JP4097492B2 - Sample cell, electrochemical analyzer and electrochemical analysis method - Google Patents

Sample cell, electrochemical analyzer and electrochemical analysis method Download PDF

Info

Publication number
JP4097492B2
JP4097492B2 JP2002269651A JP2002269651A JP4097492B2 JP 4097492 B2 JP4097492 B2 JP 4097492B2 JP 2002269651 A JP2002269651 A JP 2002269651A JP 2002269651 A JP2002269651 A JP 2002269651A JP 4097492 B2 JP4097492 B2 JP 4097492B2
Authority
JP
Japan
Prior art keywords
specimen
sample
well
electrochemical
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269651A
Other languages
Japanese (ja)
Other versions
JP2004108863A (en
Inventor
仁 珠玖
卓夫 白石
智一 末永
宏之 阿部
宏良 星
重夫 青柳
昌昭 松平
陽介 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002269651A priority Critical patent/JP4097492B2/en
Publication of JP2004108863A publication Critical patent/JP2004108863A/en
Application granted granted Critical
Publication of JP4097492B2 publication Critical patent/JP4097492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、哺乳動物胚等の生体試料を配置する検体セル、及びこの検体セルを用いて生体試料の評価等を行う電気化学的分析装置と電気化学的分析方法に関するものであり、例えば生体試料として培養されたプロトプラストやウシ胚等の代謝活性量や形態変化等を分析する際に用いて好適なものである。
【0002】
【従来の技術】
近年、家畜繁殖および体外培養技術の進歩により、牛などの家畜における体内および体外受精卵移植を行う研究機関や普及実施機関が増加し、市場に出回る受精卵移植家畜の生産頭数は増加の一途にある。一方、受胎卵移植による受胎率は、人工受精に比べてまだ十分とはいえず、移植や凍結保存に適した受精卵や核移植されたクローン胚の選択において、信頼性の高い品質分析方法および装置の確立が要望されている。
【0003】
体外培養された哺乳動物受精卵の発生が正常に進行していることを判断する方法は、主に形態観察に依存しているのが現状である。実際に、形態観察に基づく受精卵の品質ランク判定は広く適用され、ルーチン化されている。
【0004】
しかし、形態的判定により低品質と評価された受精卵が受胎したり、高品質と判定された受精卵が受胎しない事例が報告されている。また、判定者の主観により判定結果が一致しない恐れがある問題も指摘されている。
【0005】
このような状況を踏まえて、試料溶液中に含まれる検体(分析対象物質)の濃度を自動的・連続的に定量するために適用されているマルチタイタープレートを備えた装置(以下、マルチ式分析装置と称する)を用い、前記のマルチタイタープレートに形成された複数個のウェル内に哺乳動物胚等の検体をそれぞれ配置し、その各検体において代謝活性量(例えば、溶存酸素量)等を電気化学的分析する方法(Electrochemistry,67−5479−483,1999)が検討されている。広く市販されているマルチ式分析装置は、吸光,蛍光,発光計測を検出原理とし、例えば容積が100μl〜3mlのマイクロウェルが12〜96個形成される。
【0006】
このマルチ式分析装置による検体の電気化学的分析は、図5(ウェル51の拡大図)に示すように、外壁51aで隔離された各ウェル51内に対し、作用電極52a,参照電極52b,対電極52cを印刷等により形成し、各電極を内壁53によって隔離して形成したマルチタイタープレート50を、計測溶液(生体試料等の検体の生命を維持できる培養液等;図示省略)に浸し(各ウェル51の各電極を計測溶液に浸し)、各ウェル51の作用電極52a上に検体をそれぞれ培養して、その培養された検体の経時的変化を電流変化として検出することにより行われる。なお、分析精度の観点から、前記各ウェル51内における計測溶液の濃度分布はそれぞれ均一にする必要がある。
【0007】
しかしながら、前記のマルチ式分析装置により電気化学的分析する場合、マルチタイタープレート50の各ウェル51に対して作用電極52a,参照電極52b,対電極52cをそれぞれ形成する必要があるため、分析装置の構成が複雑になってしまう。また、前記の各ウェル51内における検体の経時的変化を電流変化として検出する場合、作用電極52a表面では計測溶液の濃度分布が不均一になってしまうが、作用電極52aの周囲の濃度においては均一に保つ必要がある。さらに、前記の各ウェル51の形状は極めて微小であるため、それら各ウェル51に対して検体を配置する際にはマニピュレータ,マイクロインジェクタ,実体顕微鏡等を必要とし手間がかかってしまう。
【0008】
そこで最近では、特開2002−122568号公報(哺乳動物胚の無侵襲的品質評価方法及びその装置)として、走査型電気化学顕微鏡(電気化学顕微鏡)を用いることにより、個々のウシ胚における形態を観察したり酸素消費量を基準に胚の正常性を判定する方法および装置(以下、電気化学的分析装置と称する)による品質評価方法が提案されている。
【0009】
この電気化学的分析装置は、単一哺乳動物胚の形態観察を行うための(倒立)顕微鏡と、単一哺乳動物胚の酸素消費量の計測を行う電気化学顕微鏡計測装置と、培養液に準ずる計測溶液とを用いて単一胚近傍の酸素濃度変化を高空間分解能で定量する手段と、あらかじめ作出した哺乳動物胚の大きさと酸素消費量の関係および哺乳動物胚のその後の発生結果を集計する手段と、両手段による結果に基づいて哺乳動物胚の正常性を判定する手段とを具備して構成されている。
【0010】
この電気化学的分析装置において、電気化学顕微鏡計測装置は図6に示すように、顕微鏡ステージ69b上に設置した微小電極(作用電極61a,参照電極/対電極61b)、電極位置決め装置64a、微小電流計測装置(ポテンショスタット)64c、及びこれらの制御等を行うコンピュータ64bと、恒温循環槽等から成る温度制御装置66、ガス(酸素、二酸化炭素)ボンベ67a,バブラー67b等を有する培養気相条件制御装置、倒立顕微鏡69a等から構成され、顕微鏡ステージ69b上に配置されるディッシュ型セル(平底容器)62b内の培地/計測溶液62aに、試料保持装置(キャピラリーガラス65a,シリコンチューブ65b,マイクロインジェクタ65c)65によって保持された検体(例えば、胚試料)63の分析・評価等を行うものである。なお、68はグローブボックスである。
【0011】
このように構成された電気化学的分析装置において、試料保持装置65を操作し検体63をディッシュ型セル62b内における顕微鏡(倒立顕微鏡69a)視野の中心に配置し、作用電極62を検体63の周囲を走査し電流変化を検出することにより、前記検体63の形態および酸素消費量等の分析が行われる。
【0012】
【非特許文献1】
新井潤一郎,加藤英夫著「酸素電極法による微生物の呼吸測定を指標とした薬剤スクリーニング」The Electrochemical Society出版、1999年、67−5のp.479−483。
【0013】
【特許文献1】
特開2002−122568号公報(段落[0035]〜[0039],図1)。
【0014】
【発明が解決しようとする課題】
しかしながら、従来の電気化学的分析装置の場合は、検体63を試料保持装置65で操作しながら分析する必要があるため、分析工程が煩雑になってしまうこと、その分析に要する時間は装置の使用者の修練度によって大きく左右されてしまうこと、また検体1個を分析する毎に一つの試料保持装置65を必要とするため、複数個の検体を分析する装置としては不適格であること、さらには試料の保持をガラスキャピラリー65aおよびマイクロインジェクタ65cによって構成される前記試料保持装置65により行っているため、検体に損傷等のダメージを与えてしまう危険性があること、そして前述の各問題点の影響等により分析精度が低下することも考えられる。
【0015】
本発明は前記課題に基づいてなされたものであり、検体に損傷を与えることなく保持できる検体セルを提供すると共に、既存の電気化学的分析装置(無侵襲的分析装置)において、1個又は複数個の検体を簡便な方法および高精度で連続的に分析することを可能にした電気化学的分析装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明は、前記課題の解決を図るために、請求項1の発明においては電気化学顕微鏡計測装置と、電気化学顕微鏡計測装置により分析する検体である生体試料を配置する検体セルを用いた装置であって、前記検体セルは、平板状部材の一面側に検体である生体試料を配置するための逆錐形状のウェルを1個または複数個形成するとともに、前記平板上に前記ウェルの周囲を囲む壁部を立設して液槽を形成したものであり、前記ウェルは、ウェル内周面の傾斜が垂直方向に対して30°〜60°となるよう形成したしたものであり、前記検体セルの液槽内に計測溶液を充填した状態で、前記電気化学顕微鏡計測装置の作用電極を計測溶液内で移動自在且つウェル内に侵入可能に構成すると共に、前記計測溶液内でウェルから所定距離を隔てた位置に参照電極/対極を配置して構成したことを特徴とする。ここで、逆錐形状とは、略逆円錐形状の他、例えば略逆三角錐形状,逆四角錐形状等を示す。なお、ここで電気化学顕微鏡計測装置とは、顕微鏡ステージ上に設置した微小電極(作用電極,参照電極/対電極)、電極位置決め装置、微小電流計測装置(ポテンショスタット)、及びこれらの制御等を行うコンピュータと、恒温循環槽等から成る温度制御装置、ガス(酸素、二酸化炭素)ボンベ,バブラー等を有する培養気相条件制御装置、及び倒立顕微鏡等から構成されている。
【0018】
請求項2の発明は、請求項1の発明におけるウェルが、底部に微小平面部を有することを特徴とする。
【0019】
請求項3の発明は、請求項1または2の何れかの発明における検体セルを、透明な材料により形成したことを特徴とする。ここで透明な材料とはアクリルやポリスチレン等の透視可能な材料をいう。
【0022】
請求項4の発明は、請求項1〜3の何れかに記載の電気化学的分析装置を用い、計測溶液が充填された検体セル上方から検体である生体試料を投入してウェル内に静止させ、ウェル内において作用電極が検体周囲を移動して走査することにより、前記検体周囲の電流変化を検出し、この検出結果に基づいて検体の分析,評価等をすることを特徴とする。
【0023】
請求項5の発明は、請求項1〜3の何れかに記載の電気化学的分析装置を用いると共に、分析する検体である生体試料が配置される検体セルとして複数個のウェルが形成された多検体セルを用い、計測溶液が充填された多検体セル上方から検体である生体試料を投入して各ウェル内に各々静止させ、作用電極ウェル内において検体周囲を移動して走査する工程を各ウェル毎に順次自動的に行って、各検体周囲の電流変化を各々検出し、各検出結果に基づいて各検体を各々自動的に分析,評価することを特徴とする。
【0024】
【発明の実施の形態】
本実施の形態は、複数個の生体試料などの検体を保持することが可能な検体セル(以下、多検体セルと称する)と、この多検体セルを用いた電気化学的分析装置を開発し、各検体に損傷を与えることなく保持し、代謝活性量や形態等を分析すると共に、各検体を簡便な方法および高精度で連続的に分析することを検討したものである。
【0025】
以下、本発明の実施の形態における多検体セル、及び電気化学分析装置を図面に基づいて詳細に説明する。
【0026】
図1A(概略図),B(断面図),C(ウェルの拡大図)は、本発明の実施の形態に係る多検体セルの概略説明図を示すものである。図1A〜Cにおいて、多検体セル11はアクリルやポリスチレン等の透視可能(例えば、後述するウェル内に配置された検体を他端面側から透視可能)な材料を射出成形することで、基板の一端面側に検体を配置するためのウェル(逆円錐形状の穴)11aが複数個それぞれ所定距離を隔てて形成すると共に、各ウェル11aの周囲には各ウェル11a周囲を囲む壁部11bが立設されており、これにより基板上には各ウェル11aを含めた壁部11b内が試料溶液で満たされる液槽を形成して構成したものである。
【0027】
本実施形態においては、長さ60mm,幅30mm,厚さ3mmのアクリル製基板に、開口半径2mm,深さ2mmの逆円錐形状のウェル11aを2mm間隔で6個形成され、基板上縁部にはこれら各ウェル11aを囲むようにアクリルから成る厚さ5mm,高さ5mmの壁部11bが立設され、壁部11b内には長さ50mm、幅20mm、深さ5mmの液槽が形成されている。なお、ウェル11aの底部には、図1(C)に示すように必要に応じて微小平面部11cを形成しても良く、この実施形態においては直径0.05mmの微小平面部11cが形成されている。
【0028】
以上のように構成した多検体セル11に、検体である生体試料として細胞や胚などの検体を配置する場合には、ウェル11aを目印に、その上方より単に簡易なインジェクター等による滴下等で検体を落とし込むことで、検体を適切な位置、即ちウェル11a内に容易に納めることができるので、検体にダメージを与える恐れは無い。
【0029】
この時、ウェル11a開口範囲内であれば微小のズレがあったとしても、検体はウェル11aの傾斜により案内され、速やかにウェル11aの頂部に納まって静止するので、厳密な(例えば、マニピュレータ,マイクロインジェクタ,実態顕微鏡等を用いた)位置調整等を行う必要もない。
【0030】
そして、検体がウェル11a内に納まった状態においては、多検体セル11に多少の振動が加えられても、検体が所定の位置から移動するようなことはない。
【0031】
なお、本実施形態においては、ウェル11aの底部に微小平面部11cを形成していることにより、検体の下面側がこの微小平面部11cによって支持されるため、検体をより安定して支持することが可能であるが、この微小平面部11cは必要に応じて形成すれば良いものである。
【0032】
また、多検体セル11は、滑らかな表面となるように射出成型等により形成することが好ましいが、他の既知の方法によって形成しても良く、また射出成形により形成するにあたっては、壁部11aも含めて一体的に形成しても良い。
【0033】
更に、各ウェル11aの形状,大きさ,数等は、前記の寸法等に限ることなく、検体の形状,大きさ,数等に応じて任意に形成すれば良く、例えばウェル11aの形状も、ウェル11a内に検体を投入した際に検体が速やかにウェル11a内に納まるよう、略逆錐形状とすることが好ましく、例えば、前述の略逆円錐形状に限らず例えば略逆三角錐形状,逆四角錐形状等であっても良い。この時、ウェル11aの内周面を図1(C)に示すように垂直方向に対して45°、即ち図1(C)中の断面が90°になるように形成すると、ウェル11aの深さと開口半径とを同じにバランス良く確保できるため、種々の形状,大きさの検体に対する汎用性の面で好ましいと思われるが、用途に応じて例えば垂直方向に対して30°〜60°の範囲で任意の傾斜を選択することができる。
【0034】
以上の説明は全て、多数の検体を対象とする多検体セルについて説明しているが、単一の検体用として、ウェル11aを1個だけ有する検体セルとしても良いことは勿論である。
【0035】
なお、この検体ウェルは、前述のように射出成型により製造することで、同一の形状でばらつきなく生産できるので、大量生産に好適である。
【0036】
次に、本実施の形態に係る電気化学分析装置について説明する。本実施の形態に係る電気化学的分析装置は、図6に示す従来の電気化学顕微鏡計測装置において、ディッシュ型セル62bに代えて前記の検体セル(特に本実施の形態においては多数のウェル11を有する多検体セル11)を用いたものであるため、電気化学顕微鏡計測装置についての説明は省略する。
【0037】
図2は、図6のディッシュ型セル62bに代えて設置された多検体セル11を用いて行う検体の分析等について説明するための概略説明図である。なお、図1に示すものと同様なものには同一符号を用いて、その詳細な説明を省略する。
【0038】
多検体セル11の壁部11b内に計測溶液(例えば、無血清培養液)21が充填され、各ウェル11a内には検体22がそれぞれ投入されており、必要に応じて培養が行われる。23は作用電極(図6においては符号61a)であり、各ウェル11内を含む計測溶液21内に対して電極位置決め装置(図6においては符号64a)により移動自在に配置されている。24は、計測溶液21内で各ウェル11aから所定距離を隔てた任意の位置に配置された参照電極/対電極(図6においては61b)である。なお、前記の検体22と一対の作用電極23および参照電極/対電極24とは、計測溶液21を介して電気的に接続される。
【0039】
そして、図2に示すように各ウェル11内における検体22の上方(検体22から所定距離を隔てた上方の位置)に作用電極23を移動させ、ウェル11a内にて作用電極23を走査させて電流変化をそれぞれ検出して分析が行われる。この分析工程は、各ウェル11a内の各検体22に対して順次行われる。
【0040】
この時、本実施の形態においては、ディッシュ型セルに代えてウェル11aを有する多検体セル11を用いたことで、試料保持装置等は用いることなく前述通りに検体22を容易に所定の位置に保持することができ、また検体22が事前に位置確認のできるウェル11の頂部位置(決まった位置)に保持されることから、作用電極23の位置制御,走査等の各種操作はウェル11の頂部位置を目標に行えば良いので、使用者の修練度等に左右されることなく、誰もが短時間で容易に分析を行うことができる。
【0041】
なお、前記の作用電極23,参照電極/対電極24には、検体や電気化学的装置の大きさに応じて例えば微小電流計測用のものを用いることが好ましい。
【0042】
次に、以下に示す方法により検体として藻類ハネモのプロトプラスト,ウシ胚を各々作成し、電気化学的分析装置としてディッシュ型セル62bを用いた場合(従来の電気化学顕微鏡計測装置)と、多検体セル11を用いた場合(本実施の形態に係る電気化学的分析装置)とで、各々前記検体の酸素消費量の指標となる酸素濃度差(μMレベル)等を検出し、両者の比較を行った。
【0043】
なお、本実施例では、作用電極61aとして電極半径1μmの白金ディスク電極を用い、参照電極/対電極61bにはAg/AgCl電極を用いた。
【0044】
(プロトプラストの作成)
検体として用いるプロトプラストの作成について説明する。まず人工海水(1リットル当たりの成分;NaCl…23.90g,NaHCO3…0.195g,CaCl2…1.234g,MgCl2…4.989g)が充填されたシャーレ(例えば、キムワイプ(登録商標)上に載置されたシャーレ)を用意し、海水中でハネモの先端部を切断して採取し前記シャーレ内に移す。次に、前記シャーレ内にてハネモの先端部をピンセットで保持しながら、他のピンセットにより前記ハネモ内のプロトプラストを搾り出す。そして、前記シャーレ内を倒立顕微鏡で観察しながら光を約30分間照射し、球状(半径150μm程度の球状)になったものを検体(以下、プラスト検体と称する)として用いた。
【0045】
(ウシ胚の作成)
次に、検体として用いるウシ胚は、体外受精させたウシ胚を無血清培養液(IVD101;機能性ペプチド研究所製)中に浸し、低酸素雰囲気(O2…5%,CO2…5%,N2…90%、湿度100%、温度38.5℃)下にて発生培養させて、これを検体(以下、ウシ検体と称する)として用いた。
【0046】
(従来の無侵襲的試験装置による分析)
まず、検体(プラスト検体またはウシ検体)を計測溶液(人口海水または無血清培養液)と共にディッシュ型セル62bに移し電気化学顕微鏡計測装置の所定位置(図6のディッシュ型セルの位置)に配置する。そして、前記の検体を試料保持装置65により固定し参照電極/対電極61bに対する作用電極61aの電位を−0.6Vに設定すると共に、前記の検体表面および検体表面から所定距離隔てた領域(10μm〜170μm)において前記作用電極61aを走査速度14.7μm/秒で走査し電流変化を検出することにより、前記検体表面と検体表面から所定距離隔てた領域との酸素濃度差ΔC(ディッシュ型セルを用いた場合はΔCSとする)をそれぞれ求めた。
【0047】
前記のように酸素濃度差ΔCを求めることにより、下記の計算式によって酸素消費速度Fを算出することができる。なお、下記(1)式のDは酸素拡散係数(2.1×105cm2/mol)、rSは検体(透明体を含む検体)の半径を示すものとする。
【0048】
F=4π・D・rS・ΔC …… (1)
そして前記(1)式より明らかなように、ΔCは酸素消費速度Fの定量化、すなわち酸素消費量の指標となることが判る。
【0049】
(本実施の形態に係る電気化学的分析装置による分析)
次に、検体(プラスト検体またはウシ検体)を、前述の方法により多検体セル11のウェル11a(複数個のウェルのうち何れか一つ)内に配置し、前記ディッシュ62bを用いた場合と同様の方法で作用電極61a(図2中の作用電極23)を走査し電流変化を検出することにより、前記検体表面と検体表面から所定距離隔てた領域との酸素濃度差ΔC(多検体セルを用いた場合はΔCPとする)をそれぞれ求めた。
【0050】
前記のようにディッシュ,多検体セルを用いて得られた各々の酸素濃度差の結果を、図3(プラスト検体),図4(ウシ検体)の酸素濃度差ΔCSとΔCPとの相関特性図に示した。
【0051】
図3,4に示す結果から、検体の種類,大きさに関係なく、下記の関係式が成り立つことが読み取れる。
ΔCP=2・ΔCS …… (2)
すなわち、本実施の形態のように多検体セルを用いることにより、従来のディッシュ型セルおよび試料保持装置を用いた場合と比較して、検体の酸素濃度差を2倍程度増幅させて分析でき、例えば細胞の呼吸に由来する検体周辺の酸素濃度変化を効率的に捕捉できることが判った。
【0052】
なお、本実施の形態の検体セル(又は多検体セル)は、アクリル,ポリスチレン等の透視可能な材料により形成されていることにより、従来の無侵襲的試験装置と同様に、倒立顕微鏡(図6中の69a)により、下方より検体の形態観察を行うことができる。
【0053】
そして、本実施の形態に係る電気化学的分析装置においても、顕微鏡観察により検体の大きさを計測し形態的評価を行うと共に、検体の酸素消費量の計測を行い、予め記録した検体の大きさと酸素消費量の関係や、検体のその後の成長過程等を基に設定した判定基準を参照することで、検体の品質を判定することができることは、従来の無侵襲的試験装置と同様である。
【0054】
また、本実施の形態の電気化学分析装置において多検体セルを用いる場合、各検体が事前に位置確認のできる決まった位置(ウェルの頂部位置)に保持され、作用電極の位置制御,走査等の各種操作を決まった位置を目標に行うことができるので、各検***置における走査等の分析のための操作等を自動的に行ようコンピュータ(例えば図6中のコンピュータ64d)にプログラムしておくことで、多検体セルに保持された複数の検体の分析を順次自動的に行う自動化が可能である。
【0055】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
【0056】
【発明の効果】
以上示したように本発明の検体セルによれば、検体にダメージを与える恐れも無く、マニピュレーター,マイクロインジェクタ等の特殊な試料保持装置を用いることなく、例えば簡易なインジェクター等により、検体を適切な位置(ウェル内)に容易に納め保持することができる。
【0057】
そして、検体がウェル内に納まった状態においては、検体セルに多少の振動が加えられても、検体が所定の位置から移動するようなことはない。
【0058】
更に、ウェルの底部に微小平面部を形成することにより、検体の下面側がこの微小平面部によって支持され、検体をより安定して支持することが可能である。
【0059】
なお、検体セルは透視可能な材料により形成されているので、倒立顕微鏡等による検体の形態観察を行うこともできる。
【0060】
また、本発明の電気化学的分析装置によれば、セルに多検体セルを用いたことで、試料保持装置等は用いることなく前述通りに検体を容易に所定の位置に保持することができるので、装置としての小型化が図れ、検体が事前に位置確認のできるウェルの頂部位置(決まった位置)に保持されることから、作用電極の位置制御,走査等の各種操作はウェルの頂部位置を目標に行えば良いので、使用者の修練度等に左右されることなく、誰もが短時間で容易に分析,評価等を行うことができる。
【0061】
そして、従来法と比較して検出電流を略2倍の増幅して計測できることより、検体のの呼吸に由来する検体周辺の酸素濃度変化を効率的捕捉でき、ウシ胚等の検体における酸素消費量を基準にした正常性等の評価,判定する際、より確度が高い情報を得ることができる。
【0062】
更に、多検体セルを用いた場合には、生体試料である検体を複数同時に保持できるので、その都度検体の保持作業を行うことなく、保持した検体を短時間で順次連続して分析,評価することが可能である。
【0063】
更にまた、多検体セルを用いる場合、各検体が事前に位置確認のできる決まった位置(ウェルの頂部位置)に保持され、作用電極の位置制御,走査等の各種操作を決まった位置を目標に行うことができるので、各検***置における走査等の分析のための操作等を自動的に行ようコンピュータにプログラムしておくことで、多検体セルに保持された複数の検体の分析を順次自動的に行う自動化が可能である。
【図面の簡単な説明】
【図1】本実施の形態における検体セルの概略説明図。
【図2】本実施の形態の概略説明図
【図3】プラスト検体における酸素濃度差ΔCSとΔCPとの相関特性図。
【図4】ウシ検体における酸素濃度差ΔCSとΔCPとの相関特性図。
【図5】マルチ式分析装置の概略説明図。
【図6】従来の電気化学的分析装置の概略説明図。
【符号の説明】
11…多検体セル
11a…ウェル
11b…壁部
11c…微小平面部
21…計測溶液
22…検体
23…作用電極
24…参照電極/対電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a specimen cell in which a biological sample such as a mammalian embryo is placed, and an electrochemical analysis apparatus and an electrochemical analysis method for evaluating the biological sample using the specimen cell. It is suitable for use in analyzing metabolic activity, morphological changes, etc. of protoplasts and bovine embryos cultured as
[0002]
[Prior art]
In recent years, with the progress of livestock breeding and in vitro culture technology, the number of research institutions and implementation agencies that carry out in-vivo and in-vitro fertilized egg transplantation in livestock such as cattle has increased, and the number of fertilized egg-transplanted livestock on the market has been increasing is there. On the other hand, the conception rate by embryo transfer is still not sufficient compared to artificial fertilization, and in the selection of fertilized eggs suitable for transplantation and cryopreservation and clone embryos that have undergone nuclear transfer, a reliable quality analysis method and Establishment of a device is desired.
[0003]
At present, the method for judging whether the development of a mammalian fertilized egg cultured in vitro is proceeding normally depends mainly on morphological observation. In fact, fertilized egg quality rank determination based on morphology observation is widely applied and routineized.
[0004]
However, cases have been reported in which fertilized eggs evaluated as low quality by morphological determination are not fertilized, or fertilized eggs determined as high quality are not fertile. In addition, a problem has been pointed out that the judgment results may not match due to the subjectivity of the judge.
[0005]
Based on this situation, a device equipped with a multi-titer plate (hereinafter referred to as multi-type analysis) applied to automatically and continuously quantify the concentration of the sample (analyte) contained in the sample solution. (Referred to as “device”), specimens such as mammalian embryos are placed in a plurality of wells formed on the multititer plate, and the metabolic activity (for example, dissolved oxygen) is electrically measured in each specimen. Methods for chemical analysis (Electrochemistry, 67-5479-483, 1999) have been studied. Widely available multi-type analyzers have absorption, fluorescence, and luminescence measurement as detection principles, and, for example, 12 to 96 microwells with a volume of 100 μl to 3 ml are formed.
[0006]
As shown in FIG. 5 (enlarged view of the well 51), the electrochemical analysis of the specimen by this multi-type analyzer is performed on the working electrode 52a, the reference electrode 52b, and the pair in each well 51 isolated by the outer wall 51a. The multi-titer plate 50 formed by forming the electrodes 52c by printing or the like and separating each electrode by the inner wall 53 is immersed in a measurement solution (a culture solution or the like capable of maintaining the life of a specimen such as a biological sample; not shown). Each electrode of the well 51 is immersed in a measurement solution), a specimen is cultured on the working electrode 52a of each well 51, and a change with time of the cultured specimen is detected as a current change. From the viewpoint of analysis accuracy, the concentration distribution of the measurement solution in each well 51 needs to be uniform.
[0007]
However, when electrochemical analysis is performed by the multi-type analyzer, it is necessary to form the working electrode 52a, the reference electrode 52b, and the counter electrode 52c for each well 51 of the multi-titer plate 50. The configuration becomes complicated. In addition, when the temporal change of the specimen in each well 51 is detected as a current change, the concentration distribution of the measurement solution becomes non-uniform on the surface of the working electrode 52a, but the concentration around the working electrode 52a is It must be kept uniform. Furthermore, since the shape of each of the wells 51 is extremely small, manipulators, microinjectors, stereomicroscopes, and the like are required to place a sample in each of the wells 51.
[0008]
Therefore, recently, as disclosed in Japanese Patent Application Laid-Open No. 2002-122568 (Non-invasive quality evaluation method and apparatus for mammalian embryos), by using a scanning electrochemical microscope (electrochemical microscope), the morphology of individual bovine embryos can be changed. A quality evaluation method using a method and an apparatus (hereinafter referred to as an electrochemical analyzer) for observing or determining normality of an embryo based on oxygen consumption has been proposed.
[0009]
This electrochemical analyzer is based on the (inverted) microscope for observing the morphology of a single mammalian embryo, the electrochemical microscope measuring device for measuring the oxygen consumption of a single mammalian embryo, and a culture solution. Using a measurement solution, a means for quantifying changes in oxygen concentration in the vicinity of a single embryo with high spatial resolution, the relationship between the size and oxygen consumption of a pre-produced mammalian embryo, and the subsequent development results of the mammalian embryo And means for determining the normality of the mammalian embryo based on the results of both means.
[0010]
In this electrochemical analyzer, as shown in FIG. 6, the electrochemical microscope measuring device includes a microelectrode (working electrode 61a, reference electrode / counter electrode 61b), an electrode positioning device 64a, a microcurrent installed on a microscope stage 69b. Culture gas phase condition control having a measuring device (potentiostat) 64c, a computer 64b for controlling these, a temperature control device 66 comprising a constant temperature circulation tank, a gas (oxygen, carbon dioxide) cylinder 67a, a bubbler 67b, etc. A sample holding device (capillary glass 65a, silicon tube 65b, microinjector 65c) is added to the medium / measurement solution 62a in the dish type cell (flat bottom container) 62b, which is composed of an apparatus, an inverted microscope 69a, etc., and is arranged on the microscope stage 69b. ) Of the specimen (eg, embryo sample) 63 held by 65 And performs the analysis and evaluation. Reference numeral 68 denotes a glove box.
[0011]
In the electrochemical analyzer configured as described above, the sample holding device 65 is operated to place the specimen 63 in the center of the field of view of the microscope (inverted microscope 69a) in the dish cell 62b, and the working electrode 62 is disposed around the specimen 63. , And the change in current is detected to analyze the configuration of the sample 63 and the oxygen consumption.
[0012]
[Non-Patent Document 1]
Junichiro Arai and Hideo Kato, “Drug Screening Using Respiratory Measurement of Microorganisms by Oxygen Electrode Method”, The Electrochemical Society, 1999, 67-5, p. 479-483.
[0013]
[Patent Document 1]
JP 2002-122568 A (paragraphs [0035] to [0039], FIG. 1).
[0014]
[Problems to be solved by the invention]
However, in the case of a conventional electrochemical analysis device, it is necessary to analyze the specimen 63 while operating the sample 63 with the sample holding device 65, so that the analysis process becomes complicated and the time required for the analysis is the use of the device. It is largely unsatisfactory as an apparatus for analyzing a plurality of specimens, since it requires a single specimen holding device 65 each time a specimen is analyzed. Since the sample is held by the sample holding device 65 constituted by the glass capillary 65a and the microinjector 65c, there is a risk of damaging the specimen, and the above-described problems. It is also conceivable that the analysis accuracy decreases due to the influence or the like.
[0015]
The present invention has been made based on the above problems, and provides a sample cell that can be held without damaging the sample. In addition, one or more existing electrochemical analyzers (non-invasive analyzers) are provided. It is an object of the present invention to provide an electrochemical analyzer capable of continuously analyzing individual specimens with a simple method and high accuracy.
[0016]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is an apparatus using an electrochemical microscope measurement device and a specimen cell in which a biological sample, which is a specimen to be analyzed by the electrochemical microscope measurement apparatus, is arranged. In the specimen cell, one or a plurality of inverted cone-shaped wells for placing a biological sample as a specimen is formed on one surface side of a flat plate member, and the periphery of the well is surrounded on the flat plate. A liquid tank is formed by erecting a wall portion , and the well is formed so that an inclination of an inner peripheral surface of the well is 30 ° to 60 ° with respect to a vertical direction, and the sample cell The working electrode of the electrochemical microscope measuring device is configured to be movable in the measuring solution and to be able to enter the well in a state where the measuring solution is filled in the liquid tank, and a predetermined distance from the well is set in the measuring solution. Remote position The reference electrode / counter electrode is arranged in the structure . Here, the inverted pyramid shape indicates, for example, a substantially inverted triangular pyramid shape, an inverted quadrangular pyramid shape, etc. in addition to the substantially inverted cone shape. Here, the electrochemical microscope measuring device includes a microelectrode (working electrode, reference electrode / counter electrode), an electrode positioning device, a microcurrent measuring device (potentiostat) installed on the microscope stage, and control thereof. It is composed of a computer to be performed, a temperature control device comprising a constant temperature circulation tank, a culture gas phase condition control device having a gas (oxygen, carbon dioxide) cylinder, a bubbler, and an inverted microscope.
[0018]
The invention of claim 2 is characterized in that the well in the invention of claim 1 has a micro-planar portion at the bottom.
[0019]
A third aspect of the invention is characterized in that the sample cell according to the first or second aspect of the invention is formed of a transparent material. Here, the transparent material means a transparent material such as acrylic or polystyrene.
[0022]
A fourth aspect of the invention uses the electrochemical analyzer according to any one of the first to third aspects , and puts a biological sample as a specimen from above the specimen cell filled with the measurement solution and makes it stand still in the well. In the well, the working electrode moves around the specimen and scans to detect a change in the current around the specimen, and the specimen is analyzed and evaluated based on the detection result.
[0023]
The invention of claim 5 uses the electrochemical analyzer according to any one of claims 1 to 3 and is a multi-well in which a plurality of wells are formed as a specimen cell in which a biological sample which is a specimen to be analyzed is placed. using a sample cell, the measurement solution is respectively stationary biological sample to within each well put a sample from a multi-analyte cell above which is filled, the working electrode a step of scanning by moving the sample around in the wells each It is characterized in that it is automatically performed for each well in order to detect current changes around each specimen, and each specimen is automatically analyzed and evaluated based on each detection result.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present embodiment has developed a specimen cell (hereinafter referred to as a multiple specimen cell) capable of holding specimens such as a plurality of biological samples, and an electrochemical analyzer using the multiple specimen cell, While maintaining each specimen without damaging it, analyzing the amount of metabolic activity, the form, etc., and analyzing each specimen continuously with a simple method and high accuracy were studied.
[0025]
Hereinafter, a multi-sample cell and an electrochemical analyzer according to embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
1A (schematic diagram), B (sectional view), and C (enlarged view of a well) show schematic explanatory diagrams of a multi-sample cell according to an embodiment of the present invention. 1A to 1C, a multi-specimen cell 11 is formed by injection-molding a material such as acrylic or polystyrene that can be seen through (for example, a specimen placed in a well to be described later can be seen through from the other end face side). A plurality of wells (inverted conical holes) 11a for arranging the specimen on the end surface side are formed at a predetermined distance, and a wall portion 11b surrounding each well 11a is erected around each well 11a. Thus, a liquid tank is formed on the substrate so that the inside of the wall 11b including each well 11a is filled with the sample solution.
[0027]
In the present embodiment, six inverted conical wells 11a having an opening radius of 2 mm and a depth of 2 mm are formed on an acrylic substrate having a length of 60 mm, a width of 30 mm, and a thickness of 3 mm at intervals of 2 mm, and are formed on the upper edge of the substrate. A wall portion 11b made of acrylic and having a thickness of 5 mm and a height of 5 mm is erected so as to surround each well 11a, and a liquid tank having a length of 50 mm, a width of 20 mm, and a depth of 5 mm is formed in the wall portion 11b. ing. As shown in FIG. 1C, a microplanar portion 11c may be formed on the bottom of the well 11a as needed. In this embodiment, a microplanar portion 11c having a diameter of 0.05 mm is formed. ing.
[0028]
When a specimen such as a cell or an embryo is placed as a biological specimen as a specimen in the multi-sample cell 11 configured as described above, the specimen is simply dropped from above with a simple injector or the like with the well 11a as a mark. Since the sample can be easily placed in an appropriate position, that is, in the well 11a, there is no possibility of damaging the sample.
[0029]
At this time, even if there is a slight deviation within the opening range of the well 11a, the specimen is guided by the inclination of the well 11a and quickly settles on the top of the well 11a, so that it is strictly (for example, a manipulator, There is no need to adjust the position (using a microinjector, actual microscope, etc.).
[0030]
In the state in which the sample is stored in the well 11a, the sample does not move from a predetermined position even if some vibration is applied to the multi-sample cell 11.
[0031]
In the present embodiment, since the minute flat surface portion 11c is formed at the bottom of the well 11a, the lower surface side of the sample is supported by the minute flat surface portion 11c, so that the sample can be supported more stably. Although it is possible, the minute planar portion 11c may be formed as necessary.
[0032]
The multi-specimen cell 11 is preferably formed by injection molding or the like so as to have a smooth surface, but may be formed by other known methods, and in forming by injection molding, the wall portion 11a. And may be formed integrally.
[0033]
Further, the shape, size, number, and the like of each well 11a are not limited to the above-described dimensions, and may be arbitrarily formed according to the shape, size, number, etc. of the specimen. It is preferable to have a substantially inverted pyramid shape so that the sample quickly fits into the well 11a when the sample is put into the well 11a. For example, the shape is not limited to the aforementioned substantially inverted cone shape. It may be a quadrangular pyramid shape or the like. At this time, if the inner peripheral surface of the well 11a is formed so as to be 45 ° with respect to the vertical direction as shown in FIG. 1C, that is, the cross section in FIG. And the opening radius can be secured in a well-balanced manner, which is preferable in terms of versatility with respect to specimens of various shapes and sizes. However, depending on the application, for example, a range of 30 ° to 60 ° with respect to the vertical direction. You can select any slope.
[0034]
All the above explanations have described multi-sample cells for a large number of samples, but it is of course possible to use a sample cell having only one well 11a for a single sample.
[0035]
The specimen well can be produced in the same shape without variation by manufacturing by injection molding as described above, which is suitable for mass production.
[0036]
Next, the electrochemical analyzer according to the present embodiment will be described. The electrochemical analysis apparatus according to the present embodiment is the same as the conventional electrochemical microscope measurement apparatus shown in FIG. 6 except that the above-described sample cell (in particular, a large number of wells 11 in this embodiment) is used instead of the dish cell 62b. Since the multi-sample cell 11) is used, the description of the electrochemical microscope measurement apparatus is omitted.
[0037]
FIG. 2 is a schematic explanatory diagram for explaining sample analysis and the like performed using the multi-sample cell 11 installed in place of the dish-type cell 62b of FIG. In addition, the same code | symbol is used for the thing similar to what is shown in FIG. 1, and the detailed description is abbreviate | omitted.
[0038]
The wall portion 11b of the multi-sample cell 11 is filled with a measurement solution (for example, serum-free culture solution) 21, and the sample 22 is loaded into each well 11a, and culture is performed as necessary. Reference numeral 23 denotes a working electrode (reference numeral 61a in FIG. 6), which is movably disposed in the measurement solution 21 including each well 11 by an electrode positioning device (reference numeral 64a in FIG. 6). Reference numeral 24 denotes a reference electrode / counter electrode (61b in FIG. 6) arranged at an arbitrary position in the measurement solution 21 at a predetermined distance from each well 11a. The specimen 22 and the pair of working electrode 23 and reference / counter electrode 24 are electrically connected via the measurement solution 21.
[0039]
Then, as shown in FIG. 2, the working electrode 23 is moved above the sample 22 in each well 11 (above a predetermined distance from the sample 22), and the working electrode 23 is scanned in the well 11a. Each change in current is detected and analyzed. This analysis step is sequentially performed on each specimen 22 in each well 11a.
[0040]
At this time, in the present embodiment, by using the multi-sample cell 11 having the well 11a instead of the dish type cell, the sample 22 can be easily placed in a predetermined position as described above without using a sample holding device or the like. Since the specimen 22 is held at the top position (predetermined position) of the well 11 where the position can be confirmed in advance, various operations such as position control and scanning of the working electrode 23 are performed on the top of the well 11. Since it is only necessary to set the position as a target, anyone can easily perform analysis in a short time without being influenced by the user's skill level.
[0041]
For the working electrode 23 and the reference / counter electrode 24, for example, those for measuring a minute current are preferably used according to the size of the specimen or the electrochemical device.
[0042]
Next, when a protoplast of algae and a bovine embryo are prepared as specimens by the method described below and the dish type cell 62b is used as an electrochemical analyzer (conventional electrochemical microscope measuring apparatus), a multi-specimen cell is used. 11 was used (electrochemical analyzer according to the present embodiment), and oxygen concentration difference (μM level) or the like serving as an index of oxygen consumption of each specimen was detected and compared. .
[0043]
In this example, a platinum disk electrode having an electrode radius of 1 μm was used as the working electrode 61a, and an Ag / AgCl electrode was used as the reference electrode / counter electrode 61b.
[0044]
(Protoplast creation)
The creation of a protoplast used as a specimen will be described. First artificial seawater (ingredients per liter; NaCl ... 23.90g, NaHCO 3 ... 0.195g, CaCl 2 ... 1.234g, MgCl 2 ... 4.989g) petri dishes filled (eg, Kimwipe (registered trademark) A petri dish placed on top is prepared, and the tip of the honey is cut and collected in seawater and transferred to the petri dish. Next, while holding the tip of the honey under the tweezers in the petri dish, the protoplast in the honey is squeezed out with the other tweezers. Then, light was irradiated for about 30 minutes while observing the inside of the petri dish with an inverted microscope, and a spherical shape (spherical shape having a radius of about 150 μm) was used as a specimen (hereinafter referred to as a plast specimen).
[0045]
(Creation of bovine embryo)
Next, bovine embryos used as specimens were immersed in a serum-free culture solution (IVD101; manufactured by Functional Peptide Institute) in vitro fertilized, and a low oxygen atmosphere (O 2 ... 5%, CO 2 ... 5% , N 2 ... 90%, humidity 100%, temperature 38.5 ° C.) and used as a specimen (hereinafter referred to as a bovine specimen).
[0046]
(Analysis using conventional non-invasive test equipment)
First, the specimen (plast specimen or bovine specimen) is transferred to the dish type cell 62b together with the measurement solution (artificial seawater or serum-free culture solution) and placed at a predetermined position (position of the dish type cell in FIG. 6) of the electrochemical microscope. . The specimen is fixed by the sample holding device 65, the potential of the working electrode 61a with respect to the reference electrode / counter electrode 61b is set to −0.6 V, and the specimen surface and a region (10 μm) separated from the specimen surface by a predetermined distance. ˜170 μm), the working electrode 61a is scanned at a scanning speed of 14.7 μm / second to detect a change in current, whereby an oxygen concentration difference ΔC (dish cell) between the sample surface and a region separated from the sample surface by a predetermined distance is detected. When used, ΔC S ) was obtained.
[0047]
By obtaining the oxygen concentration difference ΔC as described above, the oxygen consumption rate F can be calculated by the following calculation formula. In the following formula (1), D represents an oxygen diffusion coefficient (2.1 × 10 5 cm 2 / mol), and r S represents a radius of a specimen (a specimen including a transparent body).
[0048]
F = 4π · D · r S · ΔC (1)
As can be seen from the equation (1), it can be seen that ΔC is a quantification of the oxygen consumption rate F, that is, an index of oxygen consumption.
[0049]
(Analysis by the electrochemical analyzer according to the present embodiment)
Next, the specimen (plast specimen or bovine specimen) is placed in the well 11a (any one of the plurality of wells) of the multi-sample cell 11 by the above-described method, and the same as in the case where the dish 62b is used. By scanning the working electrode 61a (the working electrode 23 in FIG. 2) and detecting a change in current by the above method, an oxygen concentration difference ΔC (using a multi-sample cell) between the sample surface and a region separated from the sample surface by a predetermined distance is detected. In this case, ΔC P is obtained).
[0050]
As described above, the results of the difference in oxygen concentration obtained using the dish and the multi-sample cell are shown as the correlation characteristics between the oxygen concentration differences ΔC S and ΔC P in FIG. 3 (plast sample) and FIG. 4 (bovine sample). Shown in the figure.
[0051]
From the results shown in FIGS. 3 and 4, it can be seen that the following relational expression holds regardless of the type and size of the specimen.
ΔC P = 2 ・ ΔC S (2)
That is, by using a multi-sample cell as in the present embodiment, the oxygen concentration difference of the sample can be amplified by about twice as compared with the case where a conventional dish type cell and sample holding device are used, For example, it was found that changes in oxygen concentration around the specimen derived from cell respiration can be efficiently captured.
[0052]
Note that the sample cell (or multi-sample cell) of the present embodiment is formed of a transparent material such as acrylic and polystyrene, so that an inverted microscope (FIG. 6) is used as in the conventional non-invasive test apparatus. The specimen morphology can be observed from below by 69a).
[0053]
In the electrochemical analyzer according to the present embodiment, the specimen size is measured by microscopic observation and morphological evaluation is performed, the oxygen consumption of the specimen is measured, and the specimen size recorded in advance is measured. Similar to the conventional non-invasive test apparatus, the quality of the specimen can be judged by referring to the judgment criteria set based on the relationship between the oxygen consumption and the subsequent growth process of the specimen.
[0054]
In addition, when using a multi-sample cell in the electrochemical analyzer of the present embodiment, each sample is held at a predetermined position (the top position of the well) where the position can be confirmed in advance, such as position control of the working electrode, scanning, etc. Since various operations can be performed at a predetermined position, a computer (for example, a computer 64d in FIG. 6) is programmed to automatically perform operations for analysis such as scanning at each sample position. Thus, it is possible to automate the sequential automatic analysis of a plurality of samples held in the multi-sample cell.
[0055]
Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
[0056]
【The invention's effect】
As described above, according to the sample cell of the present invention, there is no possibility of damaging the sample, and the sample is appropriately collected by using a simple injector or the like without using a special sample holding device such as a manipulator or a microinjector. It can be easily stored and held in position (in the well).
[0057]
In the state where the sample is stored in the well, the sample does not move from the predetermined position even if some vibration is applied to the sample cell.
[0058]
Furthermore, by forming a microplanar part at the bottom of the well, the lower surface side of the specimen is supported by the microplanar part, and the specimen can be supported more stably.
[0059]
Since the specimen cell is formed of a material that can be seen through, the specimen morphology can be observed with an inverted microscope or the like.
[0060]
In addition, according to the electrochemical analyzer of the present invention, since a multi-sample cell is used as the cell, the sample can be easily held at a predetermined position as described above without using a sample holding device or the like. Since the device can be miniaturized and the specimen is held at the top position (predetermined position) where the position can be confirmed in advance, various operations such as position control of the working electrode, scanning, etc. Since it suffices to achieve the target, anyone can easily perform analysis, evaluation, etc. in a short time without being influenced by the user's training level.
[0061]
Compared with the conventional method, the detection current can be amplified and measured approximately twice, so that changes in oxygen concentration around the specimen resulting from the breathing of the specimen can be captured efficiently, and oxygen consumption in specimens such as bovine embryos When evaluating and judging normality and the like based on the above, information with higher accuracy can be obtained.
[0062]
Further, when a multi-sample cell is used, a plurality of biological samples can be simultaneously held, and the held samples are sequentially analyzed and evaluated in a short time without having to hold the samples each time. It is possible.
[0063]
Furthermore, when using a multi-sample cell, each sample is held at a fixed position (the top position of the well) where the position can be confirmed in advance, and various operations such as position control and scanning of the working electrode are targeted. Since it is possible to perform the analysis for scanning, etc. at each sample position, it is possible to automatically analyze the multiple samples held in the multiple sample cells by programming the computer. Can be automated.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a sample cell in the present embodiment.
FIG. 2 is a schematic explanatory diagram of the present embodiment. FIG. 3 is a correlation characteristic diagram between oxygen concentration differences ΔC S and ΔC P in a plast specimen.
FIG. 4 is a correlation characteristic diagram between oxygen concentration differences ΔC S and ΔC P in bovine specimens.
FIG. 5 is a schematic explanatory diagram of a multi-type analyzer.
FIG. 6 is a schematic explanatory diagram of a conventional electrochemical analyzer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Multi-analyte cell 11a ... Well 11b ... Wall part 11c ... Micro plane part 21 ... Measurement solution 22 ... Sample 23 ... Working electrode 24 ... Reference electrode / counter electrode

Claims (5)

電気化学顕微鏡計測装置と、電気化学顕微鏡計測装置により分析する検体である生体試料を配置する検体セルを用いた装置であって、
前記検体セルは、平板状部材の一面側に検体である生体試料を配置するための逆錐形状のウェルを1個または複数個形成するとともに、前記平板上に前記ウェルの周囲を囲む壁部を立設して液槽を形成したものであり、
前記ウェルは、ウェル内周面の傾斜が垂直方向に対して30°〜60°となるよう形成したしたものであり、
前記検体セルの液槽内に計測溶液を充填した状態で、前記電気化学顕微鏡計測装置の作用電極を計測溶液内で移動自在且つウェル内に侵入可能に構成すると共に、前記計測溶液内でウェルから所定距離を隔てた位置に参照電極/対極を配置して構成したことを特徴とする電気化学的分析装置。
An apparatus using a specimen cell for placing an electrochemical microscope measurement device and a biological sample which is a specimen to be analyzed by the electrochemical microscope measurement device ,
The specimen cell is formed with one or a plurality of inverted-conical wells for arranging a biological sample as a specimen on one surface side of a flat plate member, and a wall portion surrounding the well on the flat plate. A liquid tank is formed by standing,
The well is formed so that the inclination of the inner peripheral surface of the well is 30 ° to 60 ° with respect to the vertical direction.
While filling the measuring solution in the liquid tank of the sample cell, the entering can configure the working electrode of the electrochemical microscope measuring device movable and the wells in the measurement solution, from the measured solution in a well An electrochemical analyzer characterized in that a reference electrode / counter electrode is arranged at a position separated by a predetermined distance.
前記ウェルが、底部に微小平面部を有することを特徴とする請求項1記載の電気化学的分析装置The electrochemical analysis apparatus according to claim 1 , wherein the well has a micro-planar portion at the bottom. 請求項1または2記載の検体セルは、透明な材料により形成されていることを特徴とする電気化学的分析装置 3. The electrochemical analyzer according to claim 1, wherein the specimen cell is made of a transparent material. 請求項1〜3の何れかに記載の電気化学的分析装置を用い、計測溶液が充填された検体セル上方から検体である生体試料を投入してウェル内に静止させ、ウェル内において作用電極が検体周囲を移動して走査することにより、前記検体周囲の電流変化を検出し、この検出結果に基づいて検体を分析,評価することを特徴とする電気化学的分析方法。Using the electrochemical analyzer according to any one of claims 1 to 3 , a biological sample, which is a specimen, is introduced from above the specimen cell filled with the measurement solution and is allowed to stand still in the well. An electrochemical analysis method characterized by detecting a change in current around the specimen by moving around the specimen and scanning, and analyzing and evaluating the specimen based on the detection result. 請求項1〜3の何れかに記載の電気化学的分析装置を用いると共に、分析する検体が配置される検体セルとして複数個のウェルが形成された多検体セルを用い、計測溶液が充填された多検体セル上方から検体である生体試料を投入して各ウェル内に各々静止させ、作用電極ウェル内において検体周囲を移動して走査する工程を各ウェル毎に順次自動的に行って各検体周囲の電流変化を各々検出し、各検出結果に基づいて各検体を各々自動的に分析,評価することを特徴とする電気化学的分析方法。While using the electrochemical analyzer according to any one of claims 1 to 3, a multi-sample cell in which a plurality of wells are formed is used as a sample cell in which a sample to be analyzed is arranged, and the measurement solution is filled by introducing the biological sample is a sample from a multi-analyte cell upward to respective stationary in each well, each performed step of the working electrode is scanned by moving the sample around in the wells sequentially automatically for each well sample An electrochemical analysis method characterized in that each change in ambient current is detected and each specimen is automatically analyzed and evaluated based on each detection result.
JP2002269651A 2002-09-17 2002-09-17 Sample cell, electrochemical analyzer and electrochemical analysis method Expired - Fee Related JP4097492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269651A JP4097492B2 (en) 2002-09-17 2002-09-17 Sample cell, electrochemical analyzer and electrochemical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269651A JP4097492B2 (en) 2002-09-17 2002-09-17 Sample cell, electrochemical analyzer and electrochemical analysis method

Publications (2)

Publication Number Publication Date
JP2004108863A JP2004108863A (en) 2004-04-08
JP4097492B2 true JP4097492B2 (en) 2008-06-11

Family

ID=32267527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269651A Expired - Fee Related JP4097492B2 (en) 2002-09-17 2002-09-17 Sample cell, electrochemical analyzer and electrochemical analysis method

Country Status (1)

Country Link
JP (1) JP4097492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083219A1 (en) * 2013-12-02 2015-06-11 株式会社日立製作所 Cell activity measurement device and measurement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956289B2 (en) * 2007-06-19 2012-06-20 古河電気工業株式会社 Fine particle screening apparatus and fine particle screening method
JP5577498B2 (en) * 2010-09-17 2014-08-27 北斗電工株式会社 Well unit and sample cell
EP3366765B1 (en) * 2015-10-22 2021-12-15 Panasonic Intellectual Property Management Co., Ltd. Electrochemical measurement system
CN107300488B (en) * 2017-07-25 2023-11-24 广西糖业集团红河制糖有限公司 Semi-automatic intermittent honey sampling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083219A1 (en) * 2013-12-02 2015-06-11 株式会社日立製作所 Cell activity measurement device and measurement method

Also Published As

Publication number Publication date
JP2004108863A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US9588104B2 (en) Device, a system and a method for monitoring and/or culturing of microscopic objects
US8906685B2 (en) Hanging drop devices, systems and/or methods
JP3946242B2 (en) Access hole for feeding multi-well filter plates
JP4755346B2 (en) Apparatus for performing cell culture analysis
CN104471052A (en) Apparatus and methods for three-dimensional tissue measurements based on controlled media flow
EP2270573B1 (en) Cover for a counting, viability assessment, analysis and manipulation chamber
CN108138109A (en) Sampling system
WO2009039433A1 (en) Analytical microfluidic culture system
US20110183367A1 (en) Device and method for non-invasive measurement of the individual metabolic rate of a substantially spherical metabolizing particle
EP1893742B1 (en) Cell and tissue culture device
WO2010055942A1 (en) Device for measurement of fertile egg respiratory activity and method for measurement of fertile egg respiratory activity
US20190247847A1 (en) Methods and apparatus for performing metabolic measurements of individual cell types within non-contact co-cultured systems
JP4097492B2 (en) Sample cell, electrochemical analyzer and electrochemical analysis method
JP2004521646A (en) Tray with protrusion
JP2008064661A (en) Apparatus and method for measuring oxygen
US20240018452A1 (en) Chip for integrated tumor cell behavior experiments
JP2002122568A (en) Method and apparatus for noninvasive quality evaluation of mammal embryo
JP3688671B2 (en) Electrochemical multi-analyte analysis method
CN209841885U (en) Miniature incubation box suitable for immunohistochemistry and molecular in-situ hybridization
JP5577498B2 (en) Well unit and sample cell
WO2023081354A1 (en) Apparatus and methods for generating and analyzing three-dimensional cellular materials
JP2002071672A (en) Permeability testing device and method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Ref document number: 4097492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees