JP4097299B2 - Compound semiconductor device and manufacturing method thereof - Google Patents

Compound semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4097299B2
JP4097299B2 JP01856196A JP1856196A JP4097299B2 JP 4097299 B2 JP4097299 B2 JP 4097299B2 JP 01856196 A JP01856196 A JP 01856196A JP 1856196 A JP1856196 A JP 1856196A JP 4097299 B2 JP4097299 B2 JP 4097299B2
Authority
JP
Japan
Prior art keywords
layer
type
sic
compound semiconductor
growth layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01856196A
Other languages
Japanese (ja)
Other versions
JPH09214054A (en
Inventor
和彦 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01856196A priority Critical patent/JP4097299B2/en
Priority to US08/794,830 priority patent/US5900647A/en
Publication of JPH09214054A publication Critical patent/JPH09214054A/en
Application granted granted Critical
Publication of JP4097299B2 publication Critical patent/JP4097299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SiC基板を用いた化合物半導体素子及びその製造方法に関し、特に、GaAlInN系化合物半導体発光素子及びその製造方法に関する。
【0002】
【従来の技術】
GaAlInN系の化合物半導体はワイドギャップ半導体であり、直接遷移型のバンド構造を有することから、青色〜紫外に発光波長を持つ発光素子ヘの応用が期待されている。窒化ガリウム系の発光素子の応用として実用化されているダブルヘテロ型発光ダイオードを図4に示す。この発光ダイオードは以下の手順で作製される。サファイアC面基板101を用い、その上に有機金属気相成長法(以下、MOCVD法と記す)により、基板温度約600℃の温度で約200ÅのGaN又はAlNバッファ層102を積層する。
【0003】
次に、基板温度を約1050℃として格子整合のためのn型GaN層103を4μm、n型GaAlNクラッド層104を0.5μm成長する。
【0004】
次に、基板温度を約800℃に下げ、ZnドープしたGaInN発光層105を0.05μm成長する。この後、再び、基板温度を約1050℃に上昇させ、MgドープしたGaAlNクラッド層106を0.5μm、MgドープGaNコンタクト層107を0.3μm成長する。成長後、MOCVD装置から半導体素子を取り出し、窒素雰囲気中で約600℃の熱処理を30分程度処理し、MgドープしたGaAlNクラッド層106、MgドープしたGaNコンタクト層107を低抵抗化及びp型化する。この後、n型の電極を形成するため、反応性イオンエッチングにて半導体素子の一部をn型GaN103が露出するまでエッチング除去する。最後にn側電極108をn型GaN層103上に、p側電極109をp型GaNコンタクト層107上に形成することで、発光ダイオードが製造される。
【0005】
また、GaAlInN系半導体レーザ素子の構造を図5に示す。このようなGaAlInN系半導体レーザ素子は以下のように作製される。SiC基板1上にMOCVD法により、基板温度約1100℃で約0.2μmのAlNバッファ層3を成長し、次に基板温度を約1050℃として、n型GaN層4を4μm、n型GaAlN下部クラッド層5を0.5μm成長する。この後、基板温度を約800℃に下げ、GaInN活性層6を100Å成長させる。次に、基板温度を約1050℃に上昇させ、MgドープしたGaAlN上部クラッド層7を0.5μm、MgドープしたGaNコンタクト層8を0.3μm成長する。次に、この半導体素子をMOCVD装置から取り出し、窒素雰囲気中で約600℃の熱処理を30分程度行い、MgドープしたGaAlNクラッド層7、MgドープしたGaNコンタクト層8を低抵抗化及びp型化する。この後、ストライプ状の開口部9を持つAl23膜10を電子ビーム蒸着法とフォトリソグラフィプロセスにより形成し、この上にp側電極11を全面的に真空蒸着法によって形成する。また、n側電極12をSiC基板1の裏面全面に形成する。以上の工程を経て、窒化ガリウム系の半導体レーザ素子が形成される。
【0006】
【発明が解決しようとする課題】
発光ダイオードの成長には、サファイア基板が用いられているが、サファイア基板とGaN層との格子定数は差が大きく、16%以上もの格子不整合を生じており、サファイア基板とGaN層との界面の歪みが格子欠陥を誘発する。そこで、従来の技術に記載したように格子欠陥の低減のために600℃程度の低温で成長させたGaNまたはAlNバッファ層の挿入や化学エッチングによる表面の清浄化がなされているが、その場合においてもバッファ層の表面の格子欠陥は1010〜1011cm-2程度と非常に多く存在し、発光ダイオードの高温動作特性や素子信頼性を低下させる原因となっている。
【0007】
一方、半導体レーザ素子においては、基板としてSiC基板が用いられており、GaN層の格子定数とSiC基板との格子定数の差は約3%と小さいにもかかわらず、レーザ発振が未だ実現されていない。さらに格子整合を良くする目的で、従来の技術に記載した半導体レーザ素子では、SiC基板の上にAlNバッファ層を積層しているが、それでもAlNバッファ層の表面の格子欠陥は108〜1010cm-2程度とサファイア基板からの成長と比較しても2桁程度の格子欠陥の低減しかできていない。そのため、光とキャリアを活性層に閉じこめることが十分にできず、また、レーザ発振に必要な1019cm-3程度のキャリア注入に耐えるだけの良好な結晶品質が実現できていないため、電流注入によるレーザ発振が実現されていない。
【0008】
このように、窒化ガリウム系材料は青色〜紫外の発光領域での発光素子材料として期待が大きいが、素子作製において格子欠陥の低減が十分には実現できておらず、電流注入によるレーザ発振が実現できていないという問題があった。
【0009】
従って、本発明は、SiC基板表面の格子欠陥から誘起される格子欠陥の少ないGaAlInN系半導体層を成長させて、高効率の化合物半導体発光素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る化合物半導体素子は、SiC基板を用いたGaAlInN系化合物半導体素子であって、SiC基板と、上記SiC基板の直上に成長させ、該SiC基板の表面に残存する格子欠陥を減少させるためのSiC成長層と、上記SiC成長層の上に成長させたGaXAlYIn1-X-YN( < X≦1,0≦Y < )層とを備え、上記SiC成長層は、その膜厚が1μm以上であり、上記SiC成長層の表面の格子欠陥は、10 5 cm -2 を超えないことを特徴とする。
【0011】
また、本発明に係る請求項1の化合物半導体素子は、前記SiC成長層の厚みが前記SiC基板表面に存在するダメージ層厚の10〜40倍であることを特徴とする。
【0012】
また、本発明に係る化合物半導体素子の製造方法は、前記SiC成長層を、料ガスとしてプロン、シランを含む混合ガスを用いて成長させることを特徴とする。
【0013】
【発明の実施の形態】
本発明に係る実施の形態では、化合物半導体としてSiC基板の上にGaInN活性層/GaAlNクラッド層系のダブルヘテロ構造を有した半導体レーザ素子の場合について説明する。
【0014】
本発明に係る窒化ガリウム系化合物半導体の半導体レーザ素子の構造を図1に示す。図5と同一部材は同一符号を記す。従来の半導体レーザ素子と比較して、本発明に係る半導体レーザ素子は、n型SiC基板1上にn型SiC成長層2を有することを特徴としている。n型SiC成長層2を積層させることは、n型SiC基板1の表面に残存する格子欠陥を減少させる働きをする。
【0015】
また、本発明に係る窒化ガリウム系化合物半導体の半導体レーザ素子の製作工程の断面図を図2に示す。まず、基板としてn型(0001)珪素面から<1120>方向に5度オフした6H−SiC基板1を表面研磨の後に酸化処理を行うことによって、表面のダメージ層の除去を行った。この6H−SiC基板1をMOCVD装置にリアクターにセットし、リアクターを水素で良く置換した後、水素を流しながら温度を1500℃まで上昇させて10分間保持し、6H−SiC基板1の表面クリーニングを行う。
【0016】
次に、リアクター内に原料ガスとしてシランガスを毎分10cc、プロパンガスを毎分10cc、キャリアガスとして水素ガスを毎分10リットルの流量で供給し、n型不純物として窒素ガスを毎分50ccの流量で供給し、60分間処理することにより、n型SiC成長層2を約2μm成長させる。以上の工程終了後の断面図を図2(a)に示す。
【0017】
次に、基板温度を1050℃まで下げ、1050℃に安定したらトリメチルアルミニウム(以下、TMAと記す。)を毎分3×10-5モル、アンモニアを毎分5リットル流し、5分間処理することによって約0.1μmのAlN層3を成長させる。
【0018】
次に、トリメチルガリウム(以下、TMGと記す。)を毎分3×10-5モル、アンモニアを毎分5リットル、Siをドーピングする原料ガスとしてシランガスを毎分0.3cc流し、15分間処理することによってn型GaN層4を成長させる。
【0019】
次に、アンモニア、TMG、シランガスに加えて、TMAを毎分6×10-6モル流し、25分間の処理で約1μmのn型Ga0.85Al0.15N下部クラッド層5を成長させる。この層の電子濃度は2×1018cm-3である。
【0020】
次に、TMG、TMA、シリコンガスの供給を止めて温度を800℃まで下降させる。温度が800℃に安定したら、TMG及びトリメチルインジウム(以下、TMIと記す)を毎分4×10-4モル流し、12秒間処理することによって10nmのGa0.75In0.25N活性層6を成長させる。
【0021】
次に、TMG、TMIの供給を止めて、温度を再び1050℃まで上昇させる。温度を1050℃に安定したらTMG、TMA及びCp2Mg(シクロペンタジエニルマグネシウム)を毎分5×10-6モル流し、25分間処理することで約1μmのMgドープしたGa0.85Al0.15N上部クラッド層7を成長させる。
【0022】
次に、TMAのみの供給を止め、7.5分間の成長で300nmのMgドープしたGaNコンタクト層8を成長させる。以上の工程終了後の断面図を図2(b)に示す。ここまでの工程で、6H−SiC基板1上に積層されたn型SiC成長層2を有したダブルヘテロ型積層構造の半導体素子を形成した。
【0023】
次に、窒素雰囲気中で、この半導体素子をMOCVD装置から取り出し、窒素雰囲気中で約600℃の熱処理を20分間程度行い、MgドープしたGa0.85Al0.15N上部クラッド層7、MgドープしたGaNコンタクト層8を低抵抗化及びp型化する。この処理によって両層の正孔濃度は約1×1018cm-3となった。
【0024】
p型Ga0.85Al0.15N上部クラッド層7の上に、保護膜として、幅1μmのストライプ状の開口部9を持つAl23膜10を電子ビーム蒸着法とフォトリソプロセスにより形成する。以上の工程終了後の断面図を図2(c)に示す。
【0025】
この上にAu/Ni積層膜のp側電極11を全面的に真空蒸着法によって形成する。以上の工程終了後の断面図を図2(d)に示す。
【0026】
次に、共振器のミラー面を形成する。ウエハ上面にマスク材としてSiO2膜を電子ビーム蒸着法とフォトリソ法により、p側電極11による電極ストライプと直交する方向に幅500μmのSiO2膜を50μmの間隔を開けて形成する。次に、50μmのストライプを有するSiO2膜が形成されたウエハを反応性イオンエッチング装置に導入し、反射ミラーを形成するためにSiO2膜の開口部分の窒化ガリウム系半導体層をn型SiC成長層2まで、通常の反応性イオンエッチング法により、エッチング除去する。更に、6H−SiC基板1を研磨し、約100μmの厚みに加工し、また、マスク材のSiO2膜を除去する。
【0027】
次に、n側電極12をSiC基板1の裏面全面に形成する。
【0028】
最後に、ダイシングによりチップに分割して、通常行われる方法でパッケージに実装する。以上の工程を経て、GaAlInN系の半導体レーザ素子が形成される。
【0029】
形成した半導体レーザ素子に電流を流したところ40mAの閾値電流で432nmの青色波長のレーザ発振が観測された。
【0030】
また、本実施の形態で示したようにn型SiC成長層2を2μm成長させた後、AlNバッファ層3、窒化ガリウム系半導体層を成長させることによって、n型SiC成長層2の表面の格子欠陥は104〜105cm-2であった。
【0031】
また、本実施例で使用したSiC基板1の表面は0.5μmのスラリーを用いたバフ仕上げを行ったものであるが、スクラッチ等の表面ダメージ層厚を測定すると約0.1μmであった。従って、約20倍の厚さのn型SiC成長層2を形成した結果、上述のように格子欠陥を減少させることができたと考えられる。
【0032】
また、n型SiC成長層2による転移抑制が素子の特性に及ぼす影響を評価するため、素子の発振閾値電流とn型SiC成長層2の膜厚との関係を図3に示す。図3に示されるようにn型SiC成長層の膜厚が薄くなればなるほど、素子の閾値電流値が急激に増大する。SiC成長層の膜厚が約1μmより薄くなると急激に発振しきい値電流が上昇し、0.5μm以下の領域では発振不能となり、約4μmより厚くなると発振閾値電流はあまり変化しない。つまり、SiC成長層2の膜厚が薄くなり過ぎるとSiC基板1の表面ダメージ層に起因した結晶欠陥の低減効果が低下し、逆に厚くなり過ぎると成長に時間がかかり過ぎ実用的ではなく、共に好ましくない。SiC基板の格子欠陥を吸収するSiC成長層の厚みは、表面ダメージ層の厚みの10倍から40倍が望ましい。
【0033】
尚、本実施例ではn型(0001)珪素(Si)面から<1120>方向に5度オフした6H−SiC基板を用いた例について説明したが、p−型SiC基板を用いても実現でき、この場合には実施の形態中の各層の伝導型を逆にする必要がある。また、オフしていない基板を用いても同様の効果が得られる。
【0034】
また、本実施例ではGaInN層を活性層に、GaAlN層をクラッド層に使用した青色発光の半導体レーザ素子の例を示したが、この組み合わせに限らず、GaInN活性層/GaNクラッド層やGaN活性層/GaAlNクラッド層やGaAlInN系の四元系化合物半導体素子等の組み合わせでも同じ効果を示した。
【0035】
また、本実施の形態では化合物半導体レーザ素子について説明したが、SiC基板を用いる発光ダイオード素子に適用しても格子欠陥を減少させる効果があり、発光ダイオードの高温動作特性や素子信頼性を向上させることができた。また、他の半導体装置についても、SiC基板表面の格子欠陥を減少させることは、素子特性を向上させることができる。
【0036】
【発明の効果】
本発明によれば、SiC基板の直上に格子欠陥を吸収するSiC成長層を成長させ、その上に、作製したGaAlInN系化合物半導体レーザ素子は、n型SiC成長層により6H−SiC基板表面に残存する格子欠陥を起源とする転位が抑制された結果、低い発振閾値での発振が確認された。
【0037】
また、SiC成長層の膜厚は、SiC基板の表面のダメージ層の10〜40倍が望ましい。
【図面の簡単な説明】
【図1】本発明に係るGaAlInN系半導体レーザ素子の断面図である。
【図2】本発明に係るGaAlInN系半導体レーザ素子の作製工程を示す断面図である。
【図3】n型SiC成長層と発振閾値との関係を示す図である。
【図4】従来のGaAlInN系半導体発光ダイオード素子の断面図である。
【図5】従来のGaAlInN系半導体レーザ素子の断面図である。
【符号の説明】
1 6H−SiC基板
2 n型SiC成長層
3 AlN成長層
4 n型GaNバッファ層
5 n型GaAlNクラッド層
6 GaInN活性層
7 p型GaAlNクラッド層
8 p型GaNコンタクト層
9 開口部
10 Al23保護膜
11 p側電極
12 n側電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compound semiconductor device using a SiC substrate and a manufacturing method thereof, and more particularly to a GaAlInN compound semiconductor light emitting device and a manufacturing method thereof.
[0002]
[Prior art]
GaAlInN-based compound semiconductors are wide-gap semiconductors and have a direct transition band structure, and thus are expected to be applied to light-emitting elements having emission wavelengths from blue to ultraviolet. FIG. 4 shows a double hetero light-emitting diode that has been put into practical use as an application of a gallium nitride-based light-emitting element. This light-emitting diode is manufactured by the following procedure. A sapphire C-plane substrate 101 is used, and a GaN or AlN buffer layer 102 having a substrate temperature of about 200 ° C. is laminated thereon by metal organic vapor phase epitaxy (hereinafter referred to as MOCVD method).
[0003]
Next, the substrate temperature is set to about 1050 ° C., and the n-type GaN layer 103 for lattice matching is grown to 4 μm and the n-type GaAlN cladding layer 104 is grown to 0.5 μm.
[0004]
Next, the substrate temperature is lowered to about 800 ° C., and a Zn-doped GaInN light emitting layer 105 is grown by 0.05 μm. Thereafter, the substrate temperature is again raised to about 1050 ° C., and the Mg-doped GaAlN cladding layer 106 is grown to 0.5 μm and the Mg-doped GaN contact layer 107 is grown to 0.3 μm. After the growth, the semiconductor element is taken out from the MOCVD apparatus, and a heat treatment at about 600 ° C. is performed in a nitrogen atmosphere for about 30 minutes, so that the Mg-doped GaAlN cladding layer 106 and the Mg-doped GaN contact layer 107 are reduced in resistance and made p-type. To do. Thereafter, in order to form an n-type electrode, a part of the semiconductor element is etched away by reactive ion etching until the n-type GaN 103 is exposed. Finally, the n-side electrode 108 is formed on the n-type GaN layer 103 and the p-side electrode 109 is formed on the p-type GaN contact layer 107, whereby a light emitting diode is manufactured.
[0005]
The structure of the GaAlInN semiconductor laser element is shown in FIG. Such a GaAlInN semiconductor laser device is manufactured as follows. An AlN buffer layer 3 of about 0.2 μm is grown on the SiC substrate 1 by MOCVD at a substrate temperature of about 1100 ° C., then the substrate temperature is set to about 1050 ° C., the n-type GaN layer 4 is 4 μm, and the lower part of the n-type GaAlN The cladding layer 5 is grown by 0.5 μm. Thereafter, the substrate temperature is lowered to about 800 ° C., and the GaInN active layer 6 is grown to 100 ° C. Next, the substrate temperature is raised to about 1050 ° C., and the Mg-doped GaAlN upper cladding layer 7 is grown to 0.5 μm, and the Mg-doped GaN contact layer 8 is grown to 0.3 μm. Next, the semiconductor element is taken out from the MOCVD apparatus and subjected to a heat treatment at about 600 ° C. for about 30 minutes in a nitrogen atmosphere, so that the Mg-doped GaAlN cladding layer 7 and the Mg-doped GaN contact layer 8 are reduced in resistance and made p-type. To do. Thereafter, an Al 2 O 3 film 10 having stripe-shaped openings 9 is formed by an electron beam vapor deposition method and a photolithography process, and a p-side electrode 11 is entirely formed thereon by a vacuum vapor deposition method. Further, the n-side electrode 12 is formed on the entire back surface of the SiC substrate 1. Through the above steps, a gallium nitride based semiconductor laser device is formed.
[0006]
[Problems to be solved by the invention]
A sapphire substrate is used for the growth of light emitting diodes, but the lattice constant between the sapphire substrate and the GaN layer is large, and a lattice mismatch of 16% or more occurs, and the interface between the sapphire substrate and the GaN layer. Strain induces lattice defects. Therefore, as described in the prior art, in order to reduce lattice defects, GaN or AlN buffer layers grown at a low temperature of about 600 ° C. are inserted and the surface is cleaned by chemical etching. However, the number of lattice defects on the surface of the buffer layer is as large as about 10 10 to 10 11 cm −2, which causes a decrease in the high-temperature operating characteristics and device reliability of the light emitting diode.
[0007]
On the other hand, in a semiconductor laser element, a SiC substrate is used as a substrate, and laser oscillation is still realized even though the difference between the lattice constant of the GaN layer and the lattice constant of the SiC substrate is as small as about 3%. Absent. In order to further improve the lattice matching, in the semiconductor laser device described in the prior art, the AlN buffer layer is laminated on the SiC substrate, but the lattice defects on the surface of the AlN buffer layer are still 10 8 to 10 10. Compared with growth from a sapphire substrate of about cm -2, only about two orders of magnitude of lattice defects can be reduced. For this reason, light and carriers cannot be sufficiently confined in the active layer, and a good crystal quality sufficient to withstand carrier injection of about 10 19 cm −3 necessary for laser oscillation cannot be realized. Laser oscillation due to is not realized.
[0008]
In this way, gallium nitride-based materials are highly expected as light-emitting device materials in the blue to ultraviolet light-emitting region, but lattice defects have not been sufficiently reduced in device fabrication, and laser oscillation by current injection has been realized. There was a problem that it was not done.
[0009]
Accordingly, an object of the present invention is to provide a highly efficient compound semiconductor light emitting device by growing a GaAlInN-based semiconductor layer with few lattice defects induced from lattice defects on the surface of a SiC substrate.
[0010]
[Means for Solving the Problems]
The compound semiconductor device according to the present invention is a GaAlInN-based compound semiconductor device using an SiC substrate, which is grown on the SiC substrate and the SiC substrate, and reduces lattice defects remaining on the surface of the SiC substrate. and SiC growth layer, and a the Ga X Al grown on the SiC growth layer Y in 1-XY N (0 <X ≦ 1,0 ≦ Y <1) layer, the SiC growth layer, its The film thickness is 1 μm or more, and the lattice defects on the surface of the SiC growth layer do not exceed 10 5 cm −2 .
[0011]
The compound semiconductor device according to claim 1 of the present invention is characterized in that the thickness of the SiC growth layer is 10 to 40 times the thickness of the damage layer existing on the surface of the SiC substrate.
[0012]
A method of manufacturing a compound semiconductor device according to the present invention, the SiC growth layer, pro pan as the raw material gas, and wherein the grown using a mixed gas containing silane.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment according to the present invention, a case of a semiconductor laser element having a double heterostructure of GaInN active layer / GaAlN clad layer system on an SiC substrate as a compound semiconductor will be described.
[0014]
FIG. 1 shows the structure of a gallium nitride compound semiconductor semiconductor laser device according to the present invention. The same members as those in FIG. Compared with a conventional semiconductor laser element, the semiconductor laser element according to the present invention is characterized by having an n-type SiC growth layer 2 on an n-type SiC substrate 1. Lamination of the n-type SiC growth layer 2 serves to reduce lattice defects remaining on the surface of the n-type SiC substrate 1.
[0015]
FIG. 2 shows a cross-sectional view of a manufacturing process of a gallium nitride compound semiconductor semiconductor laser device according to the present invention. First, the 6H-SiC substrate 1 that was turned off 5 degrees in the <1120> direction from the n-type (0001) silicon surface as a substrate was subjected to an oxidation treatment after surface polishing, thereby removing the damaged layer on the surface. This 6H-SiC substrate 1 is set in a reactor in a MOCVD apparatus, and the reactor is thoroughly replaced with hydrogen, and then the temperature is raised to 1500 ° C. while flowing hydrogen and held for 10 minutes to clean the surface of the 6H-SiC substrate 1. Do.
[0016]
Next, silane gas as raw material gas is supplied into the reactor at a flow rate of 10 cc / min, propane gas is supplied at a flow rate of 10 cc / min, hydrogen gas is supplied as a carrier gas at a flow rate of 10 liters / min, and nitrogen gas is supplied as an n-type impurity at a flow rate of 50 cc / min. Then, the n-type SiC growth layer 2 is grown to about 2 μm by processing for 60 minutes. A cross-sectional view after the above process is shown in FIG.
[0017]
Next, when the substrate temperature is lowered to 1050 ° C. and stabilized at 1050 ° C., 3 × 10 −5 mol of trimethylaluminum (hereinafter referred to as TMA) is flowed at a rate of 5 liters per minute and ammonia is treated for 5 minutes. An AlN layer 3 of about 0.1 μm is grown.
[0018]
Next, 3 × 10 −5 mol of trimethylgallium (hereinafter referred to as TMG), 5 liters of ammonia per minute, and 0.3 cc of silane gas as a source gas for doping Si are flowed for 15 minutes. As a result, the n-type GaN layer 4 is grown.
[0019]
Next, in addition to ammonia, TMG, and silane gas, 6 × 10 −6 mol of TMA is flowed per minute, and an n-type Ga 0.85 Al 0.15 N lower cladding layer 5 of about 1 μm is grown by treatment for 25 minutes. The electron concentration of this layer is 2 × 10 18 cm −3 .
[0020]
Next, the supply of TMG, TMA and silicon gas is stopped and the temperature is lowered to 800 ° C. When the temperature is stabilized at 800 ° C., TMG and trimethylindium (hereinafter referred to as TMI) are flowed at 4 × 10 −4 moles per minute and treated for 12 seconds to grow a 10 nm Ga 0.75 In 0.25 N active layer 6.
[0021]
Next, the supply of TMG and TMI is stopped, and the temperature is raised to 1050 ° C. again. When the temperature was stabilized at 1050 ° C., TMG, TMA, and Cp 2 Mg (cyclopentadienylmagnesium) were flowed at 5 × 10 −6 mol per minute, and treated for 25 minutes to give about 1 μm Mg-doped Ga 0.85 Al 0.15 N The cladding layer 7 is grown.
[0022]
Next, supply of only TMA is stopped, and a 300 nm Mg-doped GaN contact layer 8 is grown for 7.5 minutes. A cross-sectional view after the above process is shown in FIG. Through the steps so far, a semiconductor device having a double hetero type stacked structure having the n-type SiC growth layer 2 stacked on the 6H—SiC substrate 1 is formed.
[0023]
Next, the semiconductor element is taken out from the MOCVD apparatus in a nitrogen atmosphere, and is heat-treated at about 600 ° C. for about 20 minutes in the nitrogen atmosphere, so that the Mg-doped Ga 0.85 Al 0.15 N upper cladding layer 7 and the Mg-doped GaN contact are formed. The layer 8 is reduced in resistance and p-type. This treatment resulted in a hole concentration of both layers of about 1 × 10 18 cm −3 .
[0024]
On the p-type Ga 0.85 Al 0.15 N upper cladding layer 7, an Al 2 O 3 film 10 having a stripe-shaped opening 9 having a width of 1 μm is formed as a protective film by an electron beam evaporation method and a photolithography process. A cross-sectional view after the above process is shown in FIG.
[0025]
A p-side electrode 11 of an Au / Ni laminated film is formed on the entire surface by vacuum deposition. A cross-sectional view after the above process is shown in FIG.
[0026]
Next, the mirror surface of the resonator is formed. The SiO 2 film on the wafer upper surface as a mask material by an electron beam evaporation method and a photolithography method, in a direction perpendicular to the electrode stripes by p-side electrode 11 a SiO 2 film having a width 500μm is formed at an interval of 50 [mu] m. Next, the wafer on which the SiO 2 film having a 50 μm stripe is formed is introduced into a reactive ion etching apparatus, and an n-type SiC growth is performed on the gallium nitride based semiconductor layer in the opening of the SiO 2 film in order to form a reflection mirror. The layer 2 is removed by etching by a normal reactive ion etching method. Further, the 6H—SiC substrate 1 is polished and processed to a thickness of about 100 μm, and the SiO 2 film of the mask material is removed.
[0027]
Next, n-side electrode 12 is formed on the entire back surface of SiC substrate 1.
[0028]
Finally, it is divided into chips by dicing and mounted on a package by a usual method. Through the above steps, a GaAlInN-based semiconductor laser element is formed.
[0029]
When a current was passed through the formed semiconductor laser element, laser oscillation with a blue wavelength of 432 nm was observed at a threshold current of 40 mA.
[0030]
Further, as shown in the present embodiment, after growing the n-type SiC growth layer 2 by 2 μm, the AlN buffer layer 3 and the gallium nitride-based semiconductor layer are grown, whereby the lattice on the surface of the n-type SiC growth layer 2 is grown. The defect was 10 4 to 10 5 cm -2 .
[0031]
The surface of the SiC substrate 1 used in this example was buffed with a 0.5 μm slurry, and the thickness of the surface damage layer such as a scratch was measured to be about 0.1 μm. Therefore, it is considered that as a result of forming the n-type SiC growth layer 2 having a thickness of about 20 times, lattice defects can be reduced as described above.
[0032]
FIG. 3 shows the relationship between the oscillation threshold current of the device and the film thickness of the n-type SiC growth layer 2 in order to evaluate the influence of the suppression of transition by the n-type SiC growth layer 2 on the device characteristics. As shown in FIG. 3, the threshold current value of the element increases rapidly as the thickness of the n-type SiC growth layer decreases. When the film thickness of the SiC growth layer becomes thinner than about 1 μm, the oscillation threshold current suddenly increases, oscillation becomes impossible in the region of 0.5 μm or less, and when the thickness becomes thicker than about 4 μm, the oscillation threshold current does not change much. That is, if the film thickness of the SiC growth layer 2 becomes too thin, the effect of reducing crystal defects due to the surface damage layer of the SiC substrate 1 is reduced, and conversely if it becomes too thick, the growth takes too much time and is not practical. Both are not preferred. The thickness of the SiC growth layer that absorbs lattice defects in the SiC substrate is preferably 10 to 40 times the thickness of the surface damage layer.
[0033]
In this embodiment, an example using a 6H-SiC substrate that is turned off 5 degrees in the <1120> direction from the n-type (0001) silicon (Si) plane has been described. However, the present invention can also be realized using a p-type SiC substrate. In this case, it is necessary to reverse the conductivity type of each layer in the embodiment. The same effect can be obtained even when a substrate that is not turned off is used.
[0034]
In this embodiment, an example of a blue light emitting semiconductor laser device using a GaInN layer as an active layer and a GaAlN layer as a cladding layer is shown. However, the present invention is not limited to this combination, and a GaInN active layer / GaN cladding layer or GaN active layer is used. The same effect was obtained with a combination of a layer / GaAlN cladding layer, a GaAlInN-based quaternary compound semiconductor element, or the like.
[0035]
Although the compound semiconductor laser device has been described in the present embodiment, it has an effect of reducing lattice defects even when applied to a light emitting diode device using a SiC substrate, and improves the high-temperature operating characteristics and device reliability of the light emitting diode. I was able to. Also, for other semiconductor devices, reducing the lattice defects on the surface of the SiC substrate can improve the element characteristics.
[0036]
【The invention's effect】
According to the present invention, a SiC growth layer that absorbs lattice defects is grown directly on a SiC substrate, and the produced GaAlInN-based compound semiconductor laser device remains on the 6H-SiC substrate surface by the n-type SiC growth layer. As a result of the suppression of dislocations originating from lattice defects, oscillation at a low oscillation threshold was confirmed.
[0037]
The film thickness of the SiC growth layer is desirably 10 to 40 times the damage layer on the surface of the SiC substrate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a GaAlInN semiconductor laser device according to the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of a GaAlInN-based semiconductor laser device according to the present invention.
FIG. 3 is a diagram showing a relationship between an n-type SiC growth layer and an oscillation threshold value.
FIG. 4 is a cross-sectional view of a conventional GaAlInN-based semiconductor light-emitting diode element.
FIG. 5 is a cross-sectional view of a conventional GaAlInN semiconductor laser device.
[Explanation of symbols]
1 6H-SiC substrate 2 n-type SiC growth layer 3 AlN growth layer 4 n-type GaN buffer layer 5 n-type GaAlN cladding layer 6 GaInN active layer 7 p-type GaAlN cladding layer 8 p-type GaN contact layer 9 opening 10 Al 2 O 3 Protective film 11 p-side electrode 12 n-side electrode

Claims (8)

SiC基板を用いたGaAlInN系化合物半導体素子であって、
SiC基板と、
前記SiC基板の直上に成長させ、該SiC基板の表面に残存する格子欠陥を減少させるためのSiC成長層と、
前記SiC成長層の上に成長させたGaXAlYIn1-X-YN( < X≦1,0≦Y < )層とを備え、
前記SiC成長層は、その膜厚が1μm以上であり、
前記SiC成長層の表面の格子欠陥は、10 5 cm -2 を超えないことを特徴とする化合物半導体素子。
A GaAlInN compound semiconductor element using a SiC substrate,
A SiC substrate;
An SiC growth layer for growing directly on the SiC substrate and reducing lattice defects remaining on the surface of the SiC substrate ;
And a said Ga X grown on the SiC growth layer Al Y In 1-XY N ( 0 <X ≦ 1,0 ≦ Y <1) layer,
The SiC growth layer has a thickness of 1 μm or more ,
A compound semiconductor device, wherein a lattice defect on the surface of the SiC growth layer does not exceed 10 5 cm −2 .
前記SiC成長層の厚みが1μm以上4μm以下であることを特徴とする請求項1に記載の化合物半導体素子。  2. The compound semiconductor device according to claim 1, wherein the SiC growth layer has a thickness of 1 μm to 4 μm. n型SiC基板を用いたGaAlInN系化合物半導体素子であって、
n型SiC基板と、
前記n型SiC基板の直上に成長させ、該n型SiC基板の表面に残存する格子欠陥を減少させるためのn型SiC成長層と、
前記n型SiC成長層の上に成長させた、それぞれGaXAlYIn1-X-YN( < X≦1,0≦Y < )からなる、n型下部クラッド層、活性層、p型上部クラッド層とを備え、
前記n型SiC成長層は、その膜厚が1μm以上であり、
前記n型SiC成長層の表面の格子欠陥は、10 5 cm -2 を超えないことを特徴とする化合物半導体素子。
A GaAlInN compound semiconductor device using an n-type SiC substrate,
an n-type SiC substrate;
An n-type SiC growth layer for growing directly on the n-type SiC substrate and reducing lattice defects remaining on the surface of the n-type SiC substrate ;
It is grown on the n-type SiC growth layer, made of Ga X Al Y In 1-XY N (0 <X ≦ 1,0 ≦ Y <1) , respectively, n-type lower cladding layer, active layer, p-type An upper cladding layer,
The n-type SiC growth layer has a thickness of 1 μm or more ,
A compound semiconductor device characterized in that lattice defects on the surface of the n-type SiC growth layer do not exceed 10 5 cm -2 .
前記n型SiC基板は、6H−SiC基板であることを特徴とする請求項3に記載の化合物半導体素子。  The compound semiconductor device according to claim 3, wherein the n-type SiC substrate is a 6H—SiC substrate. 前記n型SiC成長層は、n型不純物として窒素を含むことを特徴とする請求項3に記載の化合物半導体素子。  The compound semiconductor device according to claim 3, wherein the n-type SiC growth layer contains nitrogen as an n-type impurity. n型SiC基板を用いたGaAlInN系化合物半導体素子であって、
n型SiC基板上に成長させ、該SiC基板の表面に残存する格子欠陥を減少させるためのn型SiC成長層と、
前記n型SiC成長層の上に成長させた、それぞれGaXAlYIn1-X-YN( < X≦1,0≦Y < )からなる、n型下部クラッド層、活性層、p型上部クラッド層とを備え、
前記n型SiC成長層は、その膜厚が1μm以上であり、
前記n型SiC成長層の表面の格子欠陥は、104〜105cm-2であることを特徴とする化合物半導体素子。
A GaAlInN compound semiconductor device using an n-type SiC substrate,
an n-type SiC growth layer for growing on the n-type SiC substrate and reducing lattice defects remaining on the surface of the SiC substrate ;
It is grown on the n-type SiC growth layer, made of Ga X Al Y In 1-XY N (0 <X ≦ 1,0 ≦ Y <1) , respectively, n-type lower cladding layer, active layer, p-type An upper cladding layer,
The n-type SiC growth layer has a thickness of 1 μm or more,
A compound semiconductor device, wherein a lattice defect on a surface of the n-type SiC growth layer is 10 4 to 10 5 cm −2 .
前記p型上部クラッド層が、GaAlNであることを特徴とする請求項6に記載の化合物半導体素子。  The compound semiconductor device according to claim 6, wherein the p-type upper clad layer is GaAlN. 前記SiC成長層は、原料ガスとしてプロパン、シランを含む混合ガスを用いて成長されることを特徴とする請求項1に記載の化合物半導体素子の製造方法。  2. The method of manufacturing a compound semiconductor device according to claim 1, wherein the SiC growth layer is grown using a mixed gas containing propane and silane as source gases.
JP01856196A 1996-02-05 1996-02-05 Compound semiconductor device and manufacturing method thereof Expired - Fee Related JP4097299B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01856196A JP4097299B2 (en) 1996-02-05 1996-02-05 Compound semiconductor device and manufacturing method thereof
US08/794,830 US5900647A (en) 1996-02-05 1997-02-04 Semiconductor device with SiC and GaAlInN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01856196A JP4097299B2 (en) 1996-02-05 1996-02-05 Compound semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09214054A JPH09214054A (en) 1997-08-15
JP4097299B2 true JP4097299B2 (en) 2008-06-11

Family

ID=11975042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01856196A Expired - Fee Related JP4097299B2 (en) 1996-02-05 1996-02-05 Compound semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4097299B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392104B2 (en) 2010-01-15 2014-01-22 住友電気工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JPH09214054A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3688843B2 (en) Nitride semiconductor device manufacturing method
US5900647A (en) Semiconductor device with SiC and GaAlInN
US5740192A (en) Semiconductor laser
JP3988018B2 (en) Crystal film, crystal substrate and semiconductor device
US7084421B2 (en) Light-emitting device using group III nitride group compound semiconductor
JP3639789B2 (en) Nitride semiconductor light emitting device
JP3470623B2 (en) Method for growing nitride III-V compound semiconductor, method for manufacturing semiconductor device, and semiconductor device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JPH11145516A (en) Manufacture of gallium nitride compound semiconductor
US6777253B2 (en) Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
JP3292083B2 (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor element
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JPH08148718A (en) Compound semiconductor device
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP3087829B2 (en) Method for manufacturing nitride semiconductor device
JPH11340510A (en) Semiconductor element and manufacture thereof
JP3561105B2 (en) P-type semiconductor film and semiconductor device
JP3740744B2 (en) Semiconductor growth method
JPH10145006A (en) Compound semiconductor device
JPH0832113A (en) Manufacture of p-type gan semiconductor
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JPH09275226A (en) Semiconductor light emitting element, semiconductor photo detector element and manufacturing method thereof
JP3722426B2 (en) Compound semiconductor device
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
US5995527A (en) Semiconductor laser device having an inn contact layer and a method of fabricating the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060630

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees