JP4095222B2 - Superconducting element and manufacturing method thereof - Google Patents

Superconducting element and manufacturing method thereof Download PDF

Info

Publication number
JP4095222B2
JP4095222B2 JP2000036696A JP2000036696A JP4095222B2 JP 4095222 B2 JP4095222 B2 JP 4095222B2 JP 2000036696 A JP2000036696 A JP 2000036696A JP 2000036696 A JP2000036696 A JP 2000036696A JP 4095222 B2 JP4095222 B2 JP 4095222B2
Authority
JP
Japan
Prior art keywords
superconducting
phase
substrate
thin film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000036696A
Other languages
Japanese (ja)
Other versions
JP2001226119A (en
Inventor
雄一 元井
純夫 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000036696A priority Critical patent/JP4095222B2/en
Publication of JP2001226119A publication Critical patent/JP2001226119A/en
Application granted granted Critical
Publication of JP4095222B2 publication Critical patent/JP4095222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジョセフソン接合やdcトランスフォーマ等の超電導層と超電導層の間の結合を制御して利用する超電導素子およびその製造方法に関する。
【0002】
【従来の技術】
超電動素子の一形態であるジョセフソン結合は、超電導体として超電導転移温度が高い物質を用いた場合に、大きな超電導ギャップエネルギーを反映して、その臨界電流Icと常伝導抵抗値Rnの積Icnが高い値となり、たとえば、高周波特性などの点で高性能なジョセフソン接合を得ることが期待される。ところが、これまで作製されてきた高温超電導体の積層型ジョセフソン接合では、高いIcn積を得ることが困難であった。そのため、高温超電導体の大きなギャップエネルギーを十分生かした素子利用することができなかった。
【0003】
また、超電導回路においては、所望の臨界電流値を持つジョセフソン接合素子が作製できることが望ましい。しかし、これまで知られている多くの高温超電導体/非超電導体/高温超電導体の積層構造では、非超電導体として層状酸化物かペロブスカイト型酸化物が用いられており、その格子定数0.4nm〜1.2nmを単位でしか超電導体間の距離を制御できなかった。その結果、接合のバリア層の厚さを細かく制御することができず、ジョセフソン特性を精密に制御することができなかった。
【0004】
接合のバリア層の厚さを比較的細かく調節することのできる物質系として、多重螢石型ブロックを含む層状銅酸化物が提案されている(特開平6−69556および米国特許第5,629,267号)。しかし、その特性を最も良く引き出すための組成と製造条件がわかっておらず、素子特性の再現性が悪かった。
【0005】
【発明が解決しようとする課題】
本発明の第一の目的は、超電導層と非超電導層を積層した超電導素子に用いられる、非超電導層の厚さを原子層レベルで細かく調節できる薄膜とその製造方法を提供することである。
【0006】
また、本発明の第二の目的は、上記素子に超電導層として用いられる、電気的・結晶学的に優れた特性を持つ薄膜とその製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明の超電導素子は、超電導層と非超電導層とを積層した構造を有する超電導素子において、
前記超電導層が、下記化学式
(Pb 2 Cu)Sr 2 Ln 1-x Ca x Cu 2 8-z
(ここで、LnはYおよび3価の希土類元素から選択される少なくとも1種の元素を示し、xは結晶構造中でLnの位置へ置換するCaの割合を表す正の実数であり、zは酸素ノンストイキオメトリーを表わす実数である)で表され、
0.3<x<0.5
である物質からなり、
前記非超電導層として、下記化学式
(Pb2Cu)Sr2LnaCebCu22n+6-z
(ここで、LnはYおよび3価の希土類元素から選択される少なくとも1種の元素を示し、a,bは正の実数、nは整数、zは酸素ノンストイキオメトリーを表わす実数である)
で表される層状銅系酸化物の結晶構造中に含まれる多重螢石型ブロックが用いられ、前記層状銅系酸化物は
n−0.3>a+b>n−1.2
を満たすようにLnおよびCeの組成が調節されており、前記多重螢石型ブロックを挟むCuO2面間距離d[nm]が、
0.57+0.26(n−2)<d<0.63+0.29(n−2)
で表わされることを特徴とする。
【0009】
本発明の超電導素子の製造方法は、基板上に上記の超電導層と非超電導層とを積層した構造を有する超電導素子を製造するにあたり、前記基板温度を650〜710℃に設定し、前記基板上に活性酸素を5×1018/sec・m2〜7×1018/sec・m2のフラックスで照射しながら、前記基板上に薄膜の構成金属元素の分子線を供給して薄膜を成長させることを特徴とする。
【0010】
この方法においては、前記基板上に薄膜を成長させた後、前記基板上への活性酸素の照射を遮り、前記基板を410℃を越えて510℃未満の範囲の温度に保ってアニールを施すことが好ましい。
【0011】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
【0012】
本発明者らは、超電導層と非超電導層とを積層した構造を有する超電導素子において、厚さを原子層レベルで細かく調節できる非超電導層の物質として、化学量論的に以下の化学式(1)で表される多重螢石型ブロックを含む層状銅酸化物に着目した。
【0013】
(Pb2Cu)Sr2(Ln,Ce)nCu22n+6 …(1)
(ここで、LnはYおよび3価の希土類元素から選択される少なくとも1種の元素を示し、nは整数である)。以下、この物質をPb−32n2相と呼ぶ。
【0014】
図1に、n=5である(1)式の物質の結晶構造を示す。この物質には、電気伝導を担うCuO2面があり、2枚のCuO2面の間に多重螢石型ブロック層[(Ln,Ce)O2nが挟まっている。多重螢石型ブロック層を挟んだCuO2面同士の間隔d(単位nm)は、
d=0.6+0.27(n−2) …(2)
と表される。例えばn=4〜7の時にd=1.14〜1.95nmとなり、トンネルバリヤ層に適した厚さになる。
【0015】
ただし、(2)式は代表的な値を示した式であり、使用する元素の種類、組成、陽イオン欠損、酸素ノンストイキオメトリー等によってdの値は
0.57+0.26(n−2)<d<0.63+0.29(n−2) …(3)
の範囲で変動しうる。
【0016】
この物質のCuO2面は、正孔を注入すれば超電導性を示す可能性がある。たとえこの物質単独で超電導にならなくとも、CuO2面に超電導体と同等の正孔濃度があれば、Pb−3212相超電導体と積層することにより、近接効果によってPb−32n2相のCuO2面にも超電導の秩序パラメタが浸透する。ここで、超電導体と同等の正孔濃度とは、[CuO]+pあたりの正孔濃度pが0.05<p<0.3であることを言う。この場合、厚さdの絶縁性の多重螢石型ブロックのみが非超電導層部分として働く。一方、Pb−32n2相のCuO2面の正孔濃度がp≦0.05と小さい場合には、Pb−32n2相物質全体が非超電導層として働く。いずれにしても、非超電導層の厚さは約0.27nmという小さな単位で変化させることができる。したがって、従来のペロブスカイト型酸化物などでは0.4〜1.2nmの単位でしか超電導層間の距離を変化させることができなかったのに比べて、本発明では非超電導層の厚さをより精密に距離を制御できる。
【0017】
化学式:[B]AE2(RE11-yRE2ynCu2z …(4)
(ここで、[B]はブロック層、AEはアルカリ土類元素、RE1は4価の希土類元素、RE2はYまたは3価の希土類元素を示す)
で表される多重螢石型ブロックを含む層状銅酸化物を使った超電導素子は既に特開平6−69556および米国特許第5,629,267号に記載されている。これに対して、本発明者らは、[B]がCuOδchainでは効果が得られず、[B]として[PbO−Cu−PbO]を選ぶことによって効果が発揮されることを見出した。
【0018】
また、本発明者らは、実際に多重螢石型ブロックを含む層状銅酸化物の薄膜を作製する場合、(2)式で表されるCuO2面間隔dを得るには、希土類組成を(1)式の理想組成nに合わせるのではなく、nからずらすことが必要であることを見出した。すなわち、薄膜組成を単位胞あたりに換算して下記化学式
(Pb2Cu)Sr2LnaCebCu22n+6-z …(5)
で表したとき、(2)式で表されるCuO2面間隔dを有するPb−32n2相を得るには、単位胞あたりの希土類組成a+bを
n−0.3>a+b>n−1.2 …(6)
を満たすように調整することが必要であることを見出した。さらに、結晶性の良好な薄膜を得るには、
n−0.4>a+b>n−0.8 …(7)
であることがより好ましい。本発明では、このように薄膜組成を調整することによって、非超電導層の厚さを精密に制御できる。
【0019】
なお、Lnの組成aは0以上n以下であることが必要である。螢石型ブロック構造の安定性の点からは、
0.8<a<2.0 …(8)
であることがより好ましい。
【0020】
本発明の超電導素子においては、超電導層として下記化学式
(Pb2Cu)Sr2Ln1-xCaxCu28-z …(9)
で表されるPb−3212相超電導体の薄膜を用いる。Pb−3212相超電導体は、バルクではx=0.5の場合に最も超電導特性が優れていることが知られている(Y. Koike, H. Sunagawa, T. Noji, M. Masuzawa, N. Kobayashi, M. Namiki, K. Hirosawa, and Y. Saito, Physica C171, 331(1990)等参照)。これに対して本発明者ら、Pb−3212相超電導体の薄膜およびこの薄膜を含む積層膜を作製する場合には、
0.3<x<0.5 …(10)
の範囲で優れた超電導特性が得られることを見出した。
【0021】
本発明の超電導素子は、螢石型ブロックを含む層状銅酸化物Pb−32n2相の一単位胞を上下からPb−3212相超電導体で挟むことにより、ジョセフソン接合として用いることができる。ジョセフソン接合に適したnの値について説明する。
【0022】
まず、螢石型ブロックを含む層状銅酸化物Pb−32n2相のCuO2面にも超伝導の秩序パラメタが浸透する場合には、n=3〜8が望ましい。n=2ではCuO2面間のジョセフソン結合が強すぎる。言い換えると、螢石型ブロックを挟んだCuO2面間の超伝導の結合が強くなりすぎて、Pb−3212相超伝導電極内の面間超伝導結合の強さと大差がなくなる。その結果、一体の超電導体とみなすことができ、良好なジョセフソン接合として働かない。また、n=2のPb−32n2相は薄膜にすることが困難であるという問題もある。一方、n=9ではd=2.5nmとなり、トンネルバリア層として厚すぎ、クーパー対がトンネルする確率が著しく小さくなり、良好なジョセフソン接合して働かない。言い換えると、CuO2面間のジョセフソン結合が小さくなりすぎる。したがって、n=3〜8が望ましい。さらに、n=4〜7のときにd=1.14〜1.95nmとなり、トンネルバリヤ層に適した厚さになることから、n=4〜7が最も望ましい。
【0023】
次に、螢石型ブロックを含む層状銅酸化物Pb−32n2相の全体が非超電導層として働く場合について説明する。本発明者らは、Pb−32n2相の原子面積層の基本周期c’(nm)が
c’=1.32+0.27n
と表されることを見出した。nが奇数の場合、c’は結晶学的なc軸長と一致する。nが偶数の場合、c’は結晶学的なc軸長の1/2である。Pb−32n2相の一単位胞全体がトンネルバリヤ層として働く場合、n=5ではトンネルバリヤ層の厚さが2.67nmと厚くなりすぎる。その結果、CuO2面間のジョセフソン結合が小さくなりすぎ、良好なジョセフソン接合として働かない。また、n=2の場合、Pb−3222相を薄膜にすることが困難である。したがって、n=3〜4が望ましい。
【0024】
また、本発明の超伝導素子は、螢石型ブロックを含む層状銅酸化物Pb−32n2相の一単位胞を上下からPb−3212相超電導体で挟むことにより、dcトランスフォーマーとしても用いることができる。dcトランスフォーマーとは、絶縁層を挟む2つの超電導電極間のジョセフソン結合が無視できるほど小さい状態で磁気的な結合で動作する素子である。膜面に垂直な磁場をかけて下部超電導電極に電流を流すと下部超電導電極を貫いている磁束渦糸がローレンツ力で動く。その結果、上部超電導電極を貫く磁束渦糸も引きずられて動き、上部超電導電極に電圧が発生する原理である。発生電圧は磁場の強さと下部超電導電極の電流値に依存することから、有用な素子として働く。dcトランスフォーマーに適したnの値について説明する。上側の超電導層の磁束と、下側の超電導層の磁束との間に働く、磁気的な結合力の強さは、下の式で表されるρeffの逆数の2乗に比例することが知られている(J. W. Ekin and John R. Clem, Phys. Rev. B12, 1753(1975)等を参照)。
【0025】
ρeff=di+λabcoth(dp/λab)+λabcoth(ds/λab
ここで、λabは上下の超電導層のab面内の磁場進入長であり、diは絶縁層の厚さ、dpは上側の超電導層の厚さ、dsは下側の超電導層の厚さである。dcトランスフォーマーとして機能させるには、超電導層間の磁気的な結合力の強さが強い方がよい。そのためには、diはλabより十分小さい値であることが必要であり、dpとdsはともにλabより十分大きい値であることが必要である。
【0026】
