JP4097973B2 - Alkali developer concentration measurement method - Google Patents

Alkali developer concentration measurement method Download PDF

Info

Publication number
JP4097973B2
JP4097973B2 JP2002097479A JP2002097479A JP4097973B2 JP 4097973 B2 JP4097973 B2 JP 4097973B2 JP 2002097479 A JP2002097479 A JP 2002097479A JP 2002097479 A JP2002097479 A JP 2002097479A JP 4097973 B2 JP4097973 B2 JP 4097973B2
Authority
JP
Japan
Prior art keywords
concentration
developer
alkali
component
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002097479A
Other languages
Japanese (ja)
Other versions
JP2003295470A (en
Inventor
典生 山口
軌雄 五十嵐
恭 井上
Original Assignee
松下環境空調エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下環境空調エンジニアリング株式会社 filed Critical 松下環境空調エンジニアリング株式会社
Priority to JP2002097479A priority Critical patent/JP4097973B2/en
Priority to KR20030018961A priority patent/KR100916986B1/en
Priority to TW92106924A priority patent/TW200305794A/en
Publication of JP2003295470A publication Critical patent/JP2003295470A/en
Application granted granted Critical
Publication of JP4097973B2 publication Critical patent/JP4097973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • G01N31/164Determining the equivalent point by means of a discontinuity by electrical or electrochemical means

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス、液晶ディスプレイ、プリント基板等の電子部品の製造工程使用するフォトレジスト用アルカリ現像液の濃度測定方法に関する。
【0002】
【従来の技術】
半導体デバイス、液晶ディスプレイ、プリント基板等の電子部品の製造工程においては、フォトリソグラフィー工程が実施されるのが一般的である。フォトリソグラフィー工程は、ウェハやガラス基板等の基板上にフォトレジストの皮膜を形成し、マスクパターンなどを用いてその所定部分に光等を照射し、現像液で現像することによって微細なパターンを形成する工程である。ここで、フォトレジスト類は、露光部分が現像液に対して可溶化するポジ形フォトレジストと、逆に露光部分が現像液に対して不溶化するネガ形フォトレジストに大別される。半導体デバイスや液晶ディスプレイ等の電子部品の製造分野では主にポジ形フォトレジストが使用され、該ポジ形フォトレジスト用の現像液としてはアルカリ現像液が用いられている。また、ネガ形フォトレジストであっても、アルカリ現像液が用いられている場合もある。
【0003】
アルカリ現像液のアルカリ現像成分としては、無機アルカリ、有機アルカリのいずれも使用されるが、上記半導体、液晶、プリント基板等の電子部品の製造工程等では、水酸化テトラアルキルアンモニウム(テトラアルキルアンモニウムヒドロオキシド)等の有機アルカリを用いたアルカリ現像液が通常使用されている。
【0004】
また、アルカリ現像液は、空気と接触することによって炭酸ガスが溶け込むと、上記アルカリ現像成分を構成する水酸化物イオン(ヒドロオキシドイオン)が消耗され、例えば、その対イオンであるアルカリ陽イオンは炭酸水素塩や炭酸塩(以下、炭酸系塩類ともいう。)を形成する。アルカリ現像成分は、水酸化物イオンとアルカリ陽イオンとが対イオンを形成して現像液中で遊離している状態(ヒドロオキサイドの状態)で現像活性を有している。このため、炭酸ガスの溶け込みによる炭酸系塩類の生成により、現像活性は減少することになる。アルカリ現像液は、半導体製造工程に供給された時点において既に若干量の炭酸系塩類を含有していることが多い。また、アルカリ現像液は、繰り返し使用を経るにつれ、徐々に炭酸ガスが溶解していくため、炭酸系塩類の濃度が増加する傾向にある。
【0005】
近年、LSIやLCDは、微細化、高集積化が進んでいるとともに、加工精度と生産効率の観点から、現像工程で用いるフォトレジストの現像液の濃度を正確に制御して、微細パターンを安定してかつ効率よく現像することに対する要求が高まってきている。
半導体デバイスや液晶デバイスなどの製造工程で用いられる現像液はアルカリ現像成分が2.38wt%の濃度で使用すると最も効率よく現像されることがわかっている。このため、この濃度の±0.002wt%程度の範囲で高精度に希釈調整されて使用することが試みられている。
【0006】
通常、現像工程に供給するアルカリ現像液、アルカリ現像廃液および再生アルカリ現像液中の現像成分、例えば、TAAHなどのアルカリ成分は、その濃度調製工程において、pH滴定装置、電位差滴定装置、導電率計、超音波濃度計などの測定手段によって測定される。なかでも、導電率計や超音波濃度計は、連続計測に好適であることから広く用いられている。
【0007】
【発明が解決しようとする課題】
しかしながら、高性能な濃度測定手段を用いたとしても、アルカリ現像液の濃度制御は現実には困難であった。
すなわち、炭酸系塩類を含んだアルカリ現像液について、滴定などにより全現像成分濃度を測定し、当該濃度に基づいて、濃度管理に用いる導電率計や超音波濃度計を校正すると、現像工程には目的とする濃度よりも低い濃度のヒドロキシド濃度のアルカリ現像液が供給される傾向にあった。
また、煩雑な滴定手法により遊離の現像成分(ヒドロオキシド)濃度を測定して、この濃度に基づいて導電率計を校正しても、結果として、この導電率で工程をコントロールする結果、高いヒドロキシド濃度で現像される傾向にあった。
【0008】
そこで、本発明では、アルカリ現像成分を含むアルカリ現像液の濃度を正確にコントロールし、正確でかつ効率的な現像工程を達成するためのアルカリ現像液の濃度測定方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、アルカリ現像液の濃度制御の困難性について検討してみた。
その結果、アルカリ現像液の濃度測定においては、従来、炭酸系塩類の存在については許容範囲内であって計測上問題ないものとされていたが、今回の技術の採用により初めて、これらの炭酸系塩類が現像活性を有する遊離のアルカリ現像成分の正確な濃度測定を意外にも大きく妨げていた点を見出した。
すなわち、アルカリ現像液の濃度制御の困難性の原因が、アルカリ現像液が入手の時点で既にアルカリ現像成分の一部が炭酸系塩類に変化してしまっている点、および使用の経過により炭酸系塩類が増加する点、さらに、これらの炭酸系塩類を含む全アルカリ現像成分濃度を有効な現像成分濃度として測定していた点にあることがわかった。
そして、現像工程への供給に至るまでのアルカリ現像液の濃度調整工程、回収工程(濃縮工程を含む)、再生工程(希釈工程)などの各工程において、アルカリ現像液中の、ヒドロオキシドなどの遊離アルカリ現像成分濃度を測定するために、その手法について検討した結果、各種被験液中の全アルカリ現像成分濃度を測定するとともに、炭酸系塩類濃度を測定することにより、炭酸系塩類の影響を排除して、正確に遊離アルカリ現像成分濃度を測定できることを見出し、これにより、上記した課題を解決できることを見出し、本発明を完成した。
すなわち、本発明によれば、以下の手段が提供される。
【0010】
(1)半導体デバイス、液晶ディスプレイ、プリント基板等の電子部品の製造工程使用するアルカリ現像成分を含有する現像液の濃度測定方法であって、
現像液中の全アルカリ現像成分の濃度を測定する工程と、現像液中の炭酸系塩類の濃度を測定する工程とを備え、この全アルカリ現像成分の濃度から炭酸系塩類の濃度を差し引いて遊離アルカリ現像成分濃度を求める、アルカリ現像液の濃度測定方法。
(2)前記全アルカリ現像成分濃度を、中和滴定、電位差滴定のいずれかを用いて測定する、請求項1に記載のアルカリ現像液の濃度測定方法。
(3)前記炭酸系塩類濃度を、赤外線炭酸ガス検出手段を用いて測定する、請求項1または2に記載のアルカリ現像液の濃度測定方法。
【0011】
これらの発明によれば、全アルカリ現像成分濃度と炭酸系塩類濃度とを測定して遊離アルカリ現像成分濃度を求めることにより、現像活性を発揮できる現像成分を所望の濃度に含んだ現像液を調製することができる。このため、現像工程に正確に濃度コントロールされたアルカリ現像液を供給することができるようになる。この結果、正確でかつ効率のよい現像工程を実施することができる。
また、これらの発明によれば、全アルカリ現像成分濃度と炭酸系塩類濃度とを測定して遊離アルカリ現像成分濃度を求めることにより、アルカリ現像成分を含有するアルカリ現像液の有する現像活性を検出することができるようになる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明に係るアルカリ現像成分を含有するアルカリ現像液濃度測定技術は、アルカリ現像液中の遊離アルカリ現像成分濃度を測定するために、アルカリ現像液中の全アルカリ現像成分の濃度および現像液中の炭酸系塩類の濃度を測定することにある。
そして、この濃度測定技術、すなわち、濃度測定方法および濃度測定装置を用いることにより、現像液の濃度調整(希釈)もしくは調製、現像廃液の回収もしくは再生技術を達成することができる。
【0013】
(アルカリ現像成分)
アルカリ現像成分は、各種電子部品の製造の際に使用される有機アルカリであれば特に限定しないが、好ましくは、テトラアルキルアンモニウムハイドロオキサイド(TAAH)である。TAAHとしては、例えば、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2−ヒドロキシエチル)アンモニウム(即ち、コリン)、水酸化トリエチル(2−ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2−ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2−ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2−ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2−ヒドロキシエチル)アンモニウム、水酸化テトラ(2−ヒドロキシエチル)アンモニウム等を挙げることができる。特に、水酸化テトラメチルアルキルアンモニウムや水酸化テトラエチルアルキルアンモニウムである。
【0014】
これらのアルカリ現像成分は、ハイドロオキサイド、すなわち、水酸化物イオンと対イオンをなし、現像液中においてほとんどが遊離した状態で含まれている。このようなハイドロオキサイドあるいは遊離状態が、アルカリ現像成分が現像活性を有する状態である。一方、炭酸イオンあるいは炭酸水素イオンのような弱酸と塩をつくっている状態では、同時に水酸化物イオンが消費されており、本来の現像活性を発揮できない。しかしながら、かかる塩であっても、中和滴定において反応し、導電率を有し、また、超音波伝播速度などにも寄与している。
本明細書においては、遊離のアルカリ現像成分とは、現像液中で遊離した状態で含まれるアルカリ現像成分もしくはハイドロオキサイドとして含まれるアルカリ現像成分をいう。全アルカリ現像成分とは、現像液中でハイドロオキサイドイオンや他の陰イオンと対をなし得て、遊離の状態においては現像活性を有する成分をいうものとする。具体的には、全アルカリ現像成分は、遊離アルカリ現像成分とハイドロオキサイドイオン以外の陰イオンと対をなすアルカリ現像成分(典型的には炭酸系塩類の形である)とから構成される。
全アルカリ現像成分の量は、これらのアルカリ現像成分の総和である。
特に、現像原液を希釈して所定濃度の現像液を調製する工程、現像廃液を再生使用する前の希釈などの濃度調整工程においては、ハイドロオキサイドイオン以外に存在しうる主要マイナスイオンは炭酸イオンや炭酸水素イオンなどの炭酸系イオンである。したがって、全アルカリ現像成分量は、遊離アルカリ現像成分と炭酸系塩類を構成するアルカリ現像成分との総和として求めることができる。
【0015】
(遊離のアルカリ現像成分)
遊離のアルカリ現像成分の濃度は直接的に測定することは困難である。
遊離のアルカリ現像成分は、全アルカリ現像成分と炭酸系塩類との濃度をそれぞれ測定することによって得ることが可能となる。この場合、全アルカリ現像成分の濃度は、例えば、pH(中和)滴定装置、電位差滴定装置、導電率計、位相差濃度計、超音波濃度計の各種濃度測定手段により測定することができる。絶対的定量法であり、一般的に試験方法として確立している点、及び精度の点から、pH(中和)滴定、電位差滴定などの滴定手段を用いることが好ましい。
【0016】
従来、全アルカリ現像成分及び遊離のアルカリ現像成分は、中和滴定により同時に求めていた。すなわち、通常の中和滴定により全アルカリ現像成分を、また、塩化バリウムを加えて炭酸バリウムとして炭酸系イオンを除去することで、遊離のアルカリ現像成分のみをそれぞれ塩酸で滴定することで定量できる。
この全アルカリ現像成分と遊離アルカリ現像成分の滴定は同一溶液で連続してでも別個の溶液で分けてでもいずれでもできる。
ところが、この方法では、空気中の炭酸ガスが滴定操作中にアルカリ現像成分と結合し、遊離アルカリ成分濃度が実際より低くでる傾向があり、厳密な測定では無視できなくなる。
そこで、本発明では、より精度の高い定量をするために、全アルカリ現像成分は滴定法等で求める一方、空気中の二酸化炭素の影響を受けない(若しくは受けにくい)手段あるいは空気中の二酸化炭素の影響を受けない(若しくは受けにくい)状態での測定により炭酸成分の濃度を求め、全アルカリ現像成分から別に求めた炭酸塩成分の濃度を差し引いて遊離アルカリ成分を求めることとして、従来の問題を解決している。なお、滴定の終点決定には、pH、電位差、指示薬などがあるが、本発明においては、炭酸塩の当量点にあたる終点を電位差滴定で決定する方法を用いることが好ましい。
【0017】
また、ライン上での連続計測が容易であるという観点からは、導電率計、超音波濃度計及び位相差濃度計を使用することもできる。導電率計、位相差濃度計、超音波濃度計などの測定手段を用いる場合には、他の中和滴定、電位差滴定などの濃度測定手段により測定された遊離アルカリ現像成分の標準液による校正と炭酸系塩類としてのアルカリ現像成分の標準液による校正とを行っておく必要がある。このような校正により、少なくとも制御しようとする全アルカリ現像成分の濃度領域内において、導電率計や超音波濃度計によって計測されるデータと、それぞれの濃度との関係とを定め、計測データを全アルカリ現像成分(遊離アルカリ現像成分と炭酸系塩類のアルカリ現像成分の和)の濃度に対応させることができる。
本発明者らによれば、たとえば、全アルカリ現像成分あるいは遊離アルカリ現像成分濃度が2.38wt%の近傍の導電率に関しては、炭酸系塩類は、遊離アルカリ現像成分が有する導電率感度のおおよそ半分の感度を有していることがわかっている。すなわち、濃度Aの遊離アルカリ現像成分と濃度Bの炭酸系塩類アルカリ現像成分とを含有している場合、導電率は、濃度Aと濃度0.5Bとの和に比例することがわかっている。
【0018】
一方、炭酸系塩類の濃度は、上述したように、空気中の二酸化炭素の影響を受けない(受けにくい)手段、あるいは空気中の二酸化炭素の影響を受けない(受けにくい)状態で測定することが好ましい。空気中の二酸化炭素の影響を受けない(受けにくい)手段としては、現像液中の無機炭素量あるいは二酸化炭素量を直接測定する方法を挙げることができる。これらの手段は、一般に、測定時間が短いか、あるいは測定雰囲気が制限されているため、測定時点での現像液中の二酸化炭素量を正確に測定することができる。無機炭素あるいは二酸化炭素の測定手段としては、各種公知の手段を採用することができるが、なかでも、一般に市販されている炭酸ガスセンサー(非分散赤外炭酸ガス濃度計)などを用いることが好ましい。当該センサーは、被験液に対して酸を添加したCOを発生させる手段と、発生したCOを赤外線で検出する手段、とを備えている。
CO発生手段は、リン酸などの無機強酸溶液が収容されたガス発生セルと、被験液をセルに供給する手段と、セル内の無機強酸にアルゴンなどの不活性ガスや空気などのキャリヤガスを導入する手段と、セルのヘッドスペースガスを赤外線検出手段へ移送する手段、とを備えている。
【0019】
このCO発生手段において、被験液がセル内に導入されると、無機強酸溶液中において炭酸系塩類はイオンから分子状のCOとなってセルのヘッドスペースに移動する。さらに、キャリヤガスとともに、移送手段を介して赤外線検手段へと移送される。赤外線検出手段には、COの特性吸収波数領域に応じた赤外線が照射されて、吸収強度からCO濃度が測定される。
現像液中の無機炭酸あるいはCOの濃度が、無機炭酸塩類に由来するものと考えることができるため、これらの濃度からアルカリ現像成分の炭酸系塩類の濃度を測定することができる。
【0020】
全アルカリ現像成分の濃度と炭酸系塩類の濃度が求まると、遊離のアルカリ現像成分の濃度を求めることができる。上述のように、全アルカリ現像成分の濃度から炭酸系塩類の濃度を差し引くことにより、遊離アルカリ現像成分の濃度を求めることができる。また、導電率計、位相差濃度計、超音波濃度計などによる場合には、予め求めておいた、遊離アルカリ現像成分濃度と炭酸系塩類の濃度と全アルカリ現像成分に相当する計測データとの関係式に、炭酸系塩類の濃度とこれらの計測値を導入することにより、遊離アルカリ現像成分濃度を得ることができる。
【0021】
このような濃度測定工程あるいは濃度測定手段を備えることにより、第一に、現像液の供給ラインに、正確な現像活性を有するアルカリ現像液を提供することができるようになる。このため、精度の高い現像工程を容易に実現できるようになる。
さらに、かかる濃度測定工程あるいは濃度測定手段により、現像工程、現像廃液の搬送ライン、回収工程、濃縮工程、再生工程、及び最終希釈工程において、現像活性を有するアルカリ現像成分(遊離アルカリ現像成分)の濃度を正確に測定することができるようになる。この濃度に基づいて、これらの各種工程における濃度管理を実施することで、所望の現像活性を有する現像液を現像工程に供給することができる他、現像廃液の回収工程、濃縮工程、再生工程などの各工程の濃度管理を的確に行うことができ、効率的に回収・再生を実施することができる。また、液晶や半導体基板のフォト工程での不良要因を削減できる。
【0022】
表1に、アルカリ現像液(TMAH)が空気中に放置された経過時間に応じた中和滴定法による全アルカリ現像液成分と炭酸塩の濃度測定結果と、二酸化炭素測定手段(赤外線炭酸ガス検出手段、以下、本法という。)による炭酸塩濃度測定結果とを対比した結果を示す。
【表1】

Figure 0004097973
表1に示すように、放置時間が経過しても、全アルカリ現像成分は一定であった。また、本法による炭酸塩濃度が大きく変化するのに対し、中和滴定法による炭酸塩濃度は、それほど大きく変化せず、また、当初(放置時間0)の時点において本法の結果に比較して大きな値(差0.10wt%)を示す一方、30分経過したときにも、本法よりもやや高い結果(差0.005wt%)を示していた。これによれば、中和滴定時の計測時間中にCO2が試料液中に溶け込んだことが考えられる。したがって、この結果によって、測定操作中に二酸化炭素を吸収することによって生成した炭酸塩を滴定しているという現象が裏付けられる。
【0023】
【発明の効果】
本発明によれば、アルカリ現像成分を含む現像液の濃度を正確にコントロールし、正確でかつ効率的な現像工程を達成するための現像液の濃度測定技術を提供することができる。また、この濃度測定技術に基づいて、効率的なアルカリ現像液の濃度管理、アルカリ現像廃液の回収もしくは再生技術を提供することができる。また、この管理方法を用いることにより、液晶、半導体製造におけるフォト工程での歩留まり向上、品質向上を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, a liquid crystal display, on the concentration measurement method of the photoresist alkali developing solution used in the production process of electronic components such as printed circuit board.
[0002]
[Prior art]
Semiconductor devices, in a liquid crystal display, the manufacturing process of electronic components such as printed circuit board, the photolithography process is carried out in general. The photolithographic process forms a fine pattern by forming a photoresist film on a substrate such as a wafer or glass substrate, irradiating a predetermined portion with light using a mask pattern, etc., and developing with a developer. It is a process to do. Here, the photoresists are roughly classified into a positive photoresist in which an exposed portion is solubilized in a developer and a negative photoresist in which an exposed portion is insoluble in a developer. In the field of manufacturing electronic components such as semiconductor devices and liquid crystal displays, a positive photoresist is mainly used, and an alkaline developer is used as a developer for the positive photoresist. Even in the case of a negative photoresist, an alkaline developer may be used.
[0003]
As an alkali developing component of an alkali developer, both inorganic alkali and organic alkali are used. In the manufacturing process of electronic parts such as semiconductors, liquid crystals, and printed circuit boards, tetraalkylammonium hydroxide (tetraalkylammonium hydroxide) is used. Alkali developers using organic alkali such as oxide) are usually used.
[0004]
In addition, when carbon dioxide gas dissolves when the alkali developer comes into contact with air, the hydroxide ions (hydroxide ions) constituting the alkali developer component are consumed. For example, the alkali cation that is the counter ion is It forms hydrogen carbonate and carbonate (hereinafter also referred to as carbonates). The alkali developing component has developing activity in a state (hydroxide state) in which hydroxide ions and alkali cations form counterions and are liberated in the developer. For this reason, the development activity decreases due to the formation of carbonate salts by the dissolution of carbon dioxide gas. Alkali developers already often contain some amount of carbonates when supplied to the semiconductor manufacturing process. Further, as the alkaline developer is repeatedly used, the carbon dioxide gas gradually dissolves, so that the concentration of the carbonate-based salt tends to increase.
[0005]
In recent years, LSIs and LCDs have been miniaturized and highly integrated, and from the viewpoint of processing accuracy and production efficiency, the concentration of the photoresist developer used in the development process is accurately controlled to stabilize the fine pattern. In addition, there is an increasing demand for efficient development.
It has been found that a developer used in a manufacturing process of a semiconductor device or a liquid crystal device is most efficiently developed when an alkali developing component is used at a concentration of 2.38 wt%. For this reason, attempts have been made to use a highly accurate dilution adjusted within a range of about ± 0.002 wt% of this concentration.
[0006]
Usually, alkali components such as alkali developer, alkali developer waste solution and regenerated alkali developer supplied to the development step, such as alkali components such as TAAH, are adjusted to pH titration device, potentiometric titration device, conductivity meter. It is measured by a measuring means such as an ultrasonic densitometer. Among these, conductivity meters and ultrasonic densitometers are widely used because they are suitable for continuous measurement.
[0007]
[Problems to be solved by the invention]
However, even if a high-performance density measuring means is used, it is actually difficult to control the concentration of the alkaline developer.
That is, for alkaline developers containing carbonates, the concentration of all developing components is measured by titration, etc., and the conductivity meter or ultrasonic densitometer used for concentration management is calibrated based on the concentration, There was a tendency to supply an alkaline developer having a hydroxide concentration lower than the intended concentration.
Moreover, even if the concentration of the free developing component (hydroxide) is measured by a complicated titration method and the conductivity meter is calibrated based on this concentration, the result is that the process is controlled by this conductivity. There was a tendency to develop at a high density.
[0008]
Accordingly, an object of the present invention is to provide an alkali developer concentration measuring method for accurately controlling the concentration of an alkali developer containing an alkali developer component and achieving an accurate and efficient development process. The
[0009]
[Means for Solving the Problems]
The present inventors have examined the difficulty of controlling the concentration of an alkali developer.
As a result, in the concentration measurement of an alkaline developer, conventionally, the presence of carbonates was within an acceptable range and was not considered to be a problem in measurement. It was found that the salt unexpectedly greatly hindered accurate concentration measurement of free alkali developing components having developing activity.
That is, carbonate difficulty causes of density control of the alkaline developing solution, that alkaline developer is already part of the alkali developer components at the time of the incoming hand accidentally changed to carbonated salts, and the course of use It has been found that the amount of the system salt increases, and further, the total alkali developing component concentration containing these carbonate salts is measured as the effective developing component concentration.
Then, the concentration adjusting process of the alkali developer up to the supply to the developing process, (including the concentration step) recovery step, in each step, such as the regeneration step (dilution step), an alkaline developing solution, such as hydro-oxides in order to measure the free alkali developer component concentration, the results of investigation of its approach, with measuring total alkaline developer component concentration of various test fluids, by measuring the carbon-based salt concentration, the effect of carbonated salts The inventors have found that the concentration of the free alkali developing component can be measured accurately, and that the above-described problems can be solved, thereby completing the present invention.
That is, according to the present invention, the following means are provided.
[0010]
(1) semiconductor devices, liquid crystal display, a method for measuring the concentration developer containing an alkali developer components used in the production process of electronic components such as printed circuit board,
It comprises a step of measuring the concentration of all alkali developing components in the developer and a step of measuring the concentration of carbonate salts in the developer, and subtracts the concentration of carbonate salts from the concentration of all alkali developing components. A method for measuring the concentration of an alkali developer, wherein the concentration of an alkali developer component is determined.
(2) The method for measuring a concentration of an alkali developer according to claim 1, wherein the concentration of the total alkali developing component is measured using either neutralization titration or potentiometric titration.
(3) The method for measuring a concentration of an alkali developer according to claim 1 or 2, wherein the carbonate-based salt concentration is measured using infrared carbon dioxide gas detection means.
[0011]
According to these inventions, a developer containing a developing component capable of exhibiting developing activity at a desired concentration is prepared by measuring the total alkali developing component concentration and the carbonate salt concentration to obtain the free alkali developing component concentration. can do. For this reason, it is possible to supply an alkaline developer whose concentration is accurately controlled in the development process. As a result, an accurate and efficient development process can be performed.
In addition, according to these inventions, the development activity of an alkali developer containing an alkali developing component is detected by measuring the total alkali developing component concentration and the carbonate salt concentration to determine the free alkali developing component concentration. Will be able to.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Alkali developer concentration measurement techniques containing an alkali developer components according to the present invention, in order to measure the free alkali developer component concentration of the alkali developing solution, the total alkali developing component of the alkali developing solution concentration and in the developing solution The purpose is to measure the concentration of carbonates.
By using this concentration measurement technique, that is, a concentration measurement method and a concentration measurement apparatus, it is possible to achieve a developer concentration adjustment (dilution) or preparation, and a development waste solution recovery or regeneration technique.
[0013]
(Alkali development component)
Alkali development component, if organic alkali used in the manufacture of various electronic components is not particularly limited, it is preferably tetraalkylammonium hydroxide (TAAH). As TAAH, for example, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, Trimethyl (2-hydroxyethyl) ammonium hydroxide (ie, choline), triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, water Methyl tri (2-hydroxyethyl) ammonium oxide, ethyl tri (2-hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) ammonium hydroxide, etc. It can be mentioned. Particularly, tetramethylalkylammonium hydroxide and tetraethylalkylammonium hydroxide.
[0014]
These alkali developing components form hydroxides, that is, hydroxide ions and counter ions, and are mostly contained in the developer in a free state. Such a hydroxide or free state is a state in which the alkali developing component has developing activity. On the other hand, in a state where a weak acid and a salt such as carbonate ion or hydrogen carbonate ion are formed, hydroxide ions are consumed at the same time, and the original development activity cannot be exhibited. However, even such salts react in neutralization titration, have electrical conductivity, and contribute to the ultrasonic wave propagation speed.
In the present specification, the free alkali developing component refers to an alkali developing component contained in a free state in a developing solution or an alkali developing component contained as a hydroxide. The total alkali developing component refers to a component that can form a pair with a hydroxide ion or other anions in the developer and has a developing activity in a free state. Specifically, the total alkali developing component is composed of a free alkali developing component and an alkali developing component (typically in the form of carbonates) that forms a pair with an anion other than hydroxide ions.
The amount of total alkali developing component is the sum of these alkali developing components.
In particular, in the step of preparing a developer having a predetermined concentration by diluting the developing stock solution and the concentration adjusting step such as dilution before reusing the development waste solution, major negative ions other than hydroxide ions are carbonate ions and Carbonic acid ions such as hydrogen carbonate ions. Therefore, the total alkali developing component amount can be obtained as the sum of the free alkali developing component and the alkali developing component constituting the carbonate.
[0015]
(Free alkali developing component)
The concentration of free alkali developing component is difficult to measure directly.
A free alkali developing component can be obtained by measuring the concentrations of the total alkali developing component and the carbonates. In this case, the concentration of all alkali developing components can be measured by various concentration measuring means such as a pH (neutralization) titrator, a potentiometric titrator, a conductivity meter, a phase difference densitometer, and an ultrasonic densitometer. It is an absolute quantification method, and it is preferable to use a titration means such as pH (neutralization) titration, potentiometric titration, etc. from the point of being established as a test method and accuracy.
[0016]
Conventionally, the total alkali developing component and the free alkali developing component have been obtained simultaneously by neutralization titration. That is, the total alkali developing component can be quantified by titrating only the free alkali developing component with hydrochloric acid by removing all the alkali developing components by ordinary neutralization titration, or removing barium chloride to remove carbonate ions as barium carbonate.
The titration of the total alkali developing component and the free alkali developing component can be carried out either continuously in the same solution or separately in separate solutions.
However, in this method, carbon dioxide gas in the air is combined with the alkali developing component during the titration operation, and the concentration of the free alkali component tends to be lower than the actual concentration.
Therefore, in the present invention, in order to perform more accurate quantification, the total alkali developing component is obtained by a titration method or the like, while the means not affected by (or hardly affected by) carbon dioxide in air or carbon dioxide in air The conventional problem is that the concentration of the carbonate component is determined by measurement in a state that is not affected by (or is not easily affected by), and the free alkali component is determined by subtracting the concentration of the carbonate component obtained separately from the total alkali development component. It has been solved. The determination of the end point of titration includes pH, potential difference, indicator, etc. In the present invention, it is preferable to use a method of determining the end point corresponding to the equivalent point of carbonate by potentiometric titration.
[0017]
Further, from the viewpoint of easy continuous measurement on the line, a conductivity meter, an ultrasonic densitometer, and a phase difference densitometer can also be used. When measuring means such as a conductivity meter, phase difference densitometer, ultrasonic densitometer, etc., calibration of free alkali developer components measured by other measuring means such as neutralization titration and potentiometric titration with a standard solution It is necessary to perform calibration with a standard solution of an alkali developing component as a carbonate-based salt. By such calibration, at least in the concentration region of all alkali developing components to be controlled, the data measured by the conductivity meter and the ultrasonic densitometer and the relationship between the respective concentrations are determined, and the measurement data is all It is possible to correspond to the concentration of the alkali developing component (the sum of the free alkali developing component and the alkali developing component of the carbonate salt).
According to the inventors, for example, with respect to the conductivity in the vicinity of the total alkali developing component or free alkali developing component concentration of 2.38 wt%, carbonate salts are approximately half the conductivity sensitivity of the free alkali developing component. It is known that it has a sensitivity of That is, it is known that the conductivity is proportional to the sum of the concentration A and the concentration 0.5B when the concentration A free alkali developing component and the concentration B carbonate salt alkali developing component are contained.
[0018]
On the other hand, as described above, the concentration of carbonates should be measured in a means that is not affected (less susceptible) by carbon dioxide in the air, or in a state that is not affected (hardly affected) by carbon dioxide in the air. Is preferred. Examples of means that is not affected by (or hardly affected by) carbon dioxide in the air include a method of directly measuring the amount of inorganic carbon or carbon dioxide in the developer. Since these means generally have a short measurement time or a limited measurement atmosphere, it is possible to accurately measure the amount of carbon dioxide in the developer at the time of measurement. Various known means can be adopted as the means for measuring inorganic carbon or carbon dioxide. Among them, it is preferable to use a carbon dioxide sensor (non-dispersed infrared carbon dioxide concentration meter) that is generally commercially available. . The sensor includes means for generating CO 2 obtained by adding an acid to the test solution, and means for detecting the generated CO 2 with infrared rays.
The CO 2 generating means includes a gas generating cell containing an inorganic strong acid solution such as phosphoric acid, a means for supplying a test liquid to the cell, an inert gas such as argon or a carrier gas such as air as an inorganic strong acid in the cell. And means for transferring the headspace gas of the cell to the infrared detection means.
[0019]
In this CO 2 generating means, when the test solution is introduced into the cell, the carbonates in the inorganic strong acid solution move from ions to molecular CO 2 and move to the cell headspace. Further, it is transferred together with the carrier gas to the infrared detecting means via the transferring means. The infrared detecting device, infrared rays according to characteristic absorption wave number region of CO 2 is irradiated, CO 2 concentration is measured from the absorption intensity.
Since the concentration of inorganic carbonic acid or CO 2 in the developer can be considered to be derived from inorganic carbonates, the concentration of carbonates of alkali developing components can be measured from these concentrations.
[0020]
When the concentration of all alkali developing components and the concentration of carbonates are determined, the concentration of free alkali developing components can be determined. As described above, the concentration of the free alkali developing component can be determined by subtracting the concentration of the carbonates from the concentration of the total alkali developing component. In addition, in the case of using a conductivity meter, a phase difference densitometer, an ultrasonic densitometer, etc., the previously determined free alkali developing component concentration, the carbonate salt concentration, and the measurement data corresponding to the total alkali developing component. By introducing the carbonate salt concentration and these measured values into the relational expression, the free alkali developing component concentration can be obtained.
[0021]
By providing such a concentration measuring step or concentration measuring means, first, it becomes possible to provide an alkaline developer having accurate developing activity to the developer supply line. For this reason, a highly accurate development process can be easily realized.
Further, by the density measuring step or the density measuring means, an alkali developing component (free alkali developing component) having developing activity in the developing step, the development waste transport line, the collecting step, the concentration step, the regeneration step, and the final dilution step. The concentration can be accurately measured. Based on this concentration, concentration management in these various steps can be carried out to supply a developing solution having a desired developing activity to the developing step, as well as a developing waste liquid collecting step, a concentrating step, a regenerating step, etc. The concentration control in each step can be accurately performed, and recovery and regeneration can be performed efficiently. In addition, the cause of defects in the photo process of the liquid crystal and the semiconductor substrate can be reduced.
[0022]
Table 1 shows the concentration measurement results of total alkali developer components and carbonates by neutralization titration method according to the elapsed time that the alkali developer (TMAH) was left in the air, and carbon dioxide measuring means (infrared carbon dioxide gas detection). Means, hereinafter referred to as the present method), and the results of comparison with the carbonate concentration measurement results are shown.
[Table 1]
Figure 0004097973
As shown in Table 1, even when the standing time elapsed, the total alkali developing component was constant. In addition, while the carbonate concentration by this method changes greatly, the carbonate concentration by the neutralization titration method does not change so much, and compared with the result of this method at the time of the initial (leaving time 0). On the other hand, the result showed a slightly higher result (difference 0.005 wt%) than this method when 30 minutes passed. According to this, it is considered that CO 2 was dissolved in the sample solution during the measurement time during neutralization titration. Therefore, this result supports the phenomenon that the carbonate produced by absorbing carbon dioxide during the measurement operation is titrated.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the density | concentration measurement technique of the developing solution for controlling the density | concentration of the developing solution containing an alkali developing component correctly and achieving an exact and efficient image development process can be provided. In addition, based on this concentration measurement technique, it is possible to provide an efficient alkali developer concentration management and an alkali developer waste liquid recovery or regeneration technique. In addition, by using this management method, it is possible to improve the yield and quality in the photo process in manufacturing liquid crystals and semiconductors.

Claims (3)

半導体デバイス、液晶ディスプレイ、プリント基板等の電子部品の製造工程使用するアルカリ現像成分を含有する現像液の濃度測定方法であって、
現像液中の全アルカリ現像成分の濃度を測定する工程と、現像液中の炭酸系塩類の濃度を測定する工程とを備え、この全アルカリ現像成分の濃度から炭酸系塩類の濃度を差し引いて遊離アルカリ現像成分濃度を求める、アルカリ現像液の濃度測定方法。
Semiconductor devices, liquid crystal display, a method for measuring the concentration developer containing an alkali developer components used in the production process of electronic components such as printed circuit board,
It comprises a step of measuring the concentration of all alkali developing components in the developer and a step of measuring the concentration of carbonate salts in the developer, and subtracts the concentration of carbonate salts from the concentration of all alkali developing components. A method for measuring the concentration of an alkali developer, wherein the concentration of an alkali developer component is determined.
前記全アルカリ現像成分濃度を、中和滴定、電位差滴定のいずれかを用いて測定する、請求項1に記載のアルカリ現像液の濃度測定方法。The method for measuring the concentration of an alkaline developer according to claim 1, wherein the total alkali developing component concentration is measured using either neutralization titration or potentiometric titration. 前記炭酸系塩類濃度を、赤外線炭酸ガス検出手段を用いて測定する、請求項1または2に記載のアルカリ現像液の濃度測定方法。The alkali developer concentration measuring method according to claim 1 or 2, wherein the carbonate-based salt concentration is measured using an infrared carbon dioxide gas detecting means.
JP2002097479A 2002-03-29 2002-03-29 Alkali developer concentration measurement method Expired - Fee Related JP4097973B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002097479A JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method
KR20030018961A KR100916986B1 (en) 2002-03-29 2003-03-26 A method for measuring a concentration of an alkali developer and a method for preparing a developer
TW92106924A TW200305794A (en) 2002-03-29 2003-03-27 Method for determining the concentration of alkaline developer and method for preparing developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097479A JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003295470A JP2003295470A (en) 2003-10-15
JP4097973B2 true JP4097973B2 (en) 2008-06-11

Family

ID=29239963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097479A Expired - Fee Related JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method

Country Status (3)

Country Link
JP (1) JP4097973B2 (en)
KR (1) KR100916986B1 (en)
TW (1) TW200305794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916986B1 (en) * 2002-03-29 2009-09-14 파나소닉 칸쿄 엔지니어링 가부시키가이샤 A method for measuring a concentration of an alkali developer and a method for preparing a developer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366490B2 (en) * 2003-08-22 2009-11-18 長瀬産業株式会社 Developer supply method and apparatus
JP2006189646A (en) * 2005-01-06 2006-07-20 Nagase & Co Ltd Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
JP5000246B2 (en) * 2005-09-28 2012-08-15 株式会社半導体エネルギー研究所 Waste liquid treatment method and treatment apparatus
JP6721157B2 (en) * 2015-07-22 2020-07-08 株式会社平間理化研究所 Method and apparatus for measuring component concentration of developer, and method and apparatus for managing developer
JP6551784B2 (en) * 2015-08-31 2019-07-31 パナソニックIpマネジメント株式会社 Method and apparatus for managing carbonic acid concentration in resist stripping solution
JP6551787B2 (en) * 2015-09-28 2019-07-31 パナソニックIpマネジメント株式会社 Method and apparatus for managing carbonic acid concentration in resist stripping solution
CN106596840B (en) * 2016-12-15 2019-01-22 深圳市华星光电技术有限公司 Developer solution concentration of lye measurement method and adjusting method
JP2018120901A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Development device
JP2018120895A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Developing device
JP2018120900A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Developer management device
JP2018120893A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Device for measuring component concentration of developer, and developer management device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142781A (en) * 1991-11-19 1993-06-11 Konica Corp Treating method for waste developer of photosensitive material and automatic developing machine used in this treating method
JP2001154373A (en) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd Method for processing photosensitive planographic printing plate
JP4097973B2 (en) * 2002-03-29 2008-06-11 松下環境空調エンジニアリング株式会社 Alkali developer concentration measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916986B1 (en) * 2002-03-29 2009-09-14 파나소닉 칸쿄 엔지니어링 가부시키가이샤 A method for measuring a concentration of an alkali developer and a method for preparing a developer

Also Published As

Publication number Publication date
KR20030078694A (en) 2003-10-08
TWI313794B (en) 2009-08-21
KR100916986B1 (en) 2009-09-14
JP2003295470A (en) 2003-10-15
TW200305794A (en) 2003-11-01

Similar Documents

Publication Publication Date Title
JP4097973B2 (en) Alkali developer concentration measurement method
KR101446619B1 (en) Method for regulating concentration of developing solution, apparatus for preparing the developing solution, and developing solution
JP2011128455A (en) Device for measuring concentration of carbonic acid-based salt, system for controlling alkali developing solution, and method for measuring concentration of carbonic acid-based salt
JP2004170451A5 (en)
JP3869730B2 (en) Process liquid preparation and supply method and apparatus
JPH048788B2 (en)
EP0124297A2 (en) Alkaline solution for developing positive photoresists
JPH0612435B2 (en) Radiation-sensitive member processing method and processing apparatus therefor
CN102967686A (en) Method for testing and controlling acid concentrations in ITO (indium tin oxide) etching liquid on line
JP4366490B2 (en) Developer supply method and apparatus
JP6505534B2 (en) Method and apparatus for managing developer
JP4026376B2 (en) Developer supply device
EP0178496A2 (en) High contrast photoresist developer
JP2005300421A (en) Chemical certifying method and method of manufacturing semiconductor apparatus
JP3843224B2 (en) Method for measuring sulfuric acid concentration in plating solution
JP4281439B2 (en) Developer supply device
JP3787341B2 (en) Method and system for recycling photoresist in developer containing tetramethylammonium hydroxide (TMAH)
JP5637676B2 (en) Method for measuring photoresist dissolution in developer
JP4299696B2 (en) Method for measuring persulfate concentration
WO2007034949A1 (en) Method for measuring liquid immersion lithography soluble fraction in organic film
JP2009191312A (en) Etching control device
KR102258375B1 (en) Method of measuring for water soluble chlorine ion having improved precision
CN1567090A (en) Reclaiming system for tetramethylammonium hydroxide developing liquid and method therefor
JP2018120901A (en) Development device
Nakano et al. Development of ArF immersion exposure tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4097973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees