類(1)として単離することもできるが、該有機溶媒がその目的に適するものであれば、必要により水分除去等の処理後、精製シクロペンテノロン類(1)の該有機溶媒溶液として、例えばピレスロイド系化合物製造用原料として使用できる。
【0021】
このようにして塩化カルシウムを多量に使用しなくとも、純度75〜85%程度の粗シクロペンテノロン類(1)を純度95%程度以上のものとすることができ、またシクロペンテノロン類(1)の回収率も良好である。
【0022】
【実施例】
以下に実施例で本発明をさらに詳しく説明する。
尚、純度は内標物質を用いたガスクロマトグラフイー定量分析による。
【0023】
実施例1
予め、乾燥した粒状無水塩化カルシウム32.3g(0.291モル)及び水0.97gを56gのメチルイソブチルケトン中に添加・混合後、該混合物中に純度86.6%の粗2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン46.2g(0.266モル)を10℃で添加し、同温度で2時間撹拌したのち昇温し、25℃で4時間撹拌を継続した。得られる反応混合物にメチルイソブチルケトン54gを加えたのち、グラスフィルターを用いてろ過し、ろ過残渣をフィルター上でメチルイソブチルケトンを用いて洗浄した。得られるケーキを分液ロート中に入れ、そこに酢酸エチル60g及び水60gを加えて抽出し、有機相▲1▼及び水相▲1▼を得た。水相▲1▼を、酢酸エチル50gを用いて抽出し、有機相▲2▼を得た。有機相▲1▼及び有機相▲2▼を合わせて食塩水で洗浄後、減圧濃縮することにより、精製2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン38.5g(純度96.9%)を得た。回収率93.4%。
【0024】
実施例2
予め、乾燥した粒状無水塩化カルシウム32.3g(0.291モル)及び水0.97gを56gのジプロピルケトン中に添加・混合後、該混合物中に純度86.6%の粗2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン46.2g(0.266モル)を10℃で添加し、同温度で2時間撹拌したのち昇温し、25℃で4時間撹拌を継続した。得られる反応混合物にジプロピルケトン54gを加えたのち、グラスフィルターを用いてろ過し、ろ過残渣をフィルター上でメチルイソブチルケトンを用いて洗浄した。得られたケーキを実施例1と同様にして実験を行い、精製2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン36.9g(純度97.3%)を得た。回収率89.7%。
【0025】
実施例3
ジプロピルケトンに代えてメチルブチルケトンを用いた以外は実施例2と同様にして実験を行い、精製2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン38.5g(純度97.1%)を得た。回収率93.5%。
【0026】
実施例4
水分を3.8%含有する粒状無水塩化カルシウム23.5g(0.204モル)を80gのメチルイソブチルケトン中に添加・混合後、該混合物中に純度86.7%の粗2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン30.0g(0.173モル)を50℃で、2時間かけて添加し、同温度で4時間撹拌した。得られる反応混合物を、グラスフィルターを用いてろ過し、ろ過残渣をフィルター上でメチルイソブチルケトンを用いて洗浄した。得られるケーキを分液ロート中に入れ、そこに水48gを加えて抽出し、有機相▲1▼及び水相▲1▼を得た。水相▲1▼を、メチルイソブチルケトン90gを用いて抽出し、有機相▲2▼を得た。有機相▲1▼及び有機相▲2▼を合わせて食塩水で洗浄後、減圧濃縮することにより、精製2−プロパルギル−3−メチル−4−ヒドロキシ−2−シクロペンテン−1−オン24.81g(純度96.4%)を得た。回収率92.0%。
【0027】
【発明の効果】
本発明の精製法によれば、熱的に不安定なシクロペンテノロンを極めて簡便に且つ効率よく高純度化することが可能になり、特に工業的規模で実施する際には操作性および経済性の面において極めて有利である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying cyclopentenolones.
[0002]
[Background Art and Problems to be Solved by the Invention]
Cyclopentenolones are compounds that are useful as intermediates for pyrethroid insecticides, such as arelothrone, and are converted into various insecticidal compounds by esterification with various chrysanthemum acids including primary chrysanthemum acid. Can lead.
[0003]
However, if the purity of the cyclopentenolone used at this time is low, the esterification reaction is inhibited, and the purity of the produced pyrethroid is adversely affected. The raw material cyclopentenolones are required to have a considerably high purity. However, cyclopentenolones obtained by ordinary production methods contain many impurities having a low boiling point or high boiling point and must be purified by some kind of purification method. For this reason, precision fractional distillation has been conventionally performed. It was. However, precision fractionation has equipment limitations that require a high number of rectification towers, and in the case of a large amount of processing, especially in batch rectification, it takes a long time, so it is unstable to heat. There are various disadvantages in industrial implementation, such as inability to apply to compounds.
[0004]
In general, cyclopentenolones have a reactive functional group such as a carbonyl group, a hydroxyl group, and an unsaturated bond in the molecule, and therefore are thermally unstable and are not suitable for fractional distillation. Yes, as a purification method that does not rely on fractional fractionation, cyclopentenolones use the property of forming adducts with calcium chloride. After separating and acquiring the adducts, the adducts are decomposed to obtain high purity. A method for obtaining a cyclopentenolone is known (Japanese Patent Publication No. 1-53263). Although this method is excellent in convenience, efficiency, operability, etc., in order to recover cyclopentenolones at a high rate, it is necessary to make the amount of calcium chloride relatively large. It was.
[0005]
[Means for Solving the Problems]
Under such circumstances, the present inventor has studied a more efficient method for purifying cyclopentenolones, and as a result, the adduct formation between cyclopentenolones and calcium chloride is performed in the presence of a specific solvent. Thus, the present inventors have found that purification of cyclopentenolones can be performed with high purity and high recovery without using a large amount of calcium chloride.
[0006]
That is, the present invention relates to the general formula (1)
Figure 0004100007
(Wherein R 1 represents an alkyl group, an alkenyl group, an alkynyl group or an aralkyl group, and R 2 represents a hydrogen atom or an alkyl group.)
The cyclopentenolones (1) and calcium chloride adducts produced are separated by reacting the cyclopentenolones (hereinafter referred to as cyclopentenolones (1)) and calcium chloride in the presence of a ketone solvent. The present invention provides a method for purifying cyclopentenolones (hereinafter referred to as the present method), which is obtained and then decomposed to recover cyclopentenolones.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the cyclopentenolones (1), specific examples of the substituent R 1 include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl groups, alkenyl such as allyl and α-methylallyl. Alkynyl groups such as a group, propargyl group and α-methylpropargyl group, and aralkyl groups such as benzyl group.
[0008]
Specific examples of R 2 include a hydrogen atom, an alkyl group such as a methyl group and an ethyl group.
[0009]
Raw material cyclopentenolones (1) (hereinafter, referred to as crude cyclopentenolones (1) used in this method. The cyclopentenolones (1) obtained by this method are also referred to as crude cyclopentenolones ( In order to distinguish from 1), the purified cyclopentenolones (1) may be referred to as a method by a rearrangement reaction of furfuryl alcohol (Japanese Examined Patent Publication Nos. 61-26975 and 62-52735). And cyclopentenolones obtained by a method using an intramolecular aldol condensation reaction of a diketo alcohol (J. Am. Chem. Soc., 71, 1517 (1949), etc.). The purity of (1) is usually about 75 to 85% by weight.
[0010]
In this method, it is necessary to carry out an adduct formation reaction between cyclopentenolones (1) and calcium chloride (hereinafter referred to as this reaction) in the presence of a ketone solvent.
[0011]
Examples of the ketone solvent include aliphatic ketones such as dialkyl ketones and cycloalkanones. For example, acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl s-butyl ketone, pinacolone, methyl pentyl ketone, methyl isopentyl ketone, methyl neopentyl ketone, diethyl ketone, ethyl propyl ketone, Di (C1-C5) alkyl ketones such as ethyl isopropyl ketone, ethyl butyl ketone, ethyl isobutyl ketone, ethyl t-butyl ketone, dipropyl ketone, diisopropyl ketone, propyl isopropyl ketone; cyclobutanone, cyclopentanone, 2-methylcyclopentanone 3-methylcyclopentanone, 2-ethylcyclopentanone, 3-ethylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, - methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, etc. (C4 to C7) can be exemplified cycloalkanone like. Of these, ketones having 6 or 7 carbon atoms are preferred, and methyl butyl ketone, methyl isobutyl ketone and dipropyl ketone are more preferred.
[0012]
The ketone solvent may be a mixture of two or more.
[0013]
The amount of the ketone solvent used in this reaction is usually 1 to 10 times by weight, preferably 1 to 5 times by weight, relative to the cyclopentenolone (1). In this reaction, a solvent other than the ketone solvent, for example, benzene, toluene, hexane, heptane and the like can be further added to form a mixed solvent with the ketone solvent. The proportion is at least 75% by weight or more, preferably 90% by weight or more, and it is more preferable to use substantially the ketone solvent alone.
[0014]
In this method, both anhydrous and water-containing calcium chloride can be used as the calcium chloride, but the moisture in the calcium chloride is usually 10% by weight or less, preferably 7% by weight or less, and commercially available anhydrous calcium chloride is used as it is. You can also. Moreover, you may use this commercial item after adjusting moisture by drying or humidifying suitably as needed.
[0015]
In this method, the amount of calcium chloride used is usually 0.8 to 2 moles, preferably 0.9 to 1.5 moles, based on the cyclopentenolones (1).
[0016]
In addition, as a mixing method in this reaction, a method of adding calcium chloride to a solution composed of cyclopentenolones (1) and a ketone solvent, and a method of adding cyclopentenolones (1) to a mixture composed of a ketone solvent and calcium chloride And the like. A method of adding cyclopentenolones (1) to a mixture comprising a ketone solvent and calcium chloride is preferred.
[0017]
The reaction temperature in this reaction is usually in the range of 0 ° C. to (the boiling point of the ketone solvent or 100 ° C., whichever is lower), but is preferable from the viewpoint of reaction rate and prevention of coloring of the purified cyclopentenolones (1). Is 0 to 70 ° C, more preferably 10 to 60 ° C. The reaction time varies depending on the reaction temperature, ketone solvent species, and the like, but the purpose of producing the adduct is usually achieved in 2 to 24 hours. In the reaction, for example, the reaction may be promoted by coexisting with water or lower alcohol (methanol, ethanol, etc.) of about 0.1 to 10% by weight, preferably about 0.2 to 8% by weight, based on calcium chloride. it can.
[0018]
Next, the cyclopentenolones (1) / calcium chloride adducts thus obtained are separated and obtained by operations such as filtration, and decomposed to obtain high-purity cyclopentenolones (1). be able to.
[0019]
For separation and acquisition, it is only necessary to filter the adduct formed as a precipitate by this reaction. In filtration, the adduct is washed with an organic solvent such as the ketone solvent, an aromatic hydrocarbon solvent such as benzene or toluene, an aliphatic hydrocarbon solvent such as heptane or hexane, or an ester solvent such as ethyl acetate. The filtrate adhering to the adduct can also be removed.
[0020]
In addition, the decomposition of the adduct may be simply adding water to the adduct, but water containing some acid or alkali may be added. The cyclopentenolones (1) can be efficiently recovered by extracting the separated cyclopentenolones (1) with an organic solvent. If necessary, it can be isolated as purified cyclopentenolones (1) by removing the organic solvent, but if the organic solvent is suitable for the purpose, it can be purified after treatment such as water removal if necessary. The organic solvent solution of cyclopentenolones (1) can be used as a raw material for producing a pyrethroid compound, for example.
[0021]
Thus, even if calcium chloride is not used in a large amount, crude cyclopentenolones (1) having a purity of about 75 to 85% can be made to have a purity of about 95% or more, and cyclopentenolones (1 ) Recovery rate is also good.
[0022]
【Example】
The following examples further illustrate the present invention.
Purity is determined by gas chromatographic quantitative analysis using an internal standard substance.
[0023]
Example 1
After adding and mixing 32.3 g (0.291 mol) of dry granular anhydrous calcium chloride and 0.97 g of water in 56 g of methyl isobutyl ketone, crude 2-propargyl having a purity of 86.6% was added to the mixture. 4-Methyl-4-hydroxy-2-cyclopenten-1-one (46.2 g, 0.266 mol) was added at 10 ° C., stirred at the same temperature for 2 hours, warmed up, and stirred at 25 ° C. for 4 hours. Continued. 54 g of methyl isobutyl ketone was added to the resulting reaction mixture, followed by filtration using a glass filter, and the filtration residue was washed on the filter with methyl isobutyl ketone. The obtained cake was put in a separatory funnel, and 60 g of ethyl acetate and 60 g of water were added thereto for extraction to obtain an organic phase (1) and an aqueous phase (1). The aqueous phase (1) was extracted with 50 g of ethyl acetate to obtain the organic phase (2). The organic phase (1) and the organic phase (2) were combined, washed with brine, and concentrated under reduced pressure to obtain 38.5 g of purified 2-propargyl-3-methyl-4-hydroxy-2-cyclopenten-1-one ( Purity 96.9%). Recovery rate 93.4%.
[0024]
Example 2
In advance, 32.3 g (0.291 mol) of dry granular anhydrous calcium chloride and 0.97 g of water were added and mixed in 56 g of dipropyl ketone, and then crude 2-propargyl having a purity of 86.6% was added to the mixture. 4-Methyl-4-hydroxy-2-cyclopenten-1-one (46.2 g, 0.266 mol) was added at 10 ° C., stirred at the same temperature for 2 hours, warmed up, and stirred at 25 ° C. for 4 hours. Continued. 54 g of dipropyl ketone was added to the resulting reaction mixture, followed by filtration using a glass filter, and the filtration residue was washed on the filter with methyl isobutyl ketone. The obtained cake was subjected to an experiment in the same manner as in Example 1 to obtain 36.9 g (purity 97.3%) of purified 2-propargyl-3-methyl-4-hydroxy-2-cyclopenten-1-one. Recovery rate is 89.7%.
[0025]
Example 3
The experiment was carried out in the same manner as in Example 2 except that methyl butyl ketone was used instead of dipropyl ketone, and 38.5 g of purified 2-propargyl-3-methyl-4-hydroxy-2-cyclopenten-1-one (purity) 97.1%). Recovery rate 93.5%.
[0026]
Example 4
After adding and mixing 23.5 g (0.204 mol) of granular anhydrous calcium chloride containing 3.8% of moisture into 80 g of methyl isobutyl ketone, crude 2-propargyl-3 having a purity of 86.7% is added to the mixture. -30.0 g (0.173 mol) of methyl-4-hydroxy-2-cyclopenten-1-one was added at 50 ° C over 2 hours, and the mixture was stirred at the same temperature for 4 hours. The resulting reaction mixture was filtered using a glass filter, and the filtration residue was washed on the filter using methyl isobutyl ketone. The obtained cake was put in a separatory funnel, and 48 g of water was added thereto for extraction to obtain an organic phase (1) and an aqueous phase (1). The aqueous phase (1) was extracted with 90 g of methyl isobutyl ketone to obtain an organic phase (2). The organic phase (1) and the organic phase (2) were combined, washed with brine, and concentrated under reduced pressure to give 24.81 g of purified 2-propargyl-3-methyl-4-hydroxy-2-cyclopenten-1-one ( Purity 96.4%). Recovery rate 92.0%.
[0027]
【The invention's effect】
According to the purification method of the present invention, it is possible to purify thermally unstable cyclopentenolone in a very simple and efficient manner, especially when it is carried out on an industrial scale. This is extremely advantageous.

Claims (5)

一般式(1)
Figure 0004100007
(式中、R1はアルキル基、アルケニル基、アルキニル基またはアラルキル基を表し、R2は水素原子またはアルキル基を表す。)
で示されるシクロペンテノロン類と塩化カルシウムとをケトン溶媒共存下に反応させ、生成するシクロペンテノロン類(1)・塩化カルシウム付加物を分離取得し、次いでこれを分解してシクロペンテノロン類(1)を回収することを特徴とするシクロペンテノロン類の精製方法。
General formula (1)
Figure 0004100007
(Wherein R 1 represents an alkyl group, an alkenyl group, an alkynyl group or an aralkyl group, and R 2 represents a hydrogen atom or an alkyl group.)
Is reacted with calcium chloride in the presence of a ketone solvent to separate and acquire the resulting cyclopentenolones (1) and calcium chloride adduct, and then decompose them to produce cyclopentenolones ( A method for purifying cyclopentenolones, which comprises collecting 1).
塩化カルシウムとして、無水塩化カルシウムを用いる請求項1に記載の方法。The method according to claim 1, wherein anhydrous calcium chloride is used as calcium chloride. ケトン溶媒が、脂肪族ケトンである請求項1または2に記載の方法。The method according to claim 1 or 2, wherein the ketone solvent is an aliphatic ketone. 脂肪族ケトンが、ジアルキルケトンまたはシクロアルカノン類である請求項3に記載の方法。The method according to claim 3, wherein the aliphatic ketone is a dialkyl ketone or a cycloalkanone. ジアルキルケトンが、ジ(C1〜C5)アルキルケトンである請求項4に記載の方法。The process according to claim 4, wherein the dialkyl ketone is a di (C1-C5) alkyl ketone.
JP2002061610A 2002-03-07 2002-03-07 Method for purifying cyclopentenolones Expired - Lifetime JP4100007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061610A JP4100007B2 (en) 2002-03-07 2002-03-07 Method for purifying cyclopentenolones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061610A JP4100007B2 (en) 2002-03-07 2002-03-07 Method for purifying cyclopentenolones

Publications (2)

Publication Number Publication Date
JP2003261497A JP2003261497A (en) 2003-09-16
JP4100007B2 true JP4100007B2 (en) 2008-06-11

Family

ID=28670395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061610A Expired - Lifetime JP4100007B2 (en) 2002-03-07 2002-03-07 Method for purifying cyclopentenolones

Country Status (1)

Country Link
JP (1) JP4100007B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784859B (en) * 2022-12-15 2024-03-26 韶远科技(上海)有限公司 Preparation method of 2-hydroxy-2-cyclopentenone

Also Published As

Publication number Publication date
JP2003261497A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
AU745789B2 (en) A method for producing para-menthane-3,8-diol
US8664450B2 (en) Manufacture of gamma-delta-unsaturated ketones
Hagedorn III et al. Bicyclo [3.3. 0] octane-2, 6-dione and bicyclo [3.3. 0] octa-3, 7-diene-2, 6-dione
JP4100007B2 (en) Method for purifying cyclopentenolones
JP4100003B2 (en) Method for purifying cyclopentenolones
WO2007080470A2 (en) A method for the purification of levetiracetam
EP0230499B1 (en) Process for preparing macrocyclic ketones
EP0093511A1 (en) Method for producing and optically active 2,2-dimethylcyclopropanecarboxylic acid
US3238261A (en) Piperitenone process
JP2002047224A (en) Method for producing highly pure ditrimethylolpropane
JPH0358335B2 (en)
JPH10130192A (en) Production of 2-cycloalken-1-one compounds
EP0065356B1 (en) A method for purification of cyclopentenolones
KR101659624B1 (en) Method for preparation of -thujaplicin
JP3396097B2 (en) Method for producing 4-isopropylcyclohexanecarboxylic acid ester derivative
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one
JP4081619B2 (en) Method for producing optically active 5-hydroxy-2-decenoic acid and method for producing optically active soya lactone
JPS6148815B2 (en)
US2643268A (en) Purification of ortho-methoxyphenylacetone
JPH0155259B2 (en)
JP2002047234A (en) Method for recovering ditrimethylolpropane
SU715580A1 (en) Method of preparing silicon acetylenic carbonylic compounds
JPS5822450B2 (en) Isolongiphoran-3-ol
JP3801508B2 (en) 3-quinuclidinone production method
JPH0822846B2 (en) Method for producing cyclic terpene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4100007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6