本発明において超電導層として用いられるPb−3212相の絶対零度でのab面内の磁場進入長λabの値は約260nmである(M. Reedyk, C. V. Stager, T. Timsk, J. S. Xue, J. E. Greedan, Phys. Rev. B44, 4539(1991)等を参照)。260nmのdiに対応する絶縁層を含むPb−32n2のnの値は約960である。典型的なdcトランスフォーマーでは、diはλabの2%以下の値である。したがって、螢石型ブロックを含む層状銅酸化物Pb−32n2相のCuO2面にも超電導の秩序パラメタが浸透する場合にはnは19以下であることが望ましい。また、螢石型ブロックを含む層状銅酸化物Pb−32n2相全体が非超電導層として働く場合にはnは14以下であることが望ましい。
【0027】
一方、diがあまり小さすぎると、上側の超電導層と下側の超電導層との間にジョセフソン電流が流れてしまうためショートしてしまい、dcトランスフォーマーとして機能しない。したがって、螢石型ブロックを含む層状銅酸化物Pb−32n2相のCuO2面にも超電導の秩序パラメタが浸透する場合はnを9以上にして上下の超電導層間のジョセフソン接合を非常に弱くすることが必要である。また、螢石型ブロックを含む層状銅酸化物Pb−32n2相全体が非超電導層として働く場合は、同様の理由によりnを5以上にすることが必要である。
【0028】
以上のように、螢石型ブロックを含む層状銅酸化物Pb−32n2相をdcトランスフォーマーの絶縁層として用いる場合、Pb−32n2相のCuO2面にも超電導の秩序パラメタが浸透する場合にはnは9〜19が望ましく、螢石型ブロックを含む層状銅酸化物Pb−32n2相全体が非超電導層として働く場合にはnは5〜14が望ましい。
【0029】
次に、本発明におけるPb−32n2相薄膜とPb−3212相薄膜を積層した超電導素子を製造する場合の最適な製造条件について説明する。本発明において用いられる薄膜は分子線エピタキシャル(MBE)により成膜することが好ましい。
【0030】
本発明では、基板温度を650℃から710℃の範囲に設定することにより、電気的・結晶学的特性に優れた薄膜が得られる。また、基板に供給するオゾンガスまたは酸素プラズマ等によって生成された活性酸素フラックスを5×1018から7×1018[sec-1-2]の範囲に設定することにより、電気的・結晶学的特性に優れた薄膜が得られる。
【0031】
さらに本発明では、薄膜を成長した後に活性酸素フラックスをシャッターで遮って直接薄膜に当たらない状態で、成長温度よりも低い温度でアニールすることにより、電気的特性が優れた薄膜が得られる。従来、Pb−3212相のバルク超電導体においては、窒素ガス中で400℃から500℃の範囲で12時間アニールを行うと電気的特性が向上することが知られていた(M. Masuzawa, T. Noji, Y. Koike, and Y. Saito, Jpn. J. Appl. Phys. 28, L1524(1989)等参照)。アニールする雰囲気は、真空中よりも窒素ガス中のほうが電気的特性が向上することが知られていた(M. Masuzawa, T. Noji, Y. Koike, and Y. Saito, Jpn. J. Appl. Phys. 28, L1524(1989)等参照)。これに対して本発明では、薄膜成長に使ったオゾンガスまたは酸素プラズマ等によって生成された活性酸素フラックスをシャッターで遮って直接薄膜に当たらない状態にすることにより、アニールに最適な雰囲気を作ることに成功した。
【0032】
さらに本発明では、(1)成膜後に装置から取り出さずにアニールし、(2)薄膜成長に使用した活性酸素フラックスの供給を止めて排気するのではなくシャッターで遮るだけであり、(3)アニール時間が30分と短い、という3点で製造効率を上げることができる。
【0033】
なお、本発明の超電導素子は、スパッタ法や、レーザーアブレーション法、化学気相成長法(CVD)などによっても製造することができる。
【0034】
【実施例】
以下、本発明の実施例を説明する。以下の実施例においては、すべて分子線エピタキシー法によって薄膜を成長させている。
【0035】
図2に分子線エピタキシー装置の模式図を示す。図2に示すように、真空容器1はクライオポンプにより排気される。真空容器1内には基板ホルダ2が設けられ、この基板ホルダ2に基板3が設置される。基板ホルダ2はヒーター4により加熱される。基板3に対向するように複数のクヌーセンセル5が設けられており、それぞれのクヌーセンセル5の開口部にはセルシャッター6が設けられている。各クヌーセンセル5には、以下の実施例において成膜されるPb−32n2薄膜の構成金属元素である、Pb,Sr,Ln(DyまたはEu),Ce,Cuの各元素の金属が充填されている。また、Pb−32n2薄膜を得るために必要な酸化反応を起こすために、液体オゾン貯蔵室7で気化した純オゾンガスをノズル8から噴出して基板3に照射するようになっている。ノズル8と基板3との間には必要に応じてオゾンシャッター9が挿入される。基板3の温度はBaF2窓10を通して波長8〜13μmの熱線を放射温度計11により検出することにより測定される。基板3近傍の分子線の状態は、発光部12aおよび受光部12bを有する原子吸光式分子線モニタ12によりモニタされる。具体的には、発光部12aに備えたホローカソードランプから発せられた217〜460nmの光を、石英窓13aから分子線エピタキシー装置内部に導き、基板3の直下、ガラス円板14の穴の中、石英窓13bを通過した光を、受光部12bで受光して原子吸光分析を行う。ガラス円板14はドーナツ型の形状をしており、石英窓13bが蒸着物質によって汚れるのを防ぐために設けられている。
【0036】
なお、分子線の供給源はクヌーセンセルに限らない。例えば、各元素を充填した坩堝等を電子銃で加熱して分子線を供給してもよい。有機金属の分子線をクヌーセンセルまたはガスソースノズルから供給してもよい。
【0037】
また、酸化手段としては、電子サイクロトロン共鳴によって発生させた酸素プラズマを用いてもよい。
【0038】
(実施例1)
結晶構造中に多重螢石型ブロックを含む層状銅系酸化物であるPb−32n2薄膜を単独で成膜した例について説明する。
【0039】
図2に示すMBE装置を用いて、下記化学式
(Pb2Cu)Sr2LnaCebCu22n+6-z
(ここで、Lnは希土類元素であるEuまたはDyを示し、a,bは正の実数、nは整数、zは酸素ノンストイキオメトリーを表わす実数である)
で表されるPb−32n2相の薄膜を作製した。
【0040】
図3に(Pb2Cu)Sr2LnaCebCu22n+6-z薄膜について、Lnの組成aとCeの組成bとを加えた数a+bと、その結晶構造上のc軸の長さとの関係を示す。nの値はc軸長より求められる。この図には、Pb−3232、Pb−3242、Pb−3252、Pb−3262の各相が生成する希土類組成a+bの範囲を長方形で示している。この図の代表例として、例えばPb−3252相(n=5)は、a+bが4.7〜3.8のときに生成することがわかる。すなわち、a+bに最も近い整数に対応するnの値を持つPb−32n2相の薄膜が成長するのではなく、
n−0.3>a+b>n−1.2
を満たすnの値を持つPb−32n2相の薄膜が成長する。このため、Pb−32n2相の結晶構造中に含まれる螢石型ブロックにおいては希土類イオンの欠損が生じている。
【0041】
このことは、Pb−32n2薄膜をバリア層として用いて、Pb3212/Pb−32n2/Pb3212という積層構造を有するジョセフソン接合に形成する場合に重要な意味を持つ。なぜならば、ジョセフソン接合の臨界電流はバリア層における電子のトンネル確率に大きく依存し、電子のトンネル確率はバリア層の厚さに応じて変化するからである。したがって、ジョセフソン接合の臨界電流を所望の値にしようとすれば、Pb−32n2相のnの値を制御する必要がある。そして、所望のPb−32n2相のnの値を得るためには、希土類元素(LnおよびCe)の組成a+bを、n−0.3>a+b>n−1.2を満たすように成膜条件を制御すればよいことがわかる。
【0042】
(比較例)
比較例として、(4)式で表わされる多重螢石型ブロックを含む層状銅酸化物のうち、[B]にCuOδchainを使う物質の合成を試みた。
【0043】
図2に示した装置を用い、Caの代わりにBaを蒸発させた。ブロック層にCuOδchainを使う場合の超電導電極は、良く知られた123相、DyBa2Cu37である。まず、この物質の結晶性の良い単一相薄膜が得られる成長条件を探した。その結果、基板温度720℃、成長時のオゾンフラックス6×1018[sec-1-2]が最適であることがわかった。この条件で、123相のCuO2面間に螢石型ブロックを含む物質、Cu−12n2相:n=2−5の成長を試みた。意図した結晶構造に応じて原子層毎にセルシャッターを開けて堆積した。
【0044】
図4に薄膜試料のX線回折パターンの例を示す。この薄膜試料は、化学式CuBaSr(Dy,Ce)3Cu2yで表されるCu−1232相を狙って堆積したものである。X線回折の結果、123相とCeO2を主に含む混合物になっており、意図したCu−1232相は生成していなかった。一方、この薄膜試料を化学分析した結果、組成はCu1.03Ba1.01Sr1.13Dy1.06Ce1.70Cu2.06yとなっており、狙い通りの組成になっていた。このように、[B]にCuOδchainを使った多重螢石型ブロックを含む層状銅酸化物の作製は非常に困難であることが判明した。
【0045】
成長過程を高速電子線回折で見ると、螢石型ブロック堆積中にファセットを持った島状成長が起こるが、その後の原子層の堆積によっても層状成長に戻らないことが判明した。すなわち、螢石型ブロックを含んだ層状酸化物が自己組織的に層状化して形成されることはなかった。
【0046】
これに対して、実施例1における[B]に[PbO−Cu−PbO]ブロック層を使った物質(Pb−32n2相)の場合には、螢石型ブロック堆積中にファセットを持った島状成長が起こり、その後の原子層の堆積によって層状成長に戻る、自己組織的な層状化が起きていた。すなわち[B]に[PbO−Cu−PbO]ブロック層を使った場合には、所望の結晶構造の単一相薄膜が層状成長して得られた。このようにPb−32n2相は螢石型ブロックを含んだ層状酸化物が自己組織的に形成される利点があるため、本発明に好適な物質であることが判明した。
【0047】
(実施例2)
SrTiO3基板上にPb−3212相の薄膜を成長させる際に、基板温度条件を様々に設定し、薄膜の特性に及ぼす影響を調べた。成長させた薄膜の組成は(Pb2Cu)Sr2Dy1-xCaxCu28-zである。zは酸素ノンストイキオメトリを表わす実数である。成長時にSrTiO3基板に照射したオゾンガスのフラックスは6×1018/sec・m2とした。
【0048】
図5に成長した(Pb2Cu)Sr2Dy1-xCaxCu28-z薄膜(x=0.2および0.3)の2軸X線回折パターンを示す。図5に示されるように、成長時の基板温度が740℃以上の場合には、Pb−3212相が全く生成されない。基板温度が720℃の場合には、Pb−3212相の回折ピークが現れているが、その回折ピークは半値幅が大きく結晶性の良くない薄膜であることがわかる。一方、基板温度が620℃および640℃の場合には、Pb−3212相の鋭い回折ピークが現れているが、同時に不純物相の回折ピークも現れており、やはり単一相の薄膜を成長させるには適当な温度でないことがわかる。
【0049】
これに対して、成長時の基板温度が660℃、670℃の場合には、不純物相の回折ピークは存在せず、SrTiO3基板に起因する回折ピークを除けばPb−3212相の回折ピークのみが現れており、その回折ピークの強度も高い。すなわち、結晶性の良いPb−3212相の薄膜が、基板面に垂直な方向がPb−3212相の結晶軸のc軸方向に一致するように配向して成長したことが明らかである。
【0050】
図6に(Pb2Cu)Sr2Dy1-xCaxCu28-z薄膜(x=0.3および0.4)の成長時の基板温度と抵抗率の温度変化の測定から得た超電導転移温度Tc Midとの関係を示す。超電導転移温度Tc Midとは、試料温度を高温側から低温側に下げていく時に起こる超電導転移に際して、抵抗率が急激に下がり始める直前の温度における抵抗率(常伝導状態の抵抗率)の半分の値となるような温度(通常ミッドポイント(mid point)と呼ばれている)のことである。この図において、超電導転移温度は絶対温度で示されており、単位はK(ケルビン)である。
【0051】
xの値が0.4である場合には、超電導転移温度は、基板温度660℃および700℃で成長させた試料の方が、640℃で成長させた試料よりも高い。上で述べたように640℃で成長した試料は多相であるため、xの値は0.4と限らないが、不純物相以外の(Pb2Cu)Sr2Dy1-xCaxCu28-z相の部分が超電導転移をしたと考えられる。
【0052】
xの値が0.3である場合には、xの値が0.4の場合よりも超電導転移温度は低いが、基板温度が670℃および680℃のいずれで成長させた試料でも超電導転移が観察された。
【0053】
これらの結果から、単一相のPb−3212相の超電導薄膜を作製するには、基板温度を650℃から710℃の範囲に設定することが好ましい。
【0054】
(実施例3)
SrTiO3基板上にPb−3212相の薄膜を成長させる際に、基板に照射するオゾンのフラックスを様々に設定し、薄膜の特性に及ぼす影響を調べた。成長させた薄膜の組成は、化学式で表すと(Pb2Cu)Sr2Dy0.7Ca0.3Cu28-zである。zは酸素ノンストイキオメトリを表わす実数である。成長時の基板温度は670℃に設定した。
【0055】
図7に成長した薄膜の2軸X線回折パターンを示す。成長時にSrTiO3基板に照射したオゾンガスのフラックスを4×1018/sec・m2として場合には、Pb−3212相の回折ピークが現れているが、同時に不純物相の回折ピークも現れており、単一相の薄膜を成長させるには適当な酸化条件でないことがわかる。オゾンガスのフラックスを5×1018/sec・m2、6×1018/sec・m2、7×1018/sec・m2とした場合には、SrTiO3基板に起因する回折ピークを除けばPb−3212相のみの回折ピークが現れており、単一相の薄膜を成長できたことがわかる。なお、5×1018/sec・m2、6×1018/sec・m2で成長させた場合は、7×1018/sec・m2で成長させた場合よりPb−3212相の回折ピークの半値幅が小さく、結晶性に優れていることがわかる。図示しないが、成長時にSrTiO3基板に照射したオゾンガスのフラックスが8×1018/sec・m2の場合には、Pb−3212相の回折ピークが現れなかった。これらの結果から、Pb−3212相の薄膜を成長するには、オゾンガスのフラックスを5×1018/sec・m2から7×1018/sec・m2の範囲にすることが好ましい。
【0056】
(実施例4)
SrTiO3基板上に、結晶構造中の希土類元素Dyの原子の位置へ置換されるCaの割合を様々に変えたPb−3212相薄膜を成長させてそれらの特性を調べた。成長させた薄膜の組成を(Pb2Cu)Sr2Dy1-xCaxCu28-zで表す。zは酸素ノンストイキオリメトリを表わす実数である。具体的には、逐次蒸着法で各元素の原子層を成長する際に、DyとCaの各クヌーセンセルに取り付けられたセルシャッターを開ける時間を変化させて、組成の異なる薄膜を作製した。成長時の基板温度は670℃、成長時のオゾンのフラックスは6×1018/sec・m2に設定した。
【0057】
図8に成長した(Pb2Cu)Sr2Dy1-xCaxCu28-z薄膜の組成xと抵抗率の温度変化の測定から得た超電導転移温度Tc Midとの関係を示す。
【0058】
図8からわかるように、超電導転移温度は、xの値が0.3から0.5である薄膜の方が、xの値が0.2である薄膜よりも高いことがわかる。また、超電導転移温度はxが0.4である薄膜試料が最も高く、最も良好な超電導性を示すといえる。
【0059】
次に、Pb−32n2の1単位胞とPb−3212相の3単位胞とを繰り返し堆積した超格子、[Pb−32n2+Pb−3212×3u.c.]×9:n=3,4を作製し、Pb−3212相部分のCa組成xに対する超電導特性の依存性を調べた。薄膜成長は実施例1,2,3で最適化した組成条件と成長条件で行った。
【0060】
図9に超格子試料の抵抗率の温度依存性を示す。x>0.5では超電導性が得られにくく、x=0.4付近で超電導性が得られた。このように超格子においても、0.3<x<0.5が最適であることが確認された。
【0061】
以上のように、薄膜においてはバルクと異なってxを0.5まで増やすとかえって超電導特性が悪くなる原因は、Caがx=0.5まで増大すると薄膜成長表面に不純物が析出して層状成長が崩れ、結果的に結晶性が悪くなるためであると考えられる。
【0062】
(実施例5)
SrTiO3基板上にPb−3212相薄膜を成長させた後の、基板冷却時の酸化条件とアニール条件を様々に変化させて、薄膜の超電導性に及ぼす影響を調べた。
【0063】
本発明においては、高い超電導特性を得るには薄膜成長後の基板冷却時に途中の温度でオゾンガス供給を止めることが重要である。
【0064】
まず、図2の装置を用い、薄膜を成長させた後、基板温度がTqまで低下した時点でオゾンシャッターを用いて基板へのオゾンガスを遮る試験を行った。
【0065】
図10に(Pb2Cu)Sr2Dy1-xCaxCu28-z:x=0.22〜0.23(zは酸素ノンストイキオメトリを表す実数である)で表されるPb−3212相薄膜において、成長後の基板冷却時にオゾンガス供給を止める温度Tqを230℃または580℃とした場合の抵抗率の温度依存性を示す。Tq=230℃では絶縁体になるが、Tq=580℃の場合に超電導体になることがわかる。ホール係数や熱電能の測定から、Tq=230℃の試料ではキャリア濃度が低すぎることがわかった。基板冷却時にもオゾンガスを供給しつづけると、[PbO−Cu−PbO]ブロック層に酸素が過剰に入り、Pb2+の代わりにPb4+が混じって結晶格子が歪むとともに結晶全体の電荷バランスが変化し、キャリア濃度が低下するために超電導性が抑制されると考えられる。
【0066】
図11に(Pb2Cu)Sr2Eu0.5Ca0.5Cu28-z(zは酸素ノンストイキオメトリを表す実数である)で表されるPb−3212相薄膜において、成長後の基板冷却時にオゾンガス供給を止める温度Tqを470℃、580℃または650℃とした場合の抵抗率の温度依存性を示す。Tq=580℃の場合に最も高い超電導転移温度を持った超電導体が得られた。これらの結果から、470℃<Tq<650℃を満たすTqが最適であることがわかった。
【0067】
同様に、Pb−32n2相:n=3〜8の単一相薄膜においても、成長後の基板冷却時に470℃<Tq<650℃を満たす温度Tqでオゾンガス供給を止めると、高い導電性が得られることがわかった。
【0068】
また、Pb−3212超電導体とPb−32n2相:n=3〜8を積層した試料においても、成長後の基板冷却時に470℃<Tq<650℃を満たす温度Tqでオゾンガス供給を止めると、高い超電導特性が得られることがわかった。
【0069】
次に、SrTiO3基板上に(Pb2Cu)Sr2Dy0.78Ca0.22Cu28-z(zは酸素ノンストイキオメトリを表す実数である)で表されるPb−3212相の薄膜を成長させ、成長時と同じ装置内でアニールを行った試料とアニールを行わなかった薄膜試料とで超電導転移温度を比較した。
【0070】
(Pb2Cu)Sr2Dy0.78Ca0.22Cu28-z薄膜の成長時に基板温度を700℃、基板に照射するオゾンフラックスを6×1018/sec・m2に設定した。成長後にアニールを行わなかった試料では、蒸着終了直後に基板温度を下げていき、580℃になったところでオゾンシャッターによって基板に照射されるオゾンガスを遮った。ただし、真空装置内へのオゾンガスの供給は引き続き行った。そして、基板の冷却を引き続き行い、室温付近になってから真空装置外へ取り出した。
【0071】
一方、成長後にアニールを行った試料では、蒸着終了直後に基板温度を下げていき、580℃になったところでオゾンシャッターによって基板に照射されるオゾンガスを遮り、かつ装置内へのオゾンガスの供給は引き続き行ったことは共通であるが、基板の冷却を引き続き行い、基板温度が460℃に達した時点で冷却を止めて、460℃において30分間維持してアニールを行った。その後、室温付近まで急冷してから大気中に取り出した。
【0072】
図12に両方の試料の抵抗率の温度依存性を示す。ここでは、試料温度を高温側から低温側に下げていく時に起こる超電導転移に際して、抵抗率が急激に下がり始める温度(オンセット温度)、および抵抗率が0になる温度(ゼロ抵抗温度)に着目している。図12に示されるように、アニールを行った試料は、アニールを行わなかった試料と比較して、オンセット温度およびゼロ抵抗温度のいずれも高い。このように本発明によるアニール方法により、薄膜の超伝導性能が向上することがわかる。
【0073】
図13に種々の温度でアニールした試料について抵抗率の温度依存性を示す。460℃でアニールした場合に最も超電導転移温度が高い。アニール温度が510℃より高いかまたは410℃より低い場合には、超電導転移温度が低下する。したがって、アニール温度Tanは、410℃〜510℃が最適である。
【0074】
(実施例6)
Pb−32n2相の1単位胞とPb−3212相の2単位胞とを繰り返し積層した超格子[Pb−32n2+Pb−3212×2u.c.]×L:n=3,5,7、L=13〜15の作製を試み、X線回折で結晶構造を調べた。薄膜成長は実施例1,2,3で最適化した組成条件と成長条件で行った。実験で得たX線回折図形を、理想的な結晶構造を仮定して計算した結果と比較した。
【0075】
図14にn=3の薄膜に関する結果を示す。実験結果は計算値とよく一致し、単位胞毎の積層構造が意図した通りに作製できることが確認された。
【0076】
実験結果から得たc軸長はn=3の場合に5.28nm、n=5の場合に5.83nm、n=7の場合に6.40nmであり、c軸長のn依存性は期待通りであった。すなわち超電導層/非超伝導層積層構造において、nを1増やすとそれに応じて非超伝導層の厚さが0.27〜0.28nmを単位として厚くなることが確認された。
【0077】
このほか、Pb−3212相の厚さを厚くした[Pb−32n2+Pb−3212×3u.c.]×L:n=3,4,5,6、L=9〜11の超格子でも意図した通りの結晶構造ができていることが確認された。
【0078】
(実施例7)
超電導層と非超電導層を積層した構造において、高い超電導特性が得られる薄膜作製条件を調べた。実験的には、Pb−32n2相の1単位胞とPb−3212相の2〜3単位胞とを繰り返し積層した超格子[Pb−32n2+Pb−3212×m]×L:n=3〜7、m=2〜3、L=9〜15を種々の基板温度、酸化条件、アニール条件で作製し、抵抗率の温度依存性を測定した。その結果、実施例2、実施例3、実施例5に記載したPb−3212相薄膜の最適条件と同じ条件が最適であった。これらの作製条件を選択した結果、図9に示すように超電導になる超格子が得られた。
【0079】
第1に、薄膜成長中の基板温度は650℃から710℃の範囲が最適であった。薄膜成長中の基板温度を720℃にした場合、図9のx=0.4の場合よりも超電導転移温度が非常に低くなった。第2に、薄膜成長中に活性酸素のフラックスを5×1018から7×1018/sec・m2の範囲に保って照射することが最適であった。第3に、薄膜成長後に基板上への活性酸素の照射を遮りつつ基板を410℃から510℃の範囲内に保ってアニールを施すことが最適であった。
【0080】
Pb−3232の1単位胞とPb−3212相の2単位胞とを繰り返し積層した超格子、[Pb−3232+Pb−3212×2u.c.]×13に関して、磁場中での超電導転移を調べ、その結果をPb−3212単一相と比較した。
【0081】
図15および図16に、CuO2面に平行または垂直な磁場中での抵抗率の温度依存性を比較して示す。一般に高温超電導体の場合、磁場をかけると磁束渦糸の運動によって抵抗遷移のブロードニングが起きる。そのブロードニングによる抵抗遷移カーブのシフトは超格子と単一相とで異なる。
【0082】
図15に磁場がCuO2面に平行な場合の結果を示す。超格子の方が、単一相よりも、磁場による抵抗遷移カーブのシフトが小さい。これは、CuO2面間隔が広いほどまたは面間超伝導結合が弱いほど、面内の磁束渦糸の運動によるエネルギー散逸が小さいことに対応している。
【0083】
図16に磁場がCuO2面に垂直な場合の結果を示す。超格子の方が、単一相よりも、磁場による抵抗遷移カーブのシフトが大きい。
【0084】
以上の結果は、[Pb−3232+Pb−3212×2u.c.]×13超電導超格子の方がPb−3212相単一相よりも、超電導の異方性が強く、より2次元的であることを示している。すなわち、Pb−3212相中にPb−3232相を1単位胞ずつ挟み込むことにより、超伝導層間の結合が弱くなることが判明した。
【0085】
次に、Pb−32n2の1単位胞とPb−3212相の3単位胞とを繰り返し積層した超格子、[Pb−32n2+Pb−3212×3u.c.]×9において、n=3、n=4、n=6の場合の磁場中での超電導転移を調べて比較した。
【0086】
図17と図18に、CuO2面に平行または垂直な磁場中での抵抗率の温度依存性を比較して示す。
【0087】
図17に磁場がCuO2面に平行な場合の結果を示す。この場合、nが3、4、6と異なってもあまり大きな違いはない。
【0088】
図18に磁場がCuO2面に垂直の場合の結果を示す。この場合、nに応じて違いが見られた。例えば、10Tの磁場をCuO2面に垂直にかけた場合、n=3(図18(a))とn=4(図18(b))とを比較すると、n=4の方が室温から温度を低下させたときにより低温まで常伝導状態の抵抗に近い。すなわち、抵抗遷移のうち常伝導状態に近い部分において、n=4の方がn=3よりも磁場印加によって影響を受けやすいことがわかった。さらに温度を低下させると、n=4ではある温度T*を境に急激に抵抗が下がる。このように、抵抗遷移カーブがT*を境に高温部で傾きが小さく、低温部で傾きが大きくなる現象は、Pb−3212相単一相薄膜では見られなかった現象である。さらに、nが増大するとともにこの現象が顕著になり、かつT*が低下することがわかった。これは、nが増加したことによって超電導層間の超電導の結合が弱くなり、磁束ダイナミクスや超伝導ゆらぎが変化したためと考えられる。ひとつには、nの増大によってCuO2面に垂直な方向の磁束渦糸が断片的になって動きやすくなったことが考えられる。すなわち、n=3、4、6と非超電導層の厚さを0.27nmを単位として増大させることによって、超電導層間の結合を変えられることが確認された。本発明の超電導層と非超電導層を積層した構造の超電導素子において、超電導層間の結合を精密に制御できることが実証された。
【0089】
【発明の効果】
以上に述べたように本発明によれば、超電導層と非超電導層を積層した超電導素子において、Pb−32n2構造の物質、(Pb2Cu)Sr2LnaCebCu22n+6-zの組成を、n−0.3>a+b>n−1.2の範囲で陽イオン欠損を含むように調節して用いると、目的とするnの値をもつPb−32n2相の結晶構造に対応する薄膜を成長させることができる。螢石構造の層の厚さはnが1つ増えるごとに0.27nmずつの小さな単位で増えるので、ジョセフソン特性などの素子特性の精密な制御をおこなうことが可能になる。
【0090】
また、(Pb2Cu)Sr2Ln1-xCaxCu28-zで表され、xの値が0.3から0.5の範囲にある超電導体の薄膜を、基板温度を650℃から710℃の範囲に設定し、かつ活性酸素のフラックスを5×1018から7×1018/sec・m2の範囲に保って基板上に照射して成長させると、結晶学的に優れ、超電導転移温度の高いものが得られる。
【0091】
さらに、薄膜成長後に活性酸素のフラックスをシャッターで遮ってアニールをおこなうと超電導転移温度が向上する。したがって、この薄膜を(Pb2Cu)Sr2LnaCebCu22n+6-zと組み合わせてジョセフソン接合の超電導層として用いると、使用可能な温度領域が広い超電導素子が得られる。
【0092】
以上の手段により、例えばPb−3212相超電導電極/Pb−32n2相の1単位胞/Pb−3212相超電導電極の3層積層構造を作製すると、良好かつ精密制御可能な特性を持つ積層型ジョセフソン接合やdcトランスフォーマーを実現できる。積層型ジョセフソン接合においては、層状酸化物に内在されている素子機能を使うことになり、高温超伝導体で知られている固有ジョセフソン効果と同様な効果が得られる。固有ジョセフソン効果においては、d波超電導体同士の結晶方位がずれることによる問題点が生じず、高い臨界電流と常伝導抵抗との積(Icn積)が得られることが知られている。本発明の積層型ジョセフソン接合においても、同様の効果で高いIcn積が得られ、高温超電導体の大きなギャップエネルギーを十分生かした10THzの高周波まで使える素子が得られる。
【図面の簡単な説明】
【図1】Pb−32n2相の結晶構造の模式図。
【図2】本発明の超電導素子を作製するためのMBE装置の模式図。
【図3】単位胞中に螢石型ブロックを含む層状銅酸化物の希土類組成と結晶構造のc軸長との関係を示す図。
【図4】ブロック層[B]にCuOδchainを用いたブロック層[B]AE2(RE11-yRE2ynCu2Ozの合成を試みた場合のX線回折パターンを示す図。
【図5】Pb−3212相の成長中の基板温度とPb−3212相薄膜のX線回折パターンとの関係を示す図。
【図6】Pb−3212相の成長時の基板温度と超電導転移温度との関係を示す図。
【図7】Pb−3212相の成長中のオゾンフラックスとPb−3212相薄膜のX線回折パターンとの関係を示す図。
【図8】Pb−3212相薄膜において希土類イオンのサイトと置換されるカルシウムイオンの割合xと超電導臨界温度との関係を示す図。
【図9】[Pb−32n2+Pb−3212×3u.c.]×9:n=3,4の超格子試料の抵抗率の温度依存性を示す図。
【図10】Pb−3212相薄膜の超電導特性が、成長後の基板冷却時にオゾンガス供給を止める温度Tqに依存することを示す図。
【図11】Pb−3212相薄膜の超電導特性が、成長後の基板冷却時にオゾンガス供給を止める温度Tqに依存することを示す図。
【図12】オゾン・フラックスを遮った状態でのアニールによるPb−3212相の超電導転移温度の向上を示す図。
【図13】種々の温度でアニールしたPb−3212相の試料の抵抗率の温度依存性を示す図。
【図14】[Pb−3232+Pb−3212×2u.c.]×13の超格子のX線回折図。
【図15】[Pb−3232+Pb−3212×2u.c.]×13の超格子とPb−3212単一相について、磁場がCuO2面に平行な場合の磁場中での抵抗率の温度依存性を示す図。
【図16】[Pb−3232+Pb−3212×2u.c.]×13超格子とPb−3212単一相について、磁場がCuO2面に垂直な場合の磁場中での抵抗率の温度依存性を示す図。
【図17】[Pb−32n2+Pb−3212×3u.c.]×9超格子について、CuO2面に平行な磁場をかけた場合の抵抗率の温度依存性を示す図。
【図18】[Pb−32n2+Pb−3212×3u.c.]×9超格子について、CuO2面に垂直な磁場をかけた場合の抵抗率の温度依存性を示す図。
【符号の説明】
1…真空容器
2…基板ホルダ
3…基板
4…ヒーター
5…クヌーセンセル
6…セルシャッター
7…液体オゾン貯蔵室
8…ノズル
9…オゾンシャッター
10…BaF2
11…放射温度計
12…原子吸光式分子線モニタ
12a…発光部
12b…受光部
13a、13b…石英窓
14…ガラス円板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting element that uses a superconducting layer such as a Josephson junction or a dc transformer by controlling the coupling between the superconducting layer and a manufacturing method thereof.
[0002]
[Prior art]
Josephson coupling, which is one form of superelectric element, reflects the critical current I, reflecting a large superconducting gap energy when a material having a high superconducting transition temperature is used as a superconductor.cAnd normal resistance RnProduct IcRnFor example, it is expected to obtain a high-performance Josephson junction in terms of high frequency characteristics. However, in the high-temperature superconductor multilayered Josephson junction that has been manufactured so far, a high IcRnIt was difficult to get the product. For this reason, it has not been possible to use an element that takes full advantage of the large gap energy of a high-temperature superconductor.
[0003]
In a superconducting circuit, it is desirable that a Josephson junction element having a desired critical current value can be manufactured. However, in many known high-temperature superconductor / non-superconductor / high-temperature superconductor laminated structures, a layered oxide or a perovskite oxide is used as the non-superconductor, and its lattice constant is 0.4 nm. The distance between superconductors could only be controlled in units of ˜1.2 nm. As a result, the thickness of the junction barrier layer could not be finely controlled, and the Josephson characteristics could not be precisely controlled.
[0004]
As a material system in which the thickness of the barrier layer of the junction can be adjusted relatively finely, a layered copper oxide containing a multi-meteorite block has been proposed (Japanese Patent Laid-Open No. 6-69556 and US Pat. No. 5,629, 267). However, the composition and manufacturing conditions for obtaining the best characteristics are not known, and the reproducibility of the device characteristics is poor.
[0005]
[Problems to be solved by the invention]
A first object of the present invention is to provide a thin film that can be used for a superconducting element in which a superconducting layer and a non-superconducting layer are laminated, and the thickness of the non-superconducting layer can be finely adjusted at the atomic layer level, and a method for manufacturing the thin film.
[0006]
A second object of the present invention is to provide a thin film having excellent electrical and crystallographic characteristics, which is used as a superconducting layer in the above element, and a method for producing the same.
[0007]
[Means for Solving the Problems]
  The superconducting element of the present invention is a superconducting element having a structure in which a superconducting layer and a non-superconducting layer are laminated.
  The superconducting layer has the following chemical formula
    (Pb 2 Cu) Sr 2 Ln 1-x Ca x Cu 2 O 8-z
(Here, Ln represents at least one element selected from Y and trivalent rare earth elements, x is a positive real number representing the proportion of Ca substituting into the Ln position in the crystal structure, and z is It is a real number representing oxygen non-stoichiometry)
    0.3 <x <0.5
Consisting of a substance that
  The non-superconducting layer has the following chemical formula
    (Pb2Cu) Sr2LnaCebCu2O2n + 6-z
(Here, Ln represents at least one element selected from Y and trivalent rare earth elements, a and b are positive real numbers, n is an integer, and z is a real number representing oxygen non-stoichiometry)
A multi-meteorite block contained in the crystal structure of the layered copper-based oxide represented by
    n-0.3> a + b> n-1.2
The composition of Ln and Ce is adjusted so as to satisfy, and CuO sandwiching the multiple meteorite block2The inter-surface distance d [nm] is
    0.57 + 0.26 (n-2) <d <0.63 + 0.29 (n-2)
It is represented by.
[0009]
The method for producing a superconducting element of the present invention is to produce a superconducting element having a structure in which the superconducting layer and the non-superconducting layer are laminated on a substrate. The substrate temperature is set to 650 to 710 ° C. 5x10 active oxygen18/ Sec · m2~ 7 × 1018/ Sec · m2A thin film is grown by supplying a molecular beam of a constituent metal element of the thin film on the substrate while irradiating with a flux.
[0010]
In this method, after a thin film is grown on the substrate, the active oxygen irradiation on the substrate is blocked, and the substrate is annealed while maintaining the substrate at a temperature exceeding 410 ° C. and below 510 ° C. Is preferred.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0012]
In the superconducting element having a structure in which a superconducting layer and a non-superconducting layer are laminated, the present inventors have stoichiometrically expressed the following chemical formula (1) as a substance of a non-superconducting layer whose thickness can be finely adjusted at the atomic layer level. We focused on the layered copper oxide containing multiple meteorite blocks represented by
[0013]
(Pb2Cu) Sr2(Ln, Ce)nCu2O2n + 6  ... (1)
(Here, Ln represents at least one element selected from Y and trivalent rare earth elements, and n is an integer). Hereinafter, this substance is referred to as a Pb-32n2 phase.
[0014]
FIG. 1 shows the crystal structure of the substance of formula (1) where n = 5. This material includes CuO, which is responsible for electrical conduction2There is a surface, two CuO2Multiple meteorite-type block layer [(Ln, Ce) O2]nIs caught. CuO sandwiching multiple meteorite block layers2The distance d (unit: nm) between the surfaces is
d = 0.6 + 0.27 (n-2) (2)
It is expressed. For example, when n = 4 to 7, d = 1.14 to 1.95 nm, which is a thickness suitable for the tunnel barrier layer.
[0015]
However, the formula (2) is a formula showing a typical value, and the value of d depends on the type, composition, cation deficiency, oxygen non-stoichiometry, etc. of the element used.
0.57 + 0.26 (n−2) <d <0.63 + 0.29 (n−2) (3)
It can vary in the range.
[0016]
CuO of this material2The surface may exhibit superconductivity if holes are injected. Even if this material alone does not become superconducting, CuO2If there is a hole concentration equivalent to that of the superconductor on the surface, the Pb-32n2 phase CuO is produced by the proximity effect by laminating with the Pb-3212 phase superconductor.2The order parameter of superconductivity also penetrates the surface. Here, the hole concentration equivalent to that of the superconductor is [CuO].+ pThis means that the per-hole concentration p is 0.05 <p <0.3. In this case, only the insulating multi-meteorite block of thickness d serves as the non-superconducting layer portion. Meanwhile, CuO of Pb-32n2 phase2When the hole concentration on the surface is as small as p ≦ 0.05, the entire Pb-32n2 phase material works as a non-superconducting layer. In any case, the thickness of the non-superconducting layer can be changed by a small unit of about 0.27 nm. Therefore, in the present invention, the thickness of the non-superconducting layer is more precise than the conventional perovskite type oxide or the like, which can change the distance between the superconducting layers only in units of 0.4 to 1.2 nm. You can control the distance.
[0017]
Chemical formula: [B] AE2(RE11-yRE2y)nCu2Oz  (4)
(Where [B] is a block layer, AE is an alkaline earth element, RE1 is a tetravalent rare earth element, and RE2 is Y or a trivalent rare earth element)
A superconducting element using a layered copper oxide containing a multi-meteorite block represented by the formula (1) is already described in JP-A-6-69556 and US Pat. No. 5,629,267. On the other hand, the present inventors have confirmed that [B] is CuO.δIt has been found that the effect cannot be obtained with chain, and that the effect is exhibited by selecting [PbO—Cu—PbO] as [B].
[0018]
In addition, when the present inventors actually produce a layered copper oxide thin film containing multiple meteorite blocks, CuO represented by the formula (2)2It has been found that in order to obtain the interplanar spacing d, it is necessary to shift the rare earth composition from n instead of matching the ideal composition n of the formula (1). That is, the following chemical formula is calculated by converting the thin film composition per unit cell.
(Pb2Cu) Sr2LnaCebCu2O2n + 6-z  ... (5)
CuO represented by the formula (2)2In order to obtain a Pb-32n2 phase having an interplanar spacing d, the rare earth composition a + b per unit cell is
n−0.3> a + b> n−1.2 (6)
It was found that it was necessary to adjust so as to satisfy. Furthermore, to obtain a thin film with good crystallinity,
n−0.4> a + b> n−0.8 (7)
It is more preferable that In the present invention, the thickness of the non-superconducting layer can be precisely controlled by adjusting the thin film composition in this way.
[0019]
The composition a of Ln needs to be 0 or more and n or less. From the stability point of the meteorite block structure,
0.8 <a <2.0 (8)
It is more preferable that
[0020]
In the superconducting element of the present invention, the superconducting layer has the following chemical formula:
(Pb2Cu) Sr2Ln1-xCaxCu2O8-z  ... (9)
A thin film of Pb-3212 phase superconductor represented by The Pb-3212 phase superconductor is known to have the best superconducting characteristics when x = 0.5 in the bulk (Y. Koike, H. Sunagawa, T. Noji, M. Masuzawa, N. Kobayashi, M. Namiki, K. Hirosawa, and Y. Saito, Physica C171, 331 (1990)). On the other hand, when the present inventors produce a thin film of a Pb-3212 phase superconductor and a laminated film including this thin film,
0.3 <x <0.5 (10)
It was found that excellent superconducting characteristics can be obtained in the range of.
[0021]
The superconducting element of the present invention can be used as a Josephson junction by sandwiching one unit cell of a layered copper oxide Pb-32n2 phase containing a meteorite block from above and below with a Pb-3212 phase superconductor. A value of n suitable for the Josephson junction will be described.
[0022]
First, a layered copper oxide Pb-32n2 phase CuO containing a meteorite block2When the superconducting order parameter penetrates the surface, n = 3 to 8 is desirable. When n = 2, CuO2Josephson coupling between faces is too strong. In other words, CuO sandwiching a meteorite block2The superconducting coupling between the surfaces becomes too strong, and the difference between the strength of the superconducting coupling between the surfaces in the Pb-3212 phase superconducting electrode is eliminated. As a result, it can be regarded as an integral superconductor and does not work as a good Josephson junction. In addition, there is a problem that it is difficult to form a thin Pb-32n2 phase with n = 2. On the other hand, when n = 9, d = 2.5 nm, which is too thick as a tunnel barrier layer, the probability that the Cooper pair tunnels becomes extremely small, and does not work as a good Josephson junction. In other words, CuO2Josephson coupling between faces is too small. Therefore, n = 3-8 is desirable. Further, when n = 4 to 7, d = 1.14 to 1.95 nm, which is a thickness suitable for the tunnel barrier layer. Therefore, n = 4 to 7 is most desirable.
[0023]
Next, a case where the entire layered copper oxide Pb-32n2 phase including the meteorite block functions as a non-superconducting layer will be described. The inventors have determined that the fundamental period c ′ (nm) of the atomic area layer of the Pb-32n2 phase is
c '= 1.32 + 0.27n
It was found that it is expressed. When n is an odd number, c 'matches the crystallographic c-axis length. When n is an even number, c 'is 1/2 of the crystallographic c-axis length. When the entire unit cell of the Pb-32n2 phase works as a tunnel barrier layer, the thickness of the tunnel barrier layer becomes too thick at 2.67 nm when n = 5. As a result, CuO2The Josephson coupling between the surfaces becomes too small and does not work as a good Josephson junction. Further, when n = 2, it is difficult to make the Pb-3222 phase a thin film. Therefore, n = 3-4 is desirable.
[0024]
The superconducting device of the present invention can also be used as a dc transformer by sandwiching one unit cell of a layered copper oxide Pb-32n2 phase containing a meteorite block from above and below with a Pb-3212 phase superconductor. . A dc transformer is an element that operates with magnetic coupling in a state where Josephson coupling between two superconducting electrodes sandwiching an insulating layer is so small that it can be ignored. When a magnetic field perpendicular to the film surface is applied and a current is passed through the lower superconducting electrode, the magnetic flux vortex passing through the lower superconducting electrode is moved by Lorentz force. As a result, the magnetic flux vortex penetrating the upper superconducting electrode is also dragged and moved to generate a voltage at the upper superconducting electrode. Since the generated voltage depends on the strength of the magnetic field and the current value of the lower superconducting electrode, it works as a useful element. The value of n suitable for the dc transformer will be described. The strength of the magnetic coupling force acting between the magnetic flux in the upper superconducting layer and the magnetic flux in the lower superconducting layer is expressed by the following equation:effIt is known that it is proportional to the square of the inverse of (see J. W. Ekin and John R. Clem, Phys. Rev. B12, 1753 (1975), etc.).
[0025]
ρeff= Di+ Λabcoth (dp/ Λab) + Λabcoth (ds/ Λab)
Where λabIs the magnetic field penetration length in the ab plane of the upper and lower superconducting layers, and diIs the thickness of the insulating layer, dpIs the thickness of the upper superconducting layer, dsIs the thickness of the lower superconducting layer. In order to function as a dc transformer, it is better that the magnetic coupling strength between the superconducting layers is strong. To do so, diIs λabIt must be a sufficiently smaller value, dpAnd dsAre both λabIt needs to be a sufficiently large value.
[0026]
The magnetic field penetration length λ in the ab plane at the absolute zero of the Pb-3212 phase used as the superconducting layer in the present invention.abIs about 260 nm (see M. Reedyk, C. V. Stager, T. Timsk, J. S. Xue, J. E. Greedan, Phys. Rev. B44, 4539 (1991), etc.). 260nm diThe value of n of Pb-32n2 including the insulating layer corresponding to is about 960. For a typical dc transformer, diIs λabOf 2% or less. Therefore, the layered copper oxide Pb-32n2 phase CuO containing the meteorite block2When the superconducting order parameter penetrates the surface, n is preferably 19 or less. In addition, when the entire layered copper oxide Pb-32n2 phase including the meteorite block functions as a non-superconducting layer, n is desirably 14 or less.
[0027]
On the other hand, diIs too small, a Josephson current flows between the upper superconducting layer and the lower superconducting layer, causing a short circuit and not functioning as a dc transformer. Therefore, the layered copper oxide Pb-32n2 phase CuO containing the meteorite block2When the superconducting order parameter penetrates the surface, it is necessary to make n be 9 or more and make the Josephson junction between the upper and lower superconducting layers very weak. In addition, when the entire layered copper oxide Pb-32n2 phase including the meteorite block functions as a non-superconducting layer, n must be 5 or more for the same reason.
[0028]
As described above, when the layered copper oxide Pb-32n2 phase containing the meteorite block is used as the insulating layer of the dc transformer, the Pb-32n2 phase CuO is used.2When the superconducting order parameter permeates into the surface, n is preferably 9 to 19, and when the entire layered copper oxide Pb-32n2 phase including the meteorite block functions as a non-superconducting layer, n is 5 to 14 Is desirable.
[0029]
Next, the optimum manufacturing conditions for manufacturing a superconducting element in which the Pb-32n2 phase thin film and the Pb-3212 phase thin film in the present invention are laminated will be described. The thin film used in the present invention is preferably formed by molecular beam epitaxy (MBE).
[0030]
In the present invention, by setting the substrate temperature in the range of 650 ° C. to 710 ° C., a thin film having excellent electrical and crystallographic characteristics can be obtained. Further, the active oxygen flux generated by ozone gas or oxygen plasma supplied to the substrate is 5 × 10 5.18To 7 × 1018[Sec-1m-2], A thin film having excellent electrical and crystallographic characteristics can be obtained.
[0031]
Furthermore, in the present invention, after the thin film is grown, the active oxygen flux is shielded by a shutter and is annealed at a temperature lower than the growth temperature in a state where it does not directly hit the thin film, thereby obtaining a thin film having excellent electrical characteristics. Conventionally, in a Pb-3212 phase bulk superconductor, it has been known that electrical characteristics are improved when annealing is performed in a nitrogen gas in a range of 400 ° C. to 500 ° C. for 12 hours (M. Masuzawa, T. Noji, Y. Koike, and Y. Saito, Jpn. J. Appl. Phys. 28, L1524 (1989)). It has been known that the annealing atmosphere improves the electrical characteristics in nitrogen gas rather than in vacuum (M. Masuzawa, T. Noji, Y. Koike, and Y. Saito, Jpn. J. Appl. Phys. 28, L1524 (1989) etc.). On the other hand, in the present invention, an active oxygen flux generated by ozone gas or oxygen plasma used for thin film growth is blocked by a shutter so as not to directly hit the thin film, thereby creating an optimum atmosphere for annealing. Successful.
[0032]
Further, in the present invention, (1) annealing without taking out from the apparatus after film formation, (2) not supplying and evacuating active oxygen flux used for thin film growth, but only blocking with a shutter, (3) The production efficiency can be increased by three points that the annealing time is as short as 30 minutes.
[0033]
Note that the superconducting element of the present invention can also be manufactured by sputtering, laser ablation, chemical vapor deposition (CVD), or the like.
[0034]
【Example】
Examples of the present invention will be described below. In the following examples, the thin film is grown by the molecular beam epitaxy method.
[0035]
FIG. 2 shows a schematic diagram of a molecular beam epitaxy apparatus. As shown in FIG. 2, the vacuum vessel 1 is evacuated by a cryopump. A substrate holder 2 is provided in the vacuum container 1, and a substrate 3 is installed on the substrate holder 2. The substrate holder 2 is heated by the heater 4. A plurality of Knudsen cells 5 are provided so as to face the substrate 3, and a cell shutter 6 is provided at the opening of each Knudsen cell 5. Each Knudsen cell 5 is filled with a metal of each element of Pb, Sr, Ln (Dy or Eu), Ce, Cu which is a constituent metal element of a Pb-32n2 thin film formed in the following embodiment. Yes. Further, in order to cause an oxidation reaction necessary for obtaining a Pb-32n2 thin film, pure ozone gas vaporized in the liquid ozone storage chamber 7 is ejected from the nozzle 8 to irradiate the substrate 3. An ozone shutter 9 is inserted between the nozzle 8 and the substrate 3 as necessary. The temperature of the substrate 3 is BaF2It is measured by detecting a heat ray having a wavelength of 8 to 13 μm through the window 10 with a radiation thermometer 11. The state of the molecular beam near the substrate 3 is monitored by an atomic absorption molecular beam monitor 12 having a light emitting unit 12a and a light receiving unit 12b. Specifically, light of 217 to 460 nm emitted from a hollow cathode lamp provided in the light emitting unit 12a is guided into the molecular beam epitaxy apparatus from the quartz window 13a, and directly under the substrate 3 and in the hole of the glass disk 14. Then, the light that has passed through the quartz window 13b is received by the light receiving unit 12b and subjected to atomic absorption analysis. The glass disk 14 has a donut shape and is provided to prevent the quartz window 13b from being contaminated by the vapor deposition material.
[0036]
Note that the molecular beam supply source is not limited to the Knudsen cell. For example, a molecular beam may be supplied by heating a crucible filled with each element with an electron gun. An organometallic molecular beam may be supplied from a Knudsen cell or a gas source nozzle.
[0037]
Further, as the oxidizing means, oxygen plasma generated by electron cyclotron resonance may be used.
[0038]
Example 1
An example will be described in which a Pb-32n2 thin film, which is a layered copper-based oxide containing multiple meteorite blocks in the crystal structure, is formed alone.
[0039]
Using the MBE apparatus shown in FIG.
(Pb2Cu) Sr2LnaCebCu2O2n + 6-z
(Here, Ln represents a rare earth element Eu or Dy, a and b are positive real numbers, n is an integer, and z is a real number representing oxygen non-stoichiometry)
The thin film of Pb-32n2 phase represented by these was produced.
[0040]
In FIG.2Cu) Sr2LnaCebCu2O2n + 6-zThe relationship between the number a + b obtained by adding the composition a of Ln and the composition b of Ce and the length of the c-axis on the crystal structure of the thin film is shown. The value of n is obtained from the c-axis length. In this figure, the range of the rare earth composition a + b generated by each phase of Pb-3232, Pb-3242, Pb-3252, and Pb-3262 is indicated by a rectangle. As a representative example of this figure, it can be seen that, for example, the Pb-3252 phase (n = 5) is generated when a + b is 4.7 to 3.8. That is, instead of growing a Pb-32n2 phase thin film having a value of n corresponding to an integer closest to a + b,
n-0.3> a + b> n-1.2
A Pb-32n2 phase thin film having a value of n satisfying the above conditions grows. For this reason, defects of rare earth ions occur in the meteorite-type block included in the crystal structure of the Pb-32n2 phase.
[0041]
This is important when a Pb-32n2 thin film is used as a barrier layer to form a Josephson junction having a stacked structure of Pb3212 / Pb-32n2 / Pb3212. This is because the critical current of the Josephson junction greatly depends on the electron tunneling probability in the barrier layer, and the electron tunneling probability changes according to the thickness of the barrier layer. Therefore, in order to set the critical current of the Josephson junction to a desired value, it is necessary to control the value of n in the Pb-32n2 phase. In order to obtain a desired value of n of the Pb-32n2 phase, the film formation conditions are set so that the composition a + b of the rare earth elements (Ln and Ce) satisfies n-0.3> a + b> n-1.2. It can be seen that it is sufficient to control.
[0042]
(Comparative example)
As a comparative example, among the layered copper oxides containing the multiple meteorite blocks represented by the formula (4), [B] is CuO.δAn attempt was made to synthesize a substance using chain.
[0043]
Using the apparatus shown in FIG. 2, Ba was evaporated instead of Ca. CuO in the block layerδWhen using chain, the superconducting electrode is the well-known 123 phase, DyBa2CuThreeO7It is. First, the growth conditions for obtaining a single-phase thin film with good crystallinity of this material were sought. As a result, the substrate temperature is 720 ° C. and the ozone flux during growth is 6 × 10.18[Sec-1m-2] Was found to be optimal. Under these conditions, 123 phase CuO2An attempt was made to grow a substance containing a meteorite block between the faces, Cu-12n2 phase: n = 2-5. Depending on the intended crystal structure, deposition was performed by opening the cell shutter for each atomic layer.
[0044]
FIG. 4 shows an example of the X-ray diffraction pattern of the thin film sample. This thin film sample has the chemical formula CuBaSr (Dy, Ce).ThreeCu2OyIt was deposited aiming at Cu-1232 phase represented by the following. X-ray diffraction analysis revealed that 123 phase2The intended Cu-1232 phase was not produced. On the other hand, as a result of chemical analysis of this thin film sample, the composition was Cu1.03Ba1.01Sr1.13Dy1.06Ce1.70Cu2.06OyThe composition was as intended. Thus, [B] is CuO.δIt has been found that it is very difficult to produce a layered copper oxide containing multiple meteorite blocks using chain.
[0045]
When the growth process was observed by high-speed electron diffraction, it was found that island-like growth with facets occurred during deposition of the meteorite-type block, but subsequent layer deposition did not return to layer growth. That is, the layered oxide containing the meteorite block was not formed by layering in a self-organized manner.
[0046]
On the other hand, in the case of the material using the [PbO-Cu-PbO] block layer for [B] in Example 1 (Pb-32n2 phase), an island shape having facets during the meteorite block deposition. Self-organized stratification occurred, where growth occurred and the subsequent deposition of atomic layers returned to stratified growth. That is, when a [PbO-Cu-PbO] block layer was used for [B], a single-phase thin film having a desired crystal structure was obtained by layer growth. Thus, the Pb-32n2 phase has the advantage that a layered oxide containing a fluorite block is formed in a self-organized manner, and thus has been found to be a suitable material for the present invention.
[0047]
(Example 2)
SrTiOThreeWhen growing a Pb-3212 phase thin film on the substrate, various substrate temperature conditions were set, and the influence on the properties of the thin film was investigated. The composition of the grown thin film is (Pb2Cu) Sr2Dy1-xCaxCu2O8-zIt is. z is a real number representing oxygen non-stoichiometry. SrTiO during growthThreeThe flux of ozone gas irradiated on the substrate is 6 × 1018/ Sec · m2It was.
[0048]
Grown in FIG. 5 (Pb2Cu) Sr2Dy1-xCaxCu2O8-zThe biaxial X-ray diffraction pattern of a thin film (x = 0.2 and 0.3) is shown. As shown in FIG. 5, when the substrate temperature during growth is 740 ° C. or higher, no Pb-3212 phase is generated. When the substrate temperature is 720 ° C., a diffraction peak of the Pb-3212 phase appears, but it can be seen that the diffraction peak is a thin film having a large half width and poor crystallinity. On the other hand, when the substrate temperature is 620 ° C. and 640 ° C., a sharp diffraction peak of the Pb-3212 phase appears, but a diffraction peak of the impurity phase also appears at the same time. It is understood that is not an appropriate temperature.
[0049]
On the other hand, when the substrate temperature during growth is 660 ° C. or 670 ° C., there is no diffraction peak of the impurity phase, and SrTiOThreeExcept for the diffraction peak due to the substrate, only the diffraction peak of the Pb-3212 phase appears, and the intensity of the diffraction peak is also high. That is, it is clear that a Pb-3212 phase thin film with good crystallinity has grown in an orientation such that the direction perpendicular to the substrate surface coincides with the c-axis direction of the crystal axis of the Pb-3212 phase.
[0050]
In FIG.2Cu) Sr2Dy1-xCaxCu2O8-zSuperconducting transition temperature T obtained from measurement of temperature change of substrate temperature and resistivity during growth of thin film (x = 0.3 and 0.4)c MidShows the relationship. Superconducting transition temperature Tc MidIs a value that is half of the resistivity at the temperature just before the resistivity starts to suddenly drop (the resistivity in the normal state) during the superconducting transition that occurs when the sample temperature is lowered from the high temperature side to the low temperature side. It is the temperature (usually called mid point). In this figure, the superconducting transition temperature is shown in absolute temperature, and the unit is K (Kelvin).
[0051]
When the value of x is 0.4, the superconducting transition temperature is higher for samples grown at substrate temperatures of 660 ° C. and 700 ° C. than for samples grown at 640 ° C. As described above, since the sample grown at 640 ° C. is multiphase, the value of x is not limited to 0.4, but other than the impurity phase (Pb2Cu) Sr2Dy1-xCaxCu2O8-zIt is thought that the phase portion has undergone superconducting transition.
[0052]
When the value of x is 0.3, the superconducting transition temperature is lower than when the value of x is 0.4, but the superconducting transition is observed in the sample grown at either 670 ° C. or 680 ° C. Observed.
[0053]
From these results, in order to produce a single-phase Pb-3212 phase superconducting thin film, it is preferable to set the substrate temperature in the range of 650 ° C. to 710 ° C.
[0054]
(Example 3)
SrTiOThreeWhen growing a thin film of Pb-3212 phase on the substrate, the flux of ozone irradiated onto the substrate was set variously, and the influence on the properties of the thin film was investigated. The composition of the grown thin film is expressed by chemical formula (Pb2Cu) Sr2Dy0.7Ca0.3Cu2O8-zIt is. z is a real number representing oxygen non-stoichiometry. The substrate temperature during growth was set to 670 ° C.
[0055]
FIG. 7 shows a biaxial X-ray diffraction pattern of the grown thin film. SrTiO during growthThreeThe ozone gas flux irradiated to the substrate is 4 × 1018/ Sec · m2In this case, although the diffraction peak of the Pb-3212 phase appears, the diffraction peak of the impurity phase also appears at the same time, which indicates that the oxidation conditions are not suitable for growing a single-phase thin film. Ozone gas flux is 5 × 1018/ Sec · m2, 6 × 1018/ Sec · m2, 7 × 1018/ Sec · m2In this case, except for the diffraction peak due to the SrTiO3 substrate, only the Pb-3212 phase diffraction peak appears, indicating that a single-phase thin film could be grown. 5 × 1018/ Sec · m2, 6 × 1018/ Sec · m27 x 10 when grown in18/ Sec · m2It can be seen that the half-value width of the diffraction peak of the Pb-3212 phase is smaller than that of the case where it is grown by, and the crystallinity is excellent. Although not shown, SrTiO is grown during growth.ThreeThe ozone gas flux irradiated to the substrate is 8 × 1018/ Sec · m2In this case, the diffraction peak of the Pb-3212 phase did not appear. From these results, in order to grow a thin film of Pb-3212 phase, the flux of ozone gas is 5 × 10 5.18/ Sec · m2To 7 × 1018/ Sec · m2It is preferable to be in the range.
[0056]
Example 4
SrTiOThreeOn the substrate, Pb-3212 phase thin films were grown by changing the ratio of Ca substituted to the position of the rare earth element Dy atom in the crystal structure, and their properties were investigated. The composition of the grown thin film is expressed as (Pb2Cu) Sr2Dy1-xCaxCu2O8-zRepresented by z is a real number representing oxygen non-stoichiometry. Specifically, when growing the atomic layer of each element by the sequential vapor deposition method, the time for opening the cell shutter attached to each of the Knudsen cells of Dy and Ca was changed to produce thin films having different compositions. The substrate temperature during growth is 670 ° C., and the ozone flux during growth is 6 × 1018/ Sec · m2Set to.
[0057]
Grown in FIG. 8 (Pb2Cu) Sr2Dy1-xCaxCu2O8-zSuperconducting transition temperature T obtained from measurement of temperature change in composition x and resistivity of thin filmc MidShows the relationship.
[0058]
As can be seen from FIG. 8, the superconducting transition temperature is higher in the thin film having an x value of 0.3 to 0.5 than in the thin film having an x value of 0.2. Moreover, the superconducting transition temperature is highest in the thin film sample having x of 0.4, and it can be said that the superconducting property is the best.
[0059]
Next, a superlattice in which 1 unit cell of Pb-32n2 and 3 unit cells of Pb-3212 phase are repeatedly deposited, [Pb-32n2 + Pb-3212 × 3u. c. ] × 9: n = 3, 4 were prepared, and the dependence of the superconducting characteristics on the Ca composition x of the Pb-3212 phase portion was examined. Thin film growth was performed under the composition conditions and growth conditions optimized in Examples 1, 2, and 3.
[0060]
FIG. 9 shows the temperature dependence of the resistivity of the superlattice sample. Superconductivity was difficult to obtain when x> 0.5, and superconductivity was obtained near x = 0.4. Thus, it was confirmed that 0.3 <x <0.5 is optimum also in the superlattice.
[0061]
As described above, in the thin film, when the x is increased to 0.5 unlike the bulk, the superconducting characteristics are deteriorated. When Ca is increased to x = 0.5, impurities are deposited on the thin film growth surface and the layer growth occurs. This is considered to be because the crystallinity deteriorates, resulting in poor crystallinity.
[0062]
(Example 5)
SrTiOThreeAfter the Pb-3212 phase thin film was grown on the substrate, the oxidation condition and annealing condition at the time of cooling the substrate were variously changed to investigate the influence on the superconductivity of the thin film.
[0063]
In the present invention, in order to obtain high superconducting characteristics, it is important to stop the supply of ozone gas at an intermediate temperature during substrate cooling after the thin film growth.
[0064]
First, after the thin film is grown using the apparatus of FIG.qA test was conducted to block the ozone gas to the substrate using an ozone shutter when the pressure dropped to the point.
[0065]
In FIG.2Cu) Sr2Dy1-xCaxCu2O8-z: Temperature T at which ozone gas supply is stopped at the time of substrate cooling after growth in a Pb-3212 phase thin film represented by x = 0.22 to 0.23 (z is a real number representing oxygen non-stoichiometry)qThe temperature dependence of the resistivity when the temperature is 230 ° C. or 580 ° C. is shown. Tq= 230 ° C becomes an insulator, but TqIt turns out that it becomes a superconductor in = 580 degreeC. From measurements of Hall coefficient and thermoelectric power, TqIt was found that the carrier concentration was too low for the sample at 230 ° C. If ozone gas is continuously supplied even when the substrate is cooled, oxygen excessively enters the [PbO-Cu-PbO] block layer, and PbO2+Instead of Pb4+It is considered that the superconductivity is suppressed because the crystal lattice is distorted by mixing and the charge balance of the entire crystal is changed and the carrier concentration is lowered.
[0066]
In FIG.2Cu) Sr2Eu0.5Ca0.5Cu2O8-zIn the Pb-3212 phase thin film represented by (z is a real number representing oxygen non-stoichiometry), the temperature T at which ozone gas supply is stopped when the substrate is cooled after growth.qThe temperature dependence of the resistivity when the temperature is 470 ° C., 580 ° C. or 650 ° C. is shown. TqWhen 580 ° C., a superconductor having the highest superconducting transition temperature was obtained. From these results, 470 ° C. <Tq<T satisfying 650 ° CqWas found to be optimal.
[0067]
Similarly, even in a single-phase thin film of Pb-32n2 phase: n = 3 to 8, 470 ° C. <Tq<T satisfying 650 ° C TqWhen the ozone gas supply was stopped, high conductivity was obtained.
[0068]
Even in a sample in which a Pb-3212 superconductor and a Pb-32n2 phase: n = 3 to 8 are stacked, 470 ° C. <Tq<T satisfying 650 ° C TqIt was found that high superconducting properties can be obtained by stopping the ozone gas supply.
[0069]
Next, SrTiOThreeOn the substrate (Pb2Cu) Sr2Dy0.78Ca0.22Cu2O8-z(Z is a real number representing oxygen non-stoichiometry), and a Pb-3212 phase thin film is grown, and superconductivity is observed between a sample annealed in the same apparatus as the growth and a thin film sample not annealed. The transition temperatures were compared.
[0070]
(Pb2Cu) Sr2Dy0.78Ca0.22Cu2O8-zWhen the thin film is grown, the substrate temperature is 700 ° C., and the ozone flux applied to the substrate is 6 × 1018/ Sec · m2Set to. In the sample that was not annealed after growth, the substrate temperature was lowered immediately after the completion of vapor deposition, and the ozone gas irradiated to the substrate was blocked by an ozone shutter when the temperature reached 580 ° C. However, ozone gas was continuously supplied into the vacuum apparatus. Then, the substrate was continuously cooled, and was taken out of the vacuum apparatus when the temperature was close to room temperature.
[0071]
On the other hand, in the sample annealed after growth, the substrate temperature is lowered immediately after the deposition is completed, the ozone gas irradiated to the substrate is blocked by the ozone shutter when the temperature reaches 580 ° C., and the supply of the ozone gas into the apparatus continues. Although the same was done, the substrate was continuously cooled, and when the substrate temperature reached 460 ° C., the cooling was stopped and the annealing was carried out at 460 ° C. for 30 minutes. Then, after rapidly cooling to near room temperature, it was taken out into the atmosphere.
[0072]
FIG. 12 shows the temperature dependence of the resistivity of both samples. Here, we focus on the temperature at which the resistivity begins to drop sharply (onset temperature) and the temperature at which the resistivity becomes zero (zero resistance temperature) during the superconducting transition that occurs when the sample temperature is lowered from the high temperature side to the low temperature side. is doing. As shown in FIG. 12, the sample subjected to annealing has a higher onset temperature and zero resistance temperature than the sample not subjected to annealing. Thus, it can be seen that the superconducting performance of the thin film is improved by the annealing method of the present invention.
[0073]
FIG. 13 shows the temperature dependence of resistivity for samples annealed at various temperatures. When annealed at 460 ° C., the superconducting transition temperature is highest. When the annealing temperature is higher than 510 ° C. or lower than 410 ° C., the superconducting transition temperature decreases. Therefore, the annealing temperature TanThe optimum temperature is 410 to 510 ° C.
[0074]
(Example 6)
A superlattice [Pb-32n2 + Pb-3212 × 2u.] In which one unit cell of Pb-32n2 phase and two unit cells of Pb-3212 phase are repeatedly stacked. c. ] × L: Attempts were made to make n = 3, 5, 7 and L = 13 to 15, and the crystal structure was examined by X-ray diffraction. Thin film growth was performed under the composition conditions and growth conditions optimized in Examples 1, 2, and 3. The X-ray diffraction pattern obtained in the experiment was compared with the result calculated assuming an ideal crystal structure.
[0075]
FIG. 14 shows the results for a thin film with n = 3. The experimental results agreed well with the calculated values, and it was confirmed that the layered structure for each unit cell could be produced as intended.
[0076]
The c-axis length obtained from the experimental results is 5.28 nm when n = 3, 5.83 nm when n = 5, and 6.40 nm when n = 7, and n-dependence of the c-axis length is expected. It was street. That is, in the superconducting layer / non-superconducting layer laminated structure, it was confirmed that when n is increased by 1, the thickness of the non-superconducting layer is increased in units of 0.27 to 0.28 nm accordingly.
[0077]
In addition, the thickness of the Pb-3212 phase was increased [Pb-32n2 + Pb-3212 × 3u. c. ] × L: It was confirmed that the intended crystal structure was formed even with superlattices of n = 3, 4, 5, 6, and L = 9 to 11.
[0078]
(Example 7)
In the structure in which a superconducting layer and a non-superconducting layer are laminated, the conditions for producing a thin film that can obtain high superconducting characteristics were investigated. Experimentally, a superlattice [Pb-32n2 + Pb-3212 × m] × L: n = 3-7, m in which one unit cell of the Pb-32n2 phase and 2-3 unit cells of the Pb-3212 phase are repeatedly stacked. = 2 to 3 and L = 9 to 15 were produced under various substrate temperatures, oxidation conditions, and annealing conditions, and the temperature dependence of the resistivity was measured. As a result, the same conditions as the optimum conditions for the Pb-3212 phase thin film described in Example 2, Example 3, and Example 5 were optimal. As a result of selecting these fabrication conditions, a superlattice that becomes superconducting as shown in FIG. 9 was obtained.
[0079]
First, the substrate temperature during thin film growth was optimally in the range of 650 ° C to 710 ° C. When the substrate temperature during thin film growth was 720 ° C., the superconducting transition temperature was much lower than in the case of x = 0.4 in FIG. Second, the active oxygen flux is 5 × 10 5 during thin film growth.18To 7 × 1018/ Sec · m2It was optimum to irradiate with keeping the above range. Third, it was optimal to anneal the substrate after the thin film growth while keeping the substrate within the range of 410 ° C. to 510 ° C. while blocking the irradiation of active oxygen on the substrate.
[0080]
A superlattice obtained by repeatedly laminating one unit cell of Pb-3232 and two unit cells of the Pb-3212 phase, [Pb-3232 + Pb-3212 × 2u. c. ] × 13, the superconducting transition in a magnetic field was examined, and the result was compared with a single phase of Pb-3212.
[0081]
15 and 16 show CuO.2The temperature dependence of resistivity in a magnetic field parallel or perpendicular to the surface is shown in comparison. In general, in the case of a high-temperature superconductor, when a magnetic field is applied, broadening of resistance transition occurs due to the movement of the magnetic flux vortex. The shift of the resistance transition curve due to the broadening is different between the superlattice and the single phase.
[0082]
In FIG. 15, the magnetic field is CuO.2The result when parallel to the surface is shown. The superlattice has a smaller shift of the resistance transition curve due to the magnetic field than the single phase. This is CuO2This corresponds to the fact that the wider the spacing between the surfaces or the weaker the superconducting coupling between the surfaces, the smaller the energy dissipation due to the motion of the in-plane magnetic flux vortex.
[0083]
FIG. 16 shows that the magnetic field is CuO.2The result when perpendicular to the surface is shown. The superlattice has a larger shift in the resistance transition curve due to the magnetic field than the single phase.
[0084]
The above results are obtained from [Pb-3232 + Pb-3212 × 2u. c. ] × 13 superconducting superlattice has higher superconductivity anisotropy than Pb-3212 phase single phase, indicating that it is more two-dimensional. That is, it has been found that by interposing the Pb-3232 phase by one unit cell in the Pb-3212 phase, the coupling between the superconducting layers is weakened.
[0085]
Next, a superlattice in which one unit cell of Pb-32n2 and three unit cells of Pb-3212 phase are repeatedly stacked, [Pb-32n2 + Pb-3212 × 3u. c. ] × 9, the superconducting transition in a magnetic field when n = 3, n = 4, and n = 6 was examined and compared.
[0086]
17 and 18 show CuO.2The temperature dependence of resistivity in a magnetic field parallel or perpendicular to the surface is shown in comparison.
[0087]
In FIG. 17, the magnetic field is CuO.2The result when parallel to the surface is shown. In this case, even if n is different from 3, 4, and 6, there is no significant difference.
[0088]
In FIG. 18, the magnetic field is CuO.2The result when perpendicular to the surface is shown. In this case, a difference was observed depending on n. For example, a 10T magnetic field is applied to CuO.2When n = 3 (FIG. 18 (a)) is compared with n = 4 (FIG. 18 (b)) when applied perpendicular to the surface, n = 4 has a lower temperature from room temperature to a lower temperature. Near normal resistance. That is, it was found that n = 4 is more susceptible to magnetic field application than n = 3 in the portion near the normal state in the resistance transition. When the temperature is further decreased, the temperature T is n = 4.*Resistance suddenly drops at the border. Thus, the resistance transition curve is T*The phenomenon that the inclination is small at the high temperature part and the inclination is large at the low temperature part is a phenomenon that was not seen in the Pb-3212 phase single-phase thin film. Further, as n increases, this phenomenon becomes more significant, and T*Was found to decrease. This is presumably because the increase in n weakens the superconducting coupling between the superconducting layers and changes the magnetic flux dynamics and the superconducting fluctuation. For one thing, CuO is increased by increasing n.2It is conceivable that the magnetic flux vortex in the direction perpendicular to the surface is more fragmented and easier to move. That is, it was confirmed that the coupling between the superconducting layers can be changed by increasing n = 3, 4, 6 and the thickness of the non-superconducting layer in units of 0.27 nm. In the superconducting element having a structure in which the superconducting layer and the non-superconducting layer of the present invention are laminated, it has been demonstrated that the coupling between the superconducting layers can be precisely controlled.
[0089]
【The invention's effect】
As described above, according to the present invention, in a superconducting element in which a superconducting layer and a non-superconducting layer are laminated, a substance having a Pb-32n2 structure, (Pb2Cu) Sr2LnaCebCu2O2n + 6-zWhen the composition is adjusted so as to include cation deficiency in the range of n−0.3> a + b> n−1.2, it corresponds to the crystal structure of the Pb-32n2 phase having the target value of n. A thin film can be grown. Since the thickness of the layer of the meteorite structure increases by a small unit of 0.27 nm every time n increases, precise control of device characteristics such as Josephson characteristics can be performed.
[0090]
Also, (Pb2Cu) Sr2Ln1-xCaxCu2O8-zAnd a superconductor thin film having a value of x in the range of 0.3 to 0.5, the substrate temperature is set in the range of 650 ° C. to 710 ° C., and the active oxygen flux is 5 × 10 5.18To 7 × 1018/ Sec · m2When the substrate is irradiated and grown on this range, a crystallographically excellent and high superconducting transition temperature can be obtained.
[0091]
Furthermore, if the annealing is performed by blocking the active oxygen flux with a shutter after the thin film is grown, the superconducting transition temperature is improved. Therefore, this thin film (Pb2Cu) Sr2LnaCebCu2O2n + 6-zWhen used as a superconducting layer having a Josephson junction, a superconducting element having a wide usable temperature range can be obtained.
[0092]
By the above means, for example, when a three-layer laminated structure of Pb-3212 phase superconducting electrode / Pb-32n2 phase 1 unit cell / Pb-3212 phase superconducting electrode is produced, a laminated Josephson having good and precisely controllable characteristics Bonding and dc transformer can be realized. In the stacked type Josephson junction, the element function inherent in the layered oxide is used, and the same effect as the intrinsic Josephson effect known for high-temperature superconductors can be obtained. In the intrinsic Josephson effect, there is no problem caused by the crystal orientations of the d-wave superconductors deviating from each other, and the product of the high critical current and normal resistance (IcRnProduct) is known to be obtained. In the multilayered Josephson junction of the present invention, high IcRnAs a result, an element that can be used up to a high frequency of 10 THz by sufficiently utilizing the large gap energy of the high-temperature superconductor can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a crystal structure of a Pb-32n2 phase.
FIG. 2 is a schematic diagram of an MBE apparatus for producing a superconducting element of the present invention.
FIG. 3 is a diagram showing a relationship between a rare earth composition of a layered copper oxide containing a meteorite block in a unit cell and a c-axis length of a crystal structure.
FIG. 4 shows CuO in the block layer [B].δBlock layer using chain [B] AE2(RE11-yRE2y)nCu2The figure which shows the X-ray-diffraction pattern at the time of trying the synthesis | combination of Oz.
FIG. 5 is a diagram showing the relationship between the substrate temperature during the growth of the Pb-3212 phase and the X-ray diffraction pattern of the Pb-3212 phase thin film.
FIG. 6 is a diagram showing the relationship between the substrate temperature and the superconducting transition temperature during the growth of the Pb-3212 phase.
FIG. 7 is a diagram showing a relationship between ozone flux during growth of a Pb-3212 phase and an X-ray diffraction pattern of a Pb-3212 phase thin film.
FIG. 8 is a graph showing a relationship between a superconducting critical temperature and a ratio x of calcium ions substituted for rare earth ion sites in a Pb-3212 phase thin film.
FIG. 9: [Pb-32n2 + Pb-3212 × 3u. c. ] × 9: A graph showing the temperature dependence of the resistivity of a superlattice sample with n = 3,4.
FIG. 10 shows that the superconducting property of the Pb-3212 phase thin film is the temperature T at which ozone gas supply is stopped when the substrate is cooled after growth.qThe figure which shows depending on.
FIG. 11 shows that the superconducting property of the Pb-3212 phase thin film is the temperature T at which ozone gas supply is stopped when the substrate is cooled after growth.qThe figure which shows depending on.
FIG. 12 is a diagram showing an improvement in the superconducting transition temperature of the Pb-3212 phase by annealing in a state where ozone flux is shielded.
FIG. 13 is a graph showing the temperature dependence of the resistivity of the Pb-3212 phase sample annealed at various temperatures.
FIG. 14: [Pb-3232 + Pb-3212 × 2u. c. ] X-ray diffraction diagram of superlattice of x13.
FIG. 15: [Pb-3232 + Pb-3212 × 2u. c. ] For a superlattice of × 13 and a single phase of Pb-3212, the magnetic field is CuO2The figure which shows the temperature dependence of the resistivity in a magnetic field in the case of being parallel to a surface.
FIG. 16 shows [Pb-3232 + Pb-3212 × 2u. c. ] × 13 superlattice and Pb-3212 single phase, the magnetic field is CuO2The figure which shows the temperature dependence of the resistivity in a magnetic field in the case of being perpendicular | vertical to a surface.
FIG. 17: [Pb-32n2 + Pb-3212 × 3u. c. ] For the × 9 superlattice, CuO2The figure which shows the temperature dependence of the resistivity at the time of applying a magnetic field parallel to a surface.
FIG. 18: [Pb-32n2 + Pb-3212 × 3u. c. ] For the × 9 superlattice, CuO2The figure which shows the temperature dependence of the resistivity at the time of applying a perpendicular magnetic field to a surface.
[Explanation of symbols]
1 ... Vacuum container
2 ... Board holder
3 ... Board
4 ... Heater
5 ... Knudsen cell
6 ... Cell shutter
7 ... Liquid ozone storage room
8 ... Nozzle
9 ... Ozone shutter
10 ... BaF2window
11 ... Radiation thermometer
12 ... Atomic absorption molecular beam monitor
12a ... Light emitting part
12b ... Light receiving part
13a, 13b ... quartz window
14 ... Glass disk

Claims (3)

超電導層と非超電導層とを積層した構造を有する超電導素子において、
前記超電導層が、下記化学式
(Pb 2 Cu)Sr 2 Ln 1-x Ca x Cu 2 8-z
(ここで、LnはYおよび3価の希土類元素から選択される少なくとも1種の元素を示し、xは結晶構造中でLnの位置へ置換するCaの割合を表す正の実数であり、zは酸素ノンストイキオメトリーを表わす実数である)で表され、
0.3<x<0.5
である物質からなり、
前記非超電導層として、下記化学式
(Pb2Cu)Sr2LnaCebCu22n+6-z
(ここで、LnはYおよび3価の希土類元素から選択される少なくとも1種の元素を示し、a,bは正の実数、nは整数、zは酸素ノンストイキオメトリーを表わす実数である)
で表される層状銅系酸化物の結晶構造中に含まれる多重螢石型ブロックが用いられ、前記層状銅系酸化物は
n−0.3>a+b>n−1.2
を満たすようにLnおよびCeの組成が調節されており、前記多重螢石型ブロックを挟むCuO2面間距離d[nm]が、
0.57+0.26(n−2)<d<0.63+0.29(n−2)
で表わされることを特徴とする超電導素子。
In a superconducting element having a structure in which a superconducting layer and a non-superconducting layer are laminated,
The superconducting layer has the following chemical formula
(Pb 2 Cu) Sr 2 Ln 1-x Ca x Cu 2 O 8-z
(Here, Ln represents at least one element selected from Y and trivalent rare earth elements, x is a positive real number representing the proportion of Ca substituting into the Ln position in the crystal structure, and z is It is a real number representing oxygen non-stoichiometry)
0.3 <x <0.5
Consisting of a substance that
As the non-superconducting layer, the following chemical formula (Pb 2 Cu) Sr 2 Ln a Ce b Cu 2 O 2n + 6-z
(Here, Ln represents at least one element selected from Y and trivalent rare earth elements, a and b are positive real numbers, n is an integer, and z is a real number representing oxygen non-stoichiometry)
A multi-meteorite block contained in the crystal structure of the layered copper-based oxide represented by the formula is used, and the layered copper-based oxide has n-0.3> a + b> n-1.2.
The composition of Ln and Ce is adjusted so as to satisfy, and the distance d [nm] between CuO 2 planes sandwiching the multiple meteorite block is
0.57 + 0.26 (n-2) <d <0.63 + 0.29 (n-2)
A superconducting element characterized by the following:
基板上に請求項1記載の超電導層と非超電導層とを積層した構造を有する超電導素子を製造するにあたり、前記基板温度を650〜710℃に設定し、前記基板上に活性酸素を5×1018/sec・m2〜7×1018/sec・m2のフラックスで照射しながら、前記基板上に薄膜の構成金属元素の分子線を供給して薄膜を成長させることを特徴とする超電導素子の製造方法。In manufacturing a superconducting element having a structure in which the superconducting layer and the non-superconducting layer according to claim 1 are laminated on a substrate, the substrate temperature is set to 650 to 710 ° C., and active oxygen is 5 × 10 5 on the substrate. A superconducting element characterized in that a thin film is grown by supplying molecular beams of constituent metal elements of the thin film onto the substrate while irradiating with a flux of 18 / sec · m 2 to 7 × 10 18 / sec · m 2. Manufacturing method. 前記基板上に薄膜を成長させた後、前記基板上への活性酸素の照射を遮り、前記基板を410℃を越えて510℃未満の範囲の温度に保ってアニールを施すことを特徴とする請求項2記載の超電導素子の製造方法。After a thin film is grown on the substrate, wherein said intercept the irradiation of active oxygen onto the substrate, and wherein the annealed maintained at a temperature in the range of less than 510 ° C. Beyond 410 ° C. the substrate Item 3. A method for manufacturing a superconducting element according to Item 2 .
JP2000036696A 2000-02-15 2000-02-15 Superconducting element and manufacturing method thereof Expired - Lifetime JP4095222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036696A JP4095222B2 (en) 2000-02-15 2000-02-15 Superconducting element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036696A JP4095222B2 (en) 2000-02-15 2000-02-15 Superconducting element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001226119A JP2001226119A (en) 2001-08-21
JP4095222B2 true JP4095222B2 (en) 2008-06-04

Family

ID=18560707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036696A Expired - Lifetime JP4095222B2 (en) 2000-02-15 2000-02-15 Superconducting element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4095222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199298A1 (en) * 2020-03-31 2021-10-07 日本電信電話株式会社 Crystal growth condition analysis method, crystal growth condition analysis system, crystal growth condition analysis program, and data structure for crystal growth data

Also Published As

Publication number Publication date
JP2001226119A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US8536098B2 (en) High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods
Goyal et al. The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors
US8119571B2 (en) High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods
US6602588B1 (en) Superconducting structure including mixed rare earth barium-copper compositions
EP2138611A1 (en) Polycrystalline thin film and method for producing the same and oxide superconductor
Bozovic et al. Atomic-layer engineering of cuprate superconductors
US6541136B1 (en) Superconducting structure
Hwang Atomic control of the electronic structure at complex oxide heterointerfaces
Yu et al. Epitaxial Pb (Zr0. 53Ti0. 47) O3/LaNiO3 heterostructures on single crystal substrates
Qiu High-temperature superconductors
US8623788B1 (en) Flux pinning of cuprate superconductors with nanoparticles
JP3188358B2 (en) Method for producing oxide superconductor thin film
JP4095222B2 (en) Superconducting element and manufacturing method thereof
JP4744266B2 (en) Gd—Ba—Cu oxide superconducting elongated body and method for producing the same
US8003571B2 (en) Buffer layers for coated conductors
Ichino et al. Possibility of Nd: YAG-PLD method for fabricating REBCO coated conductors
JP6155402B2 (en) Superconducting wire and method for manufacturing the same
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
Kuppusami et al. Processing and properties of thin films of high critical temperature superconductors
Schultz et al. Preparation and characterization of pulsed laser deposited HTSC films
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH07206437A (en) Superconductor and its production
Ganapathy Subramanian Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4095222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term