JP4089063B2 - Capacity control method and apparatus for variable capacity compressor - Google Patents

Capacity control method and apparatus for variable capacity compressor Download PDF

Info

Publication number
JP4089063B2
JP4089063B2 JP02378099A JP2378099A JP4089063B2 JP 4089063 B2 JP4089063 B2 JP 4089063B2 JP 02378099 A JP02378099 A JP 02378099A JP 2378099 A JP2378099 A JP 2378099A JP 4089063 B2 JP4089063 B2 JP 4089063B2
Authority
JP
Japan
Prior art keywords
current value
supply
supply current
control
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02378099A
Other languages
Japanese (ja)
Other versions
JP2000220577A (en
Inventor
哲彦 深沼
真広 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP02378099A priority Critical patent/JP4089063B2/en
Priority to US09/494,692 priority patent/US6224348B1/en
Priority to EP00101853A priority patent/EP1026397A3/en
Publication of JP2000220577A publication Critical patent/JP2000220577A/en
Application granted granted Critical
Publication of JP4089063B2 publication Critical patent/JP4089063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可変容量型圧縮機における容量制御方法及び装置に関するものである。
【0002】
【従来の技術】
特開平8−338364号公報に開示される可変容量型圧縮機では、クランク室の圧力と吸入圧領域の吸入圧との差圧に基づいて吐出容量を変えるようになっている。クランク室の圧力は、吐出圧領域である吐出室からクランク室へ冷媒を供給すると共に、クランク室から吸入圧領域である吸入室へ冷媒を抜き出して調整される。吐出室からクランク室へ冷媒を供給するための圧力供給通路上には容量制御用の電磁弁が介在されている。電磁弁の弁体は、ソレノイドの励磁によって閉弁位置側へ付勢される。電磁弁に対する供給電流値は、予め設定された設定室温と検出された検出室温との比較に基づいて決定されるようになっている。設定室温と検出室温との差が大きいほど供給電流値が大きくされ、電磁弁における弁開度が小さくなる。弁開度が小さくなるほど斜板傾角が大きくなり、吐出容量が大きくなる。弁体が閉弁位置に配置されると圧力供給通路が閉じられ、吐出室からクランク室への冷媒供給が停止する。そのため、斜板の傾角が最大傾角となる。ソレノイドが消磁されると弁体が弁開度最大位置の側へ移行し、吐出室からクランク室への冷媒供給が増える。そのため、クランク室内の圧力が増大し、斜板の傾角が最小になる。斜板の最小傾角状態では斜板の傾動に連動する遮断体が吸入通路を閉じ、外部冷媒回路における冷媒循環が停止する。この冷媒循環停止状態は熱負荷低減作用のない状態である。
【0003】
【発明が解決しようとする課題】
通常、空調装置作動スイッチをONしたときには設定室温と検出室温との差が大きく、電磁弁に対する供給電流値は空調装置作動スイッチのON時から大きな値となる。そのため、斜板傾角が最小傾角から急激に増大し、斜板が選択された供給電流値に対応した斜板傾角位置を通り越して最大傾角位置まで迅速に移行してしまう場合がある。このような通り越しは、斜板の最大傾角を規定する部材と斜板との衝突をもたらし、衝突音が発生する。又、設定室温と検出室温との差が大きい状態のときに空調装置作動スイッチをOFFすると、電磁弁に対する供給電流値が大きな値から零へ瞬間的に切り換わる。そのため、斜板傾角が大きな傾角から急激に減少し、斜板が最小傾角位置まで迅速に移行する。このような迅速な移行は斜板の最小傾角を規定する部材と斜板との衝突をもたらし、衝突音が発生する。
【0004】
本発明は、容量制御弁に対する電流供給開始時あるいは電流供給停止時の前記ような衝突音の発生を防止することを目的とする。
【0005】
【課題を解決するための手段】
そのために本発明は、回転軸と一体的に回転するように、かつ前記回転軸に対して傾角可変に制御圧室に収容された斜板、及び前記斜板の傾角に応じた往復動作を行なうピストンを備え、吐出圧領域から前記制御圧室へ冷媒を供給すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧領域から前記制御圧室に至る冷媒供給通路上又は前記制御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に電気式容量制御弁を介在し、前記電気式容量制御弁に対する供給電流値(単位時間当たり)を制御して前記吐出圧領域から前記制御圧室への冷媒供給量又は前記制御圧室から前記吸入圧領域への冷媒抜き出し量を制御し、前記制御圧室内の圧力の制御に基づいて前記斜板の傾角を制御する可変容量型圧縮機を対象とし、請求項1の発明では、前記電気式容量制御弁に対する電流供給を開始するときには、指定された供給電流値を供給開始するまでの過程として前記斜板の最大傾角位置での傾角増大速度を抑制するための緩衝用電流供給開始制御を行なうようにした。
【0006】
また、前記緩衝用電流供給開始制御は、供給電流値零から指定された指定供給電流値まで供給電流値を増大するようにした。
【0007】
さらに、前記緩衝用電流供給開始制御は、供給電流値零から前記指定供給電流値に達しない増大飛躍限界供給電流値へ供給電流値を不連続的に切り換える供給電流値切り換え状態と、前記増大飛躍限界供給電流値から前記指定供給電流値まで供給電流値を徐々に増大する電流増大供給状態とを含むようにした。
【0008】
請求項の発明では、前記電気式容量制御弁に対する電流供給を停止するときには、供給電流値を零とするまでの過程として前記斜板の最小傾角位置での傾角減少速度を抑制するための緩衝用電流供給停止制御を行なうようにした。
【0009】
また、前記緩衝用電流供給停止制御は、指定された指定供給電流値から供給電流値零まで供給電流値を減少するようにした。
【0010】
さらに、前記緩衝用電流供給停止制御は、前記指定供給電流値から前記指定供給電流値に達しない減少飛躍限界供給電流値へ供給電流値を不連続的に切り換える供給電流値切り換え状態と、前記減少飛躍限界供給電流値から供給電流値零まで供給電流値を徐々に減少する電流減少供給状態とを含むようにした。
【0011】
請求項の発明では、前記電気式容量制御弁に対する電流供給の開始を指令する電流供給開始指令手段と、前記斜板の最大傾角位置での傾角増大速度を抑制するための緩衝用電流供給開始制御を行なう緩衝用電流供給開始制御手段と、供給電流値を指定する供給電流値指定手段と、前記指定供給電流値に達しない増大飛躍限界供給電流値を指定する増大飛躍限界供給電流値指定手段とを備えた容量制御装置を構成し、前記緩衝用電流供給開始制御手段は、前記電流供給開始指令手段の電流供給開始指令に基づいて前記緩衝用電流供給開始制御を行なうようにした。
【0012】
また、前記緩衝用電流供給開始制御手段は、前記供給電流値指定手段によって指定された指定供給電流値まで供給電流値零から供給電流値を増大するようにした。
【0013】
さらに、前記緩衝用電流供給開始制御手段は、供給電流値零から前記指定供給電流値に達しない増大飛躍限界供給電流値へ供給電流値を不連続的に切り換え、前記増大飛躍限界供給電流値から前記指定供給電流値まで供給電流値を徐々に増大する電流供給開始制御を行なうようにした。
請求項の発明では、前記電気式容量制御弁に対する電流供給の停止を指令する電流供給停止指令手段と、前記斜板の最小傾角位置での傾角減少速度を抑制するための緩衝用電流供給停止制御を行なう緩衝用電流供給停止制御手段と、供給電流値を指定する供給電流値指定手段と、減少飛躍限界供給電流値を指定する減少飛躍限界供給電流値指定手段とを備えた容量制御装置を構成し、前記緩衝用電流供給停止制御手段は、前記電流供給停止指令手段の電流供給停止指令に基づいて前記緩衝用電流供給停止制御を行なうようにした。
【0014】
また、前記緩衝用電流供給停止制御手段は、前記供給電流値指定手段によって指定された指定供給電流値から供給電流値零まで供給電流値を減少するようにした。
【0015】
さらに、前記緩衝用電流供給停止制御手段は、前記指定供給電流値から前記指定供給電流値に達しない減少飛躍限界供給電流値へ供給電流値を不連続的に切り換え、前記減少飛躍限界供給電流値から供給電流値零まで供給電流値を徐々に減少する電流供給停止制御を行なうようにした。
【0016】
請求項1及び請求項の発明では、電気式容量制御弁に対する電流供給が開始されるときには緩衝用電流供給開始制御が行なわれ、斜板傾角の急激な増大が抑制される。緩衝用電流供給開始制御による斜板傾角の急激な増大の抑制は、斜板の最大傾角位置への不要な到達の回避、あるいは斜板が最大傾角位置へ到達したときの傾角増大速度の抑制をもたらす。
【0017】
また、供給電流値零から指定された供給電流値まで供給電流値を増大する電流増大供給が行われる
【0018】
さらに、供給電流値が零から前記指定供給電流値に達しない増大飛躍限界供給電流値へ不連続的に切り換えられた後、増大飛躍限界供給電流値から前記指定供給電流値まで供給電流値を徐々に増大する電流増大供給が行われる。供給電流値を徐々に増大する電流増大供給状態を含む電流供給状態は、斜板傾角の急激な増大を抑制する。供給電流値零から増大飛躍限界供給電流値への供給電流値の不連続的な切り換えは、吐出容量の速やかな増大に寄与する。
【0019】
請求項及び請求項の発明では、電気式容量制御弁に対する電流供給が停止されるときには緩衝用電流供給停止制御が行なわれ、斜板傾角の急激な減少が抑制される。緩衝用電流供給停止制御による斜板傾角の急激な減少の抑制は、斜板が最小傾角位置へ到達したときの傾角減少速度の抑制をもたらす。
【0020】
また、指定された供給電流値から供給電流値零まで供給電流値を減少する電流減少供給が行われる
【0021】
さらに、供給電流値が指定供給電流値から減少飛躍限界供給電流値へ不連続的に切り換えられた後、減少飛躍限界供給電流値から供給電流値零まで供給電流値を徐々に減少する電流減少供給が行われる。供給電流値を徐々に減少する電流減少供給状態を含む電流供給状態は、斜板傾角の急激な減少を抑制する。指定供給電流値から増大飛躍限界供給電流値への不連続的な切り換えは、吐出容量の速やかな減少に寄与する。
【0022】
【発明の実施の形態】
以下、車両に搭載したクラッチレス可変容量型圧縮機に本発明を具体化した第1の実施の形態を図1〜図6に基づいて説明する。
【0023】
図1に示すように、シリンダブロック11の前端にはフロントハウジング12が接合されている。シリンダブロック11の後端にはリヤハウジング13がバルブプレート14、弁形成プレート15,16及びリテーナ形成プレート17を介して接合固定されている。制御圧室121を形成するフロントハウジング12とシリンダブロック11との間に架設支持された回転軸18は、車両エンジン(図示略)から回転駆動力を得る。
【0024】
回転軸18には斜板20が回転軸18の軸線方向へスライド可能かつ傾動可能に支持されている。図4に示すように、斜板20に止着されたガイドピン23,24の頭部は、回転軸18に止着された回転支持体19のガイド孔191,192にスライド可能に嵌入されている。斜板20は、ガイド孔191,192とガイドピン23,24との連係により回転軸18の軸線方向へ傾動可能かつ回転軸18と一体的に回転可能である。斜板20の半径中心部がシリンダブロック11側へ移動すると、斜板20の傾角が減少する。回転支持体19と斜板20との間に介在された傾角減少ばね25は斜板20の傾角を減少する方向へ斜板20を付勢する。
【0025】
図1及び図3に示すように、シリンダブロック11の中心部に貫設された収容孔21内には筒状の遮断体22がスライド可能に収容されている。遮断体22と収容孔21の端面との間に介在された吸入通路開放ばね26は、遮断体22を斜板20側へ付勢している。回転軸18の後端部はラジアルベアリング27及び遮断体22を介して収容孔21の周面で支持される。リヤハウジング13の中心部に形成された吸入通路31は収容孔21に接続している。遮断体22の先端面が弁形成プレート15に当接することにより遮断体22が斜板20から離間する方向への移動を規制される。斜板20が遮断体22側へ移動するに伴い、斜板20の傾動がスラストベアリング37を介して遮断体22に伝達する。斜板20の回転はスラストベアリング37の存在によって遮断体22への伝達を阻止される。この傾動伝達により遮断体22が吸入通路開放ばね26のばね力に抗して弁形成プレート15側へ移動し、図3に示すように、遮断体22が弁形成プレート15に当接する。斜板20の最小傾角は遮断体22と弁形成プレート15との当接によって規定される。図3は斜板20の最小傾角状態を示す。図1は斜板20の最大傾角状態を示す。斜板20の最大傾角は斜板20と回転支持体19との当接により規定される。
【0026】
シリンダブロック11に貫設されたシリンダボア111内にはピストン28が収容されている。斜板20の回転運動はシュー29を介してピストン28の前後往復運動に変換され、ピストン28がシリンダボア111内を前後動する。
【0027】
図5に示すように、リヤハウジング13内には吸入圧領域となる吸入室131の及びその周囲に吐出圧領域となる吐出室132が区画形成されている。バルブプレート14には吸入ポート141及び吐出ポート142が形成されている。弁形成プレート15上には吸入弁151が形成されており、弁形成プレート16上には吐出弁161が形成されている。吸入室131内の冷媒はピストン28の復動動作により吸入ポート141から吸入弁151を押し退けてシリンダボア111内へ流入する。シリンダボア111内へ流入した冷媒はピストン28の往動動作により吐出ポート142から吐出弁161を押し退けて吐出室132へ吐出される。吐出弁161はリテーナ形成プレート17上のリテーナ171に当接して開度規制される。
【0028】
回転支持体19とフロントハウジング12との間に介在されたスラストベアリング32は、シリンダボア111からピストン28、シュー29、斜板20及びガイドピン23,24を介して回転支持体19に作用する圧縮反力を受け止める。
【0029】
回転軸18内の通路50は制御圧室121と遮断体22の筒内とを連通している。図3に示すように、遮断体22の周面に貫設された放圧通口221は遮断体22の筒内と収容孔21とを連通している。
【0030】
吸入室131は通口143を介して収容孔21に連通している。遮断体22が弁形成プレート15に当接すると、通口143は吸入通路31から遮断される。吸入室131へ冷媒を導入する吸入通路31と吐出室132とは外部冷媒回路33で接続されている。外部冷媒回路33上には凝縮器34、膨張弁35及び蒸発器36が介在されている。膨張弁35は蒸発器36の出口側のガス温度の変動に応じて冷媒流量を制御する。
【0031】
吐出室132と制御圧室121とを接続する冷媒供給通路38上には図2に示す電気式容量制御弁39が介在されている。冷媒供給通路38は吐出圧領域である吐出室132の冷媒を制御圧室121へ供給する通路である。容量制御弁39内の感圧手段47を構成するベローズ40には吸入室131内の圧力(吸入圧)が作用している。吸入室131内の吸入圧は熱負荷を反映している。ベローズ40には弁体41が接続されており、弁体41は弁孔42を開閉する。ベローズ40内の大気圧及び感圧手段47を構成する感圧ばね401のばね力は、弁孔42を開く方向へ弁体41に作用する。容量制御弁39のソレノイド43を構成する固定鉄芯431は、コイル432への電流供給による励磁に基づいて可動鉄芯433を引き付ける。即ち、ソレノイド43の電磁駆動力は、開放付勢ばね48のばね力に抗して弁孔42を閉じる方向へ弁体41を付勢する。追従ばね49は可動鉄芯433を固定鉄芯431側へ付勢する。ソレノイド43は制御コンピュータC1の電流供給制御を受ける。
【0032】
制御コンピュータC1は、空調装置作動スイッチ44のONによってソレノイド43に電流を供給し、空調装置作動スイッチ44のOFFによって電流供給を停止する。制御コンピュータC1には室温設定器45及び室温検出器46が信号接続されている。制御コンピュータC1は、室温設定器45によって設定された目標室温情報及び室温検出器46によって検出された検出室温情報に基づいてソレノイド43に対する供給電流値を制御する。弁孔42における開閉具合、即ち弁開度は、ソレノイド43で生じる電磁駆動力、追従ばね49のばね力、開放付勢ばね48のばね力、感圧手段47の付勢力のバランスによって決まり、容量制御弁39は、ソレノイド43に供給される電流値に応じた吸入圧をもたらす制御を行なう。
【0033】
供給電流値が高められると弁開度が減少し、吐出室132から制御圧室121への冷媒供給量が減る。制御圧室121内の冷媒は、通路50、放圧通口221及び通口143という冷媒抜き出し通路を介して吸入室131へ流出しているため、制御圧室121内の圧力が下がる。従って、斜板20の傾角が増大して吐出容量が増える。吐出容量の増大は吸入圧の低下をもたらす。供給電流値が下げられると弁開度が増大し、吐出室132から制御圧室121への冷媒供給量が増える。従って、制御圧室121内の圧力が上がり、斜板20の傾角が減少して吐出容量が減る。吐出容量の減少は吸入圧の増大をもたらす。
【0034】
ソレノイド43に対する供給電流値が零になると弁開度が最大となり、図3に示すように斜板20の傾角が最小となる。斜板20の傾角が最小になったときには遮断体22が吸入通路31を閉じ、外部冷媒回路33における冷媒循環が停止する。この冷媒循環停止状態は熱負荷低減作用の停止状態である。
【0035】
斜板20の最小傾角は0°よりも僅かに大きくしてある。斜板20の最小傾角は0°ではないため、斜板傾角が最小の状態においてもシリンダボア111から吐出室132への吐出は行われている。シリンダボア111から吐出室132へ吐出された冷媒は冷媒供給通路38を通って制御圧室121へ流入する。制御圧室121内の冷媒は、通路50、放圧通口221及び通口143という冷媒抜き出し通路を通って吸入室131へ流出し、吸入室131内の冷媒はシリンダボア111内へ吸入されて吐出室132へ吐出される。即ち、斜板傾角が最小状態では、吐出圧領域である吐出室132、冷媒供給通路38、制御圧室121、前記冷媒抜き出し通路、吸入圧領域である吸入室131、シリンダボア111を経由する循環通路が圧縮機内にできている。そして、吐出室132、制御圧室121及び吸入室131の間では圧力差が生じている。従って、冷媒が前記循環通路を循環し、冷媒と共に流動する潤滑油が圧縮機内を潤滑する。
【0036】
ソレノイド43に対する電流供給を再開すると弁開度が小さくなり、制御圧室121内の圧力が下がる。従って、斜板20の傾角が最小傾角から増大してゆく。斜板20の傾角が最小傾角から増大すると遮断体22が弁形成プレート15から離間し、冷媒が吸入通路31から吸入室131へ流入する。即ち、外部冷媒回路33における冷媒循環が再開される。
【0037】
制御コンピュータC1は、空調装置作動スイッチ44のONに伴う容量制御弁39に対する電流供給の開始の際には緩衝用電流供給開始制御を行なう。又、制御コンピュータC1は、空調装置作動スイッチ44のOFFに伴う容量制御弁39に対する電流供給の停止の際には緩衝用電流供給停止制御を行なう。
【0038】
電流供給開始指令手段となる空調装置作動スイッチ44をON操作すると、図6に示すように、電流供給開始指令信号S1が制御コンピュータC1に出力される。緩衝用電流供給開始制御手段となる制御コンピュータC1は、電流供給開始指令信号S1の入力に応答して室温設定器45によって設定された目標室温と、室温検出器46によって検出された検出温度との比較に基づいて容量制御弁39に対する指定供給電流値Ixを割り出す。供給電流値指定手段となる制御コンピュータC1は、図6の曲線Eのうちの上り傾斜部E1で示すように供給電流値を零から指定供給電流値Ixまで徐々に増大させる緩衝用電流供給開始制御を行なう。緩衝用電流供給開始制御が行われると、容量制御弁39の弁開度が徐々に減少してゆき、制御圧室121内の圧力が徐々に低下してゆく。制御圧室121内の緩慢な圧力低下に伴い、斜板20の傾角が図6の曲線Kのうちの上り傾斜部K1で示すように最小傾角から徐々に増大してゆき、吐出容量が徐々に増大してゆく。斜板20の傾角が最小傾角から増大すると、外部冷媒回路33における冷媒循環が行われ、吸入圧が低下してゆく。図6の曲線Pのうちの平坦部P1は空調装置作動スイッチ44のON前の吸入圧を表し、曲線Pのうちの下り傾斜部P2は斜板20の最小傾角からの緩慢な傾角増大に伴う吸入圧変動を表す。
【0039】
供給電流値が指定供給電流値Ixになると、斜板20が指定供給電流値Ixに対応する傾角位置へ移行すると共に、吸入圧が指定供給電流値Ixに対応する吸入圧へ収束する。図6の曲線Pのうちの平坦部P3は指定供給電流値Ixに対応する吸入圧を表す。
【0040】
電流供給停止指令手段となる空調装置作動スイッチ44をOFF操作すると、図6に示すように、電流供給停止指令信号S2が制御コンピュータC1に出力される。緩衝用電流供給停止制御手段となる制御コンピュータC1は、電流供給停止指令信号S2の入力に応答して図6の曲線Eのうちの下り傾斜部E2で示すように供給電流値を電流供給停止指令信号S2の入力時の供給電流値Iyから供給電流値零まで徐々に減少させる緩衝用電流供給停止制御を行なう。緩衝用電流供給停止制御が行われると、容量制御弁39の弁開度が徐々に増大してゆき、制御圧室121内の圧力が徐々に高くなってゆく。制御圧室121内の緩慢な圧力上昇に伴い、斜板20の傾角が図6の曲線Kのうちの下り傾斜部K2で示すように電流供給停止指令信号S2の入力時の傾角から徐々に減少してゆき、吐出容量が徐々に減少してゆく。斜板20の傾角が電流供給停止指令信号S2の入力時の傾角から減少すると吐出容量が減ってゆき、吸入圧が上昇してゆく。図6の曲線Pのうちの平坦部P4は空調装置作動スイッチ44のOFF前の吸入圧を表し、曲線Pのうちの上り傾斜部P5は斜板20の電流供給停止指令信号S2の入力時の傾角からの緩慢な傾角減少に伴う吸入圧変動を表す。
【0041】
供給電流値が零になると、斜板20が最小傾角位置へ移行すると共に、外部冷媒回路33における冷媒循環が停止する。図6の曲線Pのうちの平坦部P6は外部冷媒回路33における冷媒循環停止後の吸入圧を表す。
【0042】
以上のような容量可変動作を行なう第1の実施の形態では以下の効果が得られる。
(1-1)空調装置作動スイッチ44のON操作によって電気式容量制御弁39に対する電流供給が開始されるときには、供給電流値零から指定された指定供給電流値まで供給電流値を徐々に増大する緩衝用電流供給開始制御が行なわれる。緩慢な供給電流値の増大は斜板20の傾角の急激な増大を抑制する。斜板20の傾角の急激な増大は、斜板20の最大傾角を規定する回転支持体19と斜板20との衝突をもたらし、衝突音が発生する。供給電流値の緩慢な増大具合は、斜板20の傾角の増大が供給電流値の増大に対応して追随するように設定されている。このような斜板20の傾角の急激な増大の抑制は、指定供給電流値に対応した傾角位置からの斜板20のオーバーランを抑制する。指定供給電流値が最大傾角に対応する場合には、斜板20の最大傾角位置での傾角増大速度が抑制される。その結果、衝突音をもたらすような回転支持体19と斜板20との衝突が回避される。
【0043】
(1-2)空調装置作動スイッチ44のOFF操作によって電気式容量制御弁39に対する電流供給が停止されるときには、空調装置作動スイッチ44のOFF直前の指定供給電流値から供給電流値零まで供給電流値を徐々に減少する緩衝用電流供給停止制御が行なわれる。緩慢な供給電流値の減少は斜板20の傾角の急激な減少を抑制する。斜板20の傾角の急激な減少は、斜板20の最小傾角を規定する弁形成プレート15と斜板20に連動する遮断体22との衝突をもたらし、衝突音が発生する。供給電流値の緩慢な減少具合は、斜板20の傾角の減少が供給電流値の減少に対応して追随するように設定されている。このような斜板20の傾角の急激な減少の抑制は、斜板20の最小傾角位置での傾角減少速度を抑制する。斜板20の最小傾角位置での傾角減少速度の抑制は、衝突音をもたらすような弁形成プレート15と遮断体22との衝突の回避をもたらす。
【0044】
次に、図7及び図8の第2の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が付してある。
この実施の形態では、吸入室131内の吸入圧が圧力検出器51によって検出されるようになっており、制御圧室121内の制御圧が圧力検出器52によって検出されるようになっている。両圧力検出器51,52は検出情報を制御コンピュータC2へ送る。制御コンピュータC2には(吸入圧−供給電流値)マップ及び(制御圧−供給電流値)マップが記憶されている。制御コンピュータC2は、空調装置作動スイッチ44のONに伴う容量制御弁39に対する電流供給の開始の際には(吸入圧−供給電流値)マップ及び圧力検出器51から得られる圧力検出情報を利用した緩衝用電流供給開始制御を行なう。又、制御コンピュータC2は、空調装置作動スイッチ44のOFFに伴う容量制御弁39に対する電流供給の停止の際には(制御圧−供給電流値)マップ及び圧力検出器52から得られる圧力検出情報を利用した緩衝用電流供給停止制御を行なう。
【0045】
電流供給開始指令手段となる空調装置作動スイッチ44をON操作すると、図8に示すように、電流供給開始指令信号S1が制御コンピュータC2に出力される。緩衝用電流供給開始制御手段となる制御コンピュータC2は、電流供給開始指令信号S1の入力に応答して室温設定器45によって設定された目標室温と、室温検出器46によって検出された検出温度との比較に基づいて容量制御弁39に対する指定供給電流値Ixを割り出す。又、供給電流値指定手段となる制御コンピュータC2は、指定供給電流値Ix、圧力検出器51から得られる検出圧力、及び(吸入圧−供給電流値)マップに基づいて増大飛躍限界供給電流値Izを割り出す。(吸入圧−供給電流値)マップは、吸入圧及び供給電流値を変数として増大飛躍限界供給電流値Izを求めるマップである。
【0046】
制御コンピュータC2は、図8の曲線Dのうちの垂直線D1で示すように供給電流値を零から増大飛躍限界供給電流値Izへ不連続的に切り換え、次いで上り傾斜部D2で示すように供給電流値を増大飛躍限界供給電流値Izから指定供給電流値Ixまで徐々に増大させる緩衝用電流供給開始制御を行なう。緩衝用電流供給開始制御が行われると、容量制御弁39の弁開度が増大飛躍限界供給電流値Izに対応した弁開度まで瞬間的に変化してから徐々に減少してゆき、制御圧室121内の圧力が増大飛躍限界供給電流値Izからの供給電流値の緩慢な増大に追随するような状態で徐々に低下してゆく。制御圧室121内の緩慢な圧力低下に伴い、斜板20の傾角が図8の曲線Hのうちの上り傾斜部H1で示すように最小傾角から徐々に増大してゆき、吐出容量が徐々に増大してゆく。斜板20の緩慢な傾角増大は、増大飛躍限界供給電流値Izからの供給電流値の緩慢な減少に追随するような状態で行われる。斜板20の傾角が最小傾角から増大すると、外部冷媒回路33における冷媒循環が行われ、吸入圧が低下してゆく。図8の曲線Qのうちの平坦部Q1は空調装置作動スイッチ44のON前の吸入圧を表し、曲線Qのうちの下り傾斜部Q2は斜板20の最小傾角からの緩慢な傾角増大に伴う吸入圧変動を表す。
【0047】
供給電流値が指定供給電流値Ixになると、斜板20が指定供給電流値Ixに対応する傾角位置へ移行すると共に、吸入圧が指定供給電流値Ixに対応する吸入圧へ収束する。図8の曲線Qのうちの平坦部Q3は指定供給電流値Ixに対応する吸入圧を表す。
【0048】
空調装置作動スイッチ44をOFF操作すると、図8に示すように、電流供給停止指令信号S2が制御コンピュータC2に出力される。緩衝用電流供給停止制御手段となる制御コンピュータC2は、電流供給停止指令信号S2の入力に応答して、空調装置作動スイッチ44のOFF時の指定供給電流値、圧力検出器52から得られる検出制御圧、及び(制御圧−供給電流値)マップに基づいて減少飛躍限界供給電流値Iwを割り出す。(制御圧−供給電流値)マップは、制御圧及び供給電流値を変数として減少飛躍限界供給電流値Iwを求めるマップである。
制御コンピュータC2は、図8の曲線Dのうちの垂直線D3で示すように供給電流値を空調装置作動スイッチ44のOFF直前の指定供給電流値Iyから減少飛躍限界供給電流値Iwへ不連続的に切り換え、次いで下り傾斜部D4で示すように供給電流値を減少飛躍限界供給電流値Iwから零まで徐々に減少させる緩衝用電流供給停止制御を行なう。緩衝用電流供給停止制御が行われると、容量制御弁39の弁開度が減少飛躍限界供給電流値Iwに対応した弁開度まで瞬間的に変化してから徐々に増大してゆき、制御圧室121内の圧力が減少飛躍限界供給電流値Iwからの供給電流値の緩慢な減少に追随するような状態で徐々に上昇してゆく。制御圧室121内の緩慢な圧力上昇に伴い、斜板20の傾角が図8の曲線Hのうちの下り傾斜部H2で示すように電流供給停止指令信号S2の入力時の傾角から徐々に減少してゆく。斜板20の傾角が電流供給停止指令信号S2の入力時の傾角から減少すると吐出容量が減ってゆき、吸入圧が上昇してゆく。図8の曲線Qのうちの平坦部Q4は空調装置作動スイッチ44のOFF前の吸入圧を表し、曲線Qのうちの上り傾斜部Q5は斜板20の電流供給停止指令信号S2の入力時の傾角からの緩慢な傾角減少に伴う吸入圧変動を表す。
【0049】
供給電流値が零になると、斜板20が最小傾角位置へ移行すると共に、外部冷媒回路33における冷媒循環が停止する。図8の曲線Qのうちの平坦部Q6は外部冷媒回路33における冷媒循環停止後の吸入圧を表す。
【0050】
第2の実施の形態では以下の効果が得られる。
(2-1)空調装置作動スイッチ44のON操作によって電気式容量制御弁39に対する電流供給が開始されるときには、圧力検出器51と共に増大飛躍限界供給電流値指定手段を構成する制御コンピュータC2が検出吸入圧に応じた増大飛躍限界供給電流値を指定する。そして、制御コンピュータC2は、供給電流値を零から増大飛躍限界供給電流値Izまで不連続的に増大し、次いで増大飛躍限界供給電流値Izから指定された指定供給電流値まで供給電流値を徐々に増大する緩衝用電流供給開始制御を行なう。増大飛躍限界供給電流値Izは、斜板20と回転支持体19との衝突をもたらさないような供給電流値の零からの不連続的な増大量の限界値であって吸入圧に左右される。即ち、供給電流値を零から検出吸入圧に対応した増大飛躍限界供給電流値Izよりも高い値に不連続的に増大させた場合には斜板20が回転支持体19に衝突して衝突音が発生する。供給電流値を零から増大飛躍限界供給電流値Izへ不連続的に増大させた場合には、斜板20の最小傾角からの傾角増大が衝突音をもたらすことなく速やかに行われ、容量復帰が速やかに行われる。
【0051】
(2-2)空調装置作動スイッチ44のOFF操作によって電気式容量制御弁39に対する電流供給が停止されるときには、圧力検出器52と共に減少飛躍限界供給電流値指定手段を構成する制御コンピュータC2が検出制御圧に応じた減少飛躍限界供給電流値を指定する。そして、制御コンピュータC2は、空調装置作動スイッチ44のOFF直前の指定供給電流値から減少飛躍限界供給電流値Iwまで供給電流値を不連続的に減少し、次いで減少飛躍限界供給電流値Iwから供給電流値零まで供給電流値を徐々に減少する緩衝用電流供給停止制御を行なう。減少飛躍限界供給電流値Iwは、遮断体22と弁形成プレート15との衝突をもたらさないような指定供給電流値Iyからの不連続的な減少量の限界値であって検出制御圧に左右される。即ち、供給電流値を指定供給電流値Iyから検出制御圧に対応した減少飛躍限界供給電流値Iwよりも低い値に不連続的に減少させた場合には遮断体22が弁形成プレート15に衝突して衝突音が発生する。供給電流値を指定供給電流値Iyから減少飛躍限界供給電流値Iwへ不連続的に減少させた場合には、斜板20の最小傾角位置への移行が衝突音をもたらすことなく速やかに行われる。
【0052】
次に、図9及び図10の第3の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が付してある。
この実施の形態では、電気式容量制御弁53のソレノイド531が励磁されると弁体532が弁孔533を閉じ、斜板20が最大傾角位置に移行する。ソレノイド531が消磁されると弁体532が弁開度最大位置へ移行し、斜板20が最小傾角位置へ移行する。電流供給開始指令手段及び電流供給停止指令手段となる空調装置作動スイッチ44がONされると、制御コンピュータC3はソレノイド531を励磁する。ソレノイド531が励磁しているときに空調装置作動スイッチ44がOFFされると、制御コンピュータC3はソレノイド531を消磁する。空調装置作動スイッチ44がON状態において、制御コンピュータC3は、室温検出器46によって得られた検出温度が室温設定器45によって設定された目標室温以下になるとソレノイド531の消磁を指令する。制御コンピュータC3は、検出温度が目標室温を越えるとソレノイド531の励磁を指令する。室温検出器46及び制御コンピュータC3は、電流供給開始指令手段及び電流供給停止指令手段を構成する。
【0053】
ソレノイド531を励磁するときには、制御コンピュータC3は図10の曲線Fの上り傾斜部F1で示す緩衝用電流供給開始制御を行なう。供給電流値の最大値は指定供給電流値となる。信号S3は、空調装置作動スイッチ44のON操作時あるいは検出温度が目標室温を越えたときの電流供給開始指令を表す。曲線Gの上り傾斜部G1は供給電流値の増大に伴う斜板20の傾角増大を表し、曲線Rの下り傾斜部R1は斜板20の傾角増大に伴う吸入圧の低下を表す。
【0054】
ソレノイド531を消磁するときには、制御コンピュータC3は図10の曲線Fの下り傾斜部F2で示す緩衝用電流供給停止制御を行なう。信号S4は、空調装置作動スイッチ44のOFF操作時あるいは検出温度が目標室温以下になったときの電流供給停止指令を表す。曲線Gの下り傾斜部G2は供給電流値の減少に伴う斜板20の傾角減少を表し、曲線Rの上り傾斜部R2は斜板20の傾角減少に伴う吸入圧の上昇を表す。
【0055】
この実施の形態においても、斜板20の最大傾角位置における斜板20の傾角増大速度が抑制され、斜板20と回転支持体19との衝突が抑制される。又、斜板20の最小傾角位置における斜板20の傾角減少速度が抑制され、遮断体22と弁形成プレート15との衝突が抑制される。
【0056】
本発明では以下のような実施の形態も可能である。
(1)第1の実施の形態において、電流供給開始時には、斜板20の最大傾角位置における傾角増大速度を抑制するように供給電流値を零から最大値あるいは最大値付近まで連続的に増大した後に指定供給電流値まで連続的に減少させること。このようにすれば容量復帰が早くなる。
(2)制御圧室から吸入圧領域へ冷媒を抜き出す通路上に容量制御弁を介在した可変容量型圧縮機に本発明を適用すること。
(3)供給電流値をデューティ比制御すること。この場合、単位時間当たりの平均供給電流値を供給電流値と見なす。
(4)外部駆動源からクラッチを介して回転軸に駆動力を伝えるクラッチ付き可変容量型圧縮機に本発明を適用すること。
【0057】
【発明の効果】
以上詳述したように、電気式容量制御弁に対する電流供給を開始するときには、指定された供給電流値を供給開始するまでの過程として前記斜板の最大傾角位置での傾角増大速度を抑制するための緩衝用電流供給開始制御を行なうようにした発明では、斜板の最大傾角位置への不要な到達を回避して衝突音の発生を回避し、さらに斜板が最大傾角位置にきたときの衝突音を抑制し得るという優れた効果を奏する。
【0058】
電気式容量制御弁に対する電流供給を停止するときには、供給電流値を零とするまでの過程として前記斜板の最小傾角位置での傾角減少速度を抑制するための緩衝用電流供給停止制御を行なうようにした発明では、斜板が最小傾角位置にきたときの衝突音を抑制し得るという優れた効果を奏する。
【図面の簡単な説明】
【図1】第1の実施の形態を示す圧縮機全体の側断面図。
【図2】電気式容量制御弁39の縦断面図。
【図3】斜板傾角が最小状態にある要部側断面図。
【図4】図1のA−A線断面図。
【図5】図1のB−B線断面図。
【図6】供給電流値、斜板傾角、吸入圧の関係を示すグラフ。
【図7】第2の実施の形態を示す圧縮機全体の側断面図。
【図8】供給電流値、斜板傾角、吸入圧の関係を示すグラフ。
【図9】第3の実施の形態を示す圧縮機全体の側断面図。
【図10】供給電流値、斜板傾角、吸入圧の関係を示すグラフ。
【符号の説明】
121…制御圧室、131…吸入圧領域となる吸入室、132…吐出圧領域となる吐出室、18…回転軸、20…斜板、38…冷媒供給通路、39…電気式容量制御弁、44…電流供給開始指令手段及び電流供給停止指令手段となる空調装置作動スイッチ、C1…緩衝用電流供給開始制御手段、緩衝用電流供給停止制御手段及び供給電流値指定手段となる制御コンピュータ、C2…緩衝用電流供給開始制御手段、緩衝用電流供給停止制御手段、供給電流値指定手段、増大飛躍限界供給電流値指定手段、及び減少飛躍限界供給電流値指定手段となる制御コンピュータ、C3…緩衝用電流供給開始制御手段及び緩衝用電流供給停止制御手段となる制御コンピュータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacity control method and apparatus in a variable capacity compressor.
[0002]
[Prior art]
In the variable displacement compressor disclosed in Japanese Patent Application Laid-Open No. 8-338364, the discharge capacity is changed based on the pressure difference between the crank chamber pressure and the suction pressure in the suction pressure region. The pressure in the crank chamber is adjusted by supplying the refrigerant from the discharge chamber, which is a discharge pressure region, to the crank chamber, and extracting the refrigerant from the crank chamber to the suction chamber, which is a suction pressure region. A solenoid valve for capacity control is interposed on the pressure supply passage for supplying the refrigerant from the discharge chamber to the crank chamber. The valve body of the solenoid valve is biased toward the valve closing position by excitation of the solenoid. The supply current value for the solenoid valve is determined based on a comparison between a preset set room temperature and a detected room temperature. The larger the difference between the set room temperature and the detected room temperature, the larger the supply current value, and the smaller the valve opening of the solenoid valve. As the valve opening decreases, the swash plate tilt angle increases and the discharge capacity increases. When the valve body is disposed at the valve closing position, the pressure supply passage is closed, and the refrigerant supply from the discharge chamber to the crank chamber is stopped. Therefore, the inclination angle of the swash plate becomes the maximum inclination angle. When the solenoid is demagnetized, the valve body moves to the maximum valve opening position, and refrigerant supply from the discharge chamber to the crank chamber increases. This increases the pressure in the crank chamber and minimizes the inclination of the swash plate. In the minimum inclination state of the swash plate, a blocking body interlocking with the inclination of the swash plate closes the suction passage, and refrigerant circulation in the external refrigerant circuit stops. This refrigerant circulation stop state is a state without a heat load reducing action.
[0003]
[Problems to be solved by the invention]
Normally, when the air conditioner operation switch is turned on, the difference between the set room temperature and the detected room temperature is large, and the supply current value to the solenoid valve becomes a large value from when the air conditioner operation switch is turned on. As a result, the swash plate inclination angle suddenly increases from the minimum inclination angle, and the swash plate may quickly pass through the swash plate inclination position corresponding to the selected supply current value to the maximum inclination position. Such a passage causes a collision between the member that defines the maximum inclination angle of the swash plate and the swash plate, and a collision sound is generated. Further, when the air conditioner operation switch is turned off when the difference between the set room temperature and the detected room temperature is large, the supply current value for the solenoid valve is instantaneously switched from a large value to zero. For this reason, the swash plate inclination angle rapidly decreases from a large inclination angle, and the swash plate moves quickly to the minimum inclination position. Such a rapid transition causes a collision between a member that defines the minimum inclination angle of the swash plate and the swash plate, and a collision sound is generated.
[0004]
An object of the present invention is to prevent the occurrence of the above-described collision noise when starting current supply to a capacity control valve or stopping current supply.
[0005]
[Means for Solving the Problems]
For this purpose, the present invention performs a reciprocating operation in accordance with the inclination angle of the swash plate that is housed in the control pressure chamber so as to rotate integrally with the rotation shaft and that can be tilted with respect to the rotation shaft. A piston is provided to supply the refrigerant from the discharge pressure region to the control pressure chamber and to draw out the refrigerant from the control pressure chamber to the suction pressure region and on the refrigerant supply passage from the discharge pressure region to the control pressure chamber or the control An electric capacity control valve is interposed on the refrigerant extraction passage extending from the pressure chamber to the suction pressure region, and the supply current value (per unit time) to the electric capacity control valve is controlled to control the control pressure from the discharge pressure region. A variable capacity compressor that controls a refrigerant supply amount to a chamber or a refrigerant extraction amount from the control pressure chamber to the suction pressure region, and controls an inclination angle of the swash plate based on a control of a pressure in the control pressure chamber. Covered and claim 1 In the present invention, when the current supply to the electric capacity control valve is started, as a process until the supply of the specified supply current value is started, the buffer for suppressing the tilt increase speed at the maximum tilt position of the swash plate Current supply start control was performed.
[0006]
  Also,The buffer current supply start control increases the supply current value from zero supply current value to the specified supply current value specified.DoI did it.
[0007]
  furtherThe buffer current supply start control includes a supply current value switching state in which the supply current value is discontinuously switched from a supply current value of zero to an increase jump limit supply current value that does not reach the specified supply current value, and the increase jump limit. A current increasing supply state in which the supply current value is gradually increased from the supply current value to the specified supply current value.
[0008]
  Claim2According to the invention, when the current supply to the electric capacity control valve is stopped, the buffer current supply for suppressing the rate of decrease in the inclination angle at the minimum inclination position of the swash plate as a process until the supply current value becomes zero. Stop control was performed.
[0009]
  AlsoThe buffer current supply stop control decreases the supply current value from the specified supply current value to the supply current value of zero.DoI did it.
[0010]
  furtherThe buffer current supply stop control includes a supply current value switching state in which the supply current value is discontinuously switched from the specified supply current value to a decrease jump limit supply current value that does not reach the specified supply current value, and the decrease jump. A current decreasing supply state in which the supply current value gradually decreases from the limit supply current value to the supply current value of zero.
[0011]
  Claim3In the invention, current supply start command means for instructing start of current supply to the electric capacity control valve, and buffer current supply start control for suppressing the tilt increase speed at the maximum tilt position of the swash plate are performed. Buffer current supply start control means; andSupply current value specifying means for specifying a supply current value; and increased jump limit supply current value specifying means for specifying an increased jump limit supply current value that does not reach the specified supply current value;The buffer current supply start control means performs the buffer current supply start control based on a current supply start command of the current supply start command means.
[0012]
  AlsoThe buffering current supply start control means increases the supply current value from zero to the designated supply current value designated by the supply current value designation means.DoI did it.
[0013]
  furtherThe buffer current supply start control means discontinuously switches the supply current value from a supply current value of zero to an increased jump limit supply current value that does not reach the specified supply current value, and from the increase jump limit supply current value, Current supply start control for gradually increasing the supply current value up to the specified supply current value is performed.
  Claim4In this invention, current supply stop command means for instructing stop of current supply to the electric capacity control valve, and buffer current supply stop control for suppressing the inclination decrease rate at the minimum inclination position of the swash plate are performed. Buffer current supply stop control means andSupply current value specifying means for specifying the supply current value, and decrease jump limit supply current value specifying means for specifying the decrease jump limit supply current value;The buffering current supply stop control means performs the buffering current supply stop control based on the current supply stop command of the current supply stop command means.
[0014]
  AlsoThe buffer current supply stop control means decreases the supply current value from the designated supply current value designated by the supply current value designation means to the supply current value zero.DoI did it.
[0015]
  furtherThe buffering current supply stop control means discontinuously switches the supply current value from the specified supply current value to a decrease jump limit supply current value that does not reach the specified supply current value, and from the decrease jump limit supply current value Current supply stop control is performed to gradually decrease the supply current value until the supply current value becomes zero.
[0016]
  Claim 1 and claim3In this invention, when current supply to the electric capacity control valve is started, buffer current supply start control is performed, and a rapid increase in the swash plate inclination angle is suppressed. Suppressing the sudden increase of the swash plate tilt angle by controlling the start of the buffer current supply prevents the swash plate from unnecessarily reaching the maximum tilt position or suppresses the tilt increase rate when the swash plate reaches the maximum tilt position. Bring.
[0017]
  AlsoSupply current value from zero to the specified supply current valueWithSupply current valueIncreaseIncreased current supply is performed.
[0018]
  furtherAfter the supply current value is discontinuously switched from zero to the increase jump limit supply current value that does not reach the specified supply current value, the supply current value is gradually increased from the increase jump limit supply current value to the specified supply current value. Increasing current supply is performed. The current supply state including the current increase supply state in which the supply current value is gradually increased suppresses a rapid increase in the swash plate inclination angle. Discontinuous switching of the supply current value from the supply current value of zero to the increased jump limit supply current value contributes to a rapid increase in discharge capacity.
[0019]
  Claim2And claims4In this invention, when the current supply to the electric capacity control valve is stopped, the buffer current supply stop control is performed, and the rapid decrease of the swash plate inclination angle is suppressed. Suppressing the rapid decrease in the swash plate tilt angle by the buffer current supply stop control brings about the suppression of the tilt decrease rate when the swash plate reaches the minimum tilt position.
[0020]
  AlsoFrom the specified supply current value to zeroWithSupply current valueDecreaseLess current reduction is provided.
[0021]
  furtherAfter the supply current value is discontinuously switched from the specified supply current value to the reduced jump limit supply current value, the current reduction supply gradually decreases the supply current value from the decrease jump limit supply current value to the supply current value zero. Done. The current supply state including the current decrease supply state in which the supply current value is gradually reduced suppresses a rapid decrease in the swash plate inclination angle. Discontinuous switching from the specified supply current value to the increased jump limit supply current value contributes to a rapid decrease in the discharge capacity.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment in which the present invention is embodied in a clutchless variable displacement compressor mounted on a vehicle will be described below with reference to FIGS.
[0023]
As shown in FIG. 1, a front housing 12 is joined to the front end of the cylinder block 11. A rear housing 13 is joined and fixed to the rear end of the cylinder block 11 via a valve plate 14, valve forming plates 15 and 16, and a retainer forming plate 17. A rotating shaft 18 installed and supported between the front housing 12 and the cylinder block 11 forming the control pressure chamber 121 obtains a rotational driving force from a vehicle engine (not shown).
[0024]
A swash plate 20 is supported on the rotary shaft 18 so as to be slidable and tiltable in the axial direction of the rotary shaft 18. As shown in FIG. 4, the heads of the guide pins 23 and 24 fixed to the swash plate 20 are slidably fitted into the guide holes 191 and 192 of the rotary support 19 fixed to the rotary shaft 18. Yes. The swash plate 20 can be tilted in the axial direction of the rotary shaft 18 and can rotate integrally with the rotary shaft 18 by the linkage of the guide holes 191 and 192 and the guide pins 23 and 24. When the radius center portion of the swash plate 20 moves to the cylinder block 11 side, the inclination angle of the swash plate 20 decreases. An inclination reduction spring 25 interposed between the rotary support 19 and the swash plate 20 urges the swash plate 20 in a direction to reduce the inclination angle of the swash plate 20.
[0025]
As shown in FIGS. 1 and 3, a cylindrical blocking body 22 is slidably accommodated in an accommodation hole 21 penetrating in the center of the cylinder block 11. A suction passage opening spring 26 interposed between the blocking body 22 and the end face of the accommodation hole 21 urges the blocking body 22 toward the swash plate 20. The rear end portion of the rotary shaft 18 is supported on the peripheral surface of the accommodation hole 21 via the radial bearing 27 and the blocking body 22. A suction passage 31 formed at the center of the rear housing 13 is connected to the accommodation hole 21. Movement of the blocking body 22 in a direction away from the swash plate 20 is restricted when the distal end surface of the blocking body 22 contacts the valve forming plate 15. As the swash plate 20 moves toward the blocking body 22, the tilt of the swash plate 20 is transmitted to the blocking body 22 via the thrust bearing 37. The rotation of the swash plate 20 is prevented from being transmitted to the blocking body 22 due to the presence of the thrust bearing 37. By this tilt transmission, the blocking body 22 moves toward the valve forming plate 15 against the spring force of the suction passage opening spring 26, and the blocking body 22 contacts the valve forming plate 15 as shown in FIG. The minimum inclination angle of the swash plate 20 is defined by the contact between the blocking body 22 and the valve forming plate 15. FIG. 3 shows the minimum inclination state of the swash plate 20. FIG. 1 shows a maximum inclination state of the swash plate 20. The maximum inclination angle of the swash plate 20 is defined by the contact between the swash plate 20 and the rotary support 19.
[0026]
A piston 28 is accommodated in a cylinder bore 111 penetrating the cylinder block 11. The rotational movement of the swash plate 20 is converted into the back-and-forth reciprocating movement of the piston 28 via the shoe 29, and the piston 28 moves back and forth in the cylinder bore 111.
[0027]
As shown in FIG. 5, in the rear housing 13, a suction chamber 131 serving as a suction pressure region and a discharge chamber 132 serving as a discharge pressure region are formed around the suction chamber 131. A suction port 141 and a discharge port 142 are formed in the valve plate 14. A suction valve 151 is formed on the valve forming plate 15, and a discharge valve 161 is formed on the valve forming plate 16. The refrigerant in the suction chamber 131 flows into the cylinder bore 111 by pushing the suction valve 151 away from the suction port 141 by the backward movement of the piston 28. The refrigerant flowing into the cylinder bore 111 is discharged into the discharge chamber 132 by pushing the discharge valve 161 away from the discharge port 142 by the forward movement of the piston 28. The discharge valve 161 abuts on the retainer 171 on the retainer forming plate 17 and the opening degree is regulated.
[0028]
A thrust bearing 32 interposed between the rotary support 19 and the front housing 12 is applied to the rotary support 19 from the cylinder bore 111 via the piston 28, the shoe 29, the swash plate 20 and the guide pins 23 and 24. Take power.
[0029]
A passage 50 in the rotating shaft 18 communicates the control pressure chamber 121 and the cylinder of the blocking body 22. As shown in FIG. 3, a pressure release port 221 penetrating the peripheral surface of the blocking body 22 communicates the inside of the blocking body 22 with the accommodation hole 21.
[0030]
The suction chamber 131 communicates with the accommodation hole 21 through the communication port 143. When the blocking body 22 comes into contact with the valve forming plate 15, the opening 143 is blocked from the suction passage 31. The suction passage 31 for introducing the refrigerant into the suction chamber 131 and the discharge chamber 132 are connected by an external refrigerant circuit 33. A condenser 34, an expansion valve 35 and an evaporator 36 are interposed on the external refrigerant circuit 33. The expansion valve 35 controls the flow rate of the refrigerant according to the change in the gas temperature on the outlet side of the evaporator 36.
[0031]
An electric capacity control valve 39 shown in FIG. 2 is interposed on the refrigerant supply passage 38 connecting the discharge chamber 132 and the control pressure chamber 121. The refrigerant supply passage 38 is a passage through which the refrigerant in the discharge chamber 132 that is a discharge pressure region is supplied to the control pressure chamber 121. The pressure (suction pressure) in the suction chamber 131 acts on the bellows 40 constituting the pressure-sensitive means 47 in the capacity control valve 39. The suction pressure in the suction chamber 131 reflects the heat load. A valve body 41 is connected to the bellows 40, and the valve body 41 opens and closes the valve hole 42. The spring force of the pressure sensitive spring 401 constituting the atmospheric pressure and pressure sensitive means 47 in the bellows 40 acts on the valve body 41 in the direction of opening the valve hole 42. The fixed iron core 431 constituting the solenoid 43 of the capacity control valve 39 attracts the movable iron core 433 based on excitation by supplying current to the coil 432. That is, the electromagnetic driving force of the solenoid 43 biases the valve body 41 in a direction to close the valve hole 42 against the spring force of the opening biasing spring 48. The follower spring 49 urges the movable iron core 433 toward the fixed iron core 431 side. The solenoid 43 receives the current supply control of the control computer C1.
[0032]
The control computer C1 supplies current to the solenoid 43 when the air conditioner operation switch 44 is turned on, and stops supplying current when the air conditioner operation switch 44 is turned off. A room temperature setter 45 and a room temperature detector 46 are signal-connected to the control computer C1. The control computer C1 controls the supply current value to the solenoid 43 based on the target room temperature information set by the room temperature setter 45 and the detected room temperature information detected by the room temperature detector 46. The degree of opening and closing in the valve hole 42, that is, the valve opening, is determined by the balance of the electromagnetic driving force generated by the solenoid 43, the spring force of the follower spring 49, the spring force of the open biasing spring 48, and the biasing force of the pressure sensing means 47. The control valve 39 performs control for providing suction pressure in accordance with the current value supplied to the solenoid 43.
[0033]
When the supply current value is increased, the valve opening decreases, and the refrigerant supply amount from the discharge chamber 132 to the control pressure chamber 121 decreases. Since the refrigerant in the control pressure chamber 121 flows out to the suction chamber 131 through the refrigerant extraction passages of the passage 50, the pressure release passage 221 and the passage 143, the pressure in the control pressure chamber 121 decreases. Accordingly, the inclination angle of the swash plate 20 increases and the discharge capacity increases. An increase in the discharge capacity causes a decrease in the suction pressure. When the supply current value is lowered, the valve opening increases, and the amount of refrigerant supplied from the discharge chamber 132 to the control pressure chamber 121 increases. Accordingly, the pressure in the control pressure chamber 121 increases, the inclination angle of the swash plate 20 decreases, and the discharge capacity decreases. A decrease in the discharge capacity results in an increase in the suction pressure.
[0034]
When the supply current value to the solenoid 43 becomes zero, the valve opening becomes maximum, and the inclination angle of the swash plate 20 becomes minimum as shown in FIG. When the inclination angle of the swash plate 20 is minimized, the blocking body 22 closes the suction passage 31 and the refrigerant circulation in the external refrigerant circuit 33 is stopped. This refrigerant circulation stop state is a stop state of the heat load reducing action.
[0035]
The minimum inclination angle of the swash plate 20 is slightly larger than 0 °. Since the minimum inclination angle of the swash plate 20 is not 0 °, the discharge from the cylinder bore 111 to the discharge chamber 132 is performed even when the swash plate inclination angle is minimum. The refrigerant discharged from the cylinder bore 111 into the discharge chamber 132 flows into the control pressure chamber 121 through the refrigerant supply passage 38. The refrigerant in the control pressure chamber 121 flows out into the suction chamber 131 through the refrigerant extraction passages of the passage 50, the pressure release passage 221 and the passage 143, and the refrigerant in the suction chamber 131 is sucked into the cylinder bore 111 and discharged. It is discharged into the chamber 132. That is, when the inclination angle of the swash plate is minimum, the discharge chamber 132 that is the discharge pressure region, the refrigerant supply passage 38, the control pressure chamber 121, the refrigerant extraction passage, the suction chamber 131 that is the suction pressure region, and the circulation passage through the cylinder bore 111 Is made in the compressor. A pressure difference is generated between the discharge chamber 132, the control pressure chamber 121, and the suction chamber 131. Accordingly, the refrigerant circulates in the circulation passage, and the lubricating oil flowing together with the refrigerant lubricates the inside of the compressor.
[0036]
When the current supply to the solenoid 43 is resumed, the valve opening decreases, and the pressure in the control pressure chamber 121 decreases. Accordingly, the inclination angle of the swash plate 20 increases from the minimum inclination angle. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the blocking body 22 is separated from the valve forming plate 15, and the refrigerant flows into the suction chamber 131 from the suction passage 31. That is, the refrigerant circulation in the external refrigerant circuit 33 is resumed.
[0037]
The control computer C1 performs buffer current supply start control when starting current supply to the capacity control valve 39 when the air conditioner operation switch 44 is turned ON. Further, the control computer C1 performs buffer current supply stop control when the current supply to the capacity control valve 39 is stopped when the air conditioner operation switch 44 is turned OFF.
[0038]
When the air conditioner operation switch 44 serving as a current supply start command means is turned ON, a current supply start command signal S1 is output to the control computer C1, as shown in FIG. The control computer C1 serving as a buffering current supply start control means responds to the input of the current supply start command signal S1 with the target room temperature set by the room temperature setter 45 and the detected temperature detected by the room temperature detector 46. Based on the comparison, the designated supply current value Ix for the capacity control valve 39 is determined. The control computer C1 serving as the supply current value designating means gradually increases the supply current value from zero to the designated supply current value Ix as shown by the upward slope E1 in the curve E in FIG. To do. When the buffer current supply start control is performed, the valve opening degree of the capacity control valve 39 gradually decreases, and the pressure in the control pressure chamber 121 gradually decreases. As the pressure in the control pressure chamber 121 slowly decreases, the inclination angle of the swash plate 20 gradually increases from the minimum inclination angle as shown by the upward inclined portion K1 in the curve K in FIG. 6, and the discharge capacity gradually increases. It will increase. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the refrigerant circulation in the external refrigerant circuit 33 is performed, and the suction pressure decreases. The flat part P1 in the curve P in FIG. 6 represents the suction pressure before the air conditioner operation switch 44 is turned on, and the downward inclination part P2 in the curve P is accompanied by a slow increase in inclination from the minimum inclination of the swash plate 20. Represents fluctuations in suction pressure.
[0039]
When the supply current value becomes the designated supply current value Ix, the swash plate 20 moves to the tilt position corresponding to the designated supply current value Ix, and the suction pressure converges to the suction pressure corresponding to the designated supply current value Ix. A flat portion P3 in the curve P in FIG. 6 represents the suction pressure corresponding to the designated supply current value Ix.
[0040]
When the air conditioner operation switch 44 serving as the current supply stop command means is turned off, a current supply stop command signal S2 is output to the control computer C1, as shown in FIG. In response to the input of the current supply stop command signal S2, the control computer C1 serving as the buffering current supply stop control means sets the supply current value to the current supply stop command as indicated by the downward slope E2 in the curve E of FIG. Buffer current supply stop control for gradually decreasing the supply current value Iy at the time of input of the signal S2 from the supply current value zero is performed. When the buffer current supply stop control is performed, the valve opening of the capacity control valve 39 gradually increases, and the pressure in the control pressure chamber 121 gradually increases. As the pressure in the control pressure chamber 121 rises slowly, the inclination angle of the swash plate 20 gradually decreases from the inclination angle when the current supply stop command signal S2 is input, as indicated by the downward inclination portion K2 of the curve K in FIG. As a result, the discharge capacity gradually decreases. When the tilt angle of the swash plate 20 decreases from the tilt angle when the current supply stop command signal S2 is input, the discharge capacity decreases and the suction pressure increases. The flat part P4 in the curve P in FIG. 6 represents the suction pressure before the air conditioner operation switch 44 is turned off, and the upward inclined part P5 in the curve P is when the current supply stop command signal S2 of the swash plate 20 is input. Represents fluctuations in suction pressure associated with a slow decrease in tilt angle.
[0041]
When the supply current value becomes zero, the swash plate 20 moves to the minimum inclination position and the refrigerant circulation in the external refrigerant circuit 33 stops. A flat portion P6 in the curve P in FIG. 6 represents the suction pressure after the refrigerant circulation is stopped in the external refrigerant circuit 33.
[0042]
The following effects are obtained in the first embodiment that performs the variable capacitance operation as described above.
(1-1) When the current supply to the electric capacity control valve 39 is started by turning on the air conditioner operation switch 44, the supply current value is gradually increased from the supply current value zero to the designated designated supply current value. Buffer current supply start control is performed. The slow increase in the supply current value suppresses a rapid increase in the inclination angle of the swash plate 20. A sudden increase in the inclination angle of the swash plate 20 causes a collision between the rotary support 19 that defines the maximum inclination angle of the swash plate 20 and the swash plate 20, and a collision sound is generated. The slow increase in the supply current value is set such that the increase in the inclination angle of the swash plate 20 follows the increase in the supply current value. Such suppression of the rapid increase in the tilt angle of the swash plate 20 suppresses overrun of the swash plate 20 from the tilt position corresponding to the designated supply current value. When the designated supply current value corresponds to the maximum tilt angle, the tilt increase rate at the maximum tilt position of the swash plate 20 is suppressed. As a result, a collision between the rotary support 19 and the swash plate 20 that causes a collision sound is avoided.
[0043]
(1-2) When the current supply to the electric capacity control valve 39 is stopped by the OFF operation of the air conditioner operation switch 44, the supply current from the specified supply current value immediately before the air conditioner operation switch 44 is turned OFF to the supply current value of zero. Buffer current supply stop control is performed to gradually decrease the value. The slow decrease in the supply current value suppresses a rapid decrease in the inclination angle of the swash plate 20. The sudden decrease in the inclination angle of the swash plate 20 causes a collision between the valve forming plate 15 that defines the minimum inclination angle of the swash plate 20 and the blocking body 22 interlocked with the swash plate 20, and a collision sound is generated. The slow decrease in the supply current value is set so that the decrease in the tilt angle of the swash plate 20 follows the decrease in the supply current value. Such suppression of the rapid decrease in the tilt angle of the swash plate 20 suppresses the tilt decrease rate at the minimum tilt position of the swash plate 20. Suppression of the inclination decreasing speed at the minimum inclination position of the swash plate 20 results in avoiding the collision between the annuloplasty plate 15 and the blocking body 22 that causes a collision sound.
[0044]
Next, a second embodiment of FIGS. 7 and 8 will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, the suction pressure in the suction chamber 131 is detected by the pressure detector 51, and the control pressure in the control pressure chamber 121 is detected by the pressure detector 52. . Both pressure detectors 51 and 52 send detection information to the control computer C2. The control computer C2 stores a (suction pressure-supply current value) map and a (control pressure-supply current value) map. The control computer C2 utilizes the (suction pressure-supply current value) map and the pressure detection information obtained from the pressure detector 51 when starting the current supply to the capacity control valve 39 when the air conditioner operation switch 44 is turned on. Buffer current supply start control is performed. Further, the control computer C2 displays the (control pressure-supply current value) map and the pressure detection information obtained from the pressure detector 52 when the current supply to the capacity control valve 39 is stopped when the air conditioner operation switch 44 is turned off. The buffer current supply stop control used is performed.
[0045]
When the air conditioner operation switch 44 serving as a current supply start command means is turned on, a current supply start command signal S1 is output to the control computer C2, as shown in FIG. The control computer C2 serving as the buffering current supply start control means is configured to set the target room temperature set by the room temperature setter 45 in response to the input of the current supply start command signal S1 and the detected temperature detected by the room temperature detector 46. Based on the comparison, the designated supply current value Ix for the capacity control valve 39 is determined. Further, the control computer C2 serving as the supply current value designating means, based on the designated supply current value Ix, the detected pressure obtained from the pressure detector 51, and the (suction pressure-supply current value) map, increases the leap limit supply current value Iz. Is determined. The (suction pressure-supply current value) map is a map for obtaining the increased jump limit supply current value Iz using the suction pressure and the supply current value as variables.
[0046]
The control computer C2 discontinuously switches the supply current value from zero to the increased jump limit supply current value Iz as indicated by the vertical line D1 in the curve D of FIG. 8, and then supplies the supply current as indicated by the upward slope D2. Buffer current supply start control for gradually increasing the current value from the increased jump limit supply current value Iz to the specified supply current value Ix is performed. When the buffer current supply start control is performed, the valve opening of the capacity control valve 39 instantaneously changes to the valve opening corresponding to the increased jump limit supply current value Iz and then gradually decreases. The pressure in the chamber 121 gradually decreases in a state that follows a slow increase in the supply current value from the increased jump limit supply current value Iz. As the pressure in the control pressure chamber 121 slowly decreases, the inclination angle of the swash plate 20 gradually increases from the minimum inclination angle as shown by the upward inclination portion H1 in the curve H in FIG. It will increase. The slow inclination angle increase of the swash plate 20 is performed in a state of following a slow decrease in the supply current value from the increase jump limit supply current value Iz. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the refrigerant circulation in the external refrigerant circuit 33 is performed, and the suction pressure decreases. A flat part Q1 in the curve Q in FIG. 8 represents the suction pressure before the air conditioner operation switch 44 is turned on, and a downward inclined part Q2 in the curve Q is accompanied by a slow increase in inclination from the minimum inclination of the swash plate 20. Represents fluctuations in suction pressure.
[0047]
When the supply current value becomes the designated supply current value Ix, the swash plate 20 moves to the tilt position corresponding to the designated supply current value Ix, and the suction pressure converges to the suction pressure corresponding to the designated supply current value Ix. A flat portion Q3 in the curve Q of FIG. 8 represents the suction pressure corresponding to the designated supply current value Ix.
[0048]
When the air conditioner operation switch 44 is turned off, a current supply stop command signal S2 is output to the control computer C2 as shown in FIG. The control computer C2 serving as a buffering current supply stop control means responds to the input of the current supply stop command signal S2 and the detection control obtained from the specified supply current value when the air conditioner operation switch 44 is OFF and the pressure detector 52. Decrease jump limit supply current value Iw is determined based on the pressure and (control pressure-supply current value) map. The (control pressure-supply current value) map is a map for obtaining a decrease jump limit supply current value Iw using the control pressure and the supply current value as variables.
The control computer C2 discontinuously changes the supply current value from the designated supply current value Iy immediately before the air conditioner operation switch 44 is turned OFF to the reduced jump limit supply current value Iw, as indicated by the vertical line D3 in the curve D of FIG. Next, buffer current supply stop control is performed to gradually decrease the supply current value from the reduced jump limit supply current value Iw to zero as indicated by the downward slope D4. When the buffer current supply stop control is performed, the valve opening of the capacity control valve 39 is instantaneously changed to the valve opening corresponding to the reduced jump limit supply current value Iw and then gradually increased. The pressure in the chamber 121 gradually increases in a state that follows a slow decrease in the supply current value from the decrease jump limit supply current value Iw. As the pressure in the control pressure chamber 121 rises slowly, the inclination angle of the swash plate 20 gradually decreases from the inclination angle when the current supply stop command signal S2 is input, as indicated by the downward inclination portion H2 of the curve H in FIG. I will do it. When the tilt angle of the swash plate 20 decreases from the tilt angle when the current supply stop command signal S2 is input, the discharge capacity decreases and the suction pressure increases. The flat part Q4 in the curve Q in FIG. 8 represents the suction pressure before the air conditioner operation switch 44 is turned off, and the upward inclined part Q5 in the curve Q is when the current supply stop command signal S2 of the swash plate 20 is input. Represents fluctuations in suction pressure associated with a slow decrease in tilt angle.
[0049]
When the supply current value becomes zero, the swash plate 20 moves to the minimum inclination position and the refrigerant circulation in the external refrigerant circuit 33 stops. A flat portion Q6 in the curve Q in FIG. 8 represents the suction pressure after the refrigerant circulation is stopped in the external refrigerant circuit 33.
[0050]
In the second embodiment, the following effects can be obtained.
(2-1) When the current supply to the electric capacity control valve 39 is started by the ON operation of the air conditioner operation switch 44, the control computer C2 constituting the increase jump limit supply current value specifying means together with the pressure detector 51 detects Specify the increase jump limit supply current value according to the suction pressure. Then, the control computer C2 discontinuously increases the supply current value from zero to the increased jump limit supply current value Iz, and then gradually increases the supply current value from the increase jump limit supply current value Iz to the specified supply current value. The buffer current supply start control is increased. The increased jump limit supply current value Iz is a limit value of a discontinuous increase amount from zero of the supply current value that does not cause a collision between the swash plate 20 and the rotary support 19, and depends on the suction pressure. . That is, when the supply current value is discontinuously increased from zero to a value higher than the increased jump limit supply current value Iz corresponding to the detected suction pressure, the swash plate 20 collides with the rotary support 19 and the collision sound Occurs. When the supply current value is discontinuously increased from zero to the increased jump limit supply current value Iz, the inclination of the swash plate 20 from the minimum inclination is rapidly increased without causing a collision sound, and the capacity is restored. Promptly.
[0051]
(2-2) When the current supply to the electric capacity control valve 39 is stopped by the OFF operation of the air conditioner operation switch 44, the control computer C2 that constitutes the decrease jump limit supply current value designation means together with the pressure detector 52 detects Specify the decrease jump limit supply current value according to the control pressure. Then, the control computer C2 discontinuously decreases the supply current value from the designated supply current value immediately before the air conditioner operation switch 44 is turned off to the decrease jump limit supply current value Iw, and then supplies from the decrease jump limit supply current value Iw. Buffer current supply stop control is performed to gradually decrease the supply current value until the current value becomes zero. The decrease jump limit supply current value Iw is a limit value of a discontinuous decrease amount from the specified supply current value Iy that does not cause the collision between the blocking body 22 and the valve forming plate 15, and depends on the detection control pressure. The That is, when the supply current value is discontinuously decreased from the specified supply current value Iy to a value lower than the decrease jump limit supply current value Iw corresponding to the detected control pressure, the blocking body 22 collides with the valve forming plate 15. A collision sound is generated. When the supply current value is discontinuously decreased from the specified supply current value Iy to the decrease jump limit supply current value Iw, the transition of the swash plate 20 to the minimum inclination position is promptly performed without causing a collision sound. .
[0052]
Next, a third embodiment of FIGS. 9 and 10 will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, when the solenoid 531 of the electric capacity control valve 53 is excited, the valve body 532 closes the valve hole 533 and the swash plate 20 moves to the maximum tilt position. When the solenoid 531 is demagnetized, the valve body 532 moves to the maximum valve opening position, and the swash plate 20 moves to the minimum tilt position. When the air conditioner operation switch 44 serving as a current supply start command unit and a current supply stop command unit is turned on, the control computer C3 excites the solenoid 531. If the air conditioner operation switch 44 is turned off while the solenoid 531 is energized, the control computer C3 demagnetizes the solenoid 531. When the air conditioner operation switch 44 is in the ON state, the control computer C3 commands the demagnetization of the solenoid 531 when the detected temperature obtained by the room temperature detector 46 falls below the target room temperature set by the room temperature setter 45. The control computer C3 commands excitation of the solenoid 531 when the detected temperature exceeds the target room temperature. The room temperature detector 46 and the control computer C3 constitute current supply start command means and current supply stop command means.
[0053]
When the solenoid 531 is excited, the control computer C3 performs the buffer current supply start control indicated by the upward slope portion F1 of the curve F in FIG. The maximum value of the supply current value is the designated supply current value. Signal S3 represents a current supply start command when the air conditioner operation switch 44 is turned on or when the detected temperature exceeds the target room temperature. The ascending slope portion G1 of the curve G represents an increase in the tilt angle of the swash plate 20 as the supply current value increases, and the descending slope portion R1 of the curve R represents a decrease in the suction pressure as the tilt angle of the swash plate 20 increases.
[0054]
When the solenoid 531 is demagnetized, the control computer C3 performs the buffer current supply stop control indicated by the downward slope F2 of the curve F in FIG. The signal S4 represents a current supply stop command when the air conditioner operation switch 44 is turned off or when the detected temperature is equal to or lower than the target room temperature. A downwardly inclined portion G2 of the curve G represents a decrease in the inclination angle of the swash plate 20 as the supply current value decreases, and an upward inclined portion R2 of the curve R represents an increase in the suction pressure accompanying a decrease in the inclination angle of the swashplate 20.
[0055]
Also in this embodiment, the increasing speed of the inclination of the swash plate 20 at the maximum inclination position of the swash plate 20 is suppressed, and the collision between the swash plate 20 and the rotary support 19 is suppressed. In addition, the rate of decrease in the inclination of the swash plate 20 at the minimum inclination position of the swash plate 20 is suppressed, and the collision between the blocking body 22 and the valve forming plate 15 is suppressed.
[0056]
In the present invention, the following embodiments are also possible.
(1) In the first embodiment, at the start of current supply, the supply current value is continuously increased from zero to the maximum value or near the maximum value so as to suppress the inclination increase speed at the maximum inclination position of the swash plate 20. Later, continuously reduce to the specified supply current value. In this way, the capacity recovery is accelerated.
(2) The present invention is applied to a variable displacement compressor in which a displacement control valve is interposed on a passage for extracting the refrigerant from the control pressure chamber to the suction pressure region.
(3) The duty ratio of the supply current value is controlled. In this case, the average supply current value per unit time is regarded as the supply current value.
(4) The present invention is applied to a variable displacement compressor with a clutch that transmits a driving force from an external drive source to a rotating shaft via a clutch.
[0057]
【The invention's effect】
As described above in detail, when the current supply to the electric capacity control valve is started, in order to suppress the inclination increase speed at the maximum inclination position of the swash plate as a process until the supply of the designated supply current value is started. In the invention for performing the buffer current supply start control, the unnecessary arrival of the swash plate at the maximum tilt position is avoided to avoid the generation of a collision sound, and the collision when the swash plate reaches the maximum tilt position. There is an excellent effect that the sound can be suppressed.
[0058]
When the current supply to the electric capacity control valve is stopped, the buffer current supply stop control is performed to suppress the inclination reduction rate at the minimum inclination position of the swash plate as a process until the supply current value becomes zero. In the invention made in this way, there is an excellent effect that it is possible to suppress a collision sound when the swash plate comes to the minimum inclination position.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an entire compressor showing a first embodiment.
FIG. 2 is a longitudinal sectional view of an electric capacity control valve 39;
FIG. 3 is a side cross-sectional view of a main part in a state where a swash plate tilt angle is in a minimum state.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is a sectional view taken along line BB in FIG. 1;
FIG. 6 is a graph showing a relationship between a supply current value, a swash plate inclination angle, and a suction pressure.
FIG. 7 is a side sectional view of the whole compressor showing a second embodiment.
FIG. 8 is a graph showing the relationship between the supply current value, the swash plate tilt angle, and the suction pressure.
FIG. 9 is a side sectional view of the whole compressor showing a third embodiment.
FIG. 10 is a graph showing the relationship between the supply current value, the swash plate tilt angle, and the suction pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 121 ... Control pressure chamber, 131 ... Suction chamber used as a suction pressure area, 132 ... Discharge chamber used as a discharge pressure area, 18 ... Rotating shaft, 20 ... Swash plate, 38 ... Refrigerant supply passage, 39 ... Electric capacity control valve, 44... Air conditioner operation switch serving as current supply start command means and current supply stop command means, C1... Control computer serving as buffer current supply start control means, buffer current supply stop control means and supply current value designating means, C2. Buffer current supply start control means, buffer current supply stop control means, supply current value designation means, increase jump limit supply current value designation means, and control computer to be a decrease jump limit supply current value designation means, C3... Buffer current A control computer serving as supply start control means and buffer current supply stop control means.

Claims (4)

回転軸と一体的に回転するように、かつ前記回転軸に対して傾角可変に制御圧室に収容された斜板、及び前記斜板の傾角に応じた往復動作を行なうピストンを備え、吐出圧領域から前記制御圧室へ冷媒を供給すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧領域から前記制御圧室に至る冷媒供給通路上又は前記制御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に電気式容量制御弁を介在し、前記電気式容量制御弁に対する供給電流値を制御して前記吐出圧領域から前記制御圧室への冷媒供給量又は前記制御圧室から前記吸入圧領域への冷媒抜き出し量を制御し、前記制御圧室内の圧力の制御に基づいて前記斜板の傾角を制御する可変容量型圧縮機において、
前記電気式容量制御弁に対する電流供給を開始するときには、指定された供給電流値を供給開始するまでの過程として前記斜板の最大傾角位置での傾角増大速度を抑制するための緩衝用電流供給開始制御を行ない、
前記緩衝用電流供給開始制御は、供給電流値零から指定された指定供給電流値まで供給電流値を増大するものであって、供給電流値零から前記指定供給電流値に達しない増大飛躍限界供給電流値へ供給電流値を不連続的に切り換える供給電流値切り換え状態と、前記増大飛躍限界供給電流値から前記指定供給電流値まで供給電流値を徐々に増大する電流増大供給状態とを含む可変容量型圧縮機における容量制御方法。
A swash plate that is housed in a control pressure chamber so as to rotate integrally with the rotation shaft and that can be tilted with respect to the rotation shaft; The refrigerant is supplied from the region to the control pressure chamber, the refrigerant is extracted from the control pressure chamber to the suction pressure region, and the suction pressure is supplied from the discharge pressure region to the control pressure chamber or from the control pressure chamber. An electric capacity control valve is interposed on the refrigerant extraction passage leading to the region, and the supply current value to the electric capacity control valve is controlled to supply the refrigerant supply amount from the discharge pressure region to the control pressure chamber or the control pressure chamber A variable displacement compressor that controls the amount of refrigerant extracted from the suction pressure region to the suction pressure region and controls the tilt angle of the swash plate based on the control of the pressure in the control pressure chamber;
When the current supply to the electric capacity control valve is started, the buffer current supply is started to suppress the tilt increase speed at the maximum tilt position of the swash plate as a process until the specified supply current value is started. It has control of the row,
The buffer current supply start control increases the supply current value from a supply current value of zero to a specified supply current value, and does not reach the specified supply current value from the supply current value of zero. A variable capacitor including a supply current value switching state that switches the supply current value to a current value discontinuously, and a current increase supply state that gradually increases the supply current value from the increased jump limit supply current value to the specified supply current value Capacity control method in a type compressor.
回転軸と一体的に回転するように、かつ前記回転軸に対して傾角可変に制御圧室に収容された斜板、及び前記斜板の傾角に応じた往復動作を行なうピストンを備え、吐出圧領域から前記制御圧室へ冷媒を供給すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧領域から前記制御圧室に至る冷媒供給通路上又は前記制御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に電気式容量制御弁を介在し、前記電気式容量制御弁に対する供給電流値を制御して前記吐出圧領域から前記制御圧室への冷媒供給量又は前記制御圧室から前記吸入圧領域への冷媒抜き出し量を制御し、前記制御圧室内の圧力の制御に基づいて前記斜板の傾角を制御する可変容量型圧縮機において、  A swash plate that is housed in a control pressure chamber so as to rotate integrally with the rotary shaft and that can be tilted with respect to the rotary shaft, and a piston that performs reciprocating operation according to the tilt angle of the swash plate, The refrigerant is supplied from the region to the control pressure chamber, the refrigerant is extracted from the control pressure chamber to the suction pressure region, and the suction pressure from the discharge pressure region to the control pressure chamber or from the control pressure chamber. An electric capacity control valve is interposed on the refrigerant extraction passage leading to the region, and a supply current value to the electric capacity control valve is controlled to supply a refrigerant supply amount from the discharge pressure region to the control pressure chamber or the control pressure chamber A variable displacement compressor that controls the amount of refrigerant extracted from the suction pressure region to the suction pressure region and controls the tilt angle of the swash plate based on the control of the pressure in the control pressure chamber;
前記電気式容量制御弁に対する電流供給を停止するときには、供給電流値を零とするまでの過程として前記斜板の最小傾角位置での傾角減少速度を抑制するための緩衝用電流供給停止制御を行ない、  When stopping the current supply to the electric capacity control valve, a buffer current supply stop control is performed to suppress the rate of inclination decrease at the minimum inclination position of the swash plate as a process until the supply current value becomes zero. ,
前記緩衝用電流供給停止制御は、指定された指定供給電流値から供給電流値零まで供給電流値を減少するものであって、前記指定供給電流値から前記指定供給電流値に達しない減少飛躍限界供給電流値へ供給電流値を不連続的に切り換える供給電流値切り換え状態と、前記減少飛躍限界供給電流値から供給電流値零まで供給電流値を徐々に減少する電流減少供給状態とを含む可変容量型圧縮機における容量制御方法。  The buffer current supply stop control is to reduce a supply current value from a designated designated supply current value to a supply current value of zero, and a decrease jump limit that does not reach the designated supply current value from the designated supply current value A variable capacity including a supply current value switching state that switches the supply current value to a supply current value discontinuously, and a current reduction supply state that gradually decreases the supply current value from the reduced jump limit supply current value to the supply current value of zero Capacity control method in a type compressor.
回転軸と一体的に回転するように、かつ前記回転軸に対して傾角可変に制御圧室に収容された斜板、及び前記斜板の傾角に応じた往復動作を行なうピストンを備え、吐出圧領域から前記制御圧室へ冷媒を供給すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧領域から前記制御圧室に至る冷媒供給通路上又は前記制御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に電気式容量制御弁を介在し、前記電気式容量制御弁に対する供給電流値を制御して前記吐出圧領域から前記制御圧室への冷媒供給量又は前記制御圧室から前記吸入圧領域への冷媒抜き出し量を制御し、前記制御圧室内の圧力の制御に基づいて前記斜板の傾角を制御する可変容量型圧縮機において、  A swash plate that is housed in a control pressure chamber so as to rotate integrally with the rotary shaft and that can be tilted with respect to the rotary shaft, and a piston that performs reciprocating operation according to the tilt angle of the swash plate, The refrigerant is supplied from the region to the control pressure chamber, the refrigerant is extracted from the control pressure chamber to the suction pressure region, and the suction pressure from the discharge pressure region to the control pressure chamber or from the control pressure chamber. An electric capacity control valve is interposed on the refrigerant extraction passage leading to the region, and a supply current value to the electric capacity control valve is controlled to supply a refrigerant supply amount from the discharge pressure region to the control pressure chamber or the control pressure chamber A variable displacement compressor that controls the amount of refrigerant extracted from the suction pressure region to the suction pressure region and controls the tilt angle of the swash plate based on the control of the pressure in the control pressure chamber;
前記電気式容量制御弁に対する電流供給の開始を指令する電流供給開始指令手段と、  Current supply start command means for commanding start of current supply to the electric capacity control valve;
前記斜板の最大傾角位置での傾角増大速度を抑制するための緩衝用電流供給開始制御を行なう緩衝用電流供給開始制御手段と、  Buffer current supply start control means for performing buffer current supply start control for suppressing the tilt increase speed at the maximum tilt position of the swash plate;
供給電流値を指定する供給電流値指定手段と、  Supply current value specifying means for specifying a supply current value;
前記指定供給電流値に達しない増大飛躍限界供給電流値を指定する増大飛躍限界供給電流値指定手段とを備え、  An increased jump limit supply current value specifying means for specifying an increased jump limit supply current value that does not reach the specified supply current value;
前記緩衝用電流供給開始制御手段は、前記電流供給開始指令手段の電流供給開始指令に基づいて前記緩衝用電流供給開始制御を行ない、前記供給電流値指定手段によって指定された指定供給電流値まで供給電流値零から供給電流値を増大するものであって、供給電流値零から前記増大飛躍限界供給電流値指定手段によって指定された増大飛躍限界供給電流値へ供給電流値を不連続的に切り換え、前記増大飛躍限界供給電流値から前記指定供給電流値まで供給電流値を徐々に増大する電流供給開始制御を行なう可変容量型圧縮機における容量制御装置。  The buffer current supply start control means performs the buffer current supply start control based on the current supply start command of the current supply start command means, and supplies up to the designated supply current value designated by the supply current value designation means The supply current value is increased from zero current value, the supply current value is discontinuously switched from the supply current value zero to the increased jump limit supply current value specified by the increase jump limit supply current value specifying means, A capacity control device in a variable capacity compressor that performs current supply start control for gradually increasing a supply current value from the increase jump limit supply current value to the specified supply current value.
回転軸と一体的に回転するように、かつ前記回転軸に対して傾角可変に制御圧室に収容された斜板、及び前記斜板の傾角に応じた往復動作を行なうピストンを備え、吐出圧領域から前記制御圧室へ冷媒を供給すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧領域から前記制御圧室に至る冷媒供給通路上又は前記制御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に電気式容量制御弁を介在し、前記電気式容量制御弁に対する供給電流値を制御して前記吐出圧領域から前記制御圧室への冷媒供給量又は前記制御圧室から前記吸入圧領域への冷媒抜き出し量を制御し、前記制御圧室内の圧力の制御に基づいて前記斜板の傾角を制御する可変容量型圧縮機において、  A swash plate that is housed in a control pressure chamber so as to rotate integrally with the rotary shaft and that can be tilted with respect to the rotary shaft, and a piston that performs reciprocating operation according to the tilt angle of the swash plate, The refrigerant is supplied from the region to the control pressure chamber, the refrigerant is extracted from the control pressure chamber to the suction pressure region, and the suction pressure from the discharge pressure region to the control pressure chamber or from the control pressure chamber. An electric capacity control valve is interposed on the refrigerant extraction passage leading to the region, and a supply current value to the electric capacity control valve is controlled to supply a refrigerant supply amount from the discharge pressure region to the control pressure chamber or the control pressure chamber A variable displacement compressor that controls the amount of refrigerant extracted from the suction pressure region to the suction pressure region and controls the tilt angle of the swash plate based on the control of the pressure in the control pressure chamber;
前記電気式容量制御弁に対する電流供給の停止を指令する電流供給停止指令手段と、  Current supply stop command means for commanding stop of current supply to the electric capacity control valve;
前記斜板の最小傾角位置での傾角減少速度を抑制するための緩衝用電流供給停止制御を行なう緩衝用電流供給停止制御手段と、  Buffer current supply stop control means for performing buffer current supply stop control for suppressing the tilt decrease rate at the minimum tilt position of the swash plate;
供給電流値を指定する供給電流値指定手段と、  Supply current value specifying means for specifying a supply current value;
減少飛躍限界供給電流値を指定する減少飛躍限界供給電流値指定手段とを備え、  With a decrease leap limit supply current value specifying means for specifying a decrease leap limit supply current value,
前記緩衝用電流供給停止制御手段は、前記電流供給停止指令手段の電流供給停止指令に基づいて前記緩衝用電流供給停止制御を行ない、前記供給電流値指定手段によって指定された指定供給電流値から供給電流値零まで供給電流値を減少するものであって、前記指定供給電流値から前記減少飛躍限界供給電流値指定手段によって指定された減少飛躍限界供給電流値へ供給電流値を不連続的に切り換え、前記減少飛躍限界供給電流値から供給電流値零まで供給電流値を徐々に減少する電流供給停止制御を行なう可変容量型圧縮機における容量制御装置。  The buffer current supply stop control means performs the buffer current supply stop control based on the current supply stop command of the current supply stop command means, and supplies from the designated supply current value designated by the supply current value designation means The supply current value is reduced to zero current value, and the supply current value is discontinuously switched from the specified supply current value to the decrease jump limit supply current value specified by the decrease jump limit supply current value specifying means. A capacity control device in a variable capacity compressor that performs current supply stop control for gradually decreasing the supply current value from the decrease jump limit supply current value to the supply current value of zero.
JP02378099A 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor Expired - Fee Related JP4089063B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02378099A JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor
US09/494,692 US6224348B1 (en) 1999-02-01 2000-01-31 Device and method for controlling displacement of variable displacement compressor
EP00101853A EP1026397A3 (en) 1999-02-01 2000-01-31 Control valve in variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02378099A JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000220577A JP2000220577A (en) 2000-08-08
JP4089063B2 true JP4089063B2 (en) 2008-05-21

Family

ID=12119854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02378099A Expired - Fee Related JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4089063B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129956A (en) 2001-10-22 2003-05-08 Toyota Industries Corp Variable displacement compressor, air conditioner provided with the same, and capacity control method in the same
JP3951799B2 (en) 2002-05-14 2007-08-01 株式会社デンソー Control device for variable capacity compressor
CN111005851B (en) * 2019-12-25 2021-07-20 潍柴动力股份有限公司 Displacement feedback variable mechanism of hydraulic plunger pump and hydraulic plunger pump

Also Published As

Publication number Publication date
JP2000220577A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP3783434B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JP3728387B2 (en) Control valve
JP3432995B2 (en) Control valve for variable displacement compressor
KR100378704B1 (en) Compressor and capacity control valve for the compressor and method for controlling capacity of the compressor
JP3799921B2 (en) Control device for variable capacity compressor
JP3585150B2 (en) Control valve for variable displacement compressor
JP3731434B2 (en) Control valve for variable capacity compressor
JP2000265949A (en) Variable capacity compressor
JP3818137B2 (en) Air conditioner
JP4151559B2 (en) Control device for variable capacity compressor
KR100455240B1 (en) Air conditioner for vehicle and apparatus for controlling idle rotation speed of internal combustion engine
JP2002147350A (en) Control device of variable displacement type compressor
JP3741022B2 (en) Air conditioner for vehicles
JP3932728B2 (en) Control unit for variable capacity compressor
JP4089063B2 (en) Capacity control method and apparatus for variable capacity compressor
JP2001140756A (en) Control device for variable displacement type compressor
EP1207302B1 (en) Control apparatus for variable displacement compressor
JP3818136B2 (en) Air conditioner
WO2000047896A1 (en) Crank pressure control mechanism of variable displacement compressor
US6358016B1 (en) Displacement control device and displacement control method for variable displacement compressor
JP2000199478A (en) Variable capacity compressor
JP3582229B2 (en) Variable displacement compressor and control method thereof
JP4647471B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JP2000265948A (en) Variable capacity compressor
JPH10153175A (en) Variable capacity compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees