JP4099262B2 - Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device - Google Patents

Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device Download PDF

Info

Publication number
JP4099262B2
JP4099262B2 JP14224098A JP14224098A JP4099262B2 JP 4099262 B2 JP4099262 B2 JP 4099262B2 JP 14224098 A JP14224098 A JP 14224098A JP 14224098 A JP14224098 A JP 14224098A JP 4099262 B2 JP4099262 B2 JP 4099262B2
Authority
JP
Japan
Prior art keywords
adhesive layer
light
liquid crystal
optical element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14224098A
Other languages
Japanese (ja)
Other versions
JPH11326637A (en
Inventor
浩太郎 下林
和孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP14224098A priority Critical patent/JP4099262B2/en
Publication of JPH11326637A publication Critical patent/JPH11326637A/en
Application granted granted Critical
Publication of JP4099262B2 publication Critical patent/JP4099262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明の技術分野】
本発明は、直線偏向の散乱拡散性に優れて液晶表示装置等の視認性や輝度等のの向上に好適な光拡散粘着層、及びそれを用いた光学素子に関する。
【0002】
【発明の背景】
従来、光拡散性を示す粘着層としては、粘着層中に屈折率相違の透明微粒子を分散含有させたものが知られていた。かかる粘着層は、等方性の光拡散特性を示し、それを介し偏光板等を液晶表示装置の視認側に接着して表示光を拡散し、液晶表示装置の視野角を拡げることなどを目的に使用される。
【0003】
しかしながら、前記した光拡散性の粘着層を反射型液晶表示装置等に適用した場合、入射時と出射時の拡散光が干渉して画像のにじみやボケが顕著となる問題点があった。また透過型液晶表示装置等に適用した場合には、偏光状態が変化するためか輝度が低下し、特に正面方向の輝度低下が大きい問題点があった。
【0004】
【発明の技術的課題】
本発明は、反射型や透過型の液晶表示装置等に適用した場合にも、表示像のにじみやボケが生じにくく、正面方向の輝度等が低下しにくい光拡散粘着層や光学素子の開発を課題とする。
【0005】
【課題の解決手段】
本発明は、複屈折特性が相違する微小領域を分散含有し、その微小領域と他の部分との屈折率差△n、△nが直線偏光の最大透過率を示す軸方向に直交する方向において0.03以上(△n)で、かつ最大透過率の軸方向において前記△nの80%以下(△n)である粘着層からなることを特徴とする光拡散粘着層、及びポリマー又は液晶の少なくとも1種を配合した粘着剤のシート状成形体に、延伸処理する方式、圧延処理する方式又は電場若しくは磁場の雰囲気に置く方式の1種又は2種以上を適用して前記配合のポリマー又は液晶を配向させて複屈折性の微小領域を形成することを特徴とする前記光拡散粘着層の製造方法を提供するものである。
【0006】
また本発明は、前記の光拡散粘着層と、偏光板又は位相差板等からなる少なくとも1層の光学層との重畳体からなることを特徴とする光学素子、及び前記の光拡散粘着層又は光学素子を液晶セルの片側又は両側に有することを特徴とする液晶表示装置を提供するものである。
【0007】
【発明の効果】
本発明による光拡散粘着層は、当該△n2方向では直線偏光がその偏光状態を良好に維持して透過し、△n2方向と直交する方向(△n1方向)では微小領域と他部分との屈折率差△n1に基づいて直線偏光が散乱されその偏光状態が緩和ないし解消する。従って、偏光板又は光拡散粘着層の△n2方向を透過した直線偏光は、その偏光状態を良好に維持して両方向に透過させることができ、光拡散粘着層の△n1方向を透過した直線偏光は拡散させることができる。
【0008】
前記の結果、例えば光拡散粘着層の当該△n2方向を液晶セルによる黒表示に対応させて、よって直線偏光の振動面が黒表示に直交する白表示には当該△n1方向を対応させて配置することにより、黒表示は拡散なく、白表示は散乱拡散させて表示像を形成できて、コントラストの低下や表示像のボケを抑制できる如く、反射型や透過型の液晶表示装置等に適用しても表示像のにじみやボケが生じにくく、正面方向の輝度等も低下しにくいと共に、表示像も拡散できて広視野角で視認特性に優れる液晶表示装置を得ることができる。
【0009】
【発明の実施形態】
本発明による光拡散粘着層は、複屈折特性が相違する微小領域を分散含有し、その微小領域と他の部分との屈折率差△n1、△n2が直線偏光の最大透過率を示す軸方向に直交する方向において0.03以上(△n1)で、かつ最大透過率の軸方向において前記△n1の80%以下(△n2)である粘着層からなる。
【0010】
本発明による光拡散粘着層の例を図1、図2に示した。1が複屈折特性相違の微小領域eを分散含有する光拡散粘着層であり、2は必要に応じての支持基材である。光拡散粘着層は、図1に例示の如く単層物よりなっていてもよいし、図2に例示の如くかかる光拡散粘着層11,12の重畳体からなっていてもよい。
【0011】
また光拡散粘着層は、図2に例示の如く支持基材2に付設されていてもよい。その場合、光拡散粘着層は、支持基材と強固に密着していてもよいし、支持基材にセパレータ等を用いて他部材への剥離移着が容易な状態に仮着されていてもよい。さらに光拡散粘着層は、支持基材の表裏に設けられていてもよい。
【0012】
光拡散粘着層の形成には、例えばゴム系やアクリル系、シリコーン系やウレタン系、アミド系やポリエステル系、ビニルアルキルエーテル系やポリビニルアルコール系、ポリビニルピロリドン系やポリアクリルアミド系、セルロース系などの適宜な粘着剤を用いることができ、特に限定はない。一般には、ゴム系やアクリル系等の透明性に優れる粘着剤が好ましく用いられる。特に、アクリル系粘着剤の如く成分モノマーの屈折率等の光学特性が明確で、コポリマー化により光学特性を制御しやすいものが好ましく用いうる。
【0013】
複屈折特性が相違する微小領域eを分散含有する光拡散粘着層は、例えば粘着剤にポリマー類や液晶類等の透明性に優れる適宜な材料の1種又は2種以上を配合して、それをキャスティング法や押出成形法、射出成形法やロール成形法、流延成形法などの適宜な方式にてシート状等に展開成形する方法などにより得ることができる。
【0014】
また、モノマー状態で展開しそれを加熱処理や紫外線等の放射線処理などにより重合してシート状に製膜する方式などにても光拡散粘着層を得ることができる。微小領域の均等分布性に優れる光拡散粘着層を得る点などよりは、溶媒を介した材料の混合液をキャスティング法や流延成形法等にてシート状に展開製膜する方式が好ましい。
【0015】
前記の場合、溶媒の種類や混合液の粘度、混合液展開層の乾燥速度などにより微小領域の大きさや分布性などを制御することができる。ちなみに微小領域の小面積化には混合液の低粘度化や混合液展開層の乾燥速度の急速化などが有利である。なおシート状物等の形成に際しては、その展開液に例えば分散剤や界面活性剤、紫外線吸収剤や色調調節剤、難燃剤や離型剤、酸化防止剤などの適宜な添加剤を配合することができる。
【0016】
本発明による光拡散粘着層における複屈折特性相違の微小領域eの形成は、前記した如く粘着層中に光学特性が相違する物質を分散含有させることに基づくが、その微小領域における複屈折特性の制御は、微小領域に複屈折性をもたせうる適宜な方式にて行うことができる。
【0017】
ちなみに前記の微小領域に複屈折性をもたせる方式としては、予め複屈折性を付与した微粒子を粘着剤中に配合する方式等の事前方式、複屈折性を示す又は示さない物質を粘着剤に配合してシート状に成形する際に微小領域を形成する物質を配向させる方式などがあげられる。
【0018】
また、ポリマー類や液晶類等からなる複屈折性を示す又は示さない物質を粘着剤に配合してシート状に成形後、それを電場や磁場等の雰囲気に置く方式、延伸処理する方式、圧延処理する方式等の適宜な方式にて微小領域を形成する物質を配向処理する事後方式などにても微小領域に複屈折性をもたせることができる。
【0019】
微小領域の微細性や均等分布性、当該△n1(△n2)方向の統一性や△n1、△n2方向の直交性などの点よりは、シート状に成形後その微小領域を形成する物質を配向処理する前記した事後方式が好ましい。複屈折性の微小領域の形成には、前記した方式の2種以上を併用することもできる。
【0020】
なお前記の電場や磁場等の雰囲気下にて配向処理する場合、微小領域を形成する物質等に応じてガラス転移点や液晶転移点等の温度以上の雰囲気下に配向処理後、それを冷却して配向状態を固定化する方式なども採ることができる。また延伸処理では、例えば一軸や二軸、逐次二軸やZ軸などの適宜な方式を採ることができる。
【0021】
上記において好ましく用いうる微小領域形成物質は、粘着剤ないしその粘着層中で相分離するものである。かかる相分離方式によれば、微小領域形成物質の分散分布性を容易に制御できて、微小領域の微細性や均等分布性、当該△n1(△n2)方向の統一性などに優れる光拡散粘着層を効率よく得ることができる。なお相分離は、例えば非相溶性の材料を溶媒にて溶液化する方式や、相溶性の材料を加熱溶融下に混合する方式などの適宜な方式で行うことができる。
【0022】
前記した相分離性の微小領域形成物質としては、光拡散粘着層の製造効率などの点より液晶類が特に好ましく用いうる。その液晶類については特に限定はなく、例えばシアノビフェニル系やシアノフェニルシクロヘキサン系、シアノフェニルエステル系や安息香酸フェニルエステル系、フェニルピリミジン系やそれらの混合物の如き室温又は高温でネマチック相やスメクチック相を呈する低分子液晶、あるいは室温又は高温でネマチック相やスメクチック相を呈する液晶ポリマーなどの適宜なものを1種又は2種以上用いうる。
【0023】
一方、上記した微小領域形成用のポリマー類についても特に限定はなく、適宜なものを用いうる。ちなみにその例としては、ポリエチレンテレフタレートやポリエチレンナフタレートの如きポリエステル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)の如きスチレン系ポリマー、ポリエチレンやポリプロピレン、シクロ系ないしノルボルネン構造を有するポリオレフィンやエチレン・プロピレン共重合体の如きオレフィン系ポリマー、カーボネート系ポリマー、ポリメチルメタクリレートの如きアクリル系ポリマー、塩化ビニル系ポリマー、あるいはそれらのブレンド物があげられる。
【0024】
また、二酢酸セルロースや三酢酸セルロースの如きセルロース系ポリマー、ナイロンや芳香族ポリアミドの如きアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、あるいはそれらのブレンド物などもポリマー類の例としてあげられる。前記ポリマー類は、上記した光拡散粘着層の支持基材の形成材としても用いうる。
【0025】
本発明による光拡散粘着層は、微小領域とその他の部分との屈折率差△n1、△n2が直線偏光の最大透過率を示す軸方向に直交する方向において0.03以上(△n1)であり、かつその最大透過率の軸方向において前記△n1の80%以下(△n2)に制御したものである。かかる屈折率差とすることにより、△n1方向での散乱性に優れ、△n2方向での偏光状態の維持性に優れるものとすることができる。
【0026】
散乱性やそれによる偏光状態の変換性ないし解消性などの点より△n1方向における屈折率差△n1は、大きいほど好ましく、0.05以上、就中0.07以上、特に0.1以上の屈折率差△n1であることが好ましい。一方、偏光状態の維持性などの点より△n2方向における屈折率差△n2は、小さいほど好ましく、0.03以下、就中0.02以下、特に0.01以下の屈折率差△n2であることが好ましい。
【0027】
従って上記した延伸処理等の微小領域に複屈折性をもたせる操作は、光拡散粘着層における微小領域とその他の部分との屈折率差を△n1方向において大きくする操作、又は△n2方向において小さくする操作、あるいはそれらの両方を達成する操作として位置付けることもできる。
【0028】
光拡散粘着層における微小領域は、前記散乱効果等の均質性などの点より可及的に均等に分散分布していることが好ましい。また微小領域の大きさも可及的に均等であることが好ましい。液晶表示装置等に適用した場合の後方反射によるコントラストの低下防止や波長依存による着色防止等の視認特性の向上などの点より、微小領域における△n1方向の好ましい長さは、0.05〜500μm、就中0.1〜250μm、特に1〜100μmである。なお微小領域の△n2方向の長さについては特に限定はない。
【0029】
前記において微小領域が通例ドメインの状態で光拡散粘着層中に存在する点よりは、大きさが0.05〜500μm2、就中0.1〜300μm2、特に1〜100μm2の微小領域であることが一般的に好ましい。
【0030】
光拡散粘着層に占める微小領域の割合は、△n1方向の散乱性などの点より適宜に決定しうるが、一般には光拡散粘着層の片表面における微小領域の表面積割合に基づいて1〜95%、就中5〜80%、特に10〜70%とされる。
【0031】
光拡散粘着層の厚さは、光拡散性などに応じて適宜に決定しうるが、一般には1μm〜3mm、就中5μm〜1mm、特に10〜500μmとされる。かかる厚さは、図2に例示の如く光拡散粘着層11,12の2層又は3層以上の重畳体として達成することもできる。
【0032】
光拡散粘着層の重畳化は、厚さ増加以上の相乗的な散乱効果を発揮させうる点などよりも有利である。その場合、重畳処理は散乱効果の拡大などの点より△n1方向が上下の層で平行関係となるように行うことが好ましい。
【0033】
重畳する光拡散粘着層は、△n1又は△n2が同じものであってもよいし、異なるものであってもよい。なお△n1方向等における上下の層での平行関係は、可及的に平行であることが好ましいが、作業誤差によるズレなどは許容される。また△n1方向等にバラツキがある場合には、その平均方向に基づく。
【0034】
本発明による光拡散粘着層は、従来の光拡散板に準じた適宜な目的に用いることができ、その実用に際しては光学層と重畳した光学素子として用いることもできる。その光学素子の例を図3、図4に示した。図3の例では光拡散粘着層1と偏光板3との重畳体を示しており、図4の例ではさらに位相差板4を付加した重畳体を示している。
【0035】
光学素子を形成する光学層については、特に限定はなく、例えば偏光板や位相差板、導光板等のバックライトや反射板、多層膜等からなる偏光分離板や液晶セル、防眩処理層や反射防止層などの適宜な光学層であってよい。
【0036】
ちなみに偏光板としては、吸収型や散乱型や反射型等の各種タイプの適宜なものを用いうる。その具体例としては、ポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて延伸した吸収型タイプの偏光板、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルムがあげられる。
【0037】
また前記偏光フィルムの片面又は両面に耐水性等の保護目的で、プラスチックの塗布層やフィルムのラミネート層等からなる透明保護層を設けた保護タイプの偏光板もあげられる。さらに前記の透明保護層に、例えば平均粒径が0.5〜5μmのシリカやアルミナ、チタニアやジルコニア、酸化錫や酸化インジウム、酸化カドミウムや酸化アンチモン等の導電性のこともある無機系微粒子、架橋又は未架橋ポリマー等の有機系微粒子等の透明微粒子を含有させて表面に微細凹凸構造を付与した散乱型タイプの偏光板もあげられる。
【0038】
加えて、表面に微細凹凸構造を付与したものであることもある前記の透明保護層に、例えば金属の蒸着層やメッキ層、金属粉末含有の樹脂層や金属箔などからなる反射層を付設した反射型タイプの偏光板などもあげられる。なお偏光板としては、輝度やコントラストの向上を図る点などより、上記した二色性物質含有の吸収型偏光板などの如く偏光度の高いもの就中、光透過率が40%以上で、偏光度が95.0%以上、特に99%以上のものが好ましく用いられる。
【0039】
一方、位相差板の例としては、上記の光拡散粘着層で例示したポリマー類からなる延伸フィルムや液晶ポリマー、就中、捩じれ配向の液晶ポリマーなどからなるものがあげられる。用いる位相差板は、例えば1/4波長板や1/2波長板、一軸や二軸等による延伸フィルムタイプ、さらに厚さ方向にも分子配向させた傾斜延伸フィルムタイプ、液晶ポリマータイプ、視野角や複屈折による位相差を補償するタイプ、それらを積層したタイプのものなどの各種のものを用いうる。
【0040】
また導光板の例としては、透明な樹脂板の側面に(冷,熱)陰極管等の線状光源や発光ダイオード、EL等の光源を配置し、その樹脂板に板内を伝送される光を拡散や反射、回折や干渉等により板の片面側に出射するようにしたものなどがあげられる。導光板を含む光学素子の形成に際しては、光の出射方向を制御するためのプリズムシート等からなるプリズムアレイ層、均一な発光を得るための拡散板、線状光源からの出射光を導光板の側面に導くための光源ホルダなどの補助手段を導光板の上下面や側面などの所定位置に必要に応じ1層又は2層以上を配置して適宜な組合せ体とすることができる。反射板としては、上記した反射型偏光板で例示した反射板ないし反射層などがあげられる。
【0041】
防眩処理層は、液晶表示層等を視認する場合に、その表面で外光が反射して表示像の視認を阻害することの防止などを目的に付設されるものである。防眩処理層(ノングレア層)は、例えば透明微粒子の含有による表面微細凹凸構造の樹脂シート、サンドブラスト加工やエンボス加工による表面微細凹凸構造シート等の如く適宜な方式で表面を微細凹凸構造化したものなどとして得ることができる。
【0042】
反射防止膜は、光拡散粘着層ないし液晶セルを透過する光の反射損の防止や、前記の防眩処理層と同様に、光拡散粘着層ないし液晶表示層等に入射する光の表面反射による視認阻害の防止などを目的に付設されるものであり、例えばシート等に干渉性の単層又は多層の蒸着膜を付与する方式などにより形成される。
【0043】
本発明による光学素子を形成する重畳体は、上記の如く光学層を1種又は2種以上用いたものであってもよい。また例えば位相差板等の同種の光学層を2層以上積層したものであってもよい。その場合、光学層の特性は同じであってもよいし、相違していてもよい。
【0044】
光学素子を形成する光拡散粘着層は、光学層の片面や両面、重畳体の片外面や両外面などの光学素子の内部や外部の適宜な位置に1層又は2層以上が配置されていてよい。光学素子に2層以上の光拡散粘着層を設ける場合には、上記した光拡散粘着層を重畳するときに準じて、光拡散粘着層の△n1方向が上下の層で平行関係となるように配置することが光散乱特性などの点より好ましい。
【0045】
光学素子を形成する偏光板等の光学層の配置位置は、使用目的等に応じて適宜に決定しうる。なお図4において位相差板4の外表面に位置する光拡散粘着層1は、他の部材との接着を目的とするものであり、必要に応じセパレータなどを仮着して実用に供するまでの間、被覆保護することもできる。
【0046】
本発明において偏光板を有する光学素子とする場合、光拡散粘着層と偏光板の配置関係は、光拡散粘着層の透過・散乱特性を有効に活用する点などより、図5に矢印で例示した如く、光拡散粘着層1の△n1方向と偏光板3の透過軸Tとが平行関係となるように配置することが好ましい。その平行関係は、上記した光拡散粘着層を重畳する場合に準じうる。
【0047】
前記により、偏光板又は光拡散粘着層の△n2方向を透過した直線偏光をその偏光状態を良好に維持した状態で両方向に透過させることができると共に、光拡散粘着層の△n1方向を透過した直線偏光を散乱拡散でき、液晶セルによる黒表示に当該△n2方向を対応させた、従って直線偏光の振動面が黒表示に直交する白表示には当該△n1方向を対応させた光拡散粘着層の配置にて、黒表示は拡散なく、白表示は散乱拡散させた表示像を形成することができる。
【0048】
本発明による光拡散粘着層や光学素子は、上記した特長を有することより透過型や反射型、あるいは透過・反射両用の液晶表示装置の形成などに好ましく用いうる。その液晶表示装置の例を図6、図7に示した。3,31が偏光板、4が位相差板、5が液晶セル、7が反射板であり、6は接着層である。図6は透過型のものを例示しており、図7は反射型のものを例示している。なお図6の透過型液晶表示装置においては、偏光板31側の視認背面側に通例配置されるバックライトシステムの図示が省略されている。
【0049】
図例において光拡散粘着層1と偏光板3は、その△n1方向と透過軸Tが液晶セル5の黒表示に対応するように配置されている。なお図例では、液晶セル5の視認側に光拡散粘着層1を内側にして偏光板3や位相差板4が配置されており、この配置関係が視認特性などの点より一般に好ましいが、例えば透過型では液晶セル5の視認背面側に光拡散粘着層を配置する方式などの如く、光拡散粘着層の配置位置は、適宜に決定することができる。
【0050】
液晶表示装置は一般に、偏光板、液晶セル、反射板又はバックライト、及び必要に応じてのその他の光学層等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成される。本発明においては、上記した光拡散粘着層又は光学素子を用いる点を除いて特に限定はなく、従来に準じて形成することができる。
【0051】
従って液晶表示装置の形成に際しては、上記した光学素子の如く、例えば視認側の表面に設ける防眩処理層や反射防止膜、保護層や保護板、あるいは液晶セルと視認側等の偏光板の間に設ける位相差補償板などの適宜な光学層を適宜な位置に1層又は2層以上配置することができる。
【0052】
前記の位相差補償板は、複屈折の波長依存性などを補償して視認性を向上させることなどを目的とするものであり、視認側又は/及び視認背面側の偏光板と液晶セルの間等に配置される。なお位相差補償板としては、波長域などに応じて上記した位相差板などの適宜なものを用いうる。また位相差補償板は、2層以上の位相差層からなっていてもよい。
【0053】
【実施例】
実施例1
イソプレン系粘着剤300部(重量部、以下同じ)を含有する18重量%ジクロロメタン溶液とシアノ系ネマチック液晶(チッソ社製、GR−41)100部を混合し、それをキャスト法にて展開後40℃でシート形状を維持しうる状態に乾燥して、超電導磁石を用い磁力線の向きから所定角度傾けて配向処理し、それを110℃で加熱硬化させて厚さ20μmの光拡散粘着シートを得た。この粘着シートは、屈折率差△n1が0.21で、△n2が0.03であった。
【0054】
実施例2
イソプレン系粘着剤に代えて、アクリル系粘着剤300部にイソシアネート系架橋剤5部を配合したものを用いたほかは実施例1に準じて、屈折率差△n1が0.20で、△n2が0.02の光拡散粘着シートを得た。
【0055】
実施例3
イソプレン系粘着剤に代えて、アクリル系粘着剤300部に紫外線開始剤系架橋剤5部を配合したものを用いて紫外線照射により硬化させたほかは実施例1に準じて、屈折率差△n1が0.19で、△n2が0.01の光拡散粘着シートを得た。
【0056】
実施例4
磁場に代えて、コロナ放電による電場にて配向処理したほかは実施例3に準じて、屈折率差△n1が0.19で、△n2が0.01の光拡散粘着シートを得た。
【0057】
比較例1
イソプレン系粘着剤にシリカ微粉末を分散含有させてなる厚さ20μmの光拡散粘着シートを用いた。
【0058】
比較例2
イソプレン系粘着剤にアルミナ微粉末を分散含有させてなる厚さ20μmの光拡散粘着シートを用いた。
【0059】
評価試験
実施例、比較例で得た光拡散粘着シートを市販の全光線透過率が41%で透過光の偏光度が99%の偏光板に△1方向と透過軸が一致するように接着して光学素子を得、その全光線透過率、拡散透過率、ヘイズをASTM D1003−61に準拠してポイック積分球式ヘイズメータにて測定した。また液晶表示装置での黒表示時の擬似的評価として、クロスニコルに配置した前記偏光板の間に光拡散粘着シートを配置し、ヘイズメータにて全光線透過率を測定して漏れ光を調べた。
【0060】
前記の結果を次表に示した。

Figure 0004099262

【図面の簡単な説明】
【図1】光拡散粘着層例の断面図
【図2】他の光拡散粘着層例の断面図
【図3】光学素子例の断面図
【図4】他の光学素子例の断面図
【図5】光拡散粘着板と偏光板の配置関係の説明図
【図6】液晶表示装置例の断面図
【図7】他の液晶表示装置例の断面図
【符号の説明】
1,11,12:光拡散粘着層
e:微小領域
3,31:偏光板
4:位相差板
5:液晶セル
7:反射板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light diffusing pressure-sensitive adhesive layer that is excellent in linear diffusion scattering diffusivity and suitable for improving the visibility and brightness of a liquid crystal display device, etc., and an optical element using the same.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, as an adhesive layer exhibiting light diffusivity, one in which transparent fine particles having different refractive indexes are dispersed and contained in the adhesive layer has been known. Such an adhesive layer has an isotropic light diffusing property, and a polarizing plate or the like is bonded to the viewing side of the liquid crystal display device through it to diffuse display light, thereby widening the viewing angle of the liquid crystal display device. Used for.
[0003]
However, when the above-described light diffusive adhesive layer is applied to a reflection type liquid crystal display device or the like, there is a problem in that the diffused light at the time of incidence and the light at the time of interference interfere with each other, causing blurring and blurring of the image. In addition, when applied to a transmissive liquid crystal display device or the like, there is a problem that the luminance is lowered because the polarization state is changed, and the luminance is particularly lowered in the front direction.
[0004]
[Technical Problem of the Invention]
The present invention develops a light diffusing adhesive layer and an optical element that are less likely to cause blurring and blurring of a display image and less to reduce the luminance in the front direction even when applied to a reflective or transmissive liquid crystal display device. Let it be an issue.
[0005]
[Means for solving problems]
In the present invention, minute regions having different birefringence characteristics are dispersedly contained, and refractive index differences Δn 1 and Δn 2 between the minute regions and other parts are orthogonal to the axial direction indicating the maximum transmittance of linearly polarized light. A light-diffusing adhesive layer comprising an adhesive layer that is 0.03 or more (Δn 1 ) in the direction and 80% or less (Δn 2 ) of the Δn 1 in the axial direction of maximum transmittance ; And a pressure-sensitive adhesive sheet-form molded body containing at least one of polymer and liquid crystal by applying one or more of a stretching method, a rolling method, or a method of placing in an electric or magnetic field atmosphere The present invention provides a method for producing the light diffusing adhesive layer, characterized by orienting a blended polymer or liquid crystal to form a birefringent microregion .
[0006]
The present invention also includes an optical element comprising the light diffusion adhesive layer and at least one optical layer composed of a polarizing plate or a retardation plate, and the light diffusion adhesive layer or A liquid crystal display device having an optical element on one side or both sides of a liquid crystal cell is provided.
[0007]
【The invention's effect】
Light diffusing adhesive layer according to the present invention, the △ n in two directions linearly polarized light transmitted while maintaining its polarization state well, △ n 2 direction perpendicular to the direction (△ n 1 direction) in minute regions and another portion The linearly polarized light is scattered on the basis of the refractive index difference Δn 1 with respect to and the polarization state is relaxed or eliminated. Accordingly, the linearly polarized light transmitted through the Δn 2 direction of the polarizing plate or the light diffusion adhesive layer can be transmitted in both directions while maintaining its polarization state well, and transmitted through the Δn 1 direction of the light diffusion adhesive layer. Linearly polarized light can be diffused.
[0008]
As a result, for example, the Δn 2 direction of the light diffusion adhesive layer is made to correspond to black display by the liquid crystal cell, and thus the Δn 1 direction is made to correspond to white display in which the plane of vibration of linearly polarized light is orthogonal to the black display. By disposing the display, the black display is not diffused, the white display is scattered and diffused to form a display image, and a reduction in contrast and blurring of the display image can be suppressed. Even if it is applied, it is difficult to cause blurring or blurring of the display image, and it is difficult to reduce the brightness in the front direction, etc., and the display image can be diffused, and a liquid crystal display device having a wide viewing angle and excellent visual characteristics can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The light diffusing adhesive layer according to the present invention contains minute regions having different birefringence characteristics in a dispersed manner, and refractive index differences Δn 1 and Δn 2 between the minute regions and other parts indicate the maximum transmittance of linearly polarized light. The adhesive layer is 0.03 or more (Δn 1 ) in the direction orthogonal to the axial direction and 80% or less (Δn 2 ) of Δn 1 in the axial direction of maximum transmittance.
[0010]
Examples of the light diffusion adhesive layer according to the present invention are shown in FIGS. 1 is a light diffusing pressure-sensitive adhesive layer containing dispersed microregions e having different birefringence characteristics, and 2 is a supporting substrate as required. The light diffusion adhesive layer may be composed of a single layer as illustrated in FIG. 1, or may be composed of a superposed body of such light diffusion adhesive layers 11 and 12 as illustrated in FIG.
[0011]
Moreover, the light-diffusion adhesive layer may be attached to the support base material 2 as illustrated in FIG. In that case, the light diffusing adhesive layer may be firmly adhered to the supporting base material, or may be temporarily attached to the supporting base material so as to be easily peeled and transferred to other members using a separator or the like. Good. Furthermore, the light diffusion adhesive layer may be provided on the front and back of the support base material.
[0012]
For the formation of the light diffusion adhesive layer, for example, rubber type, acrylic type, silicone type, urethane type, amide type, polyester type, vinyl alkyl ether type, polyvinyl alcohol type, polyvinyl pyrrolidone type, polyacrylamide type, cellulose type, etc. There are no particular limitations on the pressure-sensitive adhesive. In general, an adhesive having excellent transparency such as rubber or acrylic is preferably used. In particular, like an acrylic pressure-sensitive adhesive, those having clear optical characteristics such as the refractive index of the component monomer and easily controlling the optical characteristics by copolymerization can be preferably used.
[0013]
The light diffusing pressure-sensitive adhesive layer containing microregions e having different birefringence characteristics is prepared by blending, for example, one or more suitable materials excellent in transparency, such as polymers and liquid crystals, into the pressure-sensitive adhesive. Can be obtained by a method of expanding and forming into a sheet or the like by an appropriate method such as a casting method, an extrusion molding method, an injection molding method, a roll molding method, or a casting molding method.
[0014]
Moreover, a light-diffusion adhesive layer can also be obtained by a method of developing in a monomer state and polymerizing it by heat treatment or radiation treatment such as ultraviolet rays to form a sheet. From the viewpoint of obtaining a light diffusion adhesive layer excellent in uniform distribution of minute regions, a method of developing and forming a mixed solution of materials via a solvent into a sheet by casting or casting is preferred.
[0015]
In the above case, the size and distribution of the microregion can be controlled by the type of solvent, the viscosity of the liquid mixture, the drying speed of the liquid mixture developing layer, and the like. Incidentally, to reduce the area of the minute region, it is advantageous to reduce the viscosity of the mixed liquid or to accelerate the drying speed of the mixed liquid spreading layer. When forming a sheet or the like, an appropriate additive such as a dispersant, a surfactant, a UV absorber, a color tone modifier, a flame retardant, a release agent, or an antioxidant is added to the developing solution. Can do.
[0016]
The formation of the micro region e having different birefringence characteristics in the light diffusing adhesive layer according to the present invention is based on the dispersion of substances having different optical characteristics in the adhesive layer as described above. The control can be performed by an appropriate method capable of giving birefringence to a minute region.
[0017]
By the way, as a method to give birefringence to the above-mentioned minute region, a pre-method such as a method of blending fine birefringence fine particles in advance in the adhesive, a substance showing or not showing birefringence is mixed in the adhesive For example, a method of orienting a substance that forms a minute region when forming into a sheet shape can be used.
[0018]
In addition, after blending a material that shows or does not show birefringence , such as polymers and liquid crystals, into an adhesive, it is molded into a sheet, and then placed in an atmosphere such as an electric field or magnetic field. Birefringence can be imparted to the minute region even by a post-treatment method or the like in which a substance that forms the minute region is oriented by an appropriate method such as a processing method.
[0019]
From the viewpoint of the fineness and uniform distribution of the micro area, the uniformity of the Δn 1 (Δn 2 ) direction and the orthogonality of the Δn 1 and Δn 2 directions, the micro area is formed after being formed into a sheet shape. The above-described posterior method in which the substance to be formed is subjected to orientation treatment is preferable. Two or more of the above-described methods can be used in combination for forming the birefringent minute region.
[0020]
In the case where the alignment treatment is performed in an atmosphere such as an electric field or a magnetic field, the alignment treatment is performed in an atmosphere having a temperature higher than a glass transition point, a liquid crystal transition point, etc. Thus, a method of fixing the orientation state can also be adopted. In the stretching process, for example, an appropriate method such as uniaxial or biaxial, sequential biaxial or Z-axis can be adopted.
[0021]
The micro-region forming substance that can be preferably used in the above is a pressure-sensitive adhesive or a substance that undergoes phase separation in the pressure-sensitive adhesive layer. According to such a phase separation method, the dispersion distribution of the micro-region forming substance can be easily controlled, and light having excellent micro-region fineness and uniform distribution, uniformity in the Δn 1 (Δn 2 ) direction, and the like. A diffusion adhesive layer can be obtained efficiently. The phase separation can be performed by an appropriate method such as a method in which an incompatible material is made into a solution with a solvent, or a method in which a compatible material is mixed under heating and melting.
[0022]
As the above-described phase-separating microregion-forming substance, liquid crystals can be particularly preferably used from the viewpoint of the production efficiency of the light diffusion adhesive layer. There is no particular limitation on the liquid crystal, and for example, nematic or smectic phases such as cyanobiphenyl, cyanophenylcyclohexane, cyanophenyl ester, benzoic acid phenyl ester, phenylpyrimidine, and mixtures thereof can be used at room temperature or high temperature. One kind or two or more kinds of suitable low molecular liquid crystals or liquid crystal polymers exhibiting a nematic phase or a smectic phase at room temperature or high temperature can be used.
[0023]
On the other hand, there is no particular limitation on the above-mentioned polymers for forming a microregion, and any suitable polymer can be used. Examples include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin), polyethylene and polypropylene, polyolefins having a cyclo or norbornene structure, and ethylene. An olefin polymer such as a propylene copolymer, a carbonate polymer, an acrylic polymer such as polymethyl methacrylate, a vinyl chloride polymer, or a blend thereof.
[0024]
Cellulose polymers such as cellulose diacetate and cellulose triacetate, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenylene sulfide polymers Examples of polymers include polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, and blends thereof. The polymers can also be used as a material for forming the support base material of the light diffusion adhesive layer described above.
[0025]
The light diffusion adhesive layer according to the present invention has a refractive index difference Δn 1 , Δn 2 of 0.03 or more (Δn) in a direction orthogonal to the axial direction indicating the maximum transmittance of linearly polarized light. 1 ) and controlled to 80% or less (Δn 2 ) of Δn 1 in the axial direction of the maximum transmittance. By setting such a difference in refractive index, the scattering property in the Δn 1 direction is excellent, and the polarization state maintaining property in the Δn 2 direction is excellent.
[0026]
The refractive index difference Δn 1 in the Δn 1 direction is preferably as large as possible from the viewpoints of scattering properties and conversion or cancellation of the polarization state, and is preferably 0.05 or more, particularly 0.07 or more, particularly 0.1. The refractive index difference Δn 1 is preferred. On the other hand, the refractive index difference Δn 2 in the Δn 2 direction is preferably as small as possible from the standpoint of maintaining the polarization state, etc., and is preferably 0.03 or less, more preferably 0.02 or less, particularly 0.01 or less. n 2 is preferred.
[0027]
Therefore, the operation of giving the birefringence to the minute region such as the stretching treatment described above is an operation of increasing the refractive index difference between the minute region and the other part in the light diffusion adhesive layer in the Δn 1 direction, or in the Δn 2 direction. It can also be positioned as an operation to achieve a reduction operation or both.
[0028]
It is preferable that the minute regions in the light diffusing adhesive layer are distributed and distributed as evenly as possible from the viewpoint of homogeneity such as the scattering effect. Moreover, it is preferable that the size of the minute region is as uniform as possible. The preferred length in the Δn 1 direction in the minute region is from 0.05 to 0.05, from the viewpoint of preventing the deterioration of contrast due to back reflection when applied to a liquid crystal display device or the like and improving the visual characteristics such as coloration prevention due to wavelength dependence. 500 μm, especially 0.1 to 250 μm, in particular 1 to 100 μm. There is no particular limitation on the length of the minute region in the Δn 2 direction.
[0029]
Than that present in the light-diffusing adhesive layer in a state of minute areas customary domain in said, magnitude 0.05 to 500 [mu] m 2, especially 0.1 to 300 2, especially of 1 to 100 [mu] m 2 in small areas It is generally preferred.
[0030]
The proportion of the microregions in the light diffusion adhesive layer can be appropriately determined from the viewpoint of the scattering property in the Δn 1 direction, but generally 1 to 1 based on the surface area ratio of the microregions on one surface of the light diffusion adhesive layer. 95%, especially 5 to 80%, especially 10 to 70%.
[0031]
The thickness of the light diffusing adhesive layer can be appropriately determined according to the light diffusibility and the like, but is generally 1 μm to 3 mm, especially 5 μm to 1 mm, especially 10 to 500 μm. Such a thickness can also be achieved as a superposed body of two layers or three or more layers of the light diffusion adhesive layers 11 and 12 as illustrated in FIG.
[0032]
The superposition of the light diffusion adhesive layer is more advantageous than the point that a synergistic scattering effect more than the increase in thickness can be exhibited. In that case, it is preferable that the superimposing process is performed so that the Δn 1 direction is in a parallel relationship between the upper and lower layers from the viewpoint of expansion of the scattering effect.
[0033]
The overlapping light diffusing adhesive layers may have the same Δn 1 or Δn 2, or may be different. Note that the parallel relationship between the upper and lower layers in the Δn 1 direction and the like is preferably as parallel as possible, but deviation due to work errors is allowed. If there is a variation in the Δn 1 direction or the like, it is based on the average direction.
[0034]
The light diffusing adhesive layer according to the present invention can be used for an appropriate purpose according to a conventional light diffusing plate, and can be used as an optical element superimposed on the optical layer in practical use. Examples of the optical element are shown in FIGS. In the example of FIG. 3, a superposed body of the light diffusion adhesive layer 1 and the polarizing plate 3 is shown, and in the example of FIG. 4, a superposed body to which a retardation plate 4 is further added is shown.
[0035]
The optical layer forming the optical element is not particularly limited. For example, a polarizing plate, a retardation plate, a backlight such as a light guide plate, a reflective plate, a polarizing plate composed of a multilayer film, a liquid crystal cell, an antiglare treatment layer, It may be an appropriate optical layer such as an antireflection layer.
[0036]
Incidentally, as the polarizing plate, various types of appropriate types such as an absorption type, a scattering type, and a reflection type can be used. Specific examples include hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films, and dichroism such as iodine and dichroic dyes. Examples include absorption type polarizing plates drawn by adsorbing substances, and polyene oriented films such as polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
[0037]
In addition, there is a protective type polarizing plate in which a transparent protective layer made of a plastic coating layer, a film laminate layer, or the like is provided on one side or both sides of the polarizing film for the purpose of protection such as water resistance. Furthermore, for example, inorganic fine particles having an average particle diameter of 0.5 to 5 μm, such as silica or alumina, titania or zirconia, tin oxide, indium oxide, cadmium oxide or antimony oxide, There is also a scattering type polarizing plate which contains transparent fine particles such as organic fine particles such as a crosslinked or uncrosslinked polymer and has a fine concavo-convex structure on the surface.
[0038]
In addition, a reflective layer made of, for example, a metal deposition layer, a plating layer, a metal powder-containing resin layer, or a metal foil is attached to the transparent protective layer that may have a fine uneven structure on the surface. A reflective type polarizing plate is also included. The polarizing plate has a high degree of polarization, such as the above-described absorption type polarizing plate containing a dichroic substance, in order to improve brightness and contrast. A degree of 95.0% or more, particularly 99% or more is preferably used.
[0039]
On the other hand, examples of the retardation plate include stretched films and liquid crystal polymers made of the polymers exemplified in the light diffusion adhesive layer, and those made of twisted liquid crystal polymer. The retardation plate used is, for example, a quarter-wave plate or a half-wave plate, a uniaxial or biaxial stretched film type, a tilted stretched film type that is molecularly oriented in the thickness direction, a liquid crystal polymer type, and a viewing angle. Various types such as a type that compensates for a phase difference due to birefringence, a type that laminates them, and a type that stacks them can be used.
[0040]
As an example of the light guide plate, a light source such as a light source such as a light source such as a linear light source such as a cathode tube (cold or hot) cathode tube or EL is disposed on the side surface of a transparent resin plate, and light transmitted through the plate to the resin plate. Can be emitted to one side of the plate by diffusion, reflection, diffraction, interference, or the like. In forming an optical element including a light guide plate, a prism array layer composed of a prism sheet or the like for controlling the light emission direction, a diffusion plate for obtaining uniform light emission, and light emitted from a linear light source Auxiliary means such as a light source holder for guiding to the side surface can be made into an appropriate combination by arranging one layer or two or more layers as required at predetermined positions such as the upper and lower surfaces and side surfaces of the light guide plate. Examples of the reflection plate include the reflection plate and the reflection layer exemplified in the above-described reflection type polarizing plate.
[0041]
The anti-glare layer is attached for the purpose of preventing external light from being reflected on the surface of the liquid crystal display layer or the like, thereby hindering the visual recognition of the display image. Anti-glare treatment layer (non-glare layer) is a surface with a fine concavo-convex structure by an appropriate method such as a resin sheet having a fine concavo-convex structure with transparent fine particles and a fine concavo-convex structure sheet with sandblasting or embossing. And so on.
[0042]
The antireflection film prevents reflection loss of light transmitted through the light diffusing adhesive layer or liquid crystal cell, and, similarly to the antiglare treatment layer, reflects the surface of light incident on the light diffusing adhesive layer or liquid crystal display layer. It is attached for the purpose of preventing visual hindrance and the like, and is formed, for example, by a method in which a coherent single layer or multilayer deposited film is applied to a sheet or the like.
[0043]
The superposed body forming the optical element according to the present invention may be one using one or more optical layers as described above. For example, two or more layers of the same kind of optical layer such as a retardation plate may be laminated. In that case, the characteristics of the optical layer may be the same or different.
[0044]
The light diffusing adhesive layer forming the optical element has one or two or more layers arranged at appropriate positions inside or outside the optical element such as one or both sides of the optical layer, one outer surface or both outer surfaces of the superposed body. Good. When two or more light diffusing adhesive layers are provided on the optical element, the Δn 1 direction of the light diffusing adhesive layer is in a parallel relationship between the upper and lower layers in the same manner as when the light diffusing adhesive layer is superimposed. It is preferable to arrange them in terms of light scattering characteristics.
[0045]
The arrangement position of the optical layer such as a polarizing plate forming the optical element can be appropriately determined according to the purpose of use. In FIG. 4, the light diffusing adhesive layer 1 located on the outer surface of the retardation plate 4 is intended for adhesion to other members, and until it is put into practical use by temporarily attaching a separator or the like as necessary. In the meantime, the coating can be protected.
[0046]
In the case of an optical element having a polarizing plate in the present invention, the arrangement relationship between the light diffusing adhesive layer and the polarizing plate is illustrated by arrows in FIG. 5 from the viewpoint of effectively utilizing the transmission / scattering characteristics of the light diffusing adhesive layer. Thus, it is preferable that the Δn 1 direction of the light diffusing adhesive layer 1 and the transmission axis T of the polarizing plate 3 are arranged in parallel. The parallel relationship can be applied to the case where the above-described light diffusion adhesive layer is superimposed.
[0047]
As described above, the linearly polarized light transmitted through the Δn 2 direction of the polarizing plate or the light diffusion adhesive layer can be transmitted in both directions while maintaining the polarization state well, and the Δn 1 direction of the light diffusion adhesive layer can be transmitted. The transmitted linearly polarized light can be scattered and diffused, and the Δn 2 direction is made to correspond to the black display by the liquid crystal cell. Therefore, the Δn 1 direction is made to correspond to the white display in which the vibration plane of the linearly polarized light is orthogonal to the black display. With the arrangement of the light diffusing adhesive layer, it is possible to form a display image in which black display is not diffused and white display is scattered and diffused.
[0048]
The light diffusing adhesive layer and the optical element according to the present invention can be preferably used for forming a transmissive type, a reflective type, or a transmissive / reflective liquid crystal display device because of having the above-described features. Examples of the liquid crystal display device are shown in FIGS. 3, 31 is a polarizing plate, 4 is a retardation plate, 5 is a liquid crystal cell, 7 is a reflecting plate, and 6 is an adhesive layer. 6 illustrates a transmission type, and FIG. 7 illustrates a reflection type. In the transmissive liquid crystal display device of FIG. 6, the illustration of the backlight system that is usually arranged on the viewing back side on the polarizing plate 31 side is omitted.
[0049]
In the illustrated example, the light diffusion adhesive layer 1 and the polarizing plate 3 are arranged so that the Δn 1 direction and the transmission axis T correspond to the black display of the liquid crystal cell 5. In the illustrated example, the polarizing plate 3 and the phase difference plate 4 are arranged on the viewing side of the liquid crystal cell 5 with the light diffusion adhesive layer 1 inside, and this arrangement relationship is generally preferable from the viewpoint of viewing characteristics. In the transmission type, the arrangement position of the light diffusing adhesive layer can be determined as appropriate, such as a method in which the light diffusing adhesive layer is arranged on the viewing back side of the liquid crystal cell 5.
[0050]
In general, a liquid crystal display device is formed by appropriately assembling components such as a polarizing plate, a liquid crystal cell, a reflector or a backlight, and other optical layers as necessary, and incorporating a drive circuit. In this invention, there is no limitation in particular except the point which uses the above-mentioned light-diffusion adhesive layer or an optical element, It can form according to the former.
[0051]
Accordingly, when forming a liquid crystal display device, as in the optical element described above, for example, an anti-glare treatment layer or an antireflection film provided on the surface on the viewing side, a protective layer or a protective plate, or between the liquid crystal cell and the polarizing plate on the viewing side, One or two or more appropriate optical layers such as a retardation compensation plate can be disposed at appropriate positions.
[0052]
The retardation compensator is intended to improve the visibility by compensating the wavelength dependence of birefringence and the like, between the polarizing plate on the viewing side or / and the viewing back side and the liquid crystal cell. Etc. As the retardation compensation plate, an appropriate one such as the above-described retardation plate can be used depending on the wavelength region or the like. The retardation compensation plate may be composed of two or more retardation layers.
[0053]
【Example】
Example 1
An 18 wt% dichloromethane solution containing 300 parts (parts by weight, the same shall apply hereinafter) of isoprene-based adhesive and 100 parts of cyano nematic liquid crystal (manufactured by Chisso Corporation, GR-41) are mixed and developed by a cast method. The sheet was dried at a temperature capable of maintaining the sheet shape, and subjected to orientation treatment by inclining a predetermined angle from the direction of the magnetic field lines using a superconducting magnet, and then heat-cured at 110 ° C. to obtain a light diffusion adhesive sheet having a thickness of 20 μm. . This pressure-sensitive adhesive sheet had a refractive index difference Δn 1 of 0.21 and Δn 2 of 0.03.
[0054]
Example 2
The refractive index difference Δn 1 is 0.20 according to Example 1 except that 300 parts of an acrylic adhesive and 5 parts of an isocyanate crosslinking agent are used instead of the isoprene-based adhesive. A light diffusion adhesive sheet having an n 2 of 0.02 was obtained.
[0055]
Example 3
A refractive index difference Δn according to Example 1 except that 300 parts of an acrylic adhesive and 5 parts of an ultraviolet initiator crosslinking agent were used in place of the isoprene-based adhesive and cured by ultraviolet irradiation. A light-diffusing pressure-sensitive adhesive sheet having 1 of 0.19 and Δn 2 of 0.01 was obtained.
[0056]
Example 4
A light diffusing pressure-sensitive adhesive sheet having a refractive index difference Δn 1 of 0.19 and Δn 2 of 0.01 was obtained in the same manner as in Example 3 except that the orientation treatment was performed by an electric field by corona discharge instead of the magnetic field. .
[0057]
Comparative Example 1
A light diffusing pressure-sensitive adhesive sheet having a thickness of 20 μm obtained by dispersing silica fine powder in an isoprene-based pressure-sensitive adhesive was used.
[0058]
Comparative Example 2
A light diffusing pressure-sensitive adhesive sheet having a thickness of 20 μm formed by dispersing fine alumina powder in an isoprene-based pressure-sensitive adhesive was used.
[0059]
The light diffusion adhesive sheets obtained in the evaluation test examples and comparative examples were bonded to a commercially available polarizing plate having a total light transmittance of 41% and a polarization degree of transmitted light of 99% so that the △ 1 direction and the transmission axis coincided with each other. The optical element was obtained, and the total light transmittance, diffuse transmittance, and haze were measured with a Poic integrating sphere haze meter in accordance with ASTM D1003-61. Further, as a pseudo evaluation at the time of black display in a liquid crystal display device, a light diffusion adhesive sheet was disposed between the polarizing plates disposed in crossed Nicols, and the total light transmittance was measured with a haze meter to examine the leakage light.
[0060]
The results are shown in the following table.
Figure 0004099262

[Brief description of the drawings]
1 is a cross-sectional view of an example of a light diffusion adhesive layer. FIG. 2 is a cross-sectional view of another example of a light diffusion adhesive layer. FIG. 3 is a cross-sectional view of an example of an optical element. 5] Explanatory drawing of arrangement relationship between light diffusion adhesive plate and polarizing plate [FIG. 6] Cross sectional view of liquid crystal display device example [FIG. 7] Cross sectional view of other liquid crystal display device examples [Explanation of symbols]
1, 11, 12: Light diffusion adhesive layer e: Micro region 3, 31: Polarizing plate 4: Phase difference plate 5: Liquid crystal cell 7: Reflecting plate

Claims (8)

複屈折特性が相違する微小領域を分散含有し、その微小領域と他の部分との屈折率差△n、△nが直線偏光の最大透過率を示す軸方向に直交する方向において0.03以上(△n)で、かつ最大透過率の軸方向において前記△nの80%以下(△n)である粘着層からなることを特徴とする光拡散粘着層。In a direction perpendicular to the axial direction in which the difference in refractive index Δn 1 , Δn 2 between the minute region and the other part indicates the maximum transmittance of linearly polarized light is contained in a small region having different birefringence characteristics. A light-diffusing adhesive layer, comprising an adhesive layer that is 03 or more (Δn 1 ) and 80% or less (Δn 2 ) of the Δn 1 in the axial direction of maximum transmittance. 請求項1において、大きさが0.05〜500μmの微小領域が相分離により分散分布してなる光拡散粘着層。The light diffusing adhesive layer according to claim 1, wherein microregions having a size of 0.05 to 500 μm 2 are dispersed and distributed by phase separation. ポリマー又は液晶の少なくとも1種を配合した粘着剤のシート状成形体に、延伸処理する方式、圧延処理する方式又は電場若しくは磁場の雰囲気に置く方式の1種又は2種以上を適用して前記配合のポリマー又は液晶を配向させて複屈折性の微小領域を形成することを特徴とする請求項1又は2に記載の光拡散粘着層の製造方法。Applying one or two or more of a method of stretching treatment, a method of rolling treatment, or a method of placing in an atmosphere of an electric field or a magnetic field to a sheet-like molded article of an adhesive containing at least one polymer or liquid crystal The method for producing a light diffusing adhesive layer according to claim 1 or 2, wherein the polymer or liquid crystal is aligned to form a birefringent minute region. 請求項1又は2に記載の光拡散粘着層と光学層との重畳体からなることを特徴とする光学素子。  An optical element comprising a superposed body of the light diffusing adhesive layer according to claim 1 and an optical layer. 請求項において、光学層が偏光板又は位相差板の少なくとも1層を有するものである光学素子。The optical element according to claim 4, wherein the optical layer has at least one layer of a polarizing plate or a retardation plate. 請求項又はにおいて、上下の層で△n方向が平行関係にある2層以上の光拡散粘着層を有する光学素子。According to claim 4 or 5, the optical element in the upper and lower layers △ n 1 direction has two or more layers of the light diffusing adhesive layer which is in parallel relationship. 請求項又はにおいて、光拡散粘着層の△n方向と偏光板の透過軸が平行関係にある光学素子。According to claim 5 or 6, optical element transmission axis of △ n 1 direction and the polarizer of the light-diffusing adhesive layer is in parallel relationship. 請求項1若しくは2に記載の光拡散粘着層、又は請求項7の一に記載の光学素子を液晶セルの片側又は両側に有することを特徴とする液晶表示装置。A liquid crystal display device comprising the light diffusing adhesive layer according to claim 1 or 2 or the optical element according to one of claims 4 to 7 on one side or both sides of a liquid crystal cell.
JP14224098A 1998-05-08 1998-05-08 Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device Expired - Lifetime JP4099262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14224098A JP4099262B2 (en) 1998-05-08 1998-05-08 Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14224098A JP4099262B2 (en) 1998-05-08 1998-05-08 Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH11326637A JPH11326637A (en) 1999-11-26
JP4099262B2 true JP4099262B2 (en) 2008-06-11

Family

ID=15310703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14224098A Expired - Lifetime JP4099262B2 (en) 1998-05-08 1998-05-08 Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4099262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284122A (en) * 1999-03-31 2000-10-13 Nippon Mitsubishi Oil Corp Optical anisotropic device
JP5140531B2 (en) * 2008-09-29 2013-02-06 日東電工株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JPH11326637A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3594868B2 (en) Laminated polarizing plate and liquid crystal display
KR100670566B1 (en) Wide viewing angle polarizing plate and liquid crystal display
JP4462522B2 (en) Liquid crystal display
US20070195244A1 (en) Optical Film And Image Display
JP4136872B2 (en) Optical film and image display device
WO2005093473A1 (en) Elliptical polarization plate, optical film, and image display device
JP2002214416A (en) Light diffusing plate, optical element and liquid crystal display device
JP2002214433A (en) Light diffusing plate, optical element and liquid crystal display device
JP2005345958A (en) Liquid crystal panel, polarizing plate and liquid crystal display
JP3923682B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device
JP2001174633A (en) Polarizing member and liquid crystal display device
JP3957257B2 (en) Liquid crystal display
JP2006010724A (en) Light-diffusive antiglare film
JP2001166112A (en) Optical film and optical device
JP3912643B2 (en) Light diffusing plate, optical element, and liquid crystal display device
JPH11174211A (en) Light diffusing board, optical element and liquid crystal display device
JP2002139623A (en) Optical sheet, polarization plate and liquid crystal display
JP2003075603A (en) Antireflective hard coat sheet, optical element and image display device
JP2005345990A (en) Liquid crystal panel, polarizing plate and liquid crystal display
JP3949804B2 (en) Optical element and liquid crystal display device
JP4099262B2 (en) Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device
JP2002182212A (en) Optical element and liquid crystal display device
JP2003270411A (en) Anisotropic scattering element and polarizing plate, optical element and picture display device using the anisotropic scattering element
JP3910746B2 (en) Optical element and liquid crystal display device
JP4521852B2 (en) Light diffusing sheet, optical element and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term