JP4090635B2 - Liquid passing method and apparatus for liquid passing capacitor - Google Patents

Liquid passing method and apparatus for liquid passing capacitor Download PDF

Info

Publication number
JP4090635B2
JP4090635B2 JP23636599A JP23636599A JP4090635B2 JP 4090635 B2 JP4090635 B2 JP 4090635B2 JP 23636599 A JP23636599 A JP 23636599A JP 23636599 A JP23636599 A JP 23636599A JP 4090635 B2 JP4090635 B2 JP 4090635B2
Authority
JP
Japan
Prior art keywords
liquid
capacitor
passing
treated
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23636599A
Other languages
Japanese (ja)
Other versions
JP2001058182A (en
Inventor
大作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP23636599A priority Critical patent/JP4090635B2/en
Publication of JP2001058182A publication Critical patent/JP2001058182A/en
Application granted granted Critical
Publication of JP4090635B2 publication Critical patent/JP4090635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、その保有する一対の電極に直流電圧を印加して通液中の被処理液のイオン成分が除去された脱塩液を得、その後、短絡あるいは逆接続して一対の電極を再生すると共に、前記除去イオン成分を通液中の被処理液と共に回収するもので、その目的に合わせて被処理液のイオン成分を除去及び回収する通液型コンデンサの通液方法に関するものである。
【0002】
【従来の技術】
通液型コンデンサは、静電力を利用して被処理液中のイオン成分の除去と回収(再生)を行うもので、その原理は以下の通りである。すなわち、通液型コンデンサは、その保有する一対の電極に直流電圧を印加して、通液中の被処理液のイオン成分、あるいは電荷のある粒子、有機物を一対の電極に吸着することにより除去し、イオン成分が除去された脱塩液を得て、その後一対の電極を短絡あるいは直流電源を逆接続して、一対の電極に吸着している前記イオン成分を離脱させ、一対の電極を再生しつつ除去イオン成分を通液中の被処理液と共に濃縮液として回収することを繰り返し行うものである。
【0003】
このような通液型コンデンサは、特開平5−258992号公報に開示されており、この公知例の一例では、カラムに被処理液を導入する入口と、イオン成分が除去された液を排出する出口とを設け、そのカラム内に上記一対の電極を収容している。これら一対の電極は、双方とも導電性支持層に高表面積導電性表面層が支持され、更に非導電性多孔のスペーサが含まれている。従って、一対の電極は、一方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層、他方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層の6層構造となっている。この一対の電極は、中空の多孔質中心管に高表面積導電性表面層を内側にして巻かれてカートリッジを形成している。一方の電極の導電性支持層及び他方の電極の導電性支持層からはリード線がカラム外に延出され、直流電源に接続されている。カラムの入口には被処理液供給源が接続され、出口にはイオン成分が除去された脱塩液とイオン成分を回収した濃縮液とを分ける切替え弁が接続されている。
【0004】
上記のような通液型コンデンサの通液方法を図7を参照して説明する。図7中、50は通液型コンデンサである。先ず、切替え弁51を開、切替え弁52を閉の状態とし、スイッチ53をオンして一対の電極54、55に直流電圧を印加し、被処理液供給源56から被処理液を通液型コンデンサ50に供給すると、一対の電極54、55にイオン成分が吸着され、切替え弁51の下流側でイオン成分が除去された脱塩液が得られる。この状態が継続すると、一対の電極54、55にイオン成分が徐々に吸着され飽和状態となり、イオン成分除去性能が徐々に低下することが水質監視装置57により測定されるから、ある時点でスイッチ53をオフして直流電圧の印加を止める。そして、切替え弁51を閉、切替え弁52を開の状態にしておき、イオン成分除去性能を再生させるために、スイッチ58をオンして一対の電極54、55間を短絡、あるいは直流電源59を逆接続すると、一対の電極54、55に吸着されていたイオン成分が離脱し、一対の電極54、55が再生されつつ、切替え弁52の下流側でイオン成分を回収した濃縮液が得られ、被処理液中のイオン成分の除去と回収(再生)の1サイクルが終了する。そして、被処理液供給源56から被処理液が常時に通液型コンデンサ50に供給され、上記サイクルが繰り返されてイオン成分が除去された脱塩液とイオン成分を回収した濃縮液とを交互に得ることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の通液型コンデンサの通液方法では、通液型コンデンサへの通液サイクルを重ねるにつれ、被処理液からのイオン成分の除去能が低下し、結果的にイオン成分の分離能が徐々に低下するという問題がある。
【0006】
従って、本発明の目的は、長期間に亘る運転においても通液型コンデンサのイオン成分除去能を一定に保つと共に、電極材の長寿命化を図ることができる通液型コンデンサの通液方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者らは、鋭意検討を行った結果、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去した後、短絡あるいは逆接続させて通液型コンデンサに蓄積された当該イオン成分を回収するイオン回収工程中に、被処理液に比べイオン濃度の低い液を通液型コンデンサに所定時間通液させる時間を設けると、通液コンデンサの再生効率が高められ、長期間に亘る運転においても通液型コンデンサのイオン成分除去能を一定に保つと共に、電極材の長寿命化を図ることができることを見出し、本発明を完成するに至った。
【0008】
すなわち、請求項1の発明は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去して脱塩液を得、その後前記一対の電極を短絡あるいは直流電源を逆接続して、前記除去されたイオン成分を通液中の被処理液と共に濃縮液として回収する通液型コンデンサであって、前記除去されたイオン成分の回収工程中に、被処理液よりイオン濃度の低い液を前記通液型コンデンサに所定時間通液させる時間を設けたことを特徴とする通液型コンデンサの通液方法を提供するものである。
【0009】
また、請求項2の発明は、前記被処理液よりイオン濃度の低い液として、前記通液型コンデンサより得られた脱塩液を用いることを特徴とする請求項1記載の通液型コンデンサの通液方法を提供するものである。
【0010】
また、請求項3の発明は、前記通液型コンデンサを並列に配置接続し、一方の通液型コンデンサが被処理液のイオン成分の除去工程中に、他方の通液型コンデンサが被処理液のイオン成分の回収工程中とし、常時、被処理液を通液して、イオン成分が除去された脱塩液を連続して得るようにした方法において、一方の通液型コンデンサが被処理液のイオン成分の回収工程中に、該通液型コンデンサに所定時間通液させる被処理液よりイオン濃度の低い液として、被処理液のイオン成分の除去工程中にある他方の通液型コンデンサの少なくとも一部の脱塩液を用いることを特徴とする請求項1記載の通液型コンデンサの通液方法を提供するものである。
【0011】
また、請求項4の発明は、被処理液供給源と、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液に回収する通液型コンデンサと、前記被処理液供給源と前記通液型コンデンサとを接続する供給配管と、前記通液型コンデンサの流出側に接続される流出配管と、前記流出配管から二つに分岐して途中に切り替え弁を備える脱塩液流出配管及び濃縮液流出配管と、前記供給配管に連接する被処理液よりイオン濃度の低い液を供給する低イオン濃度液供給配管と、を有することを特徴とする通液型コンデンサ装置を提供するものである。
【0012】
また、請求項5の発明は、前記脱塩液流出配管と前記低イオン濃度液供給配管とが連接されることを特徴とする請求項4記載の通液型コンデンサ装置を提供するものである。
【0013】
また、請求項6の発明は、前記通液型コンデンサ装置は並列に配置接続されると共に、前記一方の脱塩液流出配管と前記他方の供給配管、前記他方の脱塩液流出配管と前記一方の供給配管をそれぞれ連接し、且つ前記脱塩液流出配管同士を連接し、前記濃縮液流出配管同士を連接してなることを特徴とする請求項4又は5記載の通液型コンデンサ装置を提供するものである。
【0014】
【発明の実施の形態】
次に、本発明の実施の形態における通液型コンデンサの通液方法を図1に基づいて説明する。図1は本発明の実施の形態である通液型コンデンサの通液方法を示すフロー図である。図中、1は通液型コンデンサであり、通液型コンデンサ1の下流側は流出配管6により水質監視装置8に接続し、更に水質監視装置8の流出配管10は切替え弁12Aを有する脱塩液流出配管17と切替え弁12Bを有する濃縮液流出配管21の二つに分岐している。通液コンデンサ1の上流側は接続配管3bにより自動弁24に接続し、更に接続配管3aにより被処理液供給源5に接続している。被処理液供給源5は被処理液タンクと、これから被処理液を定量的に供給するための送液ポンプとを含んでいる(不図示)。
【0015】
前記第1通液型コンデンサ1は、一対の電極30、31を内蔵し、電極30はスイッチ32を介して直流電源34の陰極に接続されている。また、一対の電極30、31はスイッチ35を介して互いに接続されている。そして、これらの図1に表示の機器類の運転制御は、シーケンサー、マイコン等の公知の制御機器で行われ、その詳細な運転制御としては、例えば、後述の通液型コンデンサの通液方法が挙げられる。
【0016】
前記通液型コンデンサ1の構造は、特に制限されないが、ここではカラム中に金属、黒鉛等の集電極に高表面積活性炭を接してなる電極30、31を収容し、これら電極30、31間に非導電性のスペーサを介在させたものである。そして、直流電圧、例えば、1〜2Vを印加した状態で、カラム中にイオンを含有する被処理液を通すと、一対の電極30、31がイオンを吸着して、イオン成分が除去され脱塩液を得ることができ、その後、一対の電極30、31を短絡させると、電気的に中和し吸着していたイオンが一対の電極30、31から離脱し、一対の電極30、31を再生させると共に、濃厚なイオン成分を回収した濃縮液を得ることができるものである。
【0017】
通液型コンデンサ1の他の構造例としては、非導電性多孔質通液性シートからなるスペーサを挟んで、高比表面積活性炭を主材とする活性炭層である一対の電極を配置し、該電極の外側に一対の集電極を配置し、更に該集電極の外側に押さえ板を配置した平板形状とし、集電極に直流電源を接続し、更に集電極間の短絡又は直流電源の逆接続を行うものであってもよい。また、電極と集電極とは一体化されたものでもよい。
【0018】
また、水質監視装置8は、液質を測定するものでイオン除去の程度を正確に把握できる指標の測定機器であれば特に限定されず、導電率計、比抵抗計が挙げられ、本実施の形態では導電率計である。また、自動弁24は三方弁であり、上流側の受入ポート24a、通液ポート24b、純水ポート24cがあり、受入ポート24aは接続配管3aにより被処理液供給源5に、通液ポート24bは接続配管3bにより通液コンデンサ1に、純水ポート24cは接続配管23により低イオン濃度液供給源22にそれぞれ接続している。
【0019】
上記のような通液型コンデンサの通液方法を説明する。先ず、スイッチ32をオンして直流電圧を一対の電極30、31に印加し、自動弁24を通液ポート24bに操作し、切替え弁12Aを開、切替え弁12Bを閉の状態とし、水質監視装置8を監視可能状態にして、被処理液供給源5のポンプを作動させ、被処理液を通液コンデンサ1に定量的に供給する。この段階で通液型コンデンサ1はイオン成分除去工程に入り、被処理液は通液型コンデンサ1の一対の電極30、31にイオン成分を吸着され、イオン成分が除去された脱塩液となり、接続配管17(脱塩液流出配管)により排出される。
【0020】
この状態を継続すると、やがて一対の電極のイオン吸着能が飽和状態に近づき、イオン除去能は低下し、徐々に脱塩液の導電率が上昇する。水質監視装置8により測定された導電率が採液不可値になると、切替え弁12Aを閉、切替え弁12Bを開として、直ちにスイッチ32をオフして通液型コンデンサへの直流電圧の印加を止め、更にスイッチ35をオンして、一対の電極30、31を短絡させ、吸着したイオン成分を一対の電極30、31から離脱させ、被処理液側に移動させて一対の電極30、31を再生する。すなわち、通液型コンデンサ1はイオン回収工程の前半部分に入る。次に、自動弁24を純水ポート24cに操作し、被処理液の供給を停止する一方、低イオン濃度液供給源22から被処理液よりイオン濃度の低い液を通液型コンデンサ1に通液し、一対の電極30、31に吸着したイオン成分を更に脱離せしめるイオン成分回収工程の後半部分に入る。
【0021】
上記除去工程及び回収工程を1サイクルとし、このサイクルを繰り返して行うことにより、被処理液からイオン成分が除去された脱塩液及び前記除去されたイオン成分を回収したイオン濃度の高い濃縮液を得ると共に、通液型コンデンサ1の一対の電極30、31の飽和と再生の繰り返しを図るものである。
【0022】
被処理液よりイオン濃度の低い液を通液する時期及び時間としては、イオン成分の回収工程において任意に設定することができ、上記のように、イオン成分回収工程の後半段階で行う方法及びイオン成分回収工程の全期間において被処理液の代わりにイオン濃度の低い液を通液する方法が挙げられ、このうち、イオン成分回収工程の後半段階で行う方法が、コストの上昇を抑えると共に、再生効率が高くなる点で好ましい。
【0023】
また、イオン成分回収工程においては、濃度を高めた濃縮液を得る目的で、被処理液を通液型コンデンサに停滞せしめる停滞時間又は通液型コンデンサの流出液を通液型コンデンサの流入側に戻し、循環せしめる循環時間を設けてもよく、この場合、被処理液よりイオン濃度の低い液の通液は、これら停滞時間又は循環時間の後に設けることが、再生効率を高める点で好ましい。
【0024】
被処理液よりイオン濃度の低い液としては、被処理液の導電率より低い導電率を有する液であれば、特に制限されず、例えば水道水、イオン交換水、電気透析水、限外ろ過膜透過水及び蒸留水等の別途の設備から供給される液、当該通液型コンデンサのイオン成分除去工程で得られた脱塩液及び通液型コンデンサを並列配置する場合、他方の通液型コンデンサのイオン除去工程から得られた脱塩液の少なくとも一部が挙げられる。
【0025】
被処理液よりイオン濃度の低い液として、当該通液型コンデンサのイオン成分除去工程で得られた脱塩液を使用する場合を図2を参照して説明する。図2は被処理液よりイオン濃度の低い液として、当該通液型コンデンサより製造された脱塩液を用いる通液型コンデンサの通液方法を示すフロー図である。図中、図1と同一構成要素には同一符号を付してその説明を省略し、主に異なる点について説明する。すなわち、図2において、図1と異なるなる点は、低イオン濃度液供給源22を省略し、脱塩液流出配管17と純水ポート24cに接続する接続配管23を接続配管26で連接し、途中に脱塩液一時貯留槽25を設けた点にある。すなわち、通液型コンデンサ1のイオン成分除去工程で得られた脱塩液は脱塩液流出配管17を通って脱塩液一時貯留槽25に貯められる。一方、通液型コンデンサのイオン成分回収工程の例えば、後半部分では、自動弁24を純水ポート24cに操作し、脱塩液一時貯留槽25に貯められた脱塩液の一部を不図示の返送ポンプを経て自動弁24の純水ポート24cより通液型コンデンサ1に供給する。これにより、通液型コンデンサ1の一対の電極30、31に吸着したイオン成分を更に脱離せしめて、電極30、31の再生度を向上させることができる。
【0026】
次に、本発明の通液型コンデンサが2台あるいは2系列の場合の通液方法を図3に基づいて説明する。図3は、被処理液よりイオン濃度の低い液として、一方の通液型コンデンサより製造された脱塩液を用いる通液型コンデンサの通液方法を示すフロー図である。図3中、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。図中、通液型コンデンサ1は、第1通液型コンデンサ1a及び第2通液型コンデンサ1bを備え、それらの上流側はいずれも第1自動弁27及び第2自動弁28を備える供給配管3、供給配管4により被処理液供給源5に接続され、一方、その下流側はいずれも接続配管6、接続配管7により第1水質監視装置8及び第2水質監視装置9にそれぞれ接続されている。そして、これら第1水質監視装置8及び第2水質監視装置9は、いずれも接続配管10、接続配管11により第3自動弁12及び第4自動弁13に接続され、これら第3自動弁12及び第4自動弁13は互いに接続配管14により接続されている。更に、第3自動弁12は接続配管14及び集合排出管15(濃縮液流出配管)により濃縮液回収槽16に接続され、接続配管17及び集合排出管18(脱塩液流出配管)により脱塩液回収槽19に接続されている。また、第4自動弁13は接続配管20及び集合排出管18(脱塩液流出配管)により脱塩液回収槽19に接続され、接続配管21及び接続配管15(濃縮液流出配管)により濃縮液回収槽16に接続されている。
【0027】
第1自動弁27及び第2自動弁28は三方弁であり、いずれも上流側の受入ポート27a及び28a、通液ポート27b及び28b、純水ポート27c及び28cがあり、受入ポート27a及び28aは接続配管3及び4により被処理液供給源5に、通液ポート27b及び28bは接続配管3b及び4bにより通液コンデンサ1に、純水ポート27c及び28cは接続配管43及び44、接続配管42により接続配管17の脱塩液流出配管にそれぞれ接続している。なお、符号41、45及び46は弁である。また、第3自動弁12及び第4自動弁13は三方弁であり、いずれも上流側の受入ポート12a及び13a、回収ポート12b及び13b、除去ポート12c及び13cがあり、受入ポート12a及び13aは第1水質監視装置8及び第2水質監視装置9に、回収ポート12b及び13bは濃縮液回収槽16に、除去ポート12c及び13cは脱塩液回収槽19にそれぞれ接続している。このように、第1通液コンデンサ1aと第2通液コンデンサ1bは、被処理液供給源5を共通とし、脱塩液流出配管同士を連接し、濃縮液流出配管同士を連接することにより並列に配置されている。
【0028】
次に、本発明の通液型コンデンサの通液方法を図3及び図4に基づいて説明する。図4は当該通液方法における流出液の導電率と時間との関係を示す特性図である。図3中、先ず、通液型コンデンサ1aに被処理液を通液する。すなわち、スイッチ35をオフ、スイッチ32をオンして直流電圧を一対の電極30、31に印加し、第1自動弁27を通液ポート27bに、第3自動弁12を回収ポート12bに操作し、第1水質監視装置8を監視可能状態にして、被処理液供給源5のポンプを作動させ、被処理液を第1通液型コンデンサ1aに定量的に供給する。この場合、弁41、45及び46は閉状態である。被処理液は第1通液型コンデンサ1aの一対の電極30、31にイオン成分を吸着され、イオン成分が除去された脱塩液となり、第1水質監視装置8にて導電率が測定される。しかし、この脱塩液は最初の運転段階では導電率が高いので充分イオン成分を除去したものとなっていないため、第3自動弁12の回収ポート12bから接続配管14、集合排出管15を通り濃縮液回収槽16に排出される。なお、イオン成分濃縮液として、濃度の高いものを必要とする場合は、この最初の運転段階のイオン成分除去液を濃縮液回収槽16に入れずに被処理液に戻したり他に移す等の操作をして、最初の運転段階を終了させる。
【0029】
次に、第1水質監視装置8にて測定された導電率が図4に示す採液可能値になると、第3自動弁12を除去ポート12cに操作し、イオン成分が除去された液を脱塩液回収槽19に排出する。すなわち、この段階で初めて第1通液型コンデンサ1aはイオン成分除去工程に入る。
【0030】
この状態を継続すると、やがて一対の電極のイオン吸着能が飽和状態に近づき、イオン除去能は低下し、徐々に脱塩液の導電率が上昇する。第1水質監視装置8にて測定された導電率が図4に示す採液不可値になると、第3自動弁12を回収ポート12bに操作し、直ちにスイッチ32をオフして直流電圧の印加を止め、更にスイッチ35をオンして一対の電極30、31を短絡させ、吸着したイオン成分を一対の電極30、31から離脱させ、液側に移動させて一対の電極30、31を再生すると共に、濃縮液を濃縮液回収槽16に排出する。すなわち、第1通液型コンデンサ1aはイオン成分の回収工程、すなわち再生工程に入る。
【0031】
一方、第2通液型コンデンサ1bにおいては、前述の第1通液型コンデンサ1aの初期の運転段階、続いて行われるイオン成分除去工程が同様の方法で行われ、その後、上記と同様の再生工程に入る。すなわち、第1通液型コンデンサ1aがイオン成分回収工程にある場合、第2通液型コンデンサ1bはイオン成分除去工程にあり、第1通液型コンデンサ1aがイオン成分除去工程にある場合、第2通液型コンデンサ1bはイオン成分回収工程にある。
【0032】
このイオン成分除去工程とイオン成分回収工程が繰り返して行われ、定常運転に入っており、第1通液型コンデンサ1aがイオン成分除去工程にある場合、第2通液型コンデンサ1bは、イオン成分回収工程にあるから、第2自動弁28は通液ポート28bに操作し、第4自動弁13は回収ポート13bに操作し、スイッチ36はオン、スイッチ33はオフにして一対の電極30、31を短絡させ、吸着したイオン成分を一対の電極30、31から離脱させ、液側に移動させて一対の電極30、31を再生する。
【0033】
イオン成分を回収した濃縮液は、接続配管21及び集合配管15を通って濃縮液回収槽16に送られる。やがて第2通液型コンデンサ1bから排出された濃縮液が第2水質監視装置9にて導電率が測定されると、これが図4中の一定値Xまで下がると、第2自動弁28は回収ポート28cに操作し、弁41は開、弁45は閉、弁46は開とし、第1通液型コンデンサ1aで得られた脱塩液の一部を第2通液型コンデンサ1bに導入(返送)して、通液型コンデンサ1bの一対の電極30、31に吸着したイオン成分を更に脱離せしめて、電極30、31の再生度を向上させる。ここで返送流量は不図示の流量調整弁で任意に設定するようにしてもよい。
【0034】
第2水質監視装置9にて観測された被処理液の導電率が更に図4中の一定値Yまで下がると、これが採取可能値と判断され、弁41及び弁46を閉とし、被処理液の供給を停止して、第2通液型コンデンサは待機状態に入る。
【0035】
前記第1水質監視装置8が図4の採液不可値を測定すると、第1通液型コンデンサ1aのイオン成分回収工程に入る。すなわち、第3自動弁12を回収ポート12bに操作して、スイッチ32をオフ、スイッチ35をオンして一対の電極30、31を短絡させ一対の電極30、31を再生する。そして、イオン成分を回収した濃縮液を濃縮液回収槽16に入れる。やがて第2通液型コンデンサ1aから排出された濃縮液が第1水質監視装置8にて導電率が測定されると、これが図4中の一定値Xまで下がると、第1自動弁27は回収ポート27cに操作し、弁41は開、弁45は開、弁46は閉とし、第2通液型コンデンサ1bで得られた脱塩液の一部を第1通液型コンデンサ1aに導入(返送)して、通液型コンデンサ1aの一対の電極30、31に吸着したイオン成分を更に脱離せしめて、電極30、31の再生度を向上させる。次に、第1水質監視装置8が採取可能値Y値を測定すると、第1自動弁12を除去ポート12cに切替え、流出液を濃縮液回収槽16へ送るのを停止し、脱塩液回収槽19へ送るようにして、第1通液型コンデンサ1aはイオン成分除去工程に入る。
【0036】
一つの通液型コンデンサにおいて、上記除去工程及び回収工程を1サイクルとし、このサイクルを繰り返し行うことにより、被処理液からイオン濃度の低い脱塩液を常時連続して得ると共に、濃縮液も得ることができる。また、イオン成分回収工程においては、一方の通液型コンデンサより得られた脱塩液を再生用の仕上げ液として使用でき、安価な設備投資で電極の再生効率を高めることができる。このため、長期間に亘る運転においても通液型コンデンサのイオン成分分離能を一定に保つと共に、電極材の長寿命化を図ることができる。なお、第1通液型コンデンサー1aの除去工程が終了する直前に第2通液型コンデンサー1bを初期脱塩工程(脱塩ブロー工程)にしておくことが好ましい。
【0037】
上記実施の形態では、通液型コンデンサーの並列配置を2台で行うが、これに制限されず、本発明においては3台以上の複数並列配置とすることもできる。
【0038】
【実施例】
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
図1に示すように、通液型コンデンサ1台を配置接続した。被処理液は導電率300μS/cmの市水を用い、0.3L/分で定量供給とした。通液型コンデンサは、関西熱化学社製のものを使用し、また、通液型コンデンサに対する印加電圧は直流2Vとした。この通液型コンデンサに45分間直流電圧を印加しイオン成分の除去工程とし、その後、通液型コンデンサを15分間の短絡により、被処理液を通液する回収工程は前半部分を10分間とし、被処理液の供給を停止し低イオン濃度液供給源から純水を通液する回収工程の後半部分を5分間として、以上を1サイクルとする都合250サイクルの運転を行った。純水には導電率1μS/cmのイオン交換水を使用した。この条件で、通液型コンデンサ流出水の導電率を測定した。その結果、図4に示す特性図と同様のものを得た。また、通液型コンデンサのイオン成分除去工程中の流出液(脱塩水)の平均導電率(μS/cm)とサイクル数の関係を図5に示す。
【0039】
比較例1
回収工程は前半部分、後半部分を設けることなく、被処理液を通液する15分間のみとした以外は、実施例1と同様の方法で行った。この条件で、通液型コンデンサ流出液の導電率を測定した。その結果を図6に示す。また、通液型コンデンサのイオン成分除去工程中の流出液(脱塩水)の平均導電率(μS/cm)とサイクル数の関係を図5に示す。
【0040】
実施例2
図2に示すように、通液型コンデンサ1台を配置接続した。被処理液は導電率300μS/cmの市水を用い、0.3L/分で定量供給とした。通液型コンデンサは、関西熱化学社製のものを使用し、また、通液型コンデンサに対する印加電圧は直流2Vとした。この通液型コンデンサに45分間直流電圧を印加しイオン成分の除去工程とし、その後、通液型コンデンサを15分間の短絡により、被処理液を通液する回収工程は前半部分10分間とし、被処理液の供給を停止し脱塩水を通液する回収工程の後半部分を5分間として、以上を1サイクルとする都合250サイクルの運転を行った。脱塩水の導電率は25μS/cmであった。この条件で、通液型コンデンサ流出水の導電率を測定した。その結果、図4に示す特性図と同様のものを得た。また、通液型コンデンサのイオン成分除去工程中の流出液(脱塩水)の平均導電率(μS/cm)とサイクル数の関係を図5に示す。
【0041】
実施例3
図3に示すように、通液型コンデンサ2台を配置接続した。被処理液は導電率300μS/cmの市水を用い、0.3L/分で定量供給とした。通液型コンデンサは、関西熱化学社製のものを使用し、また、通液型コンデンサに対する印加電圧は直流2Vとした。この通液型コンデンサに30分間直流電圧を印加しイオン成分の除去工程とし、その後、通液型コンデンサを30分間の短絡により、被処理液を通液する回収工程は前半部分25分間とし、脱塩水を通液する回収工程の後半部分5分間として、以上を1サイクルとした。また、一方の通液型コンデンサが除去工程にある時は、他方の通液型コンデンサは回収工程にあるように運転を行った。脱塩水の導電率は25μS/cmであった。この条件で、通液型コンデンサ流出水の導電率を測定した。その結果、図4に示す特性図と同様のものを得た。また、通液型コンデンサのイオン成分除去工程中の流出液(脱塩水)の平均導電率(μS/cm)とサイクル数の関係を図5に示す。
【0042】
図4〜図6の結果から明らかなように、比較例1ではサイクル数を重ねるにつれて、除去工程中の通液コンデンサの流出液の平均導電率は徐々に上昇することから通液コンデンサのイオン成分除去能が低下していることが判る。一方、実施例1ではイオン成分回収工程に純水を通液する時間を設けたことにより、サイクル数を重ねても除去工程中の通液コンデンサの流出液の平均導電率はほぼ一定に保たれている。すなわち、実施例1ではイオン成分の除去能力の低下を確実に抑制していることが判る。
【0043】
【発明の効果】
本発明によれば、イオン成分の回収工程中に被処理液よりイオン濃度の低い液を通液型コンデンサに所定時間通液させる時間を設けることにより、処理サイクルを重ねるにつれ、被処理液からのイオン成分の除去能が低下し、結果的にイオン成分分離能が低下するという問題が解決される。また、このイオン濃度の低い液として通液型コンデンサにより得られる脱塩液を用いることができ、別途の設備や低イオン濃度液を用意する必要がなくなる。
【図面の簡単な説明】
【図1】本発明の実施の形態である通液型コンデンサの通液方法を示すフロー図である。
【図2】本発明の他の実施の形態である通液型コンデンサの通液方法を示すフロー図である。
【図3】本発明の他の実施の形態である通液型コンデンサの通液方法を示すフロー図である。
【図4】本発明の実施の形態である通液型コンデンサの通液方法における流出液の導電率と時間との関係を示す特性図である。
【図5】除去工程中の流出液の平均導電率とサイクル数との関係を示す図である。
【図6】比較例における流出液の導電率と時間との関係を示す特性図である。
【図7】従来の通液型コンデンサの通液方法を示すフロー図である。
【符号の説明】
1、50 通液型コンデンサ
1a 第1通液型コンデンサ
1b 第2通液型コンデンサ
3、3a、3b、4 供給配管
6、7、10、11、14、17、20、21、26、43、44接続配管
5、56 被処理液供給源
8 第1水質監視装置
9 第2水質監視装置
12 第3自動弁
12a、13a 受入ポート
12b、13b 回収ポート
12c、13c 除去ポート
13 第4自動弁
16 濃縮液回収槽
15、18 集合排出管
19 脱塩液回収槽
22 低イオン濃度液供給源
23 低イオン濃度液供給配管
25 脱塩液一時貯留槽
27 第1自動弁
28 第2自動弁
30、31、54、55 電極
32、33、35、36、53、58 スイッチ
34、59 直流電源
41、45、46 弁
42 戻り配管
51、52 切替え弁
57 水質監視装置
[0001]
BACKGROUND OF THE INVENTION
The present invention obtains a desalting solution from which the ionic components of the liquid to be treated are removed by applying a DC voltage to the pair of electrodes held therein, and then regenerates the pair of electrodes by short-circuiting or reversely connecting them. In addition, the present invention relates to a flow-through method of a flow-through capacitor that collects the removed ion component together with the liquid to be treated and removes and collects the ion component of the liquid to be treated according to the purpose.
[0002]
[Prior art]
The liquid-passing capacitor uses an electrostatic force to remove and recover (regenerate) ionic components in the liquid to be treated, and its principle is as follows. In other words, a liquid-flowing capacitor is removed by applying a DC voltage to the pair of electrodes it holds and adsorbing ionic components, charged particles, or organic substances in the liquid to be treated to the pair of electrodes. To obtain a desalted solution from which the ionic components have been removed, and then short-circuit the pair of electrodes or reversely connect a DC power source to release the ionic components adsorbed on the pair of electrodes and regenerate the pair of electrodes. However, the removal ion component is repeatedly collected as a concentrated liquid together with the liquid to be treated in the liquid.
[0003]
Such a liquid passing type capacitor is disclosed in Japanese Patent Laid-Open No. 5-258992. In this example of the known example, an inlet for introducing a liquid to be processed into a column and a liquid from which ion components have been removed are discharged. An outlet is provided, and the pair of electrodes is accommodated in the column. In both of these pairs of electrodes, a high surface area conductive surface layer is supported on a conductive support layer, and a nonconductive porous spacer is further included. Therefore, a pair of electrodes is a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, a high surface area conductive. The surface layer has a six-layer structure. The pair of electrodes are wound around a hollow porous central tube with a high surface area conductive surface layer inside to form a cartridge. Lead wires extend from the conductive support layer of one electrode and the conductive support layer of the other electrode to the outside of the column and are connected to a DC power source. A liquid supply source to be processed is connected to the inlet of the column, and a switching valve for separating the desalted liquid from which the ionic component has been removed and the concentrated liquid from which the ionic component has been recovered is connected to the outlet.
[0004]
A method for passing the liquid-passing capacitor as described above will be described with reference to FIG. In FIG. 7, 50 is a liquid passing type capacitor. First, the switching valve 51 is opened, the switching valve 52 is closed, the switch 53 is turned on, a DC voltage is applied to the pair of electrodes 54 and 55, and the liquid to be processed is supplied from the liquid source 56 to be processed. When supplied to the capacitor 50, an ion component is adsorbed on the pair of electrodes 54 and 55, and a desalted solution from which the ion component is removed on the downstream side of the switching valve 51 is obtained. If this state continues, the water quality monitoring device 57 measures that the ionic components are gradually adsorbed and saturated by the pair of electrodes 54 and 55 and the ionic component removal performance gradually decreases. To turn off the DC voltage. Then, the switching valve 51 is closed and the switching valve 52 is opened, and in order to regenerate the ion component removal performance, the switch 58 is turned on and the pair of electrodes 54 and 55 are short-circuited or the DC power source 59 is turned on. When the reverse connection is established, the ionic components adsorbed on the pair of electrodes 54 and 55 are released, and a concentrated liquid is obtained in which the ionic components are recovered on the downstream side of the switching valve 52 while the pair of electrodes 54 and 55 are regenerated. One cycle of removal and recovery (regeneration) of ionic components in the liquid to be treated is completed. And the to-be-processed liquid is always supplied to the flow-through type capacitor | condenser 50 from the to-be-processed liquid supply source 56, The said cycle is repeated and the desalted liquid from which the ionic component was removed, and the concentrated liquid which collect | recovered the ionic component are alternated. Can get to.
[0005]
[Problems to be solved by the invention]
However, in the conventional method for passing a liquid-type capacitor, the ability to remove ionic components from the liquid to be treated decreases as the liquid-passing cycle through the liquid-type capacitors is repeated. There is a problem that gradually decreases.
[0006]
Accordingly, an object of the present invention is to provide a liquid passing method for a liquid passing capacitor capable of keeping the ionic component removing ability of the liquid passing capacitor constant even in an operation over a long period of time and extending the life of the electrode material. To provide an apparatus.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventors have conducted extensive studies, and as a result, after applying a DC voltage to the pair of electrodes to remove the ionic component of the liquid to be treated, the liquid is passed through by short-circuiting or reverse connection. During the ion recovery process for recovering the ion components accumulated in the capacitor, if the time for allowing the liquid with a low ion concentration compared to the liquid to be processed to pass through the liquid capacitor for a predetermined time, the regeneration efficiency of the liquid condenser As a result, the inventors have found that the ability to remove the ionic components of the liquid-flowing capacitor can be kept constant even during operation over a long period of time, and that the life of the electrode material can be extended, and the present invention has been completed.
[0008]
That is, the invention of claim 1 applies a DC voltage to the pair of electrodes to remove the ionic components of the liquid to be treated in the liquid flow to obtain a desalting solution, and then short-circuits the pair of electrodes or connects a DC power source. A flow-through capacitor that is reversely connected and collects the removed ionic component as a concentrated liquid together with the liquid to be treated, and ions are collected from the liquid to be treated during the collecting step of the removed ionic component. It is an object of the present invention to provide a method for passing a liquid-type capacitor, characterized by providing a time for allowing a low-concentration liquid to pass through the liquid-pass capacitor for a predetermined time.
[0009]
The invention of claim 2 uses the desalted liquid obtained from the liquid-flowing capacitor as the liquid having a lower ion concentration than the liquid to be treated. A liquid passing method is provided.
[0010]
According to a third aspect of the present invention, the liquid-flow type capacitors are arranged and connected in parallel, and one liquid-flow type capacitor is in the process of removing the ionic component of the liquid to be treated, and the other liquid-flow type capacitor is the liquid to be treated. In the process of recovering the ionic component of the liquid, and continuously passing the liquid to be treated to continuously obtain a desalted liquid from which the ionic components have been removed. As a liquid having a lower ion concentration than the liquid to be treated that is allowed to flow through the liquid-type capacitor for a predetermined time during the recovery process of the ionic component of the other liquid-type capacitor in the process of removing the ionic component of the liquid to be processed 2. The liquid passing method for a liquid passing capacitor according to claim 1, wherein at least a part of the desalting liquid is used.
[0011]
According to a fourth aspect of the present invention, a DC voltage is applied to the liquid source to be processed and the pair of electrodes to remove ionic components of the liquid to be processed, and the pair of electrodes are short-circuited or a DC power source is connected. A flow-through capacitor that reversely connects and recovers the removed ionic component to the liquid to be treated, a supply pipe that connects the liquid to be treated and the liquid-flow condenser, and the liquid flow Outflow pipe connected to the outflow side of the condenser, a desalted liquid outflow pipe and a concentrated liquid outflow pipe branched from the outflow pipe and provided with a switching valve in the middle, and a liquid to be treated connected to the supply pipe And a low ion concentration liquid supply pipe for supplying a liquid having a lower ion concentration.
[0012]
The invention of claim 5 provides the liquid-passing capacitor device according to claim 4, wherein the desalting solution outflow pipe and the low ion concentration liquid supply pipe are connected to each other.
[0013]
According to a sixth aspect of the present invention, the liquid-flow condenser device is arranged and connected in parallel, and the one desalted liquid outflow pipe, the other supply pipe, the other desalted liquid outflow pipe, and the one 6. The liquid-passing condenser device according to claim 4, wherein the supply pipes are connected to each other, the desalted liquid outflow pipes are connected to each other, and the concentrated liquid outflow pipes are connected to each other. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, a liquid passing method of the liquid passing type capacitor according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a liquid passing method of a liquid passing type capacitor according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a flow-through condenser, and the downstream side of the flow-through condenser 1 is connected to a water quality monitoring device 8 by an outflow pipe 6, and the outflow pipe 10 of the water quality monitoring device 8 further has a switching valve 12A. It branches into two, a liquid outflow pipe 17 and a concentrated liquid outflow pipe 21 having a switching valve 12B. The upstream side of the liquid passing condenser 1 is connected to the automatic valve 24 by the connection pipe 3b, and further connected to the liquid supply source 5 to be processed by the connection pipe 3a. The processing liquid supply source 5 includes a processing liquid tank and a liquid feed pump for quantitatively supplying the processing liquid from now on (not shown).
[0015]
The first liquid-flowing capacitor 1 includes a pair of electrodes 30 and 31, and the electrode 30 is connected to the cathode of a DC power supply 34 via a switch 32. The pair of electrodes 30 and 31 are connected to each other via a switch 35. The operation control of the devices shown in FIG. 1 is performed by a known control device such as a sequencer or a microcomputer. As the detailed operation control, for example, a liquid passing method of a liquid passing capacitor described later is used. Can be mentioned.
[0016]
The structure of the liquid-flowing capacitor 1 is not particularly limited, but here, electrodes 30 and 31 formed by contacting a high surface area activated carbon with a collecting electrode such as metal or graphite are accommodated in a column. A non-conductive spacer is interposed. Then, when a treatment liquid containing ions is passed through the column in a state where a DC voltage, for example, 1 to 2 V is applied, the pair of electrodes 30 and 31 adsorb ions, and the ionic components are removed and desalting is performed. Then, when the pair of electrodes 30 and 31 are short-circuited, the electrically neutralized and adsorbed ions are released from the pair of electrodes 30 and 31, and the pair of electrodes 30 and 31 are regenerated. In addition, a concentrated liquid in which a concentrated ionic component is recovered can be obtained.
[0017]
As another example of the structure of the liquid-permeable capacitor 1, a pair of electrodes, which are activated carbon layers mainly composed of activated carbon with a high specific surface area, are arranged with a spacer made of a non-conductive porous liquid-permeable sheet interposed therebetween, A pair of collector electrodes is arranged outside the electrode, and a flat plate shape is formed with a holding plate arranged outside the collector electrode. A DC power source is connected to the collector electrode, and a short circuit between the collector electrodes or reverse connection of the DC power source is performed. You may do it. Further, the electrode and the collector electrode may be integrated.
[0018]
The water quality monitoring device 8 is not particularly limited as long as it is a measuring device that measures liquid quality and can accurately grasp the degree of ion removal, and includes a conductivity meter and a specific resistance meter. In form it is a conductivity meter. The automatic valve 24 is a three-way valve, and has an upstream receiving port 24a, a liquid passing port 24b, and a pure water port 24c. The receiving port 24a is connected to the liquid supply source 5 to be processed by the connecting pipe 3a. Is connected to the liquid passing condenser 1 by the connecting pipe 3b, and the pure water port 24c is connected to the low ion concentration liquid supply source 22 by the connecting pipe 23.
[0019]
The liquid passing method of the above liquid passing type capacitor will be described. First, the switch 32 is turned on to apply a DC voltage to the pair of electrodes 30 and 31, the automatic valve 24 is operated to the liquid port 24b, the switching valve 12A is opened, the switching valve 12B is closed, and the water quality is monitored. The apparatus 8 is brought into a monitorable state, the pump of the liquid supply source 5 is operated, and the liquid to be processed is quantitatively supplied to the liquid condenser 1. At this stage, the flow-through capacitor 1 enters an ionic component removal step, and the liquid to be treated is adsorbed to the pair of electrodes 30 and 31 of the flow-through capacitor 1 to become a desalted solution from which the ionic component has been removed, It is discharged through the connecting pipe 17 (desalted liquid outflow pipe).
[0020]
If this state is continued, the ion adsorption ability of the pair of electrodes eventually approaches a saturated state, the ion removal ability decreases, and the conductivity of the desalting solution gradually increases. When the conductivity measured by the water quality monitoring device 8 becomes an unacceptable value, the switching valve 12A is closed, the switching valve 12B is opened, and the switch 32 is immediately turned off to stop the application of the DC voltage to the liquid passing type capacitor. Further, the switch 35 is turned on, the pair of electrodes 30 and 31 are short-circuited, the adsorbed ion components are separated from the pair of electrodes 30 and 31, and moved to the liquid to be treated to regenerate the pair of electrodes 30 and 31. To do. That is, the liquid-flowing capacitor 1 enters the first half of the ion recovery process. Next, the automatic valve 24 is operated to the pure water port 24c to stop the supply of the liquid to be processed, while the liquid having a lower ion concentration than the liquid to be processed is passed from the low ion concentration liquid supply source 22 to the liquid capacitor 1. It enters the latter half of the ionic component recovery process in which the ionic components adsorbed on the pair of electrodes 30 and 31 are further desorbed.
[0021]
The removal step and the recovery step are defined as one cycle, and by repeating this cycle, a desalted solution from which the ionic component has been removed from the liquid to be treated and a concentrated solution having a high ion concentration from which the removed ionic component has been recovered. In addition, the saturation and regeneration of the pair of electrodes 30 and 31 of the liquid-flowing capacitor 1 are repeated.
[0022]
The timing and time of passing a liquid having a lower ion concentration than the liquid to be treated can be arbitrarily set in the ion component recovery step, and as described above, the method and ions performed in the latter half of the ion component recovery step There is a method of passing a low ion concentration solution instead of the liquid to be treated throughout the component recovery process. Of these, the method performed in the latter half of the ion component recovery step suppresses cost increase and regenerates. This is preferable in terms of high efficiency.
[0023]
In the ionic component recovery process, for the purpose of obtaining a concentrated liquid having a high concentration, the stagnation time for allowing the liquid to be treated to stagnate in the liquid condenser or the effluent of the liquid condenser is introduced to the inflow side of the liquid condenser. A circulation time for returning and circulating the liquid may be provided. In this case, it is preferable to provide a liquid having a lower ion concentration than the liquid to be treated after the stagnation time or the circulation time from the viewpoint of improving the regeneration efficiency.
[0024]
The liquid having a lower ion concentration than the liquid to be treated is not particularly limited as long as it has a conductivity lower than that of the liquid to be treated. For example, tap water, ion exchange water, electrodialysis water, ultrafiltration membrane When the liquid supplied from separate equipment such as permeated water and distilled water, the desalted liquid obtained in the ion component removal step of the liquid-flowing capacitor and the liquid-flowing capacitor are arranged in parallel, the other liquid-flowing capacitor And at least a part of the desalting solution obtained from the ion removal step.
[0025]
The case where the desalted liquid obtained in the ion component removing step of the liquid-passing capacitor is used as the liquid having a lower ion concentration than the liquid to be treated will be described with reference to FIG. FIG. 2 is a flow diagram showing a liquid passing method of a liquid passing capacitor using a desalted liquid produced from the liquid passing capacitor as a liquid having a lower ion concentration than the liquid to be treated. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 2 is different from FIG. 1 in that the low ion concentration liquid supply source 22 is omitted, and the connection pipe 23 connected to the desalting solution outflow pipe 17 and the pure water port 24c is connected by the connection pipe 26. It is in the point which provided the desalination liquid temporary storage tank 25 in the middle. That is, the desalted liquid obtained in the ion component removing step of the liquid-flowing capacitor 1 is stored in the desalted liquid temporary storage tank 25 through the desalted liquid outflow pipe 17. On the other hand, for example, in the latter half of the ionic component recovery process of the liquid-flow condenser, the automatic valve 24 is operated to the pure water port 24c, and a part of the desalted liquid stored in the desalted liquid temporary storage tank 25 is not shown. The liquid supply type condenser 1 is supplied from the pure water port 24c of the automatic valve 24 through the return pump. As a result, the ion components adsorbed on the pair of electrodes 30 and 31 of the liquid-flowing capacitor 1 can be further desorbed, and the degree of regeneration of the electrodes 30 and 31 can be improved.
[0026]
Next, a liquid passing method in the case of two or two liquid passing type capacitors according to the present invention will be described with reference to FIG. FIG. 3 is a flow diagram showing a liquid passing method of the liquid passing type capacitor using a desalted liquid produced from one liquid passing type capacitor as a liquid having a lower ion concentration than the liquid to be treated. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. In the figure, the liquid-flowing capacitor 1 includes a first liquid-flowing capacitor 1a and a second liquid-flowing capacitor 1b, and the upstream side thereof includes a first automatic valve 27 and a second automatic valve 28, respectively. 3. Connected to the liquid source 5 to be treated by the supply pipe 4, while the downstream side is connected to the first water quality monitoring device 8 and the second water quality monitoring device 9 by the connection pipe 6 and the connection pipe 7, respectively. Yes. The first water quality monitoring device 8 and the second water quality monitoring device 9 are both connected to the third automatic valve 12 and the fourth automatic valve 13 by the connection pipe 10 and the connection pipe 11. The fourth automatic valves 13 are connected to each other by a connection pipe 14. Further, the third automatic valve 12 is connected to the concentrate recovery tank 16 by a connecting pipe 14 and a collecting discharge pipe 15 (concentrated liquid outflow pipe), and desalted by a connecting pipe 17 and a collecting discharge pipe 18 (desalted liquid outflow pipe). The liquid recovery tank 19 is connected. The fourth automatic valve 13 is connected to the desalted liquid recovery tank 19 through a connecting pipe 20 and a collecting discharge pipe 18 (desalted liquid outflow pipe), and the concentrated liquid through a connecting pipe 21 and a connecting pipe 15 (concentrated liquid outflow pipe). It is connected to the collection tank 16.
[0027]
The first automatic valve 27 and the second automatic valve 28 are three-way valves, both of which have upstream receiving ports 27a and 28a, liquid passing ports 27b and 28b, pure water ports 27c and 28c, and the receiving ports 27a and 28a are The connection pipes 3 and 4 are connected to the liquid supply source 5, the liquid passing ports 27 b and 28 b are connected to the liquid passing capacitor 1 via the connecting pipes 3 b and 4 b, and the pure water ports 27 c and 28 c are connected via the connecting pipes 43 and 44 and the connecting pipe 42. The connecting pipe 17 is connected to the desalted liquid outflow pipe. Reference numerals 41, 45 and 46 are valves. The third automatic valve 12 and the fourth automatic valve 13 are three-way valves, both of which have upstream receiving ports 12a and 13a, recovery ports 12b and 13b, removal ports 12c and 13c, and the receiving ports 12a and 13a are In the first water quality monitoring device 8 and the second water quality monitoring device 9, the recovery ports 12b and 13b are connected to the concentrated liquid recovery tank 16, and the removal ports 12c and 13c are connected to the desalted liquid recovery tank 19, respectively. Thus, the 1st flow condenser 1a and the 2nd liquid condenser 1b share the to-be-processed liquid supply source 5, are connected by connecting desalted solution outflow piping, and connecting concentrated liquid outflow piping in parallel. Is arranged.
[0028]
Next, a method for passing the liquid-passing capacitor according to the present invention will be described with reference to FIGS. FIG. 4 is a characteristic diagram showing the relationship between the conductivity of the effluent and time in the liquid passing method. In FIG. 3, first, the liquid to be processed is passed through the liquid-passing capacitor 1a. That is, the switch 35 is turned off, the switch 32 is turned on, and a DC voltage is applied to the pair of electrodes 30 and 31 to operate the first automatic valve 27 through the liquid port 27b and the third automatic valve 12 through the recovery port 12b. The first water quality monitoring device 8 is set in a monitorable state, the pump of the liquid supply source 5 is operated, and the liquid to be processed is quantitatively supplied to the first liquid-flow condenser 1a. In this case, the valves 41, 45 and 46 are closed. The liquid to be treated is adsorbed by a pair of electrodes 30 and 31 of the first flow-type capacitor 1a to become a desalted liquid from which the ionic components have been removed, and the conductivity is measured by the first water quality monitoring device 8. . However, since this desalting solution has a high conductivity in the first operation stage, it does not sufficiently remove ionic components, so it passes from the recovery port 12b of the third automatic valve 12 through the connection pipe 14 and the collective discharge pipe 15. It is discharged into the concentrated liquid recovery tank 16. In addition, when a high concentration is required as the ionic component concentrated liquid, the ionic component removing liquid in the first operation stage is returned to the liquid to be processed without being put into the concentrated liquid recovery tank 16, or transferred to another. Operate to finish the first driving phase.
[0029]
Next, when the electrical conductivity measured by the first water quality monitoring device 8 reaches the liquid collection possible value shown in FIG. 4, the third automatic valve 12 is operated to the removal port 12c to remove the liquid from which the ionic components have been removed. It discharges to the salt solution recovery tank 19. That is, for the first time at this stage, the first liquid-type capacitor 1a enters the ion component removing step.
[0030]
If this state is continued, the ion adsorption ability of the pair of electrodes eventually approaches a saturated state, the ion removal ability decreases, and the conductivity of the desalting solution gradually increases. When the electrical conductivity measured by the first water quality monitoring device 8 reaches the unacceptable value shown in FIG. 4, the third automatic valve 12 is operated to the recovery port 12b, and the switch 32 is immediately turned off to apply the DC voltage. In addition, the switch 35 is turned on to short-circuit the pair of electrodes 30 and 31, the adsorbed ion component is separated from the pair of electrodes 30 and 31, moved to the liquid side, and the pair of electrodes 30 and 31 is regenerated. The concentrated liquid is discharged into the concentrated liquid recovery tank 16. That is, the first liquid-flowing capacitor 1a enters an ion component recovery step, that is, a regeneration step.
[0031]
On the other hand, in the second liquid-flowing capacitor 1b, the initial operation stage of the first liquid-flowing capacitor 1a and the subsequent ionic component removal step are performed by the same method, and then the same regeneration as described above. Enter the process. That is, when the first liquid-flowing capacitor 1a is in the ionic component recovery process, the second liquid-flowing capacitor 1b is in the ionic component removal process, and when the first liquid-flowing capacitor 1a is in the ionic component removal process, The two-liquid type capacitor 1b is in the ion component recovery step.
[0032]
When the ion component removal step and the ion component recovery step are repeatedly performed and the operation is in a steady state, and the first liquid-pass capacitor 1a is in the ion component removal step, the second liquid-pass capacitor 1b In the recovery process, the second automatic valve 28 is operated to the liquid passing port 28b, the fourth automatic valve 13 is operated to the recovery port 13b, the switch 36 is turned on, the switch 33 is turned off, and the pair of electrodes 30, 31 are operated. , And the adsorbed ion component is separated from the pair of electrodes 30 and 31 and moved to the liquid side to regenerate the pair of electrodes 30 and 31.
[0033]
The concentrated liquid from which the ionic component has been recovered is sent to the concentrated liquid recovery tank 16 through the connection pipe 21 and the collecting pipe 15. Eventually, when the conductivity of the concentrated liquid discharged from the second liquid-flow condenser 1b is measured by the second water quality monitoring device 9, the second automatic valve 28 recovers when it decreases to the constant value X in FIG. By operating the port 28c, the valve 41 is opened, the valve 45 is closed, and the valve 46 is opened, and a part of the desalted liquid obtained by the first liquid-flow condenser 1a is introduced into the second liquid-flow condenser 1b ( The ion components adsorbed on the pair of electrodes 30 and 31 of the liquid-flowing capacitor 1b are further desorbed to improve the reproducibility of the electrodes 30 and 31. Here, the return flow rate may be arbitrarily set by a flow rate adjustment valve (not shown).
[0034]
When the conductivity of the liquid to be treated observed by the second water quality monitoring device 9 further decreases to a certain value Y in FIG. 4, it is determined that this is a collectable value, the valves 41 and 46 are closed, and the liquid to be treated And the second liquid-flowing capacitor enters a standby state.
[0035]
When the first water quality monitoring device 8 measures the unacceptable value shown in FIG. 4, the process enters the ion component recovery process of the first liquid-pass condenser 1a. That is, the third automatic valve 12 is operated to the recovery port 12b, the switch 32 is turned off and the switch 35 is turned on to short-circuit the pair of electrodes 30, 31 to regenerate the pair of electrodes 30, 31. And the concentrate which collect | recovered the ionic component is put into the concentrate collection tank 16. FIG. Eventually, when the conductivity of the concentrated liquid discharged from the second liquid-flow condenser 1a is measured by the first water quality monitoring device 8, the first automatic valve 27 recovers when this decreases to the constant value X in FIG. By operating the port 27c, the valve 41 is opened, the valve 45 is opened, the valve 46 is closed, and a part of the desalted liquid obtained by the second liquid-flow condenser 1b is introduced into the first liquid-flow condenser 1a ( The ion components adsorbed to the pair of electrodes 30 and 31 of the liquid-flowing capacitor 1a are further desorbed to improve the reproducibility of the electrodes 30 and 31. Next, when the first water quality monitoring device 8 measures the collectable value Y value, the first automatic valve 12 is switched to the removal port 12c, the sending of the effluent to the concentrate recovery tank 16 is stopped, and the desalted solution is recovered. The first liquid-flowing capacitor 1a enters the ion component removing step so as to be sent to the tank 19.
[0036]
In one liquid-flow condenser, the removal step and the recovery step are set as one cycle, and by repeating this cycle, a desalting solution having a low ion concentration is continuously obtained from the liquid to be treated, and a concentrated solution is also obtained. be able to. Further, in the ion component recovery step, the desalted liquid obtained from one of the flow-through capacitors can be used as a finishing liquid for regeneration, and the regeneration efficiency of the electrode can be increased with an inexpensive equipment investment. For this reason, it is possible to keep the ionic component separation ability of the liquid-passing capacitor constant even during operation over a long period of time and to prolong the life of the electrode material. In addition, it is preferable to make the 2nd liquid-flow type | mold condenser 1b into an initial desalting process (desalting blow process) immediately before the removal process of the 1st liquid-flow type condenser 1a is complete | finished.
[0037]
In the embodiment described above, two liquid-pass condensers are arranged in parallel. However, the present invention is not limited to this, and in the present invention, three or more parallel arrangements may be adopted.
[0038]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
Example 1
As shown in FIG. 1, one liquid passing type capacitor was arranged and connected. As the liquid to be treated, city water having a conductivity of 300 μS / cm was used, and a fixed amount was supplied at 0.3 L / min. A liquid-flow type capacitor manufactured by Kansai Thermochemical Co., Ltd. was used, and the voltage applied to the liquid-flow type capacitor was 2 V DC. A DC voltage is applied to this liquid-flowing capacitor for 45 minutes to remove the ionic component, and then the recovery process of passing the liquid to be treated by short-circuiting the liquid-flowing capacitor for 15 minutes is set to 10 minutes in the first half. The supply of the liquid to be treated was stopped, and the latter half of the recovery step in which pure water was passed from the low ion concentration liquid supply source was set to 5 minutes, and the above operation was performed for 250 cycles. Pure water was ion-exchanged water having a conductivity of 1 μS / cm. Under these conditions, the conductivity of the water flowing through the condenser was measured. As a result, the same characteristic diagram as shown in FIG. 4 was obtained. FIG. 5 shows the relationship between the average conductivity (μS / cm) of the effluent (demineralized water) and the number of cycles during the ionic component removal step of the flow-through capacitor.
[0039]
Comparative Example 1
The recovery process was performed in the same manner as in Example 1 except that the first half part and the second half part were not provided and only the 15 minutes for passing the liquid to be treated were passed. Under this condition, the conductivity of the effluent liquid-flowing capacitor was measured. The result is shown in FIG. FIG. 5 shows the relationship between the average conductivity (μS / cm) of the effluent (demineralized water) and the number of cycles during the ionic component removal step of the flow-through capacitor.
[0040]
Example 2
As shown in FIG. 2, one liquid-flow type capacitor was arranged and connected. As the liquid to be treated, city water having a conductivity of 300 μS / cm was used, and a fixed amount was supplied at 0.3 L / min. A liquid-flow type capacitor manufactured by Kansai Thermochemical Co., Ltd. was used, and the voltage applied to the liquid-flow type capacitor was 2 V DC. A DC voltage is applied to this liquid-flowing capacitor for 45 minutes to remove the ionic component, and then the collection process of passing the liquid to be treated by short-circuiting the liquid-flowing capacitor for 15 minutes is set to 10 minutes in the first half. The second half of the recovery process in which the supply of the treatment liquid was stopped and the desalted water was passed was set to 5 minutes, and the above operation was performed for 250 cycles. The conductivity of the demineralized water was 25 μS / cm. Under these conditions, the conductivity of the water flowing through the condenser was measured. As a result, the same characteristic diagram as shown in FIG. 4 was obtained. FIG. 5 shows the relationship between the average conductivity (μS / cm) of the effluent (demineralized water) and the number of cycles during the ionic component removal step of the flow-through capacitor.
[0041]
Example 3
As shown in FIG. 3, two liquid-flow type capacitors were arranged and connected. As the liquid to be treated, city water having a conductivity of 300 μS / cm was used, and a fixed amount was supplied at 0.3 L / min. A liquid-flow type capacitor manufactured by Kansai Thermochemical Co., Ltd. was used, and the voltage applied to the liquid-flow type capacitor was 2 V DC. A DC voltage is applied to this liquid-flowing capacitor for 30 minutes to remove the ionic component, and then the collection process of passing the liquid to be treated by short-circuiting the liquid-flowing capacitor for 30 minutes is set to the first half 25 minutes. The latter half of the recovery step of passing salt water through for 5 minutes was defined as one cycle. Further, when one liquid-flowing capacitor was in the removal process, the other liquid-flowing capacitor was operated so as to be in the recovery process. The conductivity of the demineralized water was 25 μS / cm. Under these conditions, the conductivity of the water flowing through the condenser was measured. As a result, the same characteristic diagram as shown in FIG. 4 was obtained. FIG. 5 shows the relationship between the average conductivity (μS / cm) of the effluent (demineralized water) and the number of cycles during the ionic component removal step of the flow-through capacitor.
[0042]
As is apparent from the results of FIGS. 4 to 6, in Comparative Example 1, as the number of cycles is increased, the average conductivity of the effluent of the permeable capacitor during the removal process gradually increases. It can be seen that the removal ability is lowered. On the other hand, in Example 1, by providing time for passing pure water in the ion component recovery step, the average conductivity of the effluent of the flow-through capacitor during the removal step is kept substantially constant even if the number of cycles is repeated. ing. That is, in Example 1, it turns out that the fall of the removal capability of an ionic component is suppressed reliably.
[0043]
【The invention's effect】
According to the present invention, by providing a time during which a liquid having a lower ion concentration than the liquid to be processed is allowed to pass through the liquid condenser for a predetermined time during the recovery process of the ionic component, The problem that the ability to remove ionic components is reduced, and as a result, the ability to separate ionic components is solved. Further, a desalting solution obtained by a flow-through capacitor can be used as the liquid having a low ion concentration, and it is not necessary to prepare a separate facility or a low ion concentration solution.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a liquid passing method of a liquid passing type capacitor according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a liquid passing method of a liquid passing type capacitor according to another embodiment of the present invention.
FIG. 3 is a flowchart showing a liquid passing method of a liquid passing type capacitor according to another embodiment of the present invention.
FIG. 4 is a characteristic diagram showing the relationship between the electrical conductivity of the effluent and time in the liquid passing method of the liquid passing type capacitor according to the embodiment of the present invention.
FIG. 5 is a diagram showing the relationship between the average conductivity of the effluent during the removal step and the number of cycles.
FIG. 6 is a characteristic diagram showing the relationship between the conductivity of the effluent and time in a comparative example.
FIG. 7 is a flow chart showing a conventional liquid passing method for a liquid passing type capacitor.
[Explanation of symbols]
1, 50 liquid-flow type capacitor
1a First liquid-flow type capacitor
1b Second liquid passing type capacitor
3, 3a, 3b, 4 supply piping
6, 7, 10, 11, 14, 17, 20, 21, 26, 43, 44 Connection piping
5, 56 Treatment liquid supply source
8 First water quality monitoring device
9 Second water quality monitoring device
12 Third automatic valve
12a, 13a receiving port
12b, 13b Recovery port
12c, 13c removal port
13 4th automatic valve
16 Concentrated liquid collection tank
15, 18 Collective discharge pipe
19 Desalinated liquid recovery tank
22 Low ion concentration liquid supply source
23 Low ion concentration liquid supply piping
25 Desalination solution temporary storage tank
27 First automatic valve
28 Second automatic valve
30, 31, 54, 55 electrodes
32, 33, 35, 36, 53, 58 switch
34, 59 DC power supply
41, 45, 46 Valve
42 Return piping
51, 52 selector valve
57 Water quality monitoring device

Claims (6)

一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去して脱塩液を得、その後前記一対の電極を短絡あるいは直流電源を逆接続して、前記除去されたイオン成分を通液中の被処理液と共に濃縮液として回収する通液型コンデンサであって、前記除去されたイオン成分の回収工程中に、被処理液よりイオン濃度の低い液を前記通液型コンデンサに所定時間通液させる時間を設けたことを特徴とする通液型コンデンサの通液方法。A desalted solution was obtained by applying a DC voltage to the pair of electrodes to remove the ionic component of the liquid to be treated while passing through the solution, and then the paired electrodes were short-circuited or reversely connected to a DC power source to remove the solution. A liquid-flowing type condenser that collects an ionic component as a concentrated liquid together with a liquid to be treated, and a liquid having a lower ion concentration than the liquid to be treated during the recovery step of the removed ionic component. A liquid passing method for a liquid passing type capacitor, characterized in that a time for allowing the capacitor to pass through for a predetermined time is provided. 前記被処理液よりイオン濃度の低い液として、前記通液型コンデンサより得られた脱塩液を用いることを特徴とする請求項1記載の通液型コンデンサの通液方法。2. The liquid passing method for a liquid passing type capacitor according to claim 1, wherein the desalted liquid obtained from the liquid passing type capacitor is used as the liquid having a lower ion concentration than the liquid to be treated. 前記通液型コンデンサを並列に配置接続し、一方の通液型コンデンサが被処理液のイオン成分の除去工程中に、他方の通液型コンデンサが被処理液のイオン成分の回収工程中とし、常時、被処理液を通液して、イオン成分が除去された脱塩液を連続して得るようにした方法において、一方の通液型コンデンサが被処理液のイオン成分の回収工程中に、該通液型コンデンサに所定時間通液させる被処理液よりイオン濃度の低い液として、被処理液のイオン成分の除去工程中にある他方の通液型コンデンサの少なくとも一部の脱塩液を用いることを特徴とする請求項1記載の通液型コンデンサの通液方法。The liquid-type capacitors are arranged and connected in parallel, and one liquid-type capacitor is in the process of removing the ionic component of the liquid to be processed, and the other liquid-type capacitor is in the process of collecting the ionic component of the liquid to be processed. In a method in which a desalting liquid from which ionic components have been removed is continuously obtained by constantly passing a liquid to be processed, one liquid passing type capacitor is in the process of collecting the ionic components of the liquid to be processed. As the liquid having a lower ion concentration than the liquid to be treated that is allowed to flow through the liquid-type capacitor for a predetermined time, the desalting liquid of at least a part of the other liquid-type capacitor in the process of removing the ionic component of the liquid to be treated is used. The liquid passing method of the liquid passing type capacitor according to claim 1. 被処理液供給源と、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液に回収する通液型コンデンサと、前記被処理液供給源と前記通液型コンデンサとを接続する供給配管と、前記通液型コンデンサの流出側に接続される流出配管と、前記流出配管から二つに分岐して途中に切り替え弁を備える脱塩液流出配管及び濃縮液流出配管と、前記供給配管に連接する被処理液よりイオン濃度の低い液を供給する低イオン濃度液供給配管と、を有することを特徴とする通液型コンデンサ装置。A source of liquid to be treated and a pair of electrodes are applied with a DC voltage to remove ionic components of the liquid to be treated, and the pair of electrodes are short-circuited or a DC power supply is reversely connected to remove the ions. Connected to the outflow side of the liquid-flowing capacitor, the liquid-flowing-type capacitor for collecting the components into the liquid to be processed in the liquid, the supply pipe for connecting the liquid to be treated and the liquid-flowing capacitor, Supplying a liquid having a lower ion concentration than the liquid to be treated connected to the supply pipe, an outflow pipe, a desalted liquid outflow pipe and a concentrated liquid outflow pipe branched in two from the outflow pipe and provided with a switching valve in the middle And a low ion concentration liquid supply pipe. 前記脱塩液流出配管と前記低イオン濃度液供給配管とが連接されることを特徴とする請求項4記載の通液型コンデンサ装置。The liquid-passing capacitor device according to claim 4, wherein the desalting liquid outflow pipe and the low ion concentration liquid supply pipe are connected to each other. 前記通液型コンデンサ装置は並列に配置接続されると共に、前記一方の脱塩液流出配管と前記他方の供給配管、前記他方の脱塩液流出配管と前記一方の供給配管をそれぞれ連接し、且つ前記脱塩液流出配管同士を連接し、前記濃縮液流出配管同士を連接してなることを特徴とする請求項4又は5記載の通液型コンデンサ装置。The liquid-flow type capacitor device is arranged and connected in parallel, and connects the one desalted liquid outflow pipe and the other supply pipe, the other desalted liquid outflow pipe and the one supply pipe, and 6. The liquid-passing capacitor device according to claim 4, wherein the desalted liquid outflow pipes are connected to each other, and the concentrated liquid outflow pipes are connected to each other.
JP23636599A 1999-08-24 1999-08-24 Liquid passing method and apparatus for liquid passing capacitor Expired - Lifetime JP4090635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23636599A JP4090635B2 (en) 1999-08-24 1999-08-24 Liquid passing method and apparatus for liquid passing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23636599A JP4090635B2 (en) 1999-08-24 1999-08-24 Liquid passing method and apparatus for liquid passing capacitor

Publications (2)

Publication Number Publication Date
JP2001058182A JP2001058182A (en) 2001-03-06
JP4090635B2 true JP4090635B2 (en) 2008-05-28

Family

ID=16999727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23636599A Expired - Lifetime JP4090635B2 (en) 1999-08-24 1999-08-24 Liquid passing method and apparatus for liquid passing capacitor

Country Status (1)

Country Link
JP (1) JP4090635B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333887B2 (en) * 2008-10-23 2012-12-18 General Electric Company Methods and systems for purifying aqueous liquids
JP5277864B2 (en) * 2008-10-23 2013-08-28 三浦工業株式会社 Operation method of electric desalination equipment
CA2880444C (en) * 2012-08-03 2018-01-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. De-ionization treatment device and method for operating de-ionization treatment device
JP2017121612A (en) 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Electromechanical cell, water treatment equipment comprising the same, and operation method for water treatment equipment
JP2019209297A (en) * 2018-06-08 2019-12-12 株式会社クラレ Operation method of liquid-flow type capacitor
JP7105290B2 (en) * 2020-11-06 2022-07-22 大同メタル工業株式会社 recovery system

Also Published As

Publication number Publication date
JP2001058182A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US20080198531A1 (en) Capacitive deionization system for water treatment
WO1999048820A1 (en) Electric desalting apparatus
KR20170002047A (en) Purification system for potable water and ultra pure water
KR20120133229A (en) Capacitive deionization method for drinking water treatment
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4135802B2 (en) Desalination equipment
KR20160117751A (en) System and method for generating fresh water
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
KR20140100601A (en) Water treatment apparatus
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
US5647969A (en) Method and system for removing ionic species from water
JP3881120B2 (en) How to pass liquid-type capacitors
KR20100089311A (en) Hybrid type desalination device, desalinating method using the same and regenerating method thereof
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
KR20180016092A (en) Water treating apparatus for saving energy and water treating method using the same
JP2002336865A (en) Desalting apparatus and desalting method
KR101394112B1 (en) Water treatment cell by electrosorption, Electrosorptive water treatment apparatus and method using the same
CN113398763A (en) Regeneration method and separation device
JP2001058183A (en) Operation method and apparatus of liquid passing type condenser
JP2005087898A (en) Electrostatic deionization apparatus and electrostatic deionization method
KR101211501B1 (en) Capacitive deionization water softener
JP2002336863A (en) Method and apparatus for making desalted water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4090635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term