JP4086267B2 - Gas sensor and gas detection device - Google Patents

Gas sensor and gas detection device Download PDF

Info

Publication number
JP4086267B2
JP4086267B2 JP37630799A JP37630799A JP4086267B2 JP 4086267 B2 JP4086267 B2 JP 4086267B2 JP 37630799 A JP37630799 A JP 37630799A JP 37630799 A JP37630799 A JP 37630799A JP 4086267 B2 JP4086267 B2 JP 4086267B2
Authority
JP
Japan
Prior art keywords
wire
heater
electrode
gas sensor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37630799A
Other languages
Japanese (ja)
Other versions
JP2001165886A (en
Inventor
徹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP37630799A priority Critical patent/JP4086267B2/en
Publication of JP2001165886A publication Critical patent/JP2001165886A/en
Application granted granted Critical
Publication of JP4086267B2 publication Critical patent/JP4086267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の利用分野】
この発明は、金属酸化物半導体を用いた低消費電力型ガスセンサや、それを用いたガス検出装置に関する。
【0002】
【従来技術】
発明者らは、ビーズ状の金属酸化物半導体の内部に、Pt−WやPt−Mo線からなるヒータ兼用電極と中心電極とを埋設したガスセンサを提案した(特願平11−190304号)。このようなガスセンサでは、Pt−W線やPt−Mo線が高抵抗で抵抗温度係数が小さく剛性が高いため、以下の効果が得られる。第1に消費電力が小さく、第2に抵抗温度係数が小さいため、ヒータをオンした際の突入電流が小さく、第3に高抵抗なため、小さなコイルでも必要な抵抗値が得られ、その結果、コイルのターン数や径を小さくでき、第4に剛性が高いため製造時の作業性に優れている。
【0003】
発明者は、Pt−W線等を用いたガスセンサを、低温域でCOを検出し、高温域でメタン等の可燃性ガスを検出する用途に用いることを検討した。この結果、1年程度でPt−W線ヒータの抵抗値が減少することを見出した。
【0004】
【発明の課題】
この発明の課題は、より安定なヒータ線を見出すことにある(請求項1〜3)。
【0005】
【発明の構成】
この発明は、ビーズ状の金属酸化物半導体に、コイル状のヒータ兼用電極を埋設したガスセンサにおいて、前記ヒータ兼用電極がPt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員からなることを特徴とする(請求項1)。
好ましくは、前記ヒータ兼用電極のコイルの中心部に中心電極を埋設すると共に、該中心電極をPt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員とする。
特に好ましくは、ヒータ兼用電極も中心電極もPt−Cr合金線とする。
【0006】
この発明はまた、ビーズ状の金属酸化物半導体の内部に、コイル状のヒータ兼用電極と中心電極とを埋設したガスセンサを用いたガス検出装置において、前記ヒータ兼用電極と中心電極とが、Pt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員からなり、前記ヒータ兼用電極への印加電力を周期的に変化させて、高温域と低温域とを周期的に発生させるための手段と、前記高温域でメタン等の可燃性ガスを検出し、かつ低温域でCOを検出するための手段とを設けたことを特徴とする。高温域/低温域の区別はセンサ温度によるもので、例えばヒータオフの直後でも、センサ温度が高ければ高温域にある。
【0007】
【発明の作用と効果】
Pt−Cr,Pt−Fe,Pt−Tiからなる合金線は、高温で酸化クロム、酸化鉄、酸化チタン等の酸化物が表面に析出し、これらの酸化物が安定なため、高温への耐久性が高い。このため、ガスセンサを高温で駆動することができる。特にガスセンサの温度を周期的に変化させて、高温で可燃性ガスを、低温でCOを検出する場合、短時間で可燃性ガスを検出するために最高温度を高くしても、ヒータの劣化が少ない。また温度変化に対する熱衝撃に対しても、ヒータの劣化が少ない(請求項1〜3)。
【0008】
Pt−Cr,Pt−Fe,Pt−Tiからなる合金線は、高抵抗で抵抗温度係数が小さく、剛性が高い。このため、ガスセンサの消費電力を小さくでき、ヒータをオン/オフした際の突入電流が小さい。また高抵抗なため、コイルの全長を短くしても必要な抵抗値が得られ、小さなコイルを用いることができる。これらのため、ガスセンサの消費電力を小さくできる。さらに剛性が高いため、製造時の作業性が高い(請求項1,2)。
【0009】
【実施例】
図1〜図6に実施例を示す。図1にガスセンサ2の構造を示すと、4は金属酸化物半導体ビーズで、例えばSnO2や、SnO2とアルミナの混合物等の焼結体ビーズとする。6はPt−Cr,Pt−Fe,Pt−Tiの少なくとも一員の線材からなるヒータ兼用電極で、線径(直径)は10〜25μmで、コイル状をなし、ここでは線径20μmのPt−Cr合金線とする。Cr含有量(Cr/[Pt+Cr])は例えば1〜10wt%、好ましくは2〜6wt%とし、ここでは3.8wt%とした。Pt−Fe線やPt−Ti線の場合、Fe含有量やTi含有量は1〜10wt%が好ましい。またヒータ兼用電極6のコイルのターン数は例えば3〜10程度とする。ヒータ兼用電極6のコイル内径は例えば150μm、コイル長は例えば300μmとし、ビーズ4の長径を500μm、短径を450μmとした。ヒータ兼用電極6の両端をステム10に固定する。後述のように、ガスセンサ2の消費電力を小さくするには、より小さなコイルとより小さなビーズとが好ましく、この値は暫定的なものである。
【0010】
8は中心電極で、ヒータ6と同様にPt−Cr線やPt−Fe線、Pt−Ti線からなり、線径は10〜25μmが好ましく、ここでは20μmとし、ヒータ兼用電極6のコイルの中心線に沿って配置し、両端をステム10に固定する。中心電極8は設けなくても良く、その場合、ヒータ6とビーズ4の並列抵抗がガスにより変化することを用いて、ガスを検出する。ビーズ4は楕円球状ないし球状とし、球状の場合、直径250μm〜500μmが好ましく、ビーズ4の体積は8×10−3mm〜65×10−3mmが好ましく、ここでは53×10−3mmとした。
【0011】
図2にガスセンサ2の駆動パターンの例を示し、図3にガスセンサ2の駆動回路の例を示す。電源を例えば電池電源12とし、14は信号処理用のマイクロコンピュータ、16はトランジスタ、18は負荷抵抗である。マイクロコンピュータ14のA/D入力からセンサ信号を読み込み、COとメタン等の可燃性ガスとを検出する。トランジスタ16はマイクロコンピュータ14で駆動され、高温側ではPWM制御で、パルス的にヒータをオンし、低温側ではオフである。10秒周期の最初の3秒間は、ヒータ兼用電極6の最高温度は例えば400〜600℃で、ここではメタン検出に適した500℃とする。低温側ではヒータはオフで、7秒間放冷し、室温付近でCOを検出する。このためこのガスセンサ2には、10秒周期の熱衝撃が加わり、温度の変化幅は約500℃である。
【0012】
一定温度でメタンを検出する場合、定常加熱温度は例えば450℃となり、ヒータ兼用電極6にPt−W線(W8wt%)を用いても、1年間の連続駆動ではヒータ抵抗が低下しなかった。しかしながら、Pt−W線ヒータを用いたセンサを、上記の仕様で1年程度駆動すると、ヒータ抵抗の値が約10%低下した。これはヒータ兼用電極6に熱衝撃が加わり、また短時間(3秒間)でメタンを検出するため、最高温度を450℃ではなく500℃にしたことによる。
【0013】
ヒータ兼用電極6や中心電極8の線材には、抵抗値が高く、剛性が高いものが適している。抵抗値が高いものは、抵抗温度係数が一般に小さく、同時に熱伝導率も小さい。20μm線の場合、Pt−Cr(3.8%)では抵抗率は1.6KΩ/m、破断加重は47gf、Pt−W(8%)では抵抗率は2KΩ/m、破断加重は73gf、純Ptでは抵抗率は350Ω/m、破断加重は17gfである。Ptを母体として、これらの条件を満たし、かつ高温への耐久性に優れた線材はPt−Cr線、Pt−Fe線、Pt−Ti線である。Pt−Cr線、Pt−Fe線、Pt−Ti線では、高温でクロム酸化物や鉄酸化物、チタン酸化物が線材表面に析出し、酸化物が安定で蒸発しないため、高温への耐久性が向上するものと考えられる。
【0014】
Pt−Cr線やPt−Fe線、Pt−Ti線は抵抗率がPt−W線と類似で、抵抗温度係数が小さいため、ヒータをオフからオンした際の突入電流が小さく、電源容量を小さくできる。そして突入電流が小さいため、電池電源12で駆動する際に電池の寿命を長くできる。またPt−Cr線やPt−Fe線、Pt−Ti線は抵抗値が高いため、ヒータ抵抗を大きくでき、駆動が容易になる。また抵抗値が高いため、小さなターン数でも必要なヒータ抵抗が得られ、この結果、ターン数を小さくして、あるいはコイルの径を小さくして、ビーズ4を小さくできる。そしてセンサの小型化ができ、かつ熱伝導率が小さいので、省電力のガスセンサ2となる。
【0015】
Pt−Cr線やPt−Fe線、Pt−Ti線は、Pt線に比べて剛性が高いので、コイルが変形しにくく、ばらつきの少ないガスセンサ2が得られる。また中心電極8をPt−Cr線やPt−Fe線、Pt−Ti線とすると、中心電極の劣化が少なく、熱伝導率が低いため中心電極からの放熱を抑制でき、また剛性が高いためヒータコイルの中心への位置決めが容易である。
【0016】
表1に、ビーズの体積と500℃への定常加熱時の消費電力との関係を示す。定常駆動時のガスセンサの消費電力は、ビーズ体積が14×10−3mm以下ではほぼ一定で、ビーズの小型化での定常消費電力のほぼ下限に達している。
【0017】
【表1】

Figure 0004086267
【0018】
表2に、ガスセンサの熱応答時間とビーズ体積との関係を示す。ビーズ体積の減少によって熱時定数が短縮し、ガスセンサをパルス駆動する際の消費電力を減少できる。しかしビーズ体積14×10−3mmと9×10−3mmとの間の熱時定数の差は小さく、ビーズ体積の減少による消費電力の減少も9×10−3mm付近で下限に達し、ビーズ体積は好ましくは8×10−3mm〜65×10−3mmとなる。
【0019】
【表2】
Figure 0004086267
【0020】
【試験例1】
ヒータ耐久試験用に、ガスセンサ2を以下のようにして製造した。ヒータ兼用電極6を、コイル内径を150μm、コイル長を300μm、ターン数を7とし、ビーズ4の長径を500μm、短径を450μmとした。実施例ではヒータ兼用電極6も中心電極8もPt−Cr(Cr3.8%、線径20μm)とし、比較例ではこれらを共にPt−W線(W8%、線径20μm)とした。SnO2を適当な粘度のペーストに調製して、ヒータ6のコイルに滴下し、乾燥した後に650〜700℃で焼結した。ヒータ耐久試験では、ガスセンサのヒータ兼用電極6に、ヒータ電圧を1秒間オン/1秒間オフの方形波を1サイクルとして、21日間耐久試験を行い、その前後での室温の抵抗値の変化を求めた。試験に用いたセンサ数は各5個で、結果は平均値で示す。
【0021】
図4に、ヒータ耐久試験での結果を示す。Pt−CrとPt−Wの消費電力はほとんど同じで、同じ消費電力ではほとんど同じ温度である。図4で、Pt−Cr20μm線の消費電力が90,100,120,135,150mWで、ヒータオン1秒後のセンサ温度は約500,550,600,650,700℃であり、同様にPt−W20μm線では消費電力が70,85,100,110,125mWで、約450,500,550,600,650℃であった。500℃×21日での、Pt−Cr線の抵抗変化率は1.5%、Pt−W線は2.5%、550℃ではPt−Cr線で2%、Pt−W線で5.5%、600℃ではPt−Cr線で5.5%、Pt−W線で9%であった。またPt−Fe線やPt−Ti線でも同様の結果が得られる。
【0022】
【試験例2】
高温での電極の劣化を観察するため、熱耐久試験を行った。この試験では、長さ約2mmの裸の中心電極8に鋸波状に電圧を加えて、5分間で室温から800〜900℃まで加熱し、続いて電源をオフして1分間放冷した。このサイクルを10回繰り返した。実施例として線径20μmのPt−Cr(3.8wt%)線を用い、比較例として線径20μmのPt−W(8wt%)線を用い、熱耐久後の金属表面を走査形電子顕微鏡で観察した。
【0023】
図5にPt−Cr線の熱耐久後の表面を示し、図6にPt−W線の表面を示す。図5では、表面にクロム酸化物と考えられる析出物が見られる。図6では、表面に多数の凹部が存在し、これらは酸化タングステンが蒸発した跡と考えられる。このことは、Pt−W線では酸化タングステンの蒸発により劣化し、Pt−Cr線やPt−Fe線やPt−Ti線では、表面を酸化物が覆うため耐久性が増すと考えられる。
【図面の簡単な説明】
【図1】 実施例のガスセンサの断面図
【図2】 実施例のガスセンサの動作パターンを示す特性図
【図3】 実施例のガスセンサの駆動回路のブロック図
【図4】 耐久試験でのガスセンサの、消費電力と抵抗の変化率との関係を示す特性図
【図5】 実施例での中心電極の熱耐久後の表面金属組織を表す走査形電子顕微鏡写真
【図6】 従来例のPt−Wでの中心電極の熱耐久後の表面金属組織を表す走査形電子顕微鏡写真
【符号の説明】
2 ガスセンサ
4 金属酸化物半導体ビーズ
6 ヒータ兼用電極
8 中心電極
10 ステム
12 電池電源
14 マイクロコンピュータ
16 トランジスタ
18 負荷抵抗[0001]
[Field of the Invention]
The present invention relates to a low power consumption type gas sensor using a metal oxide semiconductor and a gas detection device using the same.
[0002]
[Prior art]
The inventors have proposed a gas sensor in which a heater combined electrode made of Pt—W or Pt—Mo and a center electrode are embedded in a bead-shaped metal oxide semiconductor (Japanese Patent Application No. 11-190304). In such a gas sensor, since the Pt-W line and the Pt-Mo line have high resistance, a low resistance temperature coefficient, and high rigidity, the following effects can be obtained. First, since the power consumption is small, and second, the resistance temperature coefficient is small, the inrush current when the heater is turned on is small, and thirdly, since the resistance is high, the necessary resistance value can be obtained even with a small coil. The number of turns and the diameter of the coil can be reduced, and fourthly, since the rigidity is high, the workability at the time of manufacture is excellent.
[0003]
The inventor examined using a gas sensor using a Pt-W line or the like for the purpose of detecting CO in a low temperature region and detecting a combustible gas such as methane in a high temperature region. As a result, it has been found that the resistance value of the Pt-W wire heater decreases in about one year.
[0004]
[Problems of the Invention]
An object of the present invention is to find a more stable heater wire (claims 1 to 3).
[0005]
[Structure of the invention]
According to the present invention, in a gas sensor in which a coil-shaped heater combined electrode is embedded in a bead-shaped metal oxide semiconductor, the heater combined electrode is made of at least one member of an alloy wire made of Pt—Cr, Pt—Fe, and Pt—Ti. (Claim 1).
Preferably, a central electrode is embedded in a central portion of the coil of the heater combined electrode, and the central electrode is at least a member of an alloy wire made of Pt—Cr, Pt—Fe, and Pt—Ti.
Particularly preferably, both the heater combined electrode and the center electrode are Pt—Cr alloy wires.
[0006]
The present invention also provides a gas detection device using a gas sensor in which a coil-shaped heater combined electrode and a center electrode are embedded in a bead-shaped metal oxide semiconductor, wherein the heater combined electrode and the center electrode are Pt− Means for periodically generating a high-temperature region and a low-temperature region, comprising at least one member of an alloy wire made of Cr, Pt—Fe, Pt—Ti, and periodically changing the power applied to the heater combined electrode. And means for detecting a combustible gas such as methane in the high temperature range and detecting CO in the low temperature range. The distinction between the high temperature region and the low temperature region depends on the sensor temperature. For example, even immediately after the heater is turned off, if the sensor temperature is high, it is in the high temperature region.
[0007]
[Operation and effect of the invention]
The alloy wire made of Pt—Cr, Pt—Fe, and Pt—Ti has oxides such as chromium oxide, iron oxide, and titanium oxide deposited on the surface at high temperatures, and these oxides are stable, so that they can withstand high temperatures. High nature. For this reason, the gas sensor can be driven at a high temperature. Especially when the temperature of the gas sensor is changed periodically to detect combustible gas at high temperature and CO at low temperature, the heater will not deteriorate even if the maximum temperature is increased to detect combustible gas in a short time. Few. In addition, the heater is less deteriorated against thermal shock due to temperature change.
[0008]
An alloy wire made of Pt—Cr, Pt—Fe, and Pt—Ti has high resistance, a low temperature coefficient of resistance, and high rigidity. For this reason, the power consumption of the gas sensor can be reduced, and the inrush current when the heater is turned on / off is small. Further, since the resistance is high, a necessary resistance value can be obtained even if the overall length of the coil is shortened, and a small coil can be used. For these reasons, the power consumption of the gas sensor can be reduced. Furthermore, since the rigidity is high, workability at the time of manufacture is high (claims 1 and 2).
[0009]
【Example】
1 to 6 show an embodiment. FIG. 1 shows the structure of the gas sensor 2, which is a metal oxide semiconductor bead 4, for example, a sintered bead such as SnO 2 or a mixture of SnO 2 and alumina. Reference numeral 6 denotes a heater combined electrode made of at least one member of Pt—Cr, Pt—Fe, and Pt—Ti. The wire diameter (diameter) is 10 to 25 μm and has a coil shape. Here, Pt—Cr having a wire diameter of 20 μm is used. Alloy wire. The Cr content (Cr / [Pt + Cr]) is, for example, 1 to 10 wt%, preferably 2 to 6 wt%, and here, 3.8 wt%. In the case of Pt—Fe wire or Pt—Ti wire, the Fe content and Ti content are preferably 1 to 10 wt%. The number of turns of the coil of the heater combined electrode 6 is, for example, about 3 to 10. The heater inner electrode 6 has a coil inner diameter of, for example, 150 μm, a coil length of, for example, 300 μm, and the bead 4 has a major axis of 500 μm and a minor axis of 450 μm. Both ends of the heater electrode 6 are fixed to the stem 10. As will be described later, in order to reduce the power consumption of the gas sensor 2, a smaller coil and a smaller bead are preferable, and this value is provisional.
[0010]
8 is a center electrode, which is made of Pt—Cr wire, Pt—Fe wire, and Pt—Ti wire as in the case of the heater 6, and preferably has a wire diameter of 10 to 25 μm, here 20 μm, and the center of the coil of the heater combined electrode 6 It arrange | positions along a line | wire and fixes both ends to the stem 10. FIG. The center electrode 8 may not be provided, and in this case, the gas is detected by using the fact that the parallel resistance of the heater 6 and the beads 4 varies depending on the gas. The beads 4 are elliptical or spherical, and in the case of a spherical shape, the diameter is preferably 250 μm to 500 μm, and the volume of the beads 4 is preferably 8 × 10 −3 mm 3 to 65 × 10 −3 mm 3 , and here, 53 × 10 −3. It was mm 3.
[0011]
FIG. 2 shows an example of the driving pattern of the gas sensor 2, and FIG. 3 shows an example of the driving circuit of the gas sensor 2. The power source is, for example, a battery power source 12, 14 is a signal processing microcomputer, 16 is a transistor, and 18 is a load resistor. A sensor signal is read from the A / D input of the microcomputer 14 to detect CO and combustible gas such as methane. The transistor 16 is driven by the microcomputer 14 and is PWM-controlled on the high temperature side to turn on the heater in pulses and off on the low temperature side. For the first 3 seconds of the 10-second cycle, the maximum temperature of the heater / electrode 6 is, for example, 400 to 600 ° C., and here, 500 ° C. suitable for methane detection. On the low temperature side, the heater is turned off, allowed to cool for 7 seconds, and CO is detected near room temperature. For this reason, a thermal shock with a period of 10 seconds is applied to the gas sensor 2, and the temperature change width is about 500 ° C.
[0012]
When methane is detected at a constant temperature, the steady heating temperature is, for example, 450 ° C., and even when a Pt-W line (W8 wt%) is used as the heater electrode 6, the heater resistance does not decrease in continuous driving for one year. However, when a sensor using a Pt-W line heater was driven with the above specifications for about one year, the value of the heater resistance decreased by about 10%. This is because a thermal shock is applied to the heater electrode 6 and methane is detected in a short time (3 seconds), so that the maximum temperature is set to 500 ° C. instead of 450 ° C.
[0013]
A wire having a high resistance value and high rigidity is suitable for the wire for the heater electrode 6 and the center electrode 8. Those having a high resistance value generally have a low temperature coefficient of resistance and at the same time a low thermal conductivity. In the case of a 20 μm line, the resistivity is 1.6 KΩ / m with Pt-Cr (3.8%), the breaking load is 47 gf, the resistivity is 2 KΩ / m with Pt-W (8%), the breaking load is 73 gf, pure For Pt, the resistivity is 350 Ω / m and the breaking load is 17 gf. Pt is a Pt—Cr wire, Pt—Fe wire, and Pt—Ti wire that satisfy these conditions and have excellent durability to high temperatures. With Pt-Cr wire, Pt-Fe wire, and Pt-Ti wire, chromium oxide, iron oxide, and titanium oxide precipitate on the wire surface at high temperature, and the oxide is stable and does not evaporate. Is thought to improve.
[0014]
Pt-Cr wire, Pt-Fe wire, and Pt-Ti wire are similar in resistivity to Pt-W wire and have a small resistance temperature coefficient, so the inrush current when the heater is turned on is small and the power supply capacity is small. it can. Since the inrush current is small, the battery life can be extended when driven by the battery power source 12. In addition, since the Pt—Cr wire, Pt—Fe wire, and Pt—Ti wire have high resistance values, the heater resistance can be increased and the drive becomes easy. Further, since the resistance value is high, a necessary heater resistance can be obtained even with a small number of turns. As a result, the beads 4 can be made small by reducing the number of turns or by reducing the diameter of the coil. Since the sensor can be miniaturized and the thermal conductivity is small, the power-saving gas sensor 2 is obtained.
[0015]
Since the Pt—Cr wire, the Pt—Fe wire, and the Pt—Ti wire have higher rigidity than the Pt wire, the gas sensor 2 is obtained in which the coil is not easily deformed and has little variation. If the center electrode 8 is a Pt—Cr wire, Pt—Fe wire, or Pt—Ti wire, the center electrode is less deteriorated and the heat conductivity is low, so that heat dissipation from the center electrode can be suppressed, and the heater has high rigidity. Positioning at the center of the coil is easy.
[0016]
Table 1 shows the relationship between the volume of the beads and the power consumption during steady heating to 500 ° C. The power consumption of the gas sensor at the time of steady driving is substantially constant when the bead volume is 14 × 10 −3 mm 3 or less, and reaches almost the lower limit of the steady power consumption when the beads are downsized.
[0017]
[Table 1]
Figure 0004086267
[0018]
Table 2 shows the relationship between the thermal response time of the gas sensor and the bead volume. By reducing the bead volume, the thermal time constant is shortened, and the power consumption when the gas sensor is pulse-driven can be reduced. However, the difference in the thermal time constant between the bead volume 14 × 10 −3 mm 3 and 9 × 10 −3 mm 3 is small, and the decrease in power consumption due to the decrease in the bead volume is the lower limit in the vicinity of 9 × 10 −3 mm 3. And the bead volume is preferably 8 × 10 −3 mm 3 to 65 × 10 −3 mm 3 .
[0019]
[Table 2]
Figure 0004086267
[0020]
[Test Example 1]
For the heater durability test, the gas sensor 2 was manufactured as follows. The heater combined electrode 6 has a coil inner diameter of 150 μm, a coil length of 300 μm, a number of turns of 7, a long diameter of the beads 4 of 500 μm, and a short diameter of 450 μm. In the example, both the heater combined electrode 6 and the center electrode 8 were Pt—Cr (Cr 3.8%, wire diameter 20 μm), and in the comparative example, both were Pt—W wires (W 8%, wire diameter 20 μm). SnO 2 was prepared into a paste having an appropriate viscosity, dropped onto the coil of the heater 6, dried, and then sintered at 650 to 700 ° C. In the heater endurance test, a 21-day endurance test was performed on the heater sensor electrode 6 of the gas sensor using a square wave with the heater voltage on for 1 second and off for 1 second as one cycle, and the change in the resistance value at room temperature before and after that was obtained. It was. The number of sensors used in the test is 5 each, and the results are shown as average values.
[0021]
FIG. 4 shows the results of the heater durability test. The power consumption of Pt—Cr and Pt—W is almost the same, and the temperature is almost the same for the same power consumption. In FIG. 4, the power consumption of the Pt—Cr 20 μm line is 90, 100, 120, 135, 150 mW, the sensor temperature after about 1 second of the heater is about 500, 550, 600, 650, 700 ° C. Similarly, Pt—W 20 μm The power consumption of the wires was 70, 85, 100, 110, 125 mW and about 450, 500, 550, 600, 650 ° C. The resistance change rate of the Pt—Cr wire at 500 ° C. × 21 days is 1.5%, the Pt—W wire is 2.5%, the Pt—Cr wire is 2% at 550 ° C., and the Pt—W wire is 5. At 5% and 600 ° C., it was 5.5% for the Pt—Cr wire and 9% for the Pt—W wire. Similar results can be obtained with Pt-Fe wires and Pt-Ti wires.
[0022]
[Test Example 2]
In order to observe the deterioration of the electrode at high temperature, a thermal durability test was conducted. In this test, a voltage was applied in a sawtooth manner to the bare central electrode 8 having a length of about 2 mm, and the sample was heated from room temperature to 800 to 900 ° C. in 5 minutes, and then the power was turned off and the mixture was allowed to cool for 1 minute. This cycle was repeated 10 times. A Pt—Cr (3.8 wt%) wire having a wire diameter of 20 μm was used as an example, and a Pt—W (8 wt%) wire having a wire diameter of 20 μm was used as a comparative example. Observed.
[0023]
FIG. 5 shows the surface of the Pt—Cr wire after heat durability, and FIG. 6 shows the surface of the Pt—W wire. In FIG. 5, the deposit considered to be chromium oxide is seen on the surface. In FIG. 6, there are a large number of recesses on the surface, which are considered to be traces of evaporation of tungsten oxide. This is considered to be deteriorated by evaporation of tungsten oxide in the Pt-W line, and durability is increased in the Pt-Cr line, Pt-Fe line, and Pt-Ti line because the surface covers the oxide.
[Brief description of the drawings]
FIG. 1 is a sectional view of a gas sensor according to an embodiment. FIG. 2 is a characteristic diagram showing an operation pattern of the gas sensor according to the embodiment. FIG. Fig. 5 is a characteristic diagram showing the relationship between the power consumption and the rate of change in resistance. Fig. 5 is a scanning electron micrograph showing the surface metallographic structure after thermal endurance of the center electrode in the example. Scanning electron micrograph showing the surface metallographic structure after thermal endurance of the center electrode
2 Gas Sensor 4 Metal Oxide Semiconductor Bead 6 Heater Combined Electrode 8 Center Electrode 10 Stem 12 Battery Power Supply 14 Microcomputer 16 Transistor 18 Load Resistance

Claims (3)

ビーズ状の金属酸化物半導体に、コイル状のヒータ兼用電極を埋設したガスセンサにおいて、
前記ヒータ兼用電極がPt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員からなることを特徴とするガスセンサ。
In a gas sensor in which a coil-shaped heater combined electrode is embedded in a bead-shaped metal oxide semiconductor,
The gas sensor according to claim 1, wherein the heater combined electrode is made of at least one member of an alloy wire made of Pt—Cr, Pt—Fe, and Pt—Ti.
前記ヒータ兼用電極のコイルの中心部に中心電極を埋設すると共に、該中心電極をPt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員とすることを特徴とする請求項1のガスセンサ。The center electrode is embedded in the central part of the coil of the heater combined electrode, and the center electrode is at least one member of an alloy wire made of Pt—Cr, Pt—Fe, Pt—Ti. Gas sensor. ビーズ状の金属酸化物半導体の内部に、コイル状のヒータ兼用電極と中心電極とを埋設したガスセンサを用いたガス検出装置において、
前記ヒータ兼用電極と中心電極とが、Pt−Cr,Pt−Fe,Pt−Tiからなる合金線の少なくとも一員からなり、
前記ヒータ兼用電極への印加電力を周期的に変化させて、高温域と低温域とを周期的に発生させるための手段と、
前記高温域で可燃性ガスを検出しかつ低温域でCOを検出するための手段とを設けたことを特徴とする、ガス検出装置。
In a gas detection device using a gas sensor in which a coil-shaped heater combined electrode and a center electrode are embedded inside a bead-shaped metal oxide semiconductor,
The heater combined electrode and the center electrode are made of at least one member of an alloy wire made of Pt—Cr, Pt—Fe, Pt—Ti,
Means for periodically generating a high temperature region and a low temperature region by periodically changing the applied power to the heater combined electrode;
And a means for detecting flammable gas in the high temperature range and detecting CO in the low temperature range.
JP37630799A 1999-12-03 1999-12-03 Gas sensor and gas detection device Expired - Fee Related JP4086267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37630799A JP4086267B2 (en) 1999-12-03 1999-12-03 Gas sensor and gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37630799A JP4086267B2 (en) 1999-12-03 1999-12-03 Gas sensor and gas detection device

Publications (2)

Publication Number Publication Date
JP2001165886A JP2001165886A (en) 2001-06-22
JP4086267B2 true JP4086267B2 (en) 2008-05-14

Family

ID=18506925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37630799A Expired - Fee Related JP4086267B2 (en) 1999-12-03 1999-12-03 Gas sensor and gas detection device

Country Status (1)

Country Link
JP (1) JP4086267B2 (en)

Also Published As

Publication number Publication date
JP2001165886A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
KR100506023B1 (en) Heater-sensor complex
JP2936147B2 (en) Pencil type glow plug for internal combustion engine
JP5488289B2 (en) Oxygen sensor element
JP4086267B2 (en) Gas sensor and gas detection device
JP3518800B2 (en) Gas sensor and gas detection device
JP4129251B2 (en) Gas detector
JP3523911B2 (en) Ceramic heater for sensor and oxygen sensor
JPH11142356A (en) Semiconductor gas sensor
JPH07198644A (en) Gas sensor and method of detecting gas
JP2004020377A (en) Catalytic combustion type gas sensor
JP2017146247A (en) Temperature sensor
JPS63121742A (en) Detection of carbon monoxide
JP3203120B2 (en) Substrate type semiconductor gas sensor and gas detector
JP6879093B2 (en) Oxidizing gas sensors, gas alarms, controls, and control methods
JP4854459B2 (en) Glow plug
JPH0580012A (en) Semiconductor gas detection element
JP3522257B2 (en) Gas detection method and device
JP2006242913A (en) Thin-film temperature sensor
JP6541982B2 (en) Gas detector
JPH0799358B2 (en) Gas detection method
JPS61264246A (en) Gas detecting method
WO2016174988A1 (en) Semiconductor gas sensor and gas detection device provided with same
JP2001021515A (en) Gas sensor and gas detection method
RU2360237C1 (en) Solid-state gas sensor (versions)
JP4129253B2 (en) Semiconductor gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees