JP4097864B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP4097864B2
JP4097864B2 JP32170999A JP32170999A JP4097864B2 JP 4097864 B2 JP4097864 B2 JP 4097864B2 JP 32170999 A JP32170999 A JP 32170999A JP 32170999 A JP32170999 A JP 32170999A JP 4097864 B2 JP4097864 B2 JP 4097864B2
Authority
JP
Japan
Prior art keywords
heat
hole
block body
resistant block
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32170999A
Other languages
Japanese (ja)
Other versions
JP2001143854A (en
Inventor
昌久 徳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Nissho KK
Original Assignee
Kyushu Nissho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Nissho KK filed Critical Kyushu Nissho KK
Priority to JP32170999A priority Critical patent/JP4097864B2/en
Publication of JP2001143854A publication Critical patent/JP2001143854A/en
Application granted granted Critical
Publication of JP4097864B2 publication Critical patent/JP4097864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装部品用接着剤の熱印加、ボンディング後の熱処理、クリーム半田リフローあるいは高熱動作試験用加熱などに使用されるブロック状の加熱装置に関する。
【0002】
【従来の技術】
従来の加熱装置は、耐熱性に優れたステンレス鋼などで形成されたブロック体の内部に、熱源となる加熱ヒータが挿入された構造であり、この加熱ヒータを発熱させてブロック体全体を加熱することによって、ブロック体の加熱面に接触させた被加熱物を加熱する。
【0003】
ところが、従来の加熱装置において、ブロック体を形成するステンレス鋼は耐熱性に優れている反面、熱伝導率が低いので、ブロック体内に挿入された加熱ヒータで加熱した場合、加熱面の温度分布が不均一となりがちである。このため、加熱面に接触させた被加熱物をむらなく均一に加熱することができず、様々な製品不良の原因となっていた。
【0004】
これに対処するため、図8に示すような加熱装置90が開発されている。加熱装置90は、加熱ヒータ92を内蔵するステンレス鋼製のブロック体91の内部に、ブロック体91よりも熱伝導率の高い棒状熱伝導体93が挿入された構造である。
【0005】
このような構造とすることにより、ブロック体91の熱伝導率が低くても、加熱ヒータ92からの熱を受ける棒状熱伝導体93が高い熱伝導率を有することから、加熱面94に対する熱伝導量が均等化され、加熱面94の温度分布の均一化を図ることができる。したがって、この加熱装置90を用いることにより、被加熱物の均一加熱が可能となり、また、従来の加熱装置と同等の耐久性を維持することができる。
【0006】
【発明が解決しようとする課題】
図8に示す加熱装置90は、加熱面94に対する熱伝導量を均等化するために、ブロック体91に形成された貫通孔95に棒状熱伝導体93が挿入されている。しかし、この棒状熱伝導体93の外周面と貫通孔95の内周面とを完全に密着させることは困難で、棒状熱伝導体93と貫通孔95との間には部分的な隙間が生じており、このため、加熱面94の温度分布にむらが生じているのが実情である。
【0007】
これを防止する手段として、棒状熱伝導体93と貫通孔95との間にサーマルグリスなどの熱伝達剤を介在させることもあるが、時間の経過に伴ってサーマルグリスが徐々に変質し熱伝達性が低下していくので、長期間にわたって均一加熱性を維持することができない。
【0008】
本発明が解決しようとする課題は、均一加熱性および耐久性に優れた加熱装置を提供することにある。
【0009】
【課題を解決するための手段】
前記課題を解決するため、本発明の加熱装置は、被加熱物に接触させて加熱する耐熱性ブロック体と、この耐熱性ブロック体を加熱する加熱手段と、耐熱性ブロック体に形成された貫通孔とを備え、この貫通孔内に貫通孔の長さより短い複数の熱伝導素材を順次挿入および加圧変形させて貫通孔を満たす熱伝導体を形成したことを特徴とする。
【0010】
このような構成とすることにより、熱伝導素材の加圧変形で形成された熱伝導体の外周面が貫通孔の内周面に隙間なく密着した状態となり、加熱手段から受けた熱が熱伝導体を経由して耐熱性ブロック体全体に均等に伝わり加熱面の温度分布にむらがなくなるため、被加熱物を均一に加熱することができる。また、熱劣化や経年変化のおそれのあるサーマルグリスなどの熱伝達剤が不要となるので、耐久性も優れている。
【0011】
なお、耐熱性ブロック体の材質としては、ステンレス鋼、耐熱鋼、鋳鋼、電熱用合金あるいは耐蝕耐熱合金などが好適であるが、耐久性が高く、熱膨張率が低い点においてステンレス鋼が最適である。
【0012】
ここで、前記熱伝導素材の外径を、(貫通孔の内径)−(0.05〜0.3mm)とすることが望ましい。この範囲の外径とすることにより、比較的少ない加圧力で熱伝導素材を貫通孔の内周面に完全に密着させることが可能となる。
【0013】
前記熱伝導素材の外径と長さとの比率は、1:2〜1:5とすることが望ましい。この範囲の比率とすることにより、熱伝導素材を長さ方向に加圧したときに生じる収縮を、熱伝導素材の外径方向の膨張へと効率的に変換させることが可能となるため、熱伝導体を短時間で効率よく形成することができる。
【0014】
前記貫通孔の端部に、貫通孔より内径が大きい拡径部を形成し、熱伝導素材を拡径部に挿入および加圧変形させて貫通孔内の熱伝導体と一体化させることにより、大気中に露出して放熱量の多い、耐熱性ブロック体の端面付近への熱伝導量を増大させることが可能となるので、耐熱性ブロック体の端面付近の温度低下を防止することができる。
【0015】
また前記拡径部の開口端を耐熱性ブロック体と同材質の封止部材で閉塞することにより、拡径部に位置する熱伝導体自体からの放熱を抑制することが可能となるので、耐熱性ブロック体の端面付近の温度低下を防止することができる。
【0016】
前記熱伝導素材の材質としては、金、銀、銅、アルミニウムのいずれかまたはこれらのうちの1以上を含有する合金を用いることができる。これらの素材を用いることにより、貫通孔に挿入後の変形性、貫通孔の内周面との密着性が良好となり、耐熱性ブロック体より熱伝導率の高い熱伝導体を形成することができる。なお、耐熱性ブロック体がステンレス鋼製である場合、熱膨張率の差が小さい銅が好適である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は実施の形態である加熱装置を示す断面斜視図、図2は前記加熱装置の一部切欠側面図である。
【0018】
本実施形態の加熱装置10は、被加熱物に接触させる加熱面11を有するステンレス鋼製の耐熱性ブロック体12と、この耐熱性ブロック体12を加熱するために内蔵された2本の加熱ヒータ13と、耐熱性ブロック体12に形成された2つの貫通孔14とを備え、貫通孔14内には、複数の熱伝導素材15aによって構成された熱伝導体15が内蔵されている。
【0019】
貫通孔14の両端部には、貫通孔14より内径が大きい拡径部16がそれぞれ形成され、これらの拡径部16には熱伝導体15と一体化した熱伝導素材15bが配置されている。また、拡径部16の開口端は、耐熱性ブロック体12と同材質のステンレス鋼製の封止部材17によって閉塞されている。
【0020】
ここで、図3、図4を参照して、貫通孔14内の熱伝導体15を形成する手順について説明する。図3に示すように、一方の拡径部16を下にして耐熱性ブロック体12を基礎面18の上に立てる。このとき、下方の拡径部16は閉塞器具19で塞いでおく。そして、上方の拡径部16から熱伝導素材15aを貫通孔14内に投入した後、貫通孔14に挿入した加圧器具20によって熱伝導素材15aを下方へ加圧すると、熱伝導素材15aは加圧方向に収縮するとともに貫通孔14の内周面に密着するまで膨張するので、熱伝導素材15aは貫通孔14内に固定される。
【0021】
次に、加圧器具20を貫通孔14から引き出し、次の熱伝導素材15aを貫通孔14内に投入した後、再び加圧器具20を貫通孔14に挿入して、熱伝導素材15aを加圧変形させる。以下、熱伝導素材15aが貫通孔14の上端に達するまでこのような作業を繰り返すと、各熱伝導素材15aは、図4(a)の状態から同図(b)に状態へと変形して、下に位置する熱伝導素材15aおよび貫通孔14の内周面に密着し、最終的には貫通孔14を満たす一体化した熱伝導体15が形成される。
【0022】
これにより、熱伝導素材15aの加圧変形で形成された熱伝導体15の外周面が貫通孔14の内周面に隙間なく密着した状態となり、加熱ヒータ13から受けた熱が熱伝導体15を経由して耐熱性ブロック体12全体に均等に伝わるようになるため、加熱面11の温度分布にむらがなくなり、被加熱物を均一に加熱することができる。また、熱劣化や経年変化のおそれのあるサーマルグリスなどの熱伝達剤が一切不要であるため、耐久性も優れている。
【0023】
また、貫通孔14内に熱伝導体15が形成された後、拡径部16に熱伝導素材15bを挿入、加圧変形させて熱伝導体15と一体化させるとともに、拡径部16の開口端にステンレス鋼製の封止部材17を嵌入させることによって閉塞している。
【0024】
したがって、大気中に露出して放熱量の多い、耐熱性ブロック体12の端面付近への熱伝導量が増大し、また、封止部材17によって、拡径部16に位置する熱伝導体15自体からの放熱が抑制されるので、耐熱性ブロック体12の端面付近の温度低下を防止することができ、加熱面11の温度分布の均一化に寄与することができるる。
【0025】
次に、図5、図6を参照して、加熱装置10を構成する各部分の寸法比率について説明する。加熱装置10の全長をL、熱伝導素材15aの外径をD、熱伝導素材15aの長さをl、貫通孔の内径をD、加圧変形後の熱伝導素材15aの長さをl、拡径部16の内径をD、拡径部16の深さをlとすると、
:l=1:2〜1:5
=D−(0.05〜0.3) mm
=l×(0.85〜0.99)
5≦l≦L/10 mm
>D×(1.0〜1.5)
としている。
【0026】
また、図6に示すように、耐熱性ブロック体12の中央部において、加熱ヒータ13の直径をD、加熱面11と熱伝導体15との距離をh、加熱ヒータ13と熱伝導体15との距離をh、熱伝導体15間の距離をwとすると、
≧D/2+D/2+3 mm
/2+2≦h≦D/2+6 mm
+2≦w≦D×2 mm
としている。
【0027】
また、熱伝導素材15aを形成する材質として、ステンレス鋼製の耐熱性ブロック体12よりも熱伝導性が高く、且つ、耐熱性ブロック体12と熱膨張率の差が小さい銅を用いているため、加圧変形によって貫通孔14の内周面への密着性に優れた熱伝導体15を形成することができ、長期間使用しても、熱膨張率の差によって熱伝導体15の外周と貫通孔14の内周面との間に隙間が発生することもない。
【0028】
本実施形態の加熱装置10においては、耐熱性ブロック体12に2本の加熱ヒータ13を内蔵させ、2つの貫通孔14に熱伝導素材15aを挿入および加圧変形させて熱伝導体15を形成しているが、本発明はこれに限定するものではないので、被加熱物の形状や加熱温度などの諸条件に応じて、例えば、図7(a)〜(d)に示すように、耐熱性ブロック体21,22,23,24の断面形状、加熱ヒータ25,26,27,28の直径、内蔵位置や内蔵本数、熱伝導体29,30,31,32の位置や本数などを任意に設定することができる。
【0029】
図7(a)〜(d)は被加熱物の形状や大きさなどに合致するように、加熱面34,35,36,37が形成されているが、熱伝導体29,30,31,32はそれぞれ複数の熱伝導素材(図示せず)を貫通孔38,39,40,41に挿入および加圧変形させて形成したものであるため、いずれにおいても、加熱装置10と同等の機能、効果を発揮し、被加熱物を均一加熱することができる。
【0030】
【発明の効果】
本発明により、以下に示す効果を奏する。
【0031】
(1)被加熱物に接触させて加熱する耐熱性ブロック体と、耐熱性ブロック体を加熱する加熱手段と、耐熱性ブロック体に形成された貫通孔とを備え、この貫通孔内に貫通孔の長さより短い複数の熱伝導素材を順次挿入および加圧変形させて貫通孔を満たす熱伝導体を形成することにより、熱伝導素材の加圧変形で形成された熱伝導体の外周面が貫通孔の内周面に隙間なく密着した状態となり、加熱手段から受けた熱が熱伝導体を経由して耐熱性ブロック体全体に均等に伝わり加熱面の温度分布にむらがなくなるため、被加熱物を均一に加熱することができる。また、熱劣化や経年変化のおそれのあるサーマルグリスなどの熱伝達剤が一切不要となるので、耐久性も優れている。
【0032】
(2)前記熱伝導素材の外径を、(貫通孔の内径)−(0.05〜0.3mm)とすることにより、比較的少ない加圧力で熱伝導素材を貫通孔の内周面に完全に密着させることが可能となる。
【0033】
(3)前記熱伝導素材の外径と長さとの比率を1:2〜1:5とすることにより、熱伝導素材を長さ方向に加圧したときに生じる収縮を、熱伝導素材の外径方向の膨張へと効率的に変換させることが可能となるため、熱伝導体を短時間で、効率的に形成することができる。
【0034】
(4)前記貫通孔の端部に、貫通孔より内径が大きい拡径部を形成し、熱伝導素材を拡径部に挿入および加圧変形させて貫通孔内の熱伝導体と一体化させることにより、大気中に露出して放熱量の多い、耐熱性ブロック体の端面付近への熱伝導量を増大させることが可能となるので、耐熱性ブロック体の端面付近の温度低下を防止することができる。
【0035】
(5)前記拡径部の開口端を耐熱性ブロック体と同材質の封止部材で閉塞することにより、拡径部に位置する熱伝導体自体からの放熱を抑制することが可能となるので、耐熱性ブロック体の端面付近の温度低下を防止することができる。
【0036】
(6)前記熱伝導素材の材質を、金、銀、銅、アルミニウムのいずれかまたはこれらのうちの1以上を含有する合金とすることにより、貫通孔に挿入後の変形性、貫通孔の内周面との密着性が良好となり、耐熱性ブロック体より熱伝導率の高い熱伝導体を形成することができる。
【図面の簡単な説明】
【図1】 実施の形態である加熱装置を示す断面斜視図である。
【図2】 図1の加熱装置の一部切欠側面図である。
【図3】 図1の加熱装置の製作工程を示す一部切欠側面図である。
【図4】 図1の加熱装置の製作工程を示す説明図である。
【図5】 図1の加熱装置の各部分の寸法比率の説明図である。
【図6】 図1の加熱装置の各部分の寸法比率の説明図である。
【図7】 他の実施形態である加熱装置を示す斜視図である。
【図8】 従来の加熱装置を示す斜視図である。
【符号の説明】
10 加熱装置
11 加熱面
12,21,22,23,24 耐熱性ブロック体
13,25,26,27,28 加熱ヒータ
14,38,39,40,41 貫通孔
15,29,30,31,32 熱伝導体
15a,15b 熱伝導素材
16 拡径部
17 封止部材
18 基礎面
19 閉塞器具
20 加圧器具
34,35,36,37 加熱面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a block-shaped heating apparatus used for heat application of an adhesive for surface mount components, heat treatment after bonding, cream solder reflow, or heating for high heat operation test.
[0002]
[Prior art]
A conventional heating device has a structure in which a heater serving as a heat source is inserted into a block body made of stainless steel or the like having excellent heat resistance, and heats the heater to heat the entire block body. Thus, the object to be heated brought into contact with the heating surface of the block body is heated.
[0003]
However, in the conventional heating device, the stainless steel forming the block body is excellent in heat resistance, but its thermal conductivity is low, so when heated by a heater inserted in the block body, the temperature distribution on the heating surface is Tend to be non-uniform. For this reason, the object to be heated brought into contact with the heating surface cannot be heated uniformly, causing various product defects.
[0004]
In order to cope with this, a heating device 90 as shown in FIG. 8 has been developed. The heating device 90 has a structure in which a rod-like heat conductor 93 having a higher thermal conductivity than the block body 91 is inserted into a stainless steel block body 91 containing a heater 92.
[0005]
By adopting such a structure, even if the heat conductivity of the block body 91 is low, the rod-shaped heat conductor 93 that receives heat from the heater 92 has a high heat conductivity. The amount is made uniform, and the temperature distribution on the heating surface 94 can be made uniform. Therefore, by using this heating device 90, the object to be heated can be heated uniformly, and the durability equivalent to that of the conventional heating device can be maintained.
[0006]
[Problems to be solved by the invention]
In the heating device 90 shown in FIG. 8, a rod-shaped heat conductor 93 is inserted into a through hole 95 formed in the block body 91 in order to equalize the amount of heat conduction to the heating surface 94. However, it is difficult to completely adhere the outer peripheral surface of the rod-shaped heat conductor 93 and the inner peripheral surface of the through hole 95, and a partial gap is generated between the rod-shaped heat conductor 93 and the through hole 95. As a result, the temperature distribution on the heating surface 94 is uneven.
[0007]
As a means for preventing this, a heat transfer agent such as thermal grease may be interposed between the rod-shaped heat conductor 93 and the through-hole 95, but the thermal grease gradually changes in quality with the passage of time and heat transfer. Therefore, uniform heatability cannot be maintained over a long period of time.
[0008]
The problem to be solved by the present invention is to provide a heating device excellent in uniform heating property and durability.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the heating device of the present invention comprises a heat-resistant block body that is heated in contact with an object to be heated, a heating means that heats the heat-resistant block body, and a penetration formed in the heat-resistant block body. And a plurality of heat conductive materials shorter than the length of the through hole are sequentially inserted and pressure-deformed to form a heat conductor that fills the through hole.
[0010]
By adopting such a configuration, the outer peripheral surface of the heat conductor formed by pressure deformation of the heat conductive material is in close contact with the inner peripheral surface of the through-hole, and the heat received from the heating means is thermally transferred. Since it is transmitted evenly throughout the heat resistant block body through the body and the temperature distribution on the heating surface is not uneven, the object to be heated can be heated uniformly. Further, since a heat transfer agent such as thermal grease that may cause thermal deterioration or secular change is unnecessary, durability is excellent.
[0011]
The material of the heat resistant block is preferably stainless steel, heat resistant steel, cast steel, alloy for electric heating or corrosion resistant heat resistant alloy, but stainless steel is most suitable in terms of high durability and low coefficient of thermal expansion. is there.
[0012]
Here, it is desirable that the outer diameter of the heat conducting material is (inner diameter of the through hole) − (0.05 to 0.3 mm). By setting the outer diameter within this range, the heat conductive material can be completely adhered to the inner peripheral surface of the through hole with a relatively small pressure.
[0013]
The ratio between the outer diameter and the length of the heat conducting material is preferably 1: 2 to 1: 5. By setting the ratio in this range, it is possible to efficiently convert the shrinkage that occurs when the heat conducting material is pressed in the length direction into the expansion in the outer diameter direction of the heat conducting material. The conductor can be formed efficiently in a short time.
[0014]
By forming an enlarged diameter portion having an inner diameter larger than the through hole at the end portion of the through hole, and inserting and heat-transforming a heat conductive material into the enlarged diameter portion to integrate with the heat conductor in the through hole, Since it is possible to increase the amount of heat conduction to the vicinity of the end face of the heat resistant block body that is exposed to the atmosphere and has a large amount of heat radiation, it is possible to prevent a temperature drop near the end face of the heat resistant block body.
[0015]
Further, by closing the opening end of the enlarged diameter portion with a sealing member made of the same material as the heat resistant block body, it is possible to suppress heat dissipation from the heat conductor itself located in the enlarged diameter portion. The temperature drop near the end face of the functional block body can be prevented.
[0016]
As the material of the heat conducting material, gold, silver, copper, aluminum, or an alloy containing one or more of these can be used. By using these materials, the deformability after insertion into the through-hole and the adhesion with the inner peripheral surface of the through-hole are improved, and a heat conductor having a higher thermal conductivity than the heat-resistant block body can be formed. . In addition, when the heat resistant block body is made of stainless steel, copper having a small difference in coefficient of thermal expansion is preferable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional perspective view showing a heating device according to an embodiment, and FIG. 2 is a partially cutaway side view of the heating device.
[0018]
The heating device 10 of this embodiment includes a stainless steel heat-resistant block body 12 having a heating surface 11 to be brought into contact with an object to be heated, and two heaters built in to heat the heat-resistant block body 12. 13 and two through holes 14 formed in the heat-resistant block body 12, and a heat conductor 15 constituted by a plurality of heat conductive materials 15 a is built in the through hole 14.
[0019]
Expanded portions 16 having an inner diameter larger than that of the through holes 14 are formed at both ends of the through holes 14, respectively, and a thermally conductive material 15 b integrated with the heat conductor 15 is disposed in the expanded diameter portions 16. . Further, the open end of the enlarged diameter portion 16 is closed by a stainless steel sealing member 17 made of the same material as the heat resistant block body 12.
[0020]
Here, with reference to FIG. 3, FIG. 4, the procedure in which the heat conductor 15 in the through-hole 14 is formed is demonstrated. As shown in FIG. 3, the heat-resistant block body 12 is erected on the base surface 18 with one enlarged-diameter portion 16 facing down. At this time, the lower diameter enlarged portion 16 is closed with the closing device 19. Then, after the heat conduction material 15a is put into the through hole 14 from the upper diameter enlarged portion 16, when the heat conduction material 15a is pressed downward by the pressurizing device 20 inserted into the through hole 14, the heat conduction material 15a is Since it contracts in the pressurizing direction and expands until it comes into close contact with the inner peripheral surface of the through hole 14, the heat conducting material 15 a is fixed in the through hole 14.
[0021]
Next, after the pressurizing device 20 is pulled out from the through hole 14 and the next heat conductive material 15a is put into the through hole 14, the pressurizing device 20 is inserted into the through hole 14 again to add the heat conductive material 15a. Pressure deformation. Hereinafter, when such work is repeated until the heat conductive material 15a reaches the upper end of the through hole 14, each heat conductive material 15a is deformed from the state of FIG. 4A to the state of FIG. Then, the heat conductive material 15a located below and the inner peripheral surface of the through hole 14 are in close contact with each other, and an integrated heat conductor 15 that finally fills the through hole 14 is formed.
[0022]
As a result, the outer peripheral surface of the heat conductor 15 formed by pressure deformation of the heat conductive material 15a is in close contact with the inner peripheral surface of the through hole 14 without any gap, and the heat received from the heater 13 is the heat conductor 15. Therefore, the temperature distribution of the heating surface 11 is not uneven and the object to be heated can be heated uniformly. Further, since no heat transfer agent such as thermal grease which may cause thermal deterioration or aging changes is required, durability is excellent.
[0023]
In addition, after the heat conductor 15 is formed in the through hole 14, the heat conductive material 15 b is inserted into the enlarged diameter portion 16, is deformed by pressure and integrated with the thermal conductor 15, and the enlarged diameter portion 16 is opened. The end is closed by inserting a stainless steel sealing member 17 into the end.
[0024]
Therefore, the amount of heat conduction to the vicinity of the end face of the heat-resistant block body 12 that is exposed to the atmosphere and has a large amount of heat dissipation increases, and the heat conductor 15 itself located in the enlarged diameter portion 16 by the sealing member 17. Therefore, the temperature drop near the end face of the heat-resistant block body 12 can be prevented, and the temperature distribution on the heating face 11 can be made uniform.
[0025]
Next, with reference to FIG. 5, FIG. 6, the dimension ratio of each part which comprises the heating apparatus 10 is demonstrated. The total length of the heating device 10 is L, the outer diameter of the heat conduction material 15a is D 0 , the length of the heat conduction material 15a is l 0 , the inner diameter of the through hole is D 1 , and the length of the heat conduction material 15a after pressure deformation Is l 1 , the inner diameter of the enlarged diameter portion 16 is D 2 , and the depth of the enlarged diameter portion 16 is l 2 ,
D 0 : l 0 = 1: 2 to 1: 5
D 0 = D 1 − (0.05 to 0.3) mm
l 1 = l 0 × (0.85 to 0.99)
5 ≦ l 2 ≦ L / 10 mm
D 2 > D 1 × (1.0 to 1.5)
It is said.
[0026]
Further, as shown in FIG. 6, in the central portion of the heat-resistant block body 12, the diameter of the heater 13 is D 3 , the distance between the heating surface 11 and the heat conductor 15 is h 1 , and the heater 13 and the heat conductor. 15 is h 2 , and the distance between the heat conductors 15 is w 1 .
h 2 ≧ D 1/2 + D 3/2 + 3 mm
D 1/2 + 2 ≦ h 1 ≦ D 1/2 + 6 mm
D 1 + 2 ≦ w 1 ≦ D 1 × 2 mm
It is said.
[0027]
Further, as the material for forming the heat conductive material 15a, copper having higher thermal conductivity than the heat resistant block body 12 made of stainless steel and having a small difference in thermal expansion coefficient from the heat resistant block body 12 is used. The heat conductor 15 having excellent adhesion to the inner peripheral surface of the through-hole 14 can be formed by pressure deformation, and even if used for a long time, the outer periphery of the heat conductor 15 is A gap is not generated between the inner peripheral surface of the through hole 14.
[0028]
In the heating device 10 of the present embodiment, two heat heaters 13 are built in the heat-resistant block body 12, and the heat conductive material 15a is inserted into the two through holes 14 and deformed under pressure to form the heat conductor 15. However, since the present invention is not limited to this, depending on various conditions such as the shape of the object to be heated and the heating temperature, for example, as shown in FIGS. The cross-sectional shape of the conductive block bodies 21, 22, 23, and 24, the diameter of the heaters 25, 26, 27, and 28, the built-in position and the number of built-ins, and the position and number of the heat conductors 29, 30, 31, and 32 are arbitrarily selected. Can be set.
[0029]
7A to 7D, the heating surfaces 34, 35, 36, and 37 are formed so as to match the shape and size of the object to be heated, but the heat conductors 29, 30, 31, 32 is formed by inserting and pressurizing and deforming a plurality of heat conductive materials (not shown) in the through holes 38, 39, 40, 41, respectively. An effect is exhibited and a to-be-heated material can be heated uniformly.
[0030]
【The invention's effect】
The present invention has the following effects.
[0031]
(1) A heat-resistant block body that is heated in contact with an object to be heated, a heating means that heats the heat-resistant block body, and a through-hole formed in the heat-resistant block body. The outer peripheral surface of the heat conductor formed by pressure deformation of the heat conduction material penetrates by forming a heat conductor that fills the through hole by sequentially inserting and pressure deforming multiple heat conduction materials shorter than the length of The object is in close contact with the inner peripheral surface of the hole without any gap, and the heat received from the heating means is evenly transmitted to the entire heat-resistant block body via the heat conductor, so that there is no uneven temperature distribution on the heating surface. Can be heated uniformly. Further, since no heat transfer agent such as thermal grease that may cause thermal deterioration or aging changes is required, durability is excellent.
[0032]
(2) By setting the outer diameter of the heat conductive material to (inner diameter of the through hole) − (0.05 to 0.3 mm), the heat conductive material is applied to the inner peripheral surface of the through hole with a relatively small pressure. It becomes possible to make it adhere completely.
[0033]
(3) By setting the ratio of the outer diameter and the length of the heat conducting material to 1: 2 to 1: 5, the shrinkage that occurs when the heat conducting material is pressed in the length direction is reduced outside the heat conducting material. Since it becomes possible to convert efficiently into expansion of radial direction, a heat conductor can be formed efficiently in a short time.
[0034]
(4) An enlarged diameter portion having an inner diameter larger than that of the through hole is formed at the end of the through hole, and the heat conduction material is inserted into the enlarged diameter portion and subjected to pressure deformation so as to be integrated with the heat conductor in the through hole. As a result, it is possible to increase the amount of heat conduction to the vicinity of the end face of the heat-resistant block body that is exposed to the atmosphere and has a large amount of heat dissipation, so that the temperature drop near the end face of the heat-resistant block body can be prevented. Can do.
[0035]
(5) By closing the opening end of the enlarged diameter portion with a sealing member made of the same material as the heat resistant block body, it is possible to suppress heat radiation from the heat conductor itself located in the enlarged diameter portion. Further, it is possible to prevent a temperature drop near the end face of the heat resistant block body.
[0036]
(6) By making the material of the heat conductive material gold, silver, copper, aluminum or an alloy containing one or more of these, the deformability after insertion into the through hole, the inside of the through hole Adhesiveness with the peripheral surface is improved, and a heat conductor having a higher thermal conductivity than the heat-resistant block body can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view showing a heating device according to an embodiment.
FIG. 2 is a partially cutaway side view of the heating apparatus of FIG.
3 is a partially cutaway side view showing a manufacturing process of the heating device of FIG. 1. FIG.
4 is an explanatory view showing a manufacturing process of the heating device of FIG. 1. FIG.
FIG. 5 is an explanatory diagram of dimensional ratios of each part of the heating device of FIG. 1;
6 is an explanatory diagram of a dimensional ratio of each part of the heating device of FIG. 1. FIG.
FIG. 7 is a perspective view showing a heating apparatus according to another embodiment.
FIG. 8 is a perspective view showing a conventional heating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Heating device 11 Heating surface 12, 21, 22, 23, 24 Heat-resistant block body 13,25,26,27,28 Heater 14,38,39,40,41 Through-hole 15,29,30,31,32 Thermal conductors 15a, 15b Thermal conductive material 16 Expanded diameter portion 17 Sealing member 18 Base surface 19 Closure device 20 Pressurization device 34, 35, 36, 37 Heating surface

Claims (6)

被加熱物に接触させて加熱する耐熱性ブロック体と、前記耐熱性ブロック体を加熱する加熱手段と、前記耐熱性ブロック体に形成された貫通孔とを備え、前記貫通孔内に貫通孔の長さより短い複数の熱伝導素材を順次挿入および加圧変形させて前記貫通孔を満たす熱伝導体を形成したことを特徴とする加熱装置。A heat-resistant block body that is heated in contact with an object to be heated; heating means that heats the heat-resistant block body; and a through-hole formed in the heat-resistant block body. A heating apparatus, wherein a plurality of heat conductive materials shorter than the length are sequentially inserted and pressure-deformed to form a heat conductor that fills the through hole. 前記熱伝導素材の外径が、(貫通孔の内径)−(0.05〜0.3mm)である請求項1記載の加熱装置。The heating apparatus according to claim 1, wherein an outer diameter of the heat conductive material is (inner diameter of the through hole) − (0.05 to 0.3 mm). 前記熱伝導素材の外径と長さとの比率が1:2〜1:5である請求項1または2記載の加熱装置。The heating apparatus according to claim 1 or 2, wherein a ratio of an outer diameter and a length of the heat conductive material is 1: 2 to 1: 5. 前記貫通孔の端部に、前記貫通孔より内径が大きい拡径部を形成し、前記熱伝導素材を前記拡径部に挿入および加圧変形させて前記熱伝導体と一体化させた請求項1〜3のいずれかに記載の加熱装置。An enlarged diameter portion having an inner diameter larger than that of the through hole is formed at an end of the through hole, and the heat conducting material is inserted into the enlarged diameter portion and subjected to pressure deformation to be integrated with the heat conductor. The heating apparatus in any one of 1-3. 前記拡径部の開口端を前記耐熱性ブロック体と同材質の封止部材で閉塞した請求項4記載の加熱装置。The heating apparatus according to claim 4, wherein an opening end of the enlarged diameter portion is closed with a sealing member made of the same material as the heat resistant block body. 前記熱伝導素材の材質が金、銀、銅、アルミニウムのいずれかまたはこれらのうちの1以上を含有する合金である請求項1〜5のいずれかに記載の加熱装置。The heating device according to any one of claims 1 to 5, wherein a material of the heat conductive material is gold, silver, copper, aluminum, or an alloy containing one or more of these.
JP32170999A 1999-11-11 1999-11-11 Heating device Expired - Fee Related JP4097864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32170999A JP4097864B2 (en) 1999-11-11 1999-11-11 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32170999A JP4097864B2 (en) 1999-11-11 1999-11-11 Heating device

Publications (2)

Publication Number Publication Date
JP2001143854A JP2001143854A (en) 2001-05-25
JP4097864B2 true JP4097864B2 (en) 2008-06-11

Family

ID=18135567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32170999A Expired - Fee Related JP4097864B2 (en) 1999-11-11 1999-11-11 Heating device

Country Status (1)

Country Link
JP (1) JP4097864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200048702A (en) * 2018-10-30 2020-05-08 강홍구 Device to Prevent Freezing of the Pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031115A (en) * 2018-01-11 2019-07-19 清华大学 Face source black matrix

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200048702A (en) * 2018-10-30 2020-05-08 강홍구 Device to Prevent Freezing of the Pipe
KR102176187B1 (en) * 2018-10-30 2020-11-12 강홍구 Device to Prevent Freezing of the Pipe

Also Published As

Publication number Publication date
JP2001143854A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US4942140A (en) Method of packaging semiconductor device
US5618189A (en) Solder medium for circuit interconnection
US5065501A (en) Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
WO2003058714A3 (en) Device and method for package warp compensation in an integrated heat spreader
CA2232425A1 (en) Functionally gradient material and its use in a semiconductor circuit substrate
KR20090008352A (en) Ceramic heater and method of securing a thermocouple thereto
JPS61292808A (en) Self-heating/self-solder welding bath bar
SE9600649L (en) Heat conducting device
JP3876054B2 (en) Fuse and manufacturing method thereof
US6350969B1 (en) Self-regulating heater
JP4097864B2 (en) Heating device
KR950035549A (en) How to wave solder components on a printed circuit board in a temperature controlled non-oxidizing atmosphere
US4644316A (en) Positive temperature coefficient thermistor device
TW200503167A (en) Manufacturing method of semiconductor device
US4073561A (en) Method for forming a heat sink and connector device and the product thereof
JPS62209843A (en) Housing of electronic circuit
KR970007743A (en) Resonant Tag Manufacturing Method and Resonant Tag
JP2004071941A (en) Manufacturing method of heat sink
JPS62207615A (en) Mold for resin sealing
JPH116651A (en) Water flow heating device
JP2803413B2 (en) Electric heater and method of manufacturing the same
JPH01221873A (en) Conductor rail with contact pin
JP4023938B2 (en) Heating device
GB2064396A (en) Electric Soldering Iron
JP2000133428A (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